linux/drivers/net/wireless/ath/ath12k/reg.c

995 lines
28 KiB
C

// SPDX-License-Identifier: BSD-3-Clause-Clear
/*
* Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2025 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/rtnetlink.h>
#include "core.h"
#include "debug.h"
#include "mac.h"
/* World regdom to be used in case default regd from fw is unavailable */
#define ATH12K_2GHZ_CH01_11 REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0)
#define ATH12K_5GHZ_5150_5350 REG_RULE(5150 - 10, 5350 + 10, 80, 0, 30,\
NL80211_RRF_NO_IR)
#define ATH12K_5GHZ_5725_5850 REG_RULE(5725 - 10, 5850 + 10, 80, 0, 30,\
NL80211_RRF_NO_IR)
#define ETSI_WEATHER_RADAR_BAND_LOW 5590
#define ETSI_WEATHER_RADAR_BAND_HIGH 5650
#define ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT 600000
static const struct ieee80211_regdomain ath12k_world_regd = {
.n_reg_rules = 3,
.alpha2 = "00",
.reg_rules = {
ATH12K_2GHZ_CH01_11,
ATH12K_5GHZ_5150_5350,
ATH12K_5GHZ_5725_5850,
}
};
static bool ath12k_regdom_changes(struct ieee80211_hw *hw, char *alpha2)
{
const struct ieee80211_regdomain *regd;
regd = rcu_dereference_rtnl(hw->wiphy->regd);
/* This can happen during wiphy registration where the previous
* user request is received before we update the regd received
* from firmware.
*/
if (!regd)
return true;
return memcmp(regd->alpha2, alpha2, 2) != 0;
}
static void
ath12k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath12k_wmi_init_country_arg arg;
struct wmi_set_current_country_arg current_arg = {};
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar = ath12k_ah_to_ar(ah, 0);
int ret, i;
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"Regulatory Notification received for %s\n", wiphy_name(wiphy));
if (request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"driver initiated regd update\n");
if (ah->state != ATH12K_HW_STATE_ON)
return;
for_each_ar(ah, ar, i) {
ret = ath12k_reg_update_chan_list(ar, true);
if (ret && ret != -EINVAL) {
ath12k_warn(ar->ab,
"failed to update chan list for pdev %u, ret %d\n",
i, ret);
break;
}
}
return;
}
/* Currently supporting only General User Hints. Cell base user
* hints to be handled later.
* Hints from other sources like Core, Beacons are not expected for
* self managed wiphy's
*/
if (!(request->initiator == NL80211_REGDOM_SET_BY_USER &&
request->user_reg_hint_type == NL80211_USER_REG_HINT_USER)) {
ath12k_warn(ar->ab, "Unexpected Regulatory event for this wiphy\n");
return;
}
if (!IS_ENABLED(CONFIG_ATH_REG_DYNAMIC_USER_REG_HINTS)) {
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"Country Setting is not allowed\n");
return;
}
if (!ath12k_regdom_changes(hw, request->alpha2)) {
ath12k_dbg(ar->ab, ATH12K_DBG_REG, "Country is already set\n");
return;
}
/* Allow fresh updates to wiphy regd */
ah->regd_updated = false;
/* Send the reg change request to all the radios */
for_each_ar(ah, ar, i) {
reinit_completion(&ar->regd_update_completed);
if (ar->ab->hw_params->current_cc_support) {
memcpy(&current_arg.alpha2, request->alpha2, 2);
memcpy(&ar->alpha2, &current_arg.alpha2, 2);
ret = ath12k_wmi_send_set_current_country_cmd(ar, &current_arg);
if (ret)
ath12k_warn(ar->ab,
"failed set current country code: %d\n", ret);
} else {
arg.flags = ALPHA_IS_SET;
memcpy(&arg.cc_info.alpha2, request->alpha2, 2);
arg.cc_info.alpha2[2] = 0;
ret = ath12k_wmi_send_init_country_cmd(ar, &arg);
if (ret)
ath12k_warn(ar->ab,
"failed set INIT Country code: %d\n", ret);
}
wiphy_lock(wiphy);
ath12k_mac_11d_scan_stop(ar);
wiphy_unlock(wiphy);
ar->regdom_set_by_user = true;
}
}
int ath12k_reg_update_chan_list(struct ath12k *ar, bool wait)
{
struct ieee80211_supported_band **bands;
struct ath12k_wmi_scan_chan_list_arg *arg;
struct ieee80211_channel *channel;
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
struct ath12k_wmi_channel_arg *ch;
enum nl80211_band band;
int num_channels = 0;
int i, ret = 0;
if (ar->ah->state == ATH12K_HW_STATE_RESTARTING)
