linux/drivers/gpu/drm/panel/panel-himax-hx8279.c

1297 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Himax HX8279 DriverIC panels driver
*
* Copyright (c) 2025 Collabora Ltd.
* AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_connector.h>
#include <drm/drm_crtc.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_modes.h>
#include <drm/drm_panel.h>
/* Page selection */
#define HX8279_REG_PAGE 0xb0
#define HX8279_PAGE_SEL GENMASK(3, 0)
/* Page 0 - Driver/Module Configuration */
#define HX8279_P0_VGHS 0xbf
#define HX8279_P0_VGLS 0xc0
#define HX8279_P0_VGPHS 0xc2
#define HX8279_P0_VGNHS 0xc4
#define HX8279_P0_VG_SEL GENMASK(4, 0)
#define HX8279_VGH_MIN_MV 8700
#define HX8279_VGH_STEP_MV 300
#define HX8279_VGL_MIN_MV 6700
#define HX8279_VGL_STEP_MV 300
#define HX8279_VGPNH_MIN_MV 4000
#define HX8279_VGPNX_STEP_MV 50
#define HX8279_VGH_VOLT_SEL(x) ((x - HX8279_VGH_MIN_MV) / HX8279_VGH_STEP_MV)
#define HX8279_VGL_VOLT_SEL(x) ((x - HX8279_VGL_MIN_MV) / HX8279_VGL_STEP_MV)
#define HX8279_VGPN_VOLT_SEL(x) ((x - HX8279_VGPNH_MIN_MV) / HX8279_VGPNX_STEP_MV)
/* Page 1 - Gate driver On Array (GOA) Mux */
#define HX8279_P1_REG_GOA_L 0xc0
#define HX8279_P1_REG_GOUTL(x) (HX8279_P1_REG_GOA_L + (x))
#define HX8279_P1_REG_GOA_R 0xd4
#define HX8279_P1_REG_GOUTR(x) (HX8279_P1_REG_GOA_R + (x))
#define HX8279_GOUT_STB GENMASK(7, 6)
#define HX8279_GOUT_SEL GENMASK(5, 0)
/* Page 2 - Analog Gamma Configuration */
#define HX8279_P2_REG_ANALOG_GAMMA 0xc0
#define HX8279_P2_REG_GAMMA_T_PVP(x) (HX8279_P2_REG_ANALOG_GAMMA + (x)) /* 0..16 */
#define HX8279_P2_REG_GAMMA_T_PVN(x) (HX8279_P2_REG_GAMMA_T_PVP(17) + (x)) /* 0..16 */
/* Page 3 - Gate driver On Array (GOA) Configuration */
#define HX8279_P3_REG_UNKNOWN_BA 0xba
#define HX8279_P3_REG_GOA_CKV_FALL_PREC 0xbc
#define HX8279_P3_REG_GOA_TIMING_ODD 0xc2
#define HX8279_P3_REG_GOA_TO(x) (HX8279_P3_REG_GOA_TIMING_ODD + x) /* GOA_T0..5 */
#define HX8279_P3_REG_GOA_STVL 0xc8
#define HX8279_P3_GOA_STV_LEAD GENMASK(4, 0)
#define HX8279_P3_REG_GOA_CKVL 0xc9
#define HX8279_P3_GOA_CKV_LEAD GENMASK(4, 0)
#define HX8279_P3_REG_GOA_CKVD 0xca
#define HX8279_P3_GOA_CKV_NONOVERLAP BIT(7)
#define HX8279_P3_GOA_CKV_RESERVED BIT(6)
#define HX8279_P3_GOA_CKV_DUMMY GENMASK(5, 0)
#define HX8279_P3_REG_GOA_CKV_RISE_PREC 0xcb
#define HX8279_P3_REG_GOA_CLR1_W_ADJ 0xd2
#define HX8279_P3_REG_GOA_CLR234_W_ADJ 0xd3
#define HX8279_P3_REG_GOA_CLR1_CFG 0xd4
#define HX8279_P3_REG_GOA_CLR_CFG(x) (HX8279_P3_REG_GOA_CLR1_CFG + (x)) /* CLR1..4 */
#define HX8279_P3_GOA_CLR_CFG_POLARITY BIT(7)
