mirror of https://github.com/torvalds/linux.git
1348 lines
37 KiB
C
1348 lines
37 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2023 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/hwmon-sysfs.h>
|
|
#include <linux/hwmon.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/types.h>
|
|
#include <linux/units.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include "regs/xe_gt_regs.h"
|
|
#include "regs/xe_mchbar_regs.h"
|
|
#include "regs/xe_pcode_regs.h"
|
|
#include "xe_device.h"
|
|
#include "xe_hwmon.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_pcode.h"
|
|
#include "xe_pcode_api.h"
|
|
#include "xe_sriov.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_vsec.h"
|
|
#include "regs/xe_pmt.h"
|
|
|
|
enum xe_hwmon_reg {
|
|
REG_TEMP,
|
|
REG_PKG_RAPL_LIMIT,
|
|
REG_PKG_POWER_SKU,
|
|
REG_PKG_POWER_SKU_UNIT,
|
|
REG_GT_PERF_STATUS,
|
|
REG_PKG_ENERGY_STATUS,
|
|
REG_FAN_SPEED,
|
|
};
|
|
|
|
enum xe_hwmon_reg_operation {
|
|
REG_READ32,
|
|
REG_RMW32,
|
|
REG_READ64,
|
|
};
|
|
|
|
enum xe_hwmon_channel {
|
|
CHANNEL_CARD,
|
|
CHANNEL_PKG,
|
|
CHANNEL_VRAM,
|
|
CHANNEL_MAX,
|
|
};
|
|
|
|
enum xe_fan_channel {
|
|
FAN_1,
|
|
FAN_2,
|
|
FAN_3,
|
|
FAN_MAX,
|
|
};
|
|
|
|
/* Attribute index for powerX_xxx_interval sysfs entries */
|
|
enum sensor_attr_power {
|
|
SENSOR_INDEX_PSYS_PL1,
|
|
SENSOR_INDEX_PKG_PL1,
|
|
SENSOR_INDEX_PSYS_PL2,
|
|
SENSOR_INDEX_PKG_PL2,
|
|
};
|
|
|
|
/*
|
|
* For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
|
|
* not supported and below are SKU units to be used.
|
|
*/
|
|
#define PWR_UNIT 0x3
|
|
#define ENERGY_UNIT 0xe
|
|
#define TIME_UNIT 0xa
|
|
|
|
/*
|
|
* SF_* - scale factors for particular quantities according to hwmon spec.
|
|
*/
|
|
#define SF_POWER 1000000 /* microwatts */
|
|
#define SF_CURR 1000 /* milliamperes */
|
|
#define SF_VOLTAGE 1000 /* millivolts */
|
|
#define SF_ENERGY 1000000 /* microjoules */
|
|
#define SF_TIME 1000 /* milliseconds */
|
|
|
|
/*
|
|
* PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
|
|
*/
|
|
#define PL1_HWMON_ATTR hwmon_power_max
|
|
#define PL2_HWMON_ATTR hwmon_power_cap
|
|
|
|
#define PWR_ATTR_TO_STR(attr) (((attr) == hwmon_power_max) ? "PL1" : "PL2")
|
|
|
|
/*
|
|
* Timeout for power limit write mailbox command.
|
|
*/
|
|
#define PL_WRITE_MBX_TIMEOUT_MS (1)
|
|
|
|
/**
|
|
* struct xe_hwmon_energy_info - to accumulate energy
|
|
*/
|
|
struct xe_hwmon_energy_info {
|
|
/** @reg_val_prev: previous energy reg val */
|
|
u32 reg_val_prev;
|
|
/** @accum_energy: accumulated energy */
|
|
long accum_energy;
|
|
};
|
|
|
|
/**
|
|
* struct xe_hwmon_fan_info - to cache previous fan reading
|
|
*/
|
|
struct xe_hwmon_fan_info {
|
|
/** @reg_val_prev: previous fan reg val */
|
|
u32 reg_val_prev;
|
|
/** @time_prev: previous timestamp */
|
|
u64 time_prev;
|
|
};
|
|
|
|
/**
|
|
* struct xe_hwmon - xe hwmon data structure
|
|
*/
|
|
struct xe_hwmon {
|
|
/** @hwmon_dev: hwmon device for xe */
|
|
struct device *hwmon_dev;
|
|
/** @xe: Xe device */
|
|
struct xe_device *xe;
|
|
/** @hwmon_lock: lock for rw attributes*/
|
|
struct mutex hwmon_lock;
|
|
/** @scl_shift_power: pkg power unit */
|
|
int scl_shift_power;
|
|
/** @scl_shift_energy: pkg energy unit */
|
|
int scl_shift_energy;
|
|
/** @scl_shift_time: pkg time unit */
|
|
int scl_shift_time;
|
|
/** @ei: Energy info for energyN_input */
|
|
struct xe_hwmon_energy_info ei[CHANNEL_MAX];
|
|
/** @fi: Fan info for fanN_input */
|
|
struct xe_hwmon_fan_info fi[FAN_MAX];
|
|
/** @boot_power_limit_read: is boot power limits read */
|
|
bool boot_power_limit_read;
|
|
/** @pl1_on_boot: power limit PL1 on boot */
|
|
u32 pl1_on_boot[CHANNEL_MAX];
|
|
/** @pl2_on_boot: power limit PL2 on boot */
|
|
u32 pl2_on_boot[CHANNEL_MAX];
|
|
|
|
};
|
|
|
|
static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
|
|
u32 *uval)
|
|
{
|
|
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
|
|
u32 val0 = 0, val1 = 0;
|
|
int ret = 0;
|
|
|
|
ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
|
|
(channel == CHANNEL_CARD) ?