return 0;
bands = hw->wiphy->bands;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!(ar->mac.sbands[band].channels && bands[band]))
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
if (bands[band]->channels[i].flags &
IEEE80211_CHAN_DISABLED)
continue;
/* Skip Channels that are not in current radio's range */
if (bands[band]->channels[i].center_freq <
KHZ_TO_MHZ(ar->freq_range.start_freq) ||
bands[band]->channels[i].center_freq >
KHZ_TO_MHZ(ar->freq_range.end_freq))
continue;
num_channels++;
}
}
if (!num_channels) {
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"pdev is not supported for this country\n");
return -EINVAL;
}
arg = kzalloc(struct_size(arg, channel, num_channels), GFP_KERNEL);
if (!arg)
return -ENOMEM;
arg->pdev_id = ar->pdev->pdev_id;
arg->nallchans = num_channels;
ch = arg->channel;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!(ar->mac.sbands[band].channels && bands[band]))
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
channel = &bands[band]->channels[i];
if (channel->flags & IEEE80211_CHAN_DISABLED)
continue;
/* Skip Channels that are not in current radio's range */
if (bands[band]->channels[i].center_freq <
KHZ_TO_MHZ(ar->freq_range.start_freq) ||
bands[band]->channels[i].center_freq >
KHZ_TO_MHZ(ar->freq_range.end_freq))
continue;
/* TODO: Set to true/false based on some condition? */
ch->allow_ht = true;
ch->allow_vht = true;
ch->allow_he = true;
ch->dfs_set =
!!(channel->flags & IEEE80211_CHAN_RADAR);
ch->is_chan_passive = !!(channel->flags &
IEEE80211_CHAN_NO_IR);
ch->is_chan_passive |= ch->dfs_set;
ch->mhz = channel->center_freq;
ch->cfreq1 = channel->center_freq;
ch->minpower = 0;
ch->maxpower = channel->max_power * 2;
ch->maxregpower = channel->max_reg_power * 2;
ch->antennamax = channel->max_antenna_gain * 2;
/* TODO: Use appropriate phymodes */
if (channel->band == NL80211_BAND_2GHZ)
ch->phy_mode = MODE_11G;
else
ch->phy_mode = MODE_11A;
if (channel->band == NL80211_BAND_6GHZ &&
cfg80211_channel_is_psc(channel))
ch->psc_channel = true;
ath12k_dbg(ar->ab, ATH12K_DBG_WMI,
"mac channel [%d/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
i, arg->nallchans,
ch->mhz, ch->maxpower, ch->maxregpower,
ch->antennamax, ch->phy_mode);
ch++;
/* TODO: use quarrter/half rate, cfreq12, dfs_cfreq2
* set_agile, reg_class_idx
*/
}
}
if (wait) {
spin_lock_bh(&ar->data_lock);
list_add_tail(&arg->list, &ar->regd_channel_update_queue);
spin_unlock_bh(&ar->data_lock);
queue_work(ar->ab->workqueue, &ar->regd_channel_update_work);
return 0;
}
ret = ath12k_wmi_send_scan_chan_list_cmd(ar, arg);
kfree(arg);
return ret;
}
static void ath12k_copy_regd(struct ieee80211_regdomain *regd_orig,
struct ieee80211_regdomain *regd_copy)
{
u8 i;
/* The caller should have checked error conditions */
memcpy(regd_copy, regd_orig, sizeof(*regd_orig));
for (i = 0; i < regd_orig->n_reg_rules; i++)
memcpy(&regd_copy->reg_rules[i], &regd_orig->reg_rules[i],
sizeof(struct ieee80211_reg_rule));
}
int ath12k_regd_update(struct ath12k *ar, bool init)
{
struct ath12k_wmi_hal_reg_capabilities_ext_arg *reg_cap;
u32 phy_id, freq_low, freq_high, supported_bands;
struct ath12k_hw *ah = ath12k_ar_to_ah(ar);
struct ieee80211_hw *hw = ah->hw;
struct ieee80211_regdomain *regd, *regd_copy = NULL;
int ret, regd_len, pdev_id;
struct ath12k_base *ab;
long time_left;
ab = ar->ab;
time_left = wait_for_completion_timeout(&ar->regd_update_completed,
ATH12K_REG_UPDATE_TIMEOUT_HZ);
if (time_left == 0) {
ath12k_warn(ab, "Timeout while waiting for regulatory update");
/* Even though timeout has occurred, still continue since at least boot
* time data would be there to process
*/
}
supported_bands = ar->pdev->cap.supported_bands;
reg_cap = &ab->hal_reg_cap[ar->pdev_idx];
/* Possible that due to reg change, current limits for supported
* frequency changed. Update it. As a first step, reset the
* previous values and then compute and set the new values.