#define HX8279_P3_GOA_CLR_CFG_STARTPOS GENMASK(6, 0)
#define HX8279_P3_REG_GOA_TIMING_EVEN 0xdd
#define HX8279_P3_REG_GOA_TE(x) (HX8279_P3_REG_GOA_TIMING_EVEN + x)
#define HX8279_P3_REG_UNKNOWN_E4 0xe4
#define HX8279_P3_REG_UNKNOWN_E5 0xe5
/* Page 5 - MIPI */
#define HX8279_P5_REG_TIMING 0xb3
#define HX8279_P5_TIMING_THS_SETTLE GENMASK(7, 5)
#define HX8279_P5_TIMING_LHS_SETTLE BIT(4)
#define HX8279_P5_TIMING_TLPX GENMASK(3, 0)
#define HX8279_P5_REG_UNKNOWN_B8 0xb8
#define HX8279_P5_REG_UNKNOWN_BC 0xbc
#define HX8279_P5_REG_UNKNOWN_D6 0xd6
/* Page 6 - Engineer */
#define HX8279_P6_REG_ENGINEER_PWD 0xb8
#define HX8279_P6_REG_INHOUSE_FUNC 0xc0
#define HX8279_P6_ENG_UNLOCK_WORD 0xa5
#define HX8279_P6_REG_GAMMA_CHOPPER 0xbc
#define HX8279_P6_GAMMA_POCGM_CTL GENMASK(6, 4)
#define HX8279_P6_GAMMA_POGCMD_CTL GENMASK(2, 0)
#define HX8279_P6_REG_VOLT_ADJ 0xc7
/* For VCCIFS and VCCS - 0: 1450, 1: 1500, 2: 1550, 3: 1600 uV */
#define HX8279_P6_VOLT_ADJ_VCCIFS GENMASK(3, 2)
#define HX8279_P6_VOLT_ADJ_VCCS GENMASK(1, 0)
#define HX8279_P6_REG_DLY_TIME_ADJ 0xd5
/* Page 7...12 - Digital Gamma Adjustment */
#define HX8279_PG_DIGITAL_GAMMA 0xb1
#define HX8279_DGAMMA_DGMA1_HI GENMASK(7, 6)
#define HX8279_DGAMMA_DGMA2_HI GENMASK(5, 4)
#define HX8279_DGAMMA_DGMA3_HI GENMASK(3, 2)
#define HX8279_DGAMMA_DGMA4_HI GENMASK(1, 0)
#define HX8279_PG_DGAMMA_NUM_LO_BYTES 24
#define HX8279_PG_DGAMMA_NUM_HI_BYTES 6
struct hx8279 {
struct drm_panel panel;
struct mipi_dsi_device *dsi[2];
struct regulator_bulk_data vregs[2];
struct gpio_desc *enable_gpio;
struct gpio_desc *reset_gpio;
const struct hx8279_panel_desc *desc;
u8 last_page;
bool skip_voltage_config;
bool skip_goa_config;
bool skip_goa_timing;
bool skip_goa_even_timing;
bool skip_mipi_timing;
};
struct hx8279_panel_mode {
const struct drm_display_mode mode;
u8 bpc;
bool is_video_mode;
};
/**
* struct hx8279_goa_mux - Gate driver On Array Muxer
* @gout_l: Mux GOA signal to GOUT Left pin
* @gout_r: Mux GOA signal to GOUT Right pin
*/
struct hx8279_goa_mux {
u8 gout_l[20];
u8 gout_r[20];
};
/**
* struct hx8279_analog_gamma - Analog Gamma Adjustment
* @pos: Positive gamma op's input voltage, adjusted by VGP(H/L)
* @neg: Negative gamma op's input voltage, adjusted by VGN(H/L)
*
* Analog Gamma correction is performed with 17+17 reference voltages,
* changed with resistor streams, and defined with 17 register values
* for positive and 17 for negative.
*
* Each register holds resistance values, in 8.5ohms per unit, for the
* following gamma levels:
* 0, 8, 16, 28, 40, 56, 80, 128, 176, 200, 216, 228, 240, 248, 252, 255.