|
|
READ_PSYSGPU_POWER_LIMIT :
|
|
READ_PACKAGE_POWER_LIMIT,
|
|
hwmon->boot_power_limit_read ?
|
|
READ_PL_FROM_PCODE : READ_PL_FROM_FW),
|
|
&val0, &val1);
|
|
|
|
if (ret) {
|
|
drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
|
|
channel, val0, val1, ret);
|
|
*uval = 0;
|
|
return ret;
|
|
}
|
|
|
|
/* return the value only if limit is enabled */
|
|
if (attr == PL1_HWMON_ATTR)
|
|
*uval = (val0 & PWR_LIM_EN) ? val0 : 0;
|
|
else if (attr == PL2_HWMON_ATTR)
|
|
*uval = (val1 & PWR_LIM_EN) ? val1 : 0;
|
|
else if (attr == hwmon_power_label)
|
|
*uval = (val0 & PWR_LIM_EN) ? 1 : (val1 & PWR_LIM_EN) ? 1 : 0;
|
|
else
|
|
*uval = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
|
|
u32 clr, u32 set)
|
|
{
|
|
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
|
|
u32 val0, val1;
|
|
int ret = 0;
|
|
|
|
ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
|
|
(channel == CHANNEL_CARD) ?
|
|
READ_PSYSGPU_POWER_LIMIT :
|
|
READ_PACKAGE_POWER_LIMIT,
|
|
hwmon->boot_power_limit_read ?
|
|
READ_PL_FROM_PCODE : READ_PL_FROM_FW),
|
|
&val0, &val1);
|
|
|
|
if (ret)
|
|
drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
|
|
channel, val0, val1, ret);
|
|
|
|
if (attr == PL1_HWMON_ATTR)
|
|
val0 = (val0 & ~clr) | set;
|
|
else if (attr == PL2_HWMON_ATTR)
|
|
val1 = (val1 & ~clr) | set;
|
|
else
|
|
return -EIO;
|
|
|
|
ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
|
|
(channel == CHANNEL_CARD) ?
|
|
WRITE_PSYSGPU_POWER_LIMIT :
|
|
WRITE_PACKAGE_POWER_LIMIT, 0),
|
|
val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
|
|
if (ret)
|
|
drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
|
|
channel, val0, val1, ret);
|
|
return ret;
|
|
}
|
|
|
|
static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
|
|
int channel)
|
|
{
|
|
struct xe_device *xe = hwmon->xe;
|
|
|
|
switch (hwmon_reg) {
|
|
case REG_TEMP:
|
|
if (xe->info.platform == XE_BATTLEMAGE) {
|
|
if (channel == CHANNEL_PKG)
|
|
return BMG_PACKAGE_TEMPERATURE;
|
|
else if (channel == CHANNEL_VRAM)
|
|
return BMG_VRAM_TEMPERATURE;
|
|
} else if (xe->info.platform == XE_DG2) {
|
|
if (channel == CHANNEL_PKG)
|
|
return PCU_CR_PACKAGE_TEMPERATURE;
|
|
else if (channel == CHANNEL_VRAM)
|
|
return BMG_VRAM_TEMPERATURE;
|
|
}
|
|
break;
|
|
case REG_PKG_RAPL_LIMIT:
|
|
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
|
|
return PVC_GT0_PACKAGE_RAPL_LIMIT;
|
|
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
|
|
return PCU_CR_PACKAGE_RAPL_LIMIT;
|
|
break;
|
|
case REG_PKG_POWER_SKU:
|
|
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
|
|
return PVC_GT0_PACKAGE_POWER_SKU;
|
|
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
|
|
return PCU_CR_PACKAGE_POWER_SKU;
|
|
break;
|
|
case REG_PKG_POWER_SKU_UNIT:
|
|
if (xe->info.platform == XE_PVC)
|
|
return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
|
|
else if (xe->info.platform == XE_DG2)
|
|
return PCU_CR_PACKAGE_POWER_SKU_UNIT;
|
|
break;
|
|
case REG_GT_PERF_STATUS:
|
|
if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
|
|
return GT_PERF_STATUS;
|
|
break;
|
|
case REG_PKG_ENERGY_STATUS:
|
|
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
|
|
return PVC_GT0_PLATFORM_ENERGY_STATUS;
|
|
} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
|
|
return PCU_CR_PACKAGE_ENERGY_STATUS;
|
|
}
|
|
break;
|
|
case REG_FAN_SPEED:
|
|
if (channel == FAN_1)
|
|
return BMG_FAN_1_SPEED;
|
|
else if (channel == FAN_2)
|
|
return BMG_FAN_2_SPEED;
|
|
else if (channel == FAN_3)
|
|
return BMG_FAN_3_SPEED;
|
|
break;
|
|
default:
|
|
drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
|
|
break;
|
|
}
|
|
|
|
return XE_REG(0);
|
|
}
|
|
|
|
#define PL_DISABLE 0
|
|
|
|
/*
|
|
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
|
|
* "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
|
|
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
|
|
* clamped values when read.
|
|
*/
|
|
static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
|
|
{
|
|
u64 reg_val = 0, min, max;
|
|
struct xe_device *xe = hwmon->xe;
|
|
struct xe_reg rapl_limit, pkg_power_sku;
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, (u32 *)®_val);
|
|
} else {
|
|
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
|
|
pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
|
|
reg_val = xe_mmio_read32(mmio, rapl_limit);
|
|
}
|
|
|
|
/* Check if PL limits are disabled. */
|
|
if (!(reg_val & PWR_LIM_EN)) {
|
|
*value = PL_DISABLE;
|
|
drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%016llx\n",
|
|
PWR_ATTR_TO_STR(attr), channel, reg_val);
|
|
goto unlock;
|
|
}
|
|
|
|
reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
|
|
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
|
|
|
|
/* For platforms with mailbox power limit support clamping would be done by pcode. */
|
|
if (!hwmon->xe->info.has_mbx_power_limits) {
|
|
reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
|
|
min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
|
|
max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
|
|
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
|
|
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
|
|
if (min && max)
|
|
*value = clamp_t(u64, *value, min, max);
|
|
}
|
|
unlock:
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
}
|
|
|
|
static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
int ret = 0;
|
|
u32 reg_val, max;
|
|
struct xe_reg rapl_limit;
|
|
u64 max_supp_power_limit = 0;
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
|
|
|
|
/* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
|
|
if (value == PL_DISABLE) {
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
|
|
PWR_ATTR_TO_STR(attr), channel);
|
|
xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
|
|
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, ®_val);
|
|
} else {
|
|
reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
|
|
reg_val = xe_mmio_read32(mmio, rapl_limit);
|
|
}
|
|
|
|
if (reg_val & PWR_LIM_EN) {
|
|
drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
|
|
ret = -EOPNOTSUPP;
|
|
}
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* If the sysfs value exceeds the maximum pcode supported power limit value, clamp it to
|
|
* the supported maximum (U12.3 format).
|
|
* This is to avoid truncation during reg_val calculation below and ensure the valid
|
|
* power limit is sent for pcode which would clamp it to card-supported value.
|
|
*/
|
|
max_supp_power_limit = ((PWR_LIM_VAL) >> hwmon->scl_shift_power) * SF_POWER;
|
|
if (value > max_supp_power_limit) {
|
|
value = max_supp_power_limit;
|
|
drm_info(&hwmon->xe->drm,
|
|
"Power limit clamped as selected %s exceeds channel %d limit\n",
|
|
PWR_ATTR_TO_STR(attr), channel);
|
|
}
|
|
|
|
/* Computation in 64-bits to avoid overflow. Round to nearest. */
|
|
reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
|
|
|
|
/*
|
|
* Clamp power limit to GPU firmware default as maximum, as an additional protection to
|
|
* pcode clamp.
|
|
*/
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
max = (attr == PL1_HWMON_ATTR) ?