*/
ar->freq_range.start_freq = 0;
ar->freq_range.end_freq = 0;
if (supported_bands & WMI_HOST_WLAN_2GHZ_CAP) {
if (ab->hw_params->single_pdev_only) {
phy_id = ar->pdev->cap.band[WMI_HOST_WLAN_2GHZ_CAP].phy_id;
reg_cap = &ab->hal_reg_cap[phy_id];
}
freq_low = max(reg_cap->low_2ghz_chan, ab->reg_freq_2ghz.start_freq);
freq_high = min(reg_cap->high_2ghz_chan, ab->reg_freq_2ghz.end_freq);
ath12k_mac_update_freq_range(ar, freq_low, freq_high);
}
if (supported_bands & WMI_HOST_WLAN_5GHZ_CAP && !ar->supports_6ghz) {
if (ab->hw_params->single_pdev_only) {
phy_id = ar->pdev->cap.band[WMI_HOST_WLAN_5GHZ_CAP].phy_id;
reg_cap = &ab->hal_reg_cap[phy_id];
}
freq_low = max(reg_cap->low_5ghz_chan, ab->reg_freq_5ghz.start_freq);
freq_high = min(reg_cap->high_5ghz_chan, ab->reg_freq_5ghz.end_freq);
ath12k_mac_update_freq_range(ar, freq_low, freq_high);
}
if (supported_bands & WMI_HOST_WLAN_5GHZ_CAP && ar->supports_6ghz) {
freq_low = max(reg_cap->low_5ghz_chan, ab->reg_freq_6ghz.start_freq);
freq_high = min(reg_cap->high_5ghz_chan, ab->reg_freq_6ghz.end_freq);
ath12k_mac_update_freq_range(ar, freq_low, freq_high);
}
/* If one of the radios within ah has already updated the regd for
* the wiphy, then avoid setting regd again
*/
if (ah->regd_updated)
return 0;
/* firmware provides reg rules which are similar for 2 GHz and 5 GHz
* pdev but 6 GHz pdev has superset of all rules including rules for
* all bands, we prefer 6 GHz pdev's rules to be used for setup of
* the wiphy regd.
* If 6 GHz pdev was part of the ath12k_hw, wait for the 6 GHz pdev,
* else pick the first pdev which calls this function and use its
* regd to update global hw regd.
* The regd_updated flag set at the end will not allow any further
* updates.
*/
if (ah->use_6ghz_regd && !ar->supports_6ghz)
return 0;
pdev_id = ar->pdev_idx;
spin_lock_bh(&ab->base_lock);
if (init) {
/* Apply the regd received during init through
* WMI_REG_CHAN_LIST_CC event. In case of failure to
* receive the regd, initialize with a default world
* regulatory.