*/
struct hx8279_analog_gamma {
u8 pos[17];
u8 neg[17];
};
/**
* struct hx8279_digital_gamma - Digital Gamma Adjustment
* @r: Adjustment for red component
* @g: Adjustment for green component
* @b: Adjustment for blue component
*
* The layout of this structure follows the register layout to simplify
* both the handling and the declaration of those values in the driver.
* Gamma correction is internally done with a 24 segment piecewise
* linear interpolation; those segments are defined with 24 ten bits
* values of which:
* - The LOW eight bits for the first 24 registers start at the first
* register (at 0xb1) of the Digital Gamma Adjustment page;
* - The HIGH two bits for each of the 24 registers are contained
* in the last six registers;
* - The last six registers contain four groups of two-bits HI values
* for each of the first 24 registers, but in an inverted fashion,
* this means that the first two bits relate to the last register
* of a set of four.
*
* The 24 segments refer to the following gamma levels:
* 0, 1, 3, 7, 11, 15, 23, 31, 47, 63, 95, 127, 128, 160,
* 192, 208, 224, 232, 240, 244, 248, 252, 254, 255
*/
struct hx8279_digital_gamma {
u8 r[HX8279_PG_DGAMMA_NUM_LO_BYTES + HX8279_PG_DGAMMA_NUM_HI_BYTES];
u8 g[HX8279_PG_DGAMMA_NUM_LO_BYTES + HX8279_PG_DGAMMA_NUM_HI_BYTES];
u8 b[HX8279_PG_DGAMMA_NUM_LO_BYTES + HX8279_PG_DGAMMA_NUM_HI_BYTES];
};
struct hx8279_panel_desc {
const struct mipi_dsi_device_info dsi_info;
const struct hx8279_panel_mode *mode_data;
u8 num_lanes;
u8 num_modes;
/* Page 0 */
unsigned int vgh_mv;
unsigned int vgl_mv;
unsigned int vgph_mv;
unsigned int vgnh_mv;
/* Page 1 */
const struct hx8279_goa_mux *gmux;
/* Page 2 */
const struct hx8279_analog_gamma *agamma;
/* Page 3 */
u8 goa_unk_ba;
u8 goa_odd_timing[6];
u8 goa_even_timing[6];
u8 goa_stv_lead_time_ck;
u8 goa_ckv_lead_time_ck;
u8 goa_ckv_dummy_vblank_num;
u8 goa_ckv_rise_precharge;
u8 goa_ckv_fall_precharge;
bool goa_ckv_non_overlap_ctl;
u8 goa_clr1_width_adj;
u8 goa_clr234_width_adj;
s8 goa_clr_polarity[4];
int goa_clr_start_pos[4];
u8 goa_unk_e4;
u8 goa_unk_e5;
/* Page 5 */
u8 bta_tlpx;
bool lhs_settle_time_by_osc25;
u8 ths_settle_time;
u8 timing_unk_b8;
u8 timing_unk_bc;
u8 timing_unk_d6;
/* Page 6 */
u8 gamma_ctl;
u8 volt_adj;
u8 src_delay_time_adj_ck;
/* Page 7..12 */
const struct hx8279_digital_gamma *dgamma;
};
static inline struct hx8279 *to_hx8279(struct drm_panel *panel)
{
return container_of(panel, struct hx8279, panel);
}
static void hx8279_set_page(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx, u8 page)
{
const u8 cmd_set_page[] = { HX8279_REG_PAGE, page };
if (hx->last_page == page)
return;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_page, ARRAY_SIZE(cmd_set_page));
if (!dsi_ctx->accum_err)
hx->last_page = page;
}
static void hx8279_set_module_config(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_panel_desc *desc = hx->desc;
u8 cmd_set_voltage[2];
if (hx->skip_voltage_config)
return;
/* Page 0 - Driver/Module Configuration */
hx8279_set_page(hx, dsi_ctx, 0);
if (desc->vgh_mv) {
cmd_set_voltage[0] = HX8279_P0_VGHS;
cmd_set_voltage[1] = HX8279_VGH_VOLT_SEL(desc->vgh_mv);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_voltage,
ARRAY_SIZE(cmd_set_voltage));
}
if (desc->vgl_mv) {
cmd_set_voltage[0] = HX8279_P0_VGLS;
cmd_set_voltage[1] = HX8279_VGL_VOLT_SEL(desc->vgl_mv);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_voltage,
ARRAY_SIZE(cmd_set_voltage));
}
if (desc->vgph_mv) {
cmd_set_voltage[0] = HX8279_P0_VGPHS;
cmd_set_voltage[1] = HX8279_VGPN_VOLT_SEL(desc->vgph_mv);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_voltage,