|
|
hwmon->pl1_on_boot[channel] : hwmon->pl2_on_boot[channel];
|
|
max = REG_FIELD_PREP(PWR_LIM_VAL, max);
|
|
if (reg_val > max) {
|
|
reg_val = max;
|
|
drm_dbg(&hwmon->xe->drm,
|
|
"Clamping power limit to GPU firmware default 0x%x\n",
|
|
reg_val);
|
|
}
|
|
}
|
|
|
|
reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits)
|
|
ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
|
|
else
|
|
reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
|
|
unlock:
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
|
|
long *value)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
u32 reg_val;
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
/* PL1 is rated max if supported. */
|
|
xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, ®_val);
|
|
} else {
|
|
/*
|
|
* This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
|
|
* for this register can be skipped.
|
|
* See xe_hwmon_power_is_visible.
|
|
*/
|
|
struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
|
|
|
|
reg_val = xe_mmio_read32(mmio, reg);
|
|
}
|
|
|
|
reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
|
|
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
|
|
}
|
|
|
|
/*
|
|
* xe_hwmon_energy_get - Obtain energy value
|
|
*
|
|
* The underlying energy hardware register is 32-bits and is subject to
|
|
* overflow. How long before overflow? For example, with an example
|
|
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
|
|
* a power draw of 1000 watts, the 32-bit counter will overflow in
|
|
* approximately 4.36 minutes.
|
|
*
|
|
* Examples:
|
|
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
|
|
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
|
|
*
|
|
* The function significantly increases overflow duration (from 4.36
|
|
* minutes) by accumulating the energy register into a 'long' as allowed by
|
|
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
|
|
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
|
|
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
|
|
* energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
|
|
*/
|
|
static void
|
|
xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
|
|
u32 reg_val;
|
|
int ret = 0;
|
|
|
|
/* Energy is supported only for card and pkg */
|
|
if (channel > CHANNEL_PKG) {
|
|
*energy = 0;
|
|
return;
|
|
}
|
|
|
|
if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
|
|
u64 pmt_val;
|
|
|
|
ret = xe_pmt_telem_read(to_pci_dev(hwmon->xe->drm.dev),
|
|
xe_mmio_read32(mmio, PUNIT_TELEMETRY_GUID),
|
|
&pmt_val, BMG_ENERGY_STATUS_PMT_OFFSET, sizeof(pmt_val));
|
|
if (ret != sizeof(pmt_val)) {
|
|
drm_warn(&hwmon->xe->drm, "energy read from pmt failed, ret %d\n", ret);
|
|
*energy = 0;
|
|
return;
|
|
}
|
|
|
|
if (channel == CHANNEL_PKG)
|
|
reg_val = REG_FIELD_GET64(ENERGY_PKG, pmt_val);
|
|
else
|
|
reg_val = REG_FIELD_GET64(ENERGY_CARD, pmt_val);
|
|
} else {
|
|
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
|
|
channel));
|
|
}
|
|
|
|
ei->accum_energy += reg_val - ei->reg_val_prev;
|
|
ei->reg_val_prev = reg_val;
|
|
|
|
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
|
|
hwmon->scl_shift_energy);
|
|
}
|
|
|
|
static ssize_t
|
|
xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
u32 x, y, x_w = 2; /* 2 bits */
|
|
u64 r, tau4, out;
|
|
int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
|
|
u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
|
|
|
|
int ret = 0;
|
|
|
|
xe_pm_runtime_get(hwmon->xe);
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, (u32 *)&r);
|
|
if (ret) {
|
|
drm_err(&hwmon->xe->drm,
|
|
"power interval read fail, ch %d, attr %d, r 0%llx, ret %d\n",
|
|
channel, power_attr, r, ret);
|
|
r = 0;
|
|
}
|
|
} else {
|
|
r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel));
|
|
}
|
|
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
|
|
xe_pm_runtime_put(hwmon->xe);
|
|
|
|
x = REG_FIELD_GET(PWR_LIM_TIME_X, r);
|
|
y = REG_FIELD_GET(PWR_LIM_TIME_Y, r);
|
|
|
|
/*
|
|
* tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
|
|
* = (4 | x) << (y - 2)
|
|
*
|
|
* Here (y - 2) ensures a 1.x fixed point representation of 1.x
|
|
* As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
|
|
*
|
|
* As y can be < 2, we compute tau4 = (4 | x) << y
|
|
* and then add 2 when doing the final right shift to account for units
|
|
*/
|
|
tau4 = (u64)((1 << x_w) | x) << y;
|
|
|
|
/* val in hwmon interface units (millisec) */
|
|
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
|
|
|
|
return sysfs_emit(buf, "%llu\n", out);
|
|
}
|
|
|
|
static ssize_t
|
|
xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
u32 x, y, rxy, x_w = 2; /* 2 bits */
|
|
u64 tau4, r, max_win;
|
|
unsigned long val;
|
|
int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
|
|
u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
|
|
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
|
|
*
|
|
* The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
|
|
* However, it is observed that existing discrete GPUs does not provide correct
|
|
* PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
|
|
* this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
|
|
*/
|
|
#define PKG_MAX_WIN_DEFAULT 0x12ull
|
|
|
|
/*
|
|
* val must be < max in hwmon interface units. The steps below are
|
|
* explained in xe_hwmon_power_max_interval_show()
|
|
*/
|
|
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
|
|