*/
if (ab->default_regd[pdev_id]) {
regd = ab->default_regd[pdev_id];
} else {
ath12k_warn(ab,
"failed to receive default regd during init\n");
regd = (struct ieee80211_regdomain *)&ath12k_world_regd;
}
} else {
regd = ab->new_regd[pdev_id];
}
if (!regd) {
ret = -EINVAL;
spin_unlock_bh(&ab->base_lock);
goto err;
}
regd_len = sizeof(*regd) + (regd->n_reg_rules *
sizeof(struct ieee80211_reg_rule));
regd_copy = kzalloc(regd_len, GFP_ATOMIC);
if (regd_copy)
ath12k_copy_regd(regd, regd_copy);
spin_unlock_bh(&ab->base_lock);
if (!regd_copy) {
ret = -ENOMEM;
goto err;
}
ret = regulatory_set_wiphy_regd(hw->wiphy, regd_copy);
kfree(regd_copy);
if (ret)
goto err;
if (ah->state != ATH12K_HW_STATE_ON)
goto skip;
ah->regd_updated = true;
skip:
return 0;
err:
ath12k_warn(ab, "failed to perform regd update : %d\n", ret);
return ret;
}
static enum nl80211_dfs_regions
ath12k_map_fw_dfs_region(enum ath12k_dfs_region dfs_region)
{
switch (dfs_region) {
case ATH12K_DFS_REG_FCC:
case ATH12K_DFS_REG_CN:
return NL80211_DFS_FCC;
case ATH12K_DFS_REG_ETSI:
case ATH12K_DFS_REG_KR:
return NL80211_DFS_ETSI;
case ATH12K_DFS_REG_MKK:
case ATH12K_DFS_REG_MKK_N:
return NL80211_DFS_JP;
default:
return NL80211_DFS_UNSET;
}
}
static u32 ath12k_get_bw_reg_flags(u16 max_bw)
{
switch (max_bw) {
case 20:
return NL80211_RRF_NO_HT40 |
NL80211_RRF_NO_80MHZ |
NL80211_RRF_NO_160MHZ |
NL80211_RRF_NO_320MHZ;
case 40:
return NL80211_RRF_NO_80MHZ |
NL80211_RRF_NO_160MHZ |
NL80211_RRF_NO_320MHZ;
case 80:
return NL80211_RRF_NO_160MHZ |
NL80211_RRF_NO_320MHZ;
case 160:
return NL80211_RRF_NO_320MHZ;
case 320:
default:
return 0;
}
}
static u32 ath12k_map_fw_reg_flags(u16 reg_flags)
{
u32 flags = 0;
if (reg_flags & REGULATORY_CHAN_NO_IR)
flags = NL80211_RRF_NO_IR;
if (reg_flags & REGULATORY_CHAN_RADAR)
flags |= NL80211_RRF_DFS;
if (reg_flags & REGULATORY_CHAN_NO_OFDM)
flags |= NL80211_RRF_NO_OFDM;
if (reg_flags & REGULATORY_CHAN_INDOOR_ONLY)
flags |= NL80211_RRF_NO_OUTDOOR;
if (reg_flags & REGULATORY_CHAN_NO_HT40)
flags |= NL80211_RRF_NO_HT40;
if (reg_flags & REGULATORY_CHAN_NO_80MHZ)
flags |= NL80211_RRF_NO_80MHZ;
if (reg_flags & REGULATORY_CHAN_NO_160MHZ)
flags |= NL80211_RRF_NO_160MHZ;
return flags;
}
static u32 ath12k_map_fw_phy_flags(u32 phy_flags)
{
u32 flags = 0;
if (phy_flags & ATH12K_REG_PHY_BITMAP_NO11AX)
flags |= NL80211_RRF_NO_HE;
if (phy_flags & ATH12K_REG_PHY_BITMAP_NO11BE)
flags |= NL80211_RRF_NO_EHT;
return flags;
}
static const char *
ath12k_reg_get_regdom_str(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_FCC:
return "FCC";
case NL80211_DFS_ETSI:
return "ETSI";
case NL80211_DFS_JP:
return "JP";
default:
return "UNSET";
}
}
static u16
ath12k_reg_adjust_bw(u16 start_freq, u16 end_freq, u16 max_bw)
{
u16 bw;
bw = end_freq - start_freq;
bw = min_t(u16, bw, max_bw);
if (bw >= 80 && bw < 160)
bw = 80;
else if (bw >= 40 && bw < 80)
bw = 40;
else if (bw < 40)
bw = 20;
return bw;
}
static void
ath12k_reg_update_rule(struct ieee80211_reg_rule *reg_rule, u32 start_freq,
u32 end_freq, u32 bw, u32 ant_gain, u32 reg_pwr,
s8 psd, u32 reg_flags)
{
reg_rule->freq_range.start_freq_khz = MHZ_TO_KHZ(start_freq);
reg_rule->freq_range.end_freq_khz = MHZ_TO_KHZ(end_freq);
reg_rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(bw);
reg_rule->power_rule.max_antenna_gain = DBI_TO_MBI(ant_gain);