ARRAY_SIZE(cmd_set_voltage));
}
if (desc->vgnh_mv) {
cmd_set_voltage[0] = HX8279_P0_VGNHS;
cmd_set_voltage[1] = HX8279_VGPN_VOLT_SEL(desc->vgnh_mv);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_voltage,
ARRAY_SIZE(cmd_set_voltage));
}
}
static void hx8279_set_gmux(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_goa_mux *gmux = hx->desc->gmux;
u8 cmd_set_gmux[2];
int i;
if (!gmux)
return;
hx8279_set_page(hx, dsi_ctx, 1);
for (i = 0; i < ARRAY_SIZE(gmux->gout_l); i++) {
cmd_set_gmux[0] = HX8279_P1_REG_GOUTL(i);
cmd_set_gmux[1] = gmux->gout_l[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_gmux,
ARRAY_SIZE(cmd_set_gmux));
}
for (i = 0; i < ARRAY_SIZE(gmux->gout_r); i++) {
cmd_set_gmux[0] = HX8279_P1_REG_GOUTR(i);
cmd_set_gmux[1] = gmux->gout_r[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_gmux,
ARRAY_SIZE(cmd_set_gmux));
}
}
static void hx8279_set_analog_gamma(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_analog_gamma *agamma = hx->desc->agamma;
u8 cmd_set_ana_gamma[2];
int i;
if (!agamma)
return;
hx8279_set_page(hx, dsi_ctx, 2);
for (i = 0; i < ARRAY_SIZE(agamma->pos); i++) {
cmd_set_ana_gamma[0] = HX8279_P2_REG_GAMMA_T_PVP(i);
cmd_set_ana_gamma[1] = agamma->pos[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_ana_gamma,
ARRAY_SIZE(cmd_set_ana_gamma));
}
for (i = 0; i < ARRAY_SIZE(agamma->neg); i++) {
cmd_set_ana_gamma[0] = HX8279_P2_REG_GAMMA_T_PVN(i);
cmd_set_ana_gamma[1] = agamma->neg[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_ana_gamma,
ARRAY_SIZE(cmd_set_ana_gamma));
}
}
static void hx8279_set_goa_timing(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_panel_desc *desc = hx->desc;
u8 cmd_set_goa_t[2];
int i;
if (hx->skip_goa_timing)
return;
hx8279_set_page(hx, dsi_ctx, 3);
for (i = 0; i < ARRAY_SIZE(desc->goa_odd_timing); i++) {
cmd_set_goa_t[0] = HX8279_P3_REG_GOA_TO(i);
cmd_set_goa_t[1] = desc->goa_odd_timing[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa_t,
ARRAY_SIZE(cmd_set_goa_t));
}
for (i = 0; i < ARRAY_SIZE(desc->goa_even_timing); i++) {
cmd_set_goa_t[0] = HX8279_P3_REG_GOA_TE(i);
cmd_set_goa_t[1] = desc->goa_odd_timing[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa_t,
ARRAY_SIZE(cmd_set_goa_t));
}
}
static void hx8279_set_goa_cfg(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_panel_desc *desc = hx->desc;
u8 cmd_set_goa[2];
int i;
if (hx->skip_goa_config)
return;
hx8279_set_page(hx, dsi_ctx, 3);
if (desc->goa_unk_ba) {
cmd_set_goa[0] = HX8279_P3_REG_UNKNOWN_BA;
cmd_set_goa[1] = desc->goa_unk_ba;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
if (desc->goa_stv_lead_time_ck) {
cmd_set_goa[0] = HX8279_P3_REG_GOA_STVL;
cmd_set_goa[1] = FIELD_PREP(HX8279_P3_GOA_STV_LEAD,
desc->goa_stv_lead_time_ck);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
if (desc->goa_ckv_lead_time_ck) {
cmd_set_goa[0] = HX8279_P3_REG_GOA_CKVL;
cmd_set_goa[1] = FIELD_PREP(HX8279_P3_GOA_CKV_DUMMY,
desc->goa_ckv_lead_time_ck);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
if (desc->goa_ckv_dummy_vblank_num) {
cmd_set_goa[0] = HX8279_P3_REG_GOA_CKVD;
cmd_set_goa[1] = FIELD_PREP(HX8279_P3_GOA_CKV_LEAD,
desc->goa_ckv_dummy_vblank_num);
cmd_set_goa[1] |= FIELD_PREP(HX8279_P3_GOA_CKV_NONOVERLAP,
desc->goa_ckv_non_overlap_ctl);
/* RESERVED must be always set */
cmd_set_goa[1] |= HX8279_P3_GOA_CKV_RESERVED;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
/*
* One of the two being more than zero means that we want to write
* both of them. Anyway, the register default is zero in this case.