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
|
|
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
|
|
tau4 = (u64)((1 << x_w) | x) << y;
|
|
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
|
|
|
|
if (val > max_win)
|
|
return -EINVAL;
|
|
|
|
/* val in hw units */
|
|
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
|
|
|
|
/*
|
|
* Convert val to 1.x * power(2,y)
|
|
* y = ilog2(val)
|
|
* x = (val - (1 << y)) >> (y - 2)
|
|
*/
|
|
if (!val) {
|
|
y = 0;
|
|
x = 0;
|
|
} else {
|
|
y = ilog2(val);
|
|
x = (val - (1ul << y)) << x_w >> y;
|
|
}
|
|
|
|
rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
|
|
REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
|
|
|
|
xe_pm_runtime_get(hwmon->xe);
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits)
|
|
xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
|
|
else
|
|
r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
|
|
PWR_LIM_TIME, rxy);
|
|
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
|
|
xe_pm_runtime_put(hwmon->xe);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* PSYS PL1 */
|
|
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
|
|
xe_hwmon_power_max_interval_show,
|
|
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL1);
|
|
/* PKG PL1 */
|
|
static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
|
|
xe_hwmon_power_max_interval_show,
|
|
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL1);
|
|
/* PSYS PL2 */
|
|
static SENSOR_DEVICE_ATTR(power1_cap_interval, 0664,
|
|
xe_hwmon_power_max_interval_show,
|
|
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL2);
|
|
/* PKG PL2 */
|
|
static SENSOR_DEVICE_ATTR(power2_cap_interval, 0664,
|
|
xe_hwmon_power_max_interval_show,
|
|
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL2);
|
|
|
|
static struct attribute *hwmon_attributes[] = {
|
|
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
|
|
&sensor_dev_attr_power2_max_interval.dev_attr.attr,
|
|
&sensor_dev_attr_power1_cap_interval.dev_attr.attr,
|
|
&sensor_dev_attr_power2_cap_interval.dev_attr.attr,
|
|
NULL
|
|
};
|
|
|
|
static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
|
|
struct attribute *attr, int index)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
|
int ret = 0;
|
|
int channel = (index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
|
|
u32 power_attr = (index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
|
|
u32 uval = 0;
|
|
struct xe_reg rapl_limit;
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
|
|
xe_pm_runtime_get(hwmon->xe);
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
|
|
} else if (power_attr != PL2_HWMON_ATTR) {
|
|
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
|
|
if (xe_reg_is_valid(rapl_limit))
|
|
uval = xe_mmio_read32(mmio, rapl_limit);
|
|
}
|
|
ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
|
|
|
|
xe_pm_runtime_put(hwmon->xe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct attribute_group hwmon_attrgroup = {
|
|
.attrs = hwmon_attributes,
|
|
.is_visible = xe_hwmon_attributes_visible,
|
|
};
|
|
|
|
static const struct attribute_group *hwmon_groups[] = {
|
|
&hwmon_attrgroup,
|
|
NULL
|
|
};
|
|
|
|
static const struct hwmon_channel_info * const hwmon_info[] = {
|
|
HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
|
|
HWMON_T_INPUT | HWMON_T_LABEL),
|
|
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT |
|
|
HWMON_P_CAP,
|
|
HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CAP),
|
|
HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
|
|
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
|
|
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
|
|
HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
|
|
NULL
|
|
};
|
|
|
|
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
|
|
static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
|
|
{
|
|
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
|
|
|
|
/* Avoid Illegal Subcommand error */
|
|
if (hwmon->xe->info.platform == XE_DG2)
|
|
return -ENXIO;
|
|
|
|
return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
|
|
POWER_SETUP_SUBCOMMAND_READ_I1, 0),
|
|
uval, NULL);
|
|
}
|
|
|
|
static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
|
|
{
|
|
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
|
|
|
|
return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
|
|
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
|
|
(uval & POWER_SETUP_I1_DATA_MASK));
|
|
}
|
|
|
|
static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
|
|
{
|
|
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
|
|
|
|
/* Platforms that don't return correct value */
|
|
if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
|
|
*uval = 2;
|
|
return 0;
|
|
}
|
|
|
|
return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
|
|
}
|
|
|
|
static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
|
|
long *value, u32 scale_factor)
|
|
{
|
|
int ret;
|
|
u32 uval;
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
|
|
scale_factor, POWER_SETUP_I1_SHIFT);
|
|
unlock:
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
|
|
long value, u32 scale_factor)
|
|
{
|
|
int ret;
|
|
u32 uval;
|
|
u64 max_crit_power_curr = 0;
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
/*
|
|
* If the sysfs value exceeds the pcode mailbox cmd POWER_SETUP_SUBCOMMAND_WRITE_I1
|
|
* max supported value, clamp it to the command's max (U10.6 format).