reg_rule->power_rule.max_eirp = DBM_TO_MBM(reg_pwr);
reg_rule->psd = psd;
reg_rule->flags = reg_flags;
}
static void
ath12k_reg_update_weather_radar_band(struct ath12k_base *ab,
struct ieee80211_regdomain *regd,
struct ath12k_reg_rule *reg_rule,
u8 *rule_idx, u32 flags, u16 max_bw)
{
u32 end_freq;
u16 bw;
u8 i;
i = *rule_idx;
bw = ath12k_reg_adjust_bw(reg_rule->start_freq,
ETSI_WEATHER_RADAR_BAND_LOW, max_bw);
ath12k_reg_update_rule(regd->reg_rules + i, reg_rule->start_freq,
ETSI_WEATHER_RADAR_BAND_LOW, bw,
reg_rule->ant_gain, reg_rule->reg_power,
reg_rule->psd_eirp, flags);
ath12k_dbg(ab, ATH12K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW,
bw, reg_rule->ant_gain, reg_rule->reg_power,
regd->reg_rules[i].dfs_cac_ms,
flags);
if (reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_HIGH)
end_freq = ETSI_WEATHER_RADAR_BAND_HIGH;
else
end_freq = reg_rule->end_freq;
bw = ath12k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_LOW, end_freq,
max_bw);
i++;
ath12k_reg_update_rule(regd->reg_rules + i,
ETSI_WEATHER_RADAR_BAND_LOW, end_freq, bw,
reg_rule->ant_gain, reg_rule->reg_power,
reg_rule->psd_eirp, flags);
regd->reg_rules[i].dfs_cac_ms = ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT;
ath12k_dbg(ab, ATH12K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, ETSI_WEATHER_RADAR_BAND_LOW, end_freq,
bw, reg_rule->ant_gain, reg_rule->reg_power,
regd->reg_rules[i].dfs_cac_ms,
flags);
if (end_freq == reg_rule->end_freq) {
regd->n_reg_rules--;
*rule_idx = i;
return;
}
bw = ath12k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_HIGH,
reg_rule->end_freq, max_bw);
i++;
ath12k_reg_update_rule(regd->reg_rules + i, ETSI_WEATHER_RADAR_BAND_HIGH,
reg_rule->end_freq, bw,
reg_rule->ant_gain, reg_rule->reg_power,
reg_rule->psd_eirp, flags);
ath12k_dbg(ab, ATH12K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq,
bw, reg_rule->ant_gain, reg_rule->reg_power,
regd->reg_rules[i].dfs_cac_ms,
flags);
*rule_idx = i;
}
static void ath12k_reg_update_freq_range(struct ath12k_reg_freq *reg_freq,
struct ath12k_reg_rule *reg_rule)
{
if (reg_freq->start_freq > reg_rule->start_freq)
reg_freq->start_freq = reg_rule->start_freq;
if (reg_freq->end_freq < reg_rule->end_freq)
reg_freq->end_freq = reg_rule->end_freq;
}
enum wmi_reg_6g_ap_type
ath12k_reg_ap_pwr_convert(enum ieee80211_ap_reg_power power_type)
{
switch (power_type) {
case IEEE80211_REG_LPI_AP:
return WMI_REG_INDOOR_AP;
case IEEE80211_REG_SP_AP:
return WMI_REG_STD_POWER_AP;
case IEEE80211_REG_VLP_AP:
return WMI_REG_VLP_AP;
default:
return WMI_REG_MAX_AP_TYPE;
}
}
struct ieee80211_regdomain *
ath12k_reg_build_regd(struct ath12k_base *ab,
struct ath12k_reg_info *reg_info,
enum wmi_vdev_type vdev_type,
enum ieee80211_ap_reg_power power_type)
{
struct ieee80211_regdomain *new_regd = NULL;
struct ath12k_reg_rule *reg_rule, *reg_rule_6ghz;
u32 flags, reg_6ghz_number, max_bw_6ghz;
u8 i = 0, j = 0, k = 0;
u8 num_rules;
u16 max_bw;
char alpha2[3];
num_rules = reg_info->num_5g_reg_rules + reg_info->num_2g_reg_rules;
if (reg_info->is_ext_reg_event) {
if (vdev_type == WMI_VDEV_TYPE_STA) {
enum wmi_reg_6g_ap_type ap_type;
ap_type = ath12k_reg_ap_pwr_convert(power_type);
if (ap_type == WMI_REG_MAX_AP_TYPE)
ap_type = WMI_REG_INDOOR_AP;
reg_6ghz_number = reg_info->num_6g_reg_rules_cl