*/
if (desc->goa_ckv_rise_precharge || desc->goa_ckv_fall_precharge) {
cmd_set_goa[0] = HX8279_P3_REG_GOA_CKV_RISE_PREC;
cmd_set_goa[1] = desc->goa_ckv_rise_precharge;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
cmd_set_goa[0] = HX8279_P3_REG_GOA_CKV_FALL_PREC;
cmd_set_goa[1] = desc->goa_ckv_fall_precharge;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
if (desc->goa_clr1_width_adj) {
cmd_set_goa[0] = HX8279_P3_REG_GOA_CLR1_W_ADJ;
cmd_set_goa[1] = desc->goa_clr1_width_adj;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
if (desc->goa_clr234_width_adj) {
cmd_set_goa[0] = HX8279_P3_REG_GOA_CLR234_W_ADJ;
cmd_set_goa[1] = desc->goa_clr234_width_adj;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
/* Polarity and Start Position arrays are of the same size */
for (i = 0; i < ARRAY_SIZE(desc->goa_clr_polarity); i++) {
if (desc->goa_clr_polarity[i] < 0 || desc->goa_clr_start_pos[i] < 0)
continue;
cmd_set_goa[0] = HX8279_P3_REG_GOA_CLR_CFG(i);
cmd_set_goa[1] = FIELD_PREP(HX8279_P3_GOA_CLR_CFG_STARTPOS,
desc->goa_clr_start_pos[i]);
cmd_set_goa[1] |= FIELD_PREP(HX8279_P3_GOA_CLR_CFG_POLARITY,
desc->goa_clr_polarity[i]);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
if (desc->goa_unk_e4) {
cmd_set_goa[0] = HX8279_P3_REG_UNKNOWN_E4;
cmd_set_goa[1] = desc->goa_unk_e4;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
cmd_set_goa[0] = HX8279_P3_REG_UNKNOWN_E5;
cmd_set_goa[1] = desc->goa_unk_e5;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_goa,
ARRAY_SIZE(cmd_set_goa));
}
static void hx8279_set_mipi_cfg(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_panel_desc *desc = hx->desc;
u8 cmd_set_mipi[2];
if (hx->skip_mipi_timing)
return;
hx8279_set_page(hx, dsi_ctx, 5);
if (desc->bta_tlpx || desc->ths_settle_time || desc->lhs_settle_time_by_osc25) {
cmd_set_mipi[0] = HX8279_P5_REG_TIMING;
cmd_set_mipi[1] = FIELD_PREP(HX8279_P5_TIMING_TLPX, desc->bta_tlpx);
cmd_set_mipi[1] |= FIELD_PREP(HX8279_P5_TIMING_THS_SETTLE,
desc->ths_settle_time);
cmd_set_mipi[1] |= FIELD_PREP(HX8279_P5_TIMING_LHS_SETTLE,
desc->lhs_settle_time_by_osc25);
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_mipi,
ARRAY_SIZE(cmd_set_mipi));
}
if (desc->timing_unk_b8) {
cmd_set_mipi[0] = HX8279_P5_REG_UNKNOWN_B8;
cmd_set_mipi[1] = desc->timing_unk_b8;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_mipi,
ARRAY_SIZE(cmd_set_mipi));
}
if (desc->timing_unk_bc) {
cmd_set_mipi[0] = HX8279_P5_REG_UNKNOWN_BC;
cmd_set_mipi[1] = desc->timing_unk_bc;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_mipi,
ARRAY_SIZE(cmd_set_mipi));
}
if (desc->timing_unk_d6) {
cmd_set_mipi[0] = HX8279_P5_REG_UNKNOWN_D6;