|
|
* This is to avoid truncation during uval calculation below and ensure the valid power
|
|
* limit is sent for pcode which would clamp it to card-supported value.
|
|
*/
|
|
max_crit_power_curr = (POWER_SETUP_I1_DATA_MASK >> POWER_SETUP_I1_SHIFT) * scale_factor;
|
|
if (value > max_crit_power_curr) {
|
|
value = max_crit_power_curr;
|
|
drm_info(&hwmon->xe->drm,
|
|
"Power limit clamped as selected exceeds channel %d limit\n",
|
|
channel);
|
|
}
|
|
uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
|
|
ret = xe_hwmon_pcode_write_i1(hwmon, uval);
|
|
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
u64 reg_val;
|
|
|
|
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
|
|
/* HW register value in units of 2.5 millivolt */
|
|
*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_temp_input:
|
|
case hwmon_temp_label:
|
|
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
u64 reg_val;
|
|
|
|
switch (attr) {
|
|
case hwmon_temp_input:
|
|
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
|
|
|
|
/* HW register value is in degrees Celsius, convert to millidegrees. */
|
|
*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
|
|
{
|
|
u32 uval = 0;
|
|
struct xe_reg reg;
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
|
|
switch (attr) {
|
|
case hwmon_power_max:
|
|
case hwmon_power_cap:
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
|
|
} else if (attr != PL2_HWMON_ATTR) {
|
|
reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
|
|
if (xe_reg_is_valid(reg))
|
|
uval = xe_mmio_read32(mmio, reg);
|
|
}
|
|
if (uval & PWR_LIM_EN) {
|
|
drm_info(&hwmon->xe->drm, "%s is supported on channel %d\n",
|
|
PWR_ATTR_TO_STR(attr), channel);
|
|
return 0664;
|
|
}
|
|
drm_dbg(&hwmon->xe->drm, "%s is unsupported on channel %d\n",
|
|
PWR_ATTR_TO_STR(attr), channel);
|
|
return 0;
|
|
case hwmon_power_rated_max:
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
return 0;
|
|
} else {
|
|
reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
|
|
if (xe_reg_is_valid(reg))
|
|
uval = xe_mmio_read32(mmio, reg);
|
|
return uval ? 0444 : 0;
|
|
}
|
|
case hwmon_power_crit:
|
|
if (channel == CHANNEL_CARD) {
|
|
xe_hwmon_pcode_read_i1(hwmon, &uval);
|
|
return (uval & POWER_SETUP_I1_WATTS) ? 0644 : 0;
|
|
}
|
|
break;
|
|
case hwmon_power_label:
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
|
|
} else {
|
|
reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
|
|
if (xe_reg_is_valid(reg))
|
|
uval = xe_mmio_read32(mmio, reg);
|
|
|
|
if (!uval) {
|
|
reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
|
|
if (xe_reg_is_valid(reg))
|
|
uval = xe_mmio_read32(mmio, reg);
|
|
}
|
|
}
|
|
if ((!(uval & PWR_LIM_EN)) && channel == CHANNEL_CARD) {
|
|
xe_hwmon_pcode_read_i1(hwmon, &uval);
|
|
return (uval & POWER_SETUP_I1_WATTS) ? 0444 : 0;
|
|
}
|
|
return (uval) ? 0444 : 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_power_max:
|
|
case hwmon_power_cap:
|
|
xe_hwmon_power_max_read(hwmon, attr, channel, val);
|
|
return 0;
|
|
case hwmon_power_rated_max:
|
|
xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
|
|
return 0;
|
|
case hwmon_power_crit:
|
|
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_power_cap:
|
|
case hwmon_power_max:
|
|
return xe_hwmon_power_max_write(hwmon, attr, channel, val);
|
|
case hwmon_power_crit:
|
|
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
|
|
{
|
|
u32 uval;
|
|
|
|
/* hwmon sysfs attribute of current available only for package */
|
|
if (channel != CHANNEL_PKG)
|
|
return 0;
|
|
|
|
switch (attr) {
|
|
case hwmon_curr_crit:
|
|
return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
|
|
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
|
|
case hwmon_curr_label:
|
|
return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
|
|
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_curr_crit:
|
|
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_curr_crit:
|
|
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_in_input:
|
|
case hwmon_in_label:
|
|
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
|
|
channel)) ? 0444 : 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_in_input:
|
|
xe_hwmon_get_voltage(hwmon, channel, val);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
|
|
{
|
|
long energy = 0;
|
|
|
|
switch (attr) {
|
|
case hwmon_energy_input:
|
|
case hwmon_energy_label:
|
|