[ap_type][WMI_REG_DEFAULT_CLIENT];
if (reg_6ghz_number == 0) {
ap_type = WMI_REG_INDOOR_AP;
reg_6ghz_number = reg_info->num_6g_reg_rules_cl
[ap_type][WMI_REG_DEFAULT_CLIENT];
}
reg_rule_6ghz = reg_info->reg_rules_6g_client_ptr
[ap_type][WMI_REG_DEFAULT_CLIENT];
max_bw_6ghz = reg_info->max_bw_6g_client
[ap_type][WMI_REG_DEFAULT_CLIENT];
} else {
reg_6ghz_number = reg_info->num_6g_reg_rules_ap
[WMI_REG_INDOOR_AP];
reg_rule_6ghz =
reg_info->reg_rules_6g_ap_ptr[WMI_REG_INDOOR_AP];
max_bw_6ghz = reg_info->max_bw_6g_ap[WMI_REG_INDOOR_AP];
}
num_rules += reg_6ghz_number;
}
if (!num_rules)
goto ret;
/* Add max additional rules to accommodate weather radar band */
if (reg_info->dfs_region == ATH12K_DFS_REG_ETSI)
num_rules += 2;
new_regd = kzalloc(sizeof(*new_regd) +
(num_rules * sizeof(struct ieee80211_reg_rule)),
GFP_ATOMIC);
if (!new_regd)
goto ret;
memcpy(new_regd->alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1);
memcpy(alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1);
alpha2[2] = '\0';
new_regd->dfs_region = ath12k_map_fw_dfs_region(reg_info->dfs_region);
ath12k_dbg(ab, ATH12K_DBG_REG,
"\r\nCountry %s, CFG Regdomain %s FW Regdomain %d, num_reg_rules %d\n",
alpha2, ath12k_reg_get_regdom_str(new_regd->dfs_region),
reg_info->dfs_region, num_rules);
/* Reset start and end frequency for each band
*/
ab->reg_freq_5ghz.start_freq = INT_MAX;
ab->reg_freq_5ghz.end_freq = 0;
ab->reg_freq_2ghz.start_freq = INT_MAX;
ab->reg_freq_2ghz.end_freq = 0;
ab->reg_freq_6ghz.start_freq = INT_MAX;
ab->reg_freq_6ghz.end_freq = 0;
/* Update reg_rules[] below. Firmware is expected to
* send these rules in order(2G rules first and then 5G)
*/
for (; i < num_rules; i++) {
if (reg_info->num_2g_reg_rules &&
(i < reg_info->num_2g_reg_rules)) {
reg_rule = reg_info->reg_rules_2g_ptr + i;
max_bw = min_t(u16, reg_rule->max_bw,
reg_info->max_bw_2g);
flags = ath12k_get_bw_reg_flags(reg_info->max_bw_2g);
ath12k_reg_update_freq_range(&ab->reg_freq_2ghz, reg_rule);
} else if (reg_info->num_5g_reg_rules &&
(j < reg_info->num_5g_reg_rules)) {
reg_rule = reg_info->reg_rules_5g_ptr + j++;
max_bw = min_t(u16, reg_rule->max_bw,
reg_info->max_bw_5g);
/* FW doesn't pass NL80211_RRF_AUTO_BW flag for
* BW Auto correction, we can enable this by default
* for all 5G rules here. The regulatory core performs
* BW correction if required and applies flags as
* per other BW rule flags we pass from here
*/
flags = NL80211_RRF_AUTO_BW |
ath12k_get_bw_reg_flags(reg_info->max_bw_5g);
ath12k_reg_update_freq_range(&ab->reg_freq_5ghz, reg_rule);
} else if (reg_info->is_ext_reg_event && reg_6ghz_number &&
(k < reg_6ghz_number)) {
reg_rule = reg_rule_6ghz + k++;
max_bw = min_t(u16, reg_rule->max_bw, max_bw_6ghz);
flags = NL80211_RRF_AUTO_BW |
ath12k_get_bw_reg_flags(max_bw_6ghz);
if (reg_rule->psd_flag)
flags |= NL80211_RRF_PSD;
ath12k_reg_update_freq_range(&ab->reg_freq_6ghz, reg_rule);
} else {
break;
}
flags |= ath12k_map_fw_reg_flags(reg_rule->flags);
flags |= ath12k_map_fw_phy_flags(reg_info->phybitmap);
ath12k_reg_update_rule(new_regd->reg_rules + i,
reg_rule->start_freq,
reg_rule->end_freq, max_bw,
reg_rule->ant_gain, reg_rule->reg_power,
reg_rule->psd_eirp, flags);
/* Update dfs cac timeout if the dfs domain is ETSI and the
* new rule covers weather radar band.
