linux/drivers/gpu/nova-core/gsp.rs

162 lines
5.0 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
mod boot;
use kernel::{
device,
dma::{
CoherentAllocation,
DmaAddress, //
},
dma_write,
pci,
prelude::*,
transmute::AsBytes, //
};
pub(crate) mod cmdq;
pub(crate) mod commands;
mod fw;
mod sequencer;
pub(crate) use fw::{
GspFwWprMeta,
LibosParams, //
};
use crate::{
gsp::cmdq::Cmdq,
gsp::fw::{
GspArgumentsCached,
LibosMemoryRegionInitArgument, //
},
num,
};
pub(crate) const GSP_PAGE_SHIFT: usize = 12;
pub(crate) const GSP_PAGE_SIZE: usize = 1 << GSP_PAGE_SHIFT;
/// Number of GSP pages to use in a RM log buffer.
const RM_LOG_BUFFER_NUM_PAGES: usize = 0x10;
/// Array of page table entries, as understood by the GSP bootloader.
#[repr(C)]
struct PteArray<const NUM_ENTRIES: usize>([u64; NUM_ENTRIES]);
/// SAFETY: arrays of `u64` implement `AsBytes` and we are but a wrapper around one.
unsafe impl<const NUM_ENTRIES: usize> AsBytes for PteArray<NUM_ENTRIES> {}
impl<const NUM_PAGES: usize> PteArray<NUM_PAGES> {
/// Creates a new page table array mapping `NUM_PAGES` GSP pages starting at address `start`.
fn new(start: DmaAddress) -> Result<Self> {
let mut ptes = [0u64; NUM_PAGES];
for (i, pte) in ptes.iter_mut().enumerate() {
*pte = start
.checked_add(num::usize_as_u64(i) << GSP_PAGE_SHIFT)
.ok_or(EOVERFLOW)?;
}
Ok(Self(ptes))
}
}
/// The logging buffers are byte queues that contain encoded printf-like
/// messages from GSP-RM. They need to be decoded by a special application
/// that can parse the buffers.
///
/// The 'loginit' buffer contains logs from early GSP-RM init and
/// exception dumps. The 'logrm' buffer contains the subsequent logs. Both are
/// written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
///
/// The physical address map for the log buffer is stored in the buffer
/// itself, starting with offset 1. Offset 0 contains the "put" pointer (pp).
/// Initially, pp is equal to 0. If the buffer has valid logging data in it,
/// then pp points to index into the buffer where the next logging entry will
/// be written. Therefore, the logging data is valid if:
/// 1 <= pp < sizeof(buffer)/sizeof(u64)
struct LogBuffer(CoherentAllocation<u8>);
impl LogBuffer {
/// Creates a new `LogBuffer` mapped on `dev`.
fn new(dev: &device::Device<device::Bound>) -> Result<Self> {
const NUM_PAGES: usize = RM_LOG_BUFFER_NUM_PAGES;
let mut obj = Self(CoherentAllocation::<u8>::alloc_coherent(
dev,
NUM_PAGES * GSP_PAGE_SIZE,
GFP_KERNEL | __GFP_ZERO,
)?);
let ptes = PteArray::<NUM_PAGES>::new(obj.0.dma_handle())?;
// SAFETY: `obj` has just been created and we are its sole user.
unsafe {
// Copy the self-mapping PTE at the expected location.
obj.0
.as_slice_mut(size_of::<u64>(), size_of_val(&ptes))?
.copy_from_slice(ptes.as_bytes())
};
Ok(obj)
}
}
/// GSP runtime data.
#[pin_data]
pub(crate) struct Gsp {
/// Libos arguments.
pub(crate) libos: CoherentAllocation<LibosMemoryRegionInitArgument>,
/// Init log buffer.
loginit: LogBuffer,
/// Interrupts log buffer.
logintr: LogBuffer,
/// RM log buffer.
logrm: LogBuffer,
/// Command queue.
pub(crate) cmdq: Cmdq,
/// RM arguments.
rmargs: CoherentAllocation<GspArgumentsCached>,
}
impl Gsp {
// Creates an in-place initializer for a `Gsp` manager for `pdev`.
pub(crate) fn new(pdev: &pci::Device<device::Bound>) -> Result<impl PinInit<Self, Error>> {
let dev = pdev.as_ref();
let libos = CoherentAllocation::<LibosMemoryRegionInitArgument>::alloc_coherent(
dev,
GSP_PAGE_SIZE / size_of::<LibosMemoryRegionInitArgument>(),
GFP_KERNEL | __GFP_ZERO,
)?;
// Initialise the logging structures. The OpenRM equivalents are in:
// _kgspInitLibosLoggingStructures (allocates memory for buffers)
// kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
let loginit = LogBuffer::new(dev)?;
dma_write!(libos[0] = LibosMemoryRegionInitArgument::new("LOGINIT", &loginit.0))?;
let logintr = LogBuffer::new(dev)?;
dma_write!(libos[1] = LibosMemoryRegionInitArgument::new("LOGINTR", &logintr.0))?;
let logrm = LogBuffer::new(dev)?;
dma_write!(libos[2] = LibosMemoryRegionInitArgument::new("LOGRM", &logrm.0))?;
let cmdq = Cmdq::new(dev)?;
let rmargs = CoherentAllocation::<GspArgumentsCached>::alloc_coherent(
dev,
1,
GFP_KERNEL | __GFP_ZERO,
)?;
dma_write!(rmargs[0] = fw::GspArgumentsCached::new(&cmdq))?;
dma_write!(libos[3] = LibosMemoryRegionInitArgument::new("RMARGS", &rmargs))?;
Ok(try_pin_init!(Self {
libos,
loginit,
logintr,
logrm,
rmargs,
cmdq,
}))
}
}