if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
|
|
xe_hwmon_energy_get(hwmon, channel, &energy);
|
|
return energy ? 0444 : 0;
|
|
} else {
|
|
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
|
|
channel)) ? 0444 : 0;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_energy_input:
|
|
xe_hwmon_energy_get(hwmon, channel, val);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
|
|
{
|
|
u32 uval;
|
|
|
|
if (!hwmon->xe->info.has_fan_control)
|
|
return 0;
|
|
|
|
switch (attr) {
|
|
case hwmon_fan_input:
|
|
if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
|
|
return 0;
|
|
|
|
return channel < uval ? 0444 : 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
|
|
u64 rotations, time_now, time;
|
|
u32 reg_val;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&hwmon->hwmon_lock);
|
|
|
|
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
|
|
time_now = get_jiffies_64();
|
|
|
|
/*
|
|
* HW register value is accumulated count of pulses from PWM fan with the scale
|
|
* of 2 pulses per rotation.
|
|
*/
|
|
rotations = (reg_val - fi->reg_val_prev) / 2;
|
|
|
|
time = jiffies_delta_to_msecs(time_now - fi->time_prev);
|
|
if (unlikely(!time)) {
|
|
ret = -EAGAIN;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
|
|
* RPM = number of rotations * msecs per minute / time in msecs
|
|
*/
|
|
*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
|
|
|
|
fi->reg_val_prev = reg_val;
|
|
fi->time_prev = time_now;
|
|
unlock:
|
|
mutex_unlock(&hwmon->hwmon_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
|
|
{
|
|
switch (attr) {
|
|
case hwmon_fan_input:
|
|
return xe_hwmon_fan_input_read(hwmon, channel, val);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static umode_t
|
|
xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
|
|
u32 attr, int channel)
|
|
{
|
|
struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
|
|
int ret;
|
|
|
|
xe_pm_runtime_get(hwmon->xe);
|
|
|
|
switch (type) {
|
|
case hwmon_temp:
|
|
ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
|
|
break;
|
|
case hwmon_power:
|
|
ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
|
|
break;
|
|
case hwmon_curr:
|
|
ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
|
|
break;
|
|
case hwmon_in:
|
|
ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
|
|
break;
|
|
case hwmon_energy:
|
|
ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
|
|
break;
|
|
case hwmon_fan:
|
|
ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
|
|
break;
|
|
default:
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
xe_pm_runtime_put(hwmon->xe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
|
|
int channel, long *val)
|
|
{
|
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
xe_pm_runtime_get(hwmon->xe);
|
|
|
|
switch (type) {
|
|
case hwmon_temp:
|
|
ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
|
|
break;
|
|
case hwmon_power:
|
|
ret = xe_hwmon_power_read(hwmon, attr, channel, val);
|
|
break;
|
|
case hwmon_curr:
|
|
ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
|
|
break;
|
|
case hwmon_in:
|
|
ret = xe_hwmon_in_read(hwmon, attr, channel, val);
|
|
break;
|
|
case hwmon_energy:
|
|
ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
|
|
break;
|
|
case hwmon_fan:
|
|
ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
|
|
break;
|
|
default:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
xe_pm_runtime_put(hwmon->xe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
|
|
int channel, long val)
|
|
{
|
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
xe_pm_runtime_get(hwmon->xe);
|
|
|
|
switch (type) {
|
|
case hwmon_power:
|
|
ret = xe_hwmon_power_write(hwmon, attr, channel, val);
|
|
break;
|
|
case hwmon_curr:
|
|
ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
|
|
break;
|
|
default:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
xe_pm_runtime_put(hwmon->xe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xe_hwmon_read_label(struct device *dev,
|
|
enum hwmon_sensor_types type,
|
|
u32 attr, int channel, const char **str)
|
|
{
|
|
switch (type) {
|
|
case hwmon_temp:
|
|
if (channel == CHANNEL_PKG)
|
|
*str = "pkg";
|
|
else if (channel == CHANNEL_VRAM)
|
|
*str = "vram";
|
|
return 0;
|
|
case hwmon_power:
|
|
case hwmon_energy:
|
|
case hwmon_curr:
|
|
case hwmon_in:
|
|
if (channel == CHANNEL_CARD)
|
|
*str = "card";
|
|
else if (channel == CHANNEL_PKG)
|
|
*str = "pkg";