* Default value of '0' corresponds to 60s timeout, so no
* need to update that for other rules.
*/
if (flags & NL80211_RRF_DFS &&
reg_info->dfs_region == ATH12K_DFS_REG_ETSI &&
(reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_LOW &&
reg_rule->start_freq < ETSI_WEATHER_RADAR_BAND_HIGH)){
ath12k_reg_update_weather_radar_band(ab, new_regd,
reg_rule, &i,
flags, max_bw);
continue;
}
if (reg_info->is_ext_reg_event) {
ath12k_dbg(ab, ATH12K_DBG_REG, "\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d) (%d, %d)\n",
i + 1, reg_rule->start_freq, reg_rule->end_freq,
max_bw, reg_rule->ant_gain, reg_rule->reg_power,
new_regd->reg_rules[i].dfs_cac_ms,
flags, reg_rule->psd_flag, reg_rule->psd_eirp);
} else {
ath12k_dbg(ab, ATH12K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, reg_rule->start_freq, reg_rule->end_freq,
max_bw, reg_rule->ant_gain, reg_rule->reg_power,
new_regd->reg_rules[i].dfs_cac_ms,
flags);
}
}
new_regd->n_reg_rules = i;
ret:
return new_regd;
}
void ath12k_regd_update_chan_list_work(struct work_struct *work)
{
struct ath12k *ar = container_of(work, struct ath12k,
regd_channel_update_work);
struct ath12k_wmi_scan_chan_list_arg *arg;
struct list_head local_update_list;
int left;
INIT_LIST_HEAD(&local_update_list);
spin_lock_bh(&ar->data_lock);
list_splice_tail_init(&ar->regd_channel_update_queue, &local_update_list);
spin_unlock_bh(&ar->data_lock);
while ((arg = list_first_entry_or_null(&local_update_list,
struct ath12k_wmi_scan_chan_list_arg,
list))) {
if (ar->state_11d != ATH12K_11D_IDLE) {
left = wait_for_completion_timeout(&ar->completed_11d_scan,
ATH12K_SCAN_TIMEOUT_HZ);
if (!left) {
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"failed to receive 11d scan complete: timed out\n");
ar->state_11d = ATH12K_11D_IDLE;
}
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"reg 11d scan wait left time %d\n", left);
}
if ((ar->scan.state == ATH12K_SCAN_STARTING ||
ar->scan.state == ATH12K_SCAN_RUNNING)) {
left = wait_for_completion_timeout(&ar->scan.completed,
ATH12K_SCAN_TIMEOUT_HZ);
if (!left)
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"failed to receive hw scan complete: timed out\n");
ath12k_dbg(ar->ab, ATH12K_DBG_REG,
"reg hw scan wait left time %d\n", left);
}
ath12k_wmi_send_scan_chan_list_cmd(ar, arg);
list_del(&arg->list);
kfree(arg);
}
}
void ath12k_regd_update_work(struct work_struct *work)
{
struct ath12k *ar = container_of(work, struct ath12k,
regd_update_work);
int ret;
ret = ath12k_regd_update(ar, false);
if (ret) {
/* Firmware has already moved to the new regd. We need
* to maintain channel consistency across FW, Host driver
* and userspace. Hence as a fallback mechanism we can set
* the prev or default country code to the firmware.
