// SPDX-License-Identifier: GPL-2.0 mod boot; use kernel::{ device, dma::{ CoherentAllocation, DmaAddress, // }, dma_write, pci, prelude::*, transmute::AsBytes, // }; pub(crate) mod cmdq; pub(crate) mod commands; mod fw; mod sequencer; pub(crate) use fw::{ GspFwWprMeta, LibosParams, // }; use crate::{ gsp::cmdq::Cmdq, gsp::fw::{ GspArgumentsCached, LibosMemoryRegionInitArgument, // }, num, }; pub(crate) const GSP_PAGE_SHIFT: usize = 12; pub(crate) const GSP_PAGE_SIZE: usize = 1 << GSP_PAGE_SHIFT; /// Number of GSP pages to use in a RM log buffer. const RM_LOG_BUFFER_NUM_PAGES: usize = 0x10; /// Array of page table entries, as understood by the GSP bootloader. #[repr(C)] struct PteArray([u64; NUM_ENTRIES]); /// SAFETY: arrays of `u64` implement `AsBytes` and we are but a wrapper around one. unsafe impl AsBytes for PteArray {} impl PteArray { /// Creates a new page table array mapping `NUM_PAGES` GSP pages starting at address `start`. fn new(start: DmaAddress) -> Result { let mut ptes = [0u64; NUM_PAGES]; for (i, pte) in ptes.iter_mut().enumerate() { *pte = start .checked_add(num::usize_as_u64(i) << GSP_PAGE_SHIFT) .ok_or(EOVERFLOW)?; } Ok(Self(ptes)) } } /// The logging buffers are byte queues that contain encoded printf-like /// messages from GSP-RM. They need to be decoded by a special application /// that can parse the buffers. /// /// The 'loginit' buffer contains logs from early GSP-RM init and /// exception dumps. The 'logrm' buffer contains the subsequent logs. Both are /// written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE. /// /// The physical address map for the log buffer is stored in the buffer /// itself, starting with offset 1. Offset 0 contains the "put" pointer (pp). /// Initially, pp is equal to 0. If the buffer has valid logging data in it, /// then pp points to index into the buffer where the next logging entry will /// be written. Therefore, the logging data is valid if: /// 1 <= pp < sizeof(buffer)/sizeof(u64) struct LogBuffer(CoherentAllocation); impl LogBuffer { /// Creates a new `LogBuffer` mapped on `dev`. fn new(dev: &device::Device) -> Result { const NUM_PAGES: usize = RM_LOG_BUFFER_NUM_PAGES; let mut obj = Self(CoherentAllocation::::alloc_coherent( dev, NUM_PAGES * GSP_PAGE_SIZE, GFP_KERNEL | __GFP_ZERO, )?); let ptes = PteArray::::new(obj.0.dma_handle())?; // SAFETY: `obj` has just been created and we are its sole user. unsafe { // Copy the self-mapping PTE at the expected location. obj.0 .as_slice_mut(size_of::(), size_of_val(&ptes))? .copy_from_slice(ptes.as_bytes()) }; Ok(obj) } } /// GSP runtime data. #[pin_data] pub(crate) struct Gsp { /// Libos arguments. pub(crate) libos: CoherentAllocation, /// Init log buffer. loginit: LogBuffer, /// Interrupts log buffer. logintr: LogBuffer, /// RM log buffer. logrm: LogBuffer, /// Command queue. pub(crate) cmdq: Cmdq, /// RM arguments. rmargs: CoherentAllocation, } impl Gsp { // Creates an in-place initializer for a `Gsp` manager for `pdev`. pub(crate) fn new(pdev: &pci::Device) -> Result> { let dev = pdev.as_ref(); let libos = CoherentAllocation::::alloc_coherent( dev, GSP_PAGE_SIZE / size_of::(), GFP_KERNEL | __GFP_ZERO, )?; // Initialise the logging structures. The OpenRM equivalents are in: // _kgspInitLibosLoggingStructures (allocates memory for buffers) // kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array) let loginit = LogBuffer::new(dev)?; dma_write!(libos[0] = LibosMemoryRegionInitArgument::new("LOGINIT", &loginit.0))?; let logintr = LogBuffer::new(dev)?; dma_write!(libos[1] = LibosMemoryRegionInitArgument::new("LOGINTR", &logintr.0))?; let logrm = LogBuffer::new(dev)?; dma_write!(libos[2] = LibosMemoryRegionInitArgument::new("LOGRM", &logrm.0))?; let cmdq = Cmdq::new(dev)?; let rmargs = CoherentAllocation::::alloc_coherent( dev, 1, GFP_KERNEL | __GFP_ZERO, )?; dma_write!(rmargs[0] = fw::GspArgumentsCached::new(&cmdq))?; dma_write!(libos[3] = LibosMemoryRegionInitArgument::new("RMARGS", &rmargs))?; Ok(try_pin_init!(Self { libos, loginit, logintr, logrm, rmargs, cmdq, })) } }