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static const struct hwmon_ops hwmon_ops = {
|
|
.is_visible = xe_hwmon_is_visible,
|
|
.read = xe_hwmon_read,
|
|
.write = xe_hwmon_write,
|
|
.read_string = xe_hwmon_read_label,
|
|
};
|
|
|
|
static const struct hwmon_chip_info hwmon_chip_info = {
|
|
.ops = &hwmon_ops,
|
|
.info = hwmon_info,
|
|
};
|
|
|
|
static void
|
|
xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
|
|
long energy, fan_speed;
|
|
u64 val_sku_unit = 0;
|
|
int channel;
|
|
struct xe_reg pkg_power_sku_unit;
|
|
|
|
if (hwmon->xe->info.has_mbx_power_limits) {
|
|
/* Check if GPU firmware support mailbox power limits commands. */
|
|
if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
|
|
&hwmon->pl1_on_boot[CHANNEL_CARD]) |
|
|
xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
|
|
&hwmon->pl1_on_boot[CHANNEL_PKG]) |
|
|
xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_CARD,
|
|
&hwmon->pl2_on_boot[CHANNEL_CARD]) |
|
|
xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_PKG,
|
|
&hwmon->pl2_on_boot[CHANNEL_PKG])) {
|
|
drm_warn(&hwmon->xe->drm,
|
|
"Failed to read power limits, check GPU firmware !\n");
|
|
} else {
|
|
drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
|
|
/* Write default limits to read from pcode from now on. */
|
|
xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
|
|
CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
|
|
hwmon->pl1_on_boot[CHANNEL_CARD]);
|
|
xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
|
|
CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
|
|
hwmon->pl1_on_boot[CHANNEL_PKG]);
|
|
xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
|
|
CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
|
|
hwmon->pl2_on_boot[CHANNEL_CARD]);
|
|
xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
|
|
CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
|
|
hwmon->pl2_on_boot[CHANNEL_PKG]);
|
|
hwmon->scl_shift_power = PWR_UNIT;
|
|
hwmon->scl_shift_energy = ENERGY_UNIT;
|
|
hwmon->scl_shift_time = TIME_UNIT;
|
|
hwmon->boot_power_limit_read = true;
|
|
}
|
|
} else {
|
|
drm_info(&hwmon->xe->drm, "Using register for power limits\n");
|
|
/*
|
|
* The contents of register PKG_POWER_SKU_UNIT do not change,
|
|
* so read it once and store the shift values.
|
|
*/
|
|
pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
|
|
if (xe_reg_is_valid(pkg_power_sku_unit)) {
|
|
val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
|
|
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
|
|
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
|
|
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
|
|
}
|
|
}
|
|
/*
|
|
* Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
|
|
* first value of the energy register read
|
|
*/
|
|
for (channel = 0; channel < CHANNEL_MAX; channel++)
|
|
if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
|
|
xe_hwmon_energy_get(hwmon, channel, &energy);
|
|
|
|
/* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
|
|
for (channel = 0; channel < FAN_MAX; channel++)
|
|
if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
|
|
xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
|
|
}
|
|
|
|
static void xe_hwmon_mutex_destroy(void *arg)
|
|
{
|
|
struct xe_hwmon *hwmon = arg;
|
|
|
|
mutex_destroy(&hwmon->hwmon_lock);
|
|
}
|
|
|
|
int xe_hwmon_register(struct xe_device *xe)
|
|
{
|
|
struct device *dev = xe->drm.dev;
|
|
struct xe_hwmon *hwmon;
|
|
int ret;
|
|
|
|
/* hwmon is available only for dGfx */
|
|
if (!IS_DGFX(xe))
|
|
return 0;
|
|
|
|
/* hwmon is not available on VFs */
|
|
if (IS_SRIOV_VF(xe))
|
|
return 0;
|
|
|
|
hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
|
|
if (!hwmon)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&hwmon->hwmon_lock);
|
|
ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* There's only one instance of hwmon per device */
|
|
hwmon->xe = xe;
|
|
xe->hwmon = hwmon;
|
|
|
|
xe_hwmon_get_preregistration_info(hwmon);
|
|
|
|
drm_dbg(&xe->drm, "Register xe hwmon interface\n");
|
|
|
|
/* hwmon_dev points to device hwmon<i> */
|
|
hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
|
|
&hwmon_chip_info,
|
|
hwmon_groups);
|
|
if (IS_ERR(hwmon->hwmon_dev)) {
|
|
drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
|
|
xe->hwmon = NULL;
|
|
return PTR_ERR(hwmon->hwmon_dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
|