*/
/* TODO: Implement Fallback Mechanism */
}
}
void ath12k_reg_reset_reg_info(struct ath12k_reg_info *reg_info)
{
u8 i, j;
if (!reg_info)
return;
kfree(reg_info->reg_rules_2g_ptr);
kfree(reg_info->reg_rules_5g_ptr);
if (reg_info->is_ext_reg_event) {
for (i = 0; i < WMI_REG_CURRENT_MAX_AP_TYPE; i++) {
kfree(reg_info->reg_rules_6g_ap_ptr[i]);
for (j = 0; j < WMI_REG_MAX_CLIENT_TYPE; j++)
kfree(reg_info->reg_rules_6g_client_ptr[i][j]);
}
}
}
enum ath12k_reg_status ath12k_reg_validate_reg_info(struct ath12k_base *ab,
struct ath12k_reg_info *reg_info)
{
int pdev_idx = reg_info->phy_id;
if (reg_info->status_code != REG_SET_CC_STATUS_PASS) {
/* In case of failure to set the requested country,
* firmware retains the current regd. We print a failure info
* and return from here.
*/
ath12k_warn(ab, "Failed to set the requested Country regulatory setting\n");
return ATH12K_REG_STATUS_DROP;
}
if (pdev_idx >= ab->num_radios) {
/* Process the event for phy0 only if single_pdev_only
* is true. If pdev_idx is valid but not 0, discard the
* event. Otherwise, it goes to fallback.
*/
if (ab->hw_params->single_pdev_only &&
pdev_idx < ab->hw_params->num_rxdma_per_pdev)
return ATH12K_REG_STATUS_DROP;
else
return ATH12K_REG_STATUS_FALLBACK;
}
/* Avoid multiple overwrites to default regd, during core
* stop-start after mac registration.
*/
if (ab->default_regd[pdev_idx] && !ab->new_regd[pdev_idx] &&
!memcmp(ab->default_regd[pdev_idx]->alpha2,
reg_info->alpha2, 2))
return ATH12K_REG_STATUS_DROP;
return ATH12K_REG_STATUS_VALID;
}
int ath12k_reg_handle_chan_list(struct ath12k_base *ab,
struct ath12k_reg_info *reg_info,
enum wmi_vdev_type vdev_type,
enum ieee80211_ap_reg_power power_type)
{
struct ieee80211_regdomain *regd = NULL;
int pdev_idx = reg_info->phy_id;
struct ath12k *ar;
regd = ath12k_reg_build_regd(ab, reg_info, vdev_type, power_type);
if (!regd)
return -EINVAL;
spin_lock_bh(&ab->base_lock);
if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags)) {
/* Once mac is registered, ar is valid and all CC events from
* firmware is considered to be received due to user requests
* currently.
* Free previously built regd before assigning the newly
* generated regd to ar. NULL pointer handling will be
* taken care by kfree itself.
*/
ar = ab->pdevs[pdev_idx].ar;
kfree(ab->new_regd[pdev_idx]);
ab->new_regd[pdev_idx] = regd;
queue_work(ab->workqueue, &ar->regd_update_work);
} else {
/* Multiple events for the same *ar is not expected. But we
* can still clear any previously stored default_regd if we
* are receiving this event for the same radio by mistake.
* NULL pointer handling will be taken care by kfree itself.
*/
kfree(ab->default_regd[pdev_idx]);
/* This regd would be applied during mac registration */
ab->default_regd[pdev_idx] = regd;
}
ab->dfs_region = reg_info->dfs_region;
spin_unlock_bh(&ab->base_lock);
return 0;
}
void ath12k_reg_init(struct ieee80211_hw *hw)
{
hw->wiphy->regulatory_flags = REGULATORY_WIPHY_SELF_MANAGED;
hw->wiphy->flags |= WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER;
hw->wiphy->reg_notifier = ath12k_reg_notifier;
}
void ath12k_reg_free(struct ath12k_base *ab)
{
int i;
mutex_lock(&ab->core_lock);
for (i = 0; i < MAX_RADIOS; i++) {
ath12k_reg_reset_reg_info(ab->reg_info[i]);
kfree(ab->reg_info[i]);
ab->reg_info[i] = NULL;
}
for (i = 0; i < ab->hw_params->max_radios; i++) {
kfree(ab->default_regd[i]);
kfree(ab->new_regd[i]);
ab->default_regd[i] = NULL;
ab->new_regd[i] = NULL;
}
mutex_unlock(&ab->core_lock);
}