cmd_set_mipi[1] = desc->timing_unk_d6;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_mipi,
ARRAY_SIZE(cmd_set_mipi));
}
}
static void hx8279_set_adv_cfg(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_panel_desc *desc = hx->desc;
const u8 cmd_set_dly[] = { HX8279_P6_REG_DLY_TIME_ADJ, desc->src_delay_time_adj_ck };
const u8 cmd_set_gamma[] = { HX8279_P6_REG_GAMMA_CHOPPER, desc->gamma_ctl };
const u8 cmd_set_volt_adj[] = { HX8279_P6_REG_VOLT_ADJ, desc->volt_adj };
u8 cmd_set_eng[] = { HX8279_P6_REG_ENGINEER_PWD, HX8279_P6_ENG_UNLOCK_WORD };
if (!desc->gamma_ctl && !desc->src_delay_time_adj_ck && !desc->volt_adj)
return;
hx8279_set_page(hx, dsi_ctx, 6);
/* Unlock ENG settings: write same word to both ENGINEER_PWD and INHOUSE_FUNC */
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_eng, ARRAY_SIZE(cmd_set_eng));
cmd_set_eng[0] = HX8279_P6_REG_INHOUSE_FUNC;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_eng, ARRAY_SIZE(cmd_set_eng));
/* Set Gamma Chopper and Gamma buffer Chopper control */
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_gamma, ARRAY_SIZE(cmd_set_gamma));
/* Set Source delay time adjustment (CKV falling to Source off) */
if (desc->src_delay_time_adj_ck)
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_dly,
ARRAY_SIZE(cmd_set_dly));
/* Set voltage adjustment */
if (desc->volt_adj)
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_volt_adj,
ARRAY_SIZE(cmd_set_volt_adj));
/* Lock ENG settings again */
cmd_set_eng[0] = HX8279_P6_REG_ENGINEER_PWD;
cmd_set_eng[1] = 0;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_eng, ARRAY_SIZE(cmd_set_eng));
cmd_set_eng[0] = HX8279_P6_REG_INHOUSE_FUNC;
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_eng, ARRAY_SIZE(cmd_set_eng));
}
static void hx8279_set_digital_gamma(struct hx8279 *hx,
struct mipi_dsi_multi_context *dsi_ctx)
{
const struct hx8279_digital_gamma *dgamma = hx->desc->dgamma;
u8 cmd_set_dig_gamma[2];
int i;
if (!dgamma)
return;
/*
* Pages 7..9 are for RGB Positive, 10..12 are for RGB Negative:
* The first iteration sets all positive component registers,
* the second one sets all negatives.
*/
for (i = 0; i < 2; i++) {
u8 pg_neg = i * 3;
hx8279_set_page(hx, dsi_ctx, 7 + pg_neg);
for (i = 0; i < ARRAY_SIZE(dgamma->r); i++) {
cmd_set_dig_gamma[0] = HX8279_PG_DIGITAL_GAMMA + i;
cmd_set_dig_gamma[1] = dgamma->r[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_dig_gamma,
ARRAY_SIZE(cmd_set_dig_gamma));
}
hx8279_set_page(hx, dsi_ctx, 8 + pg_neg);
for (i = 0; i < ARRAY_SIZE(dgamma->g); i++) {
cmd_set_dig_gamma[0] = HX8279_PG_DIGITAL_GAMMA + i;
cmd_set_dig_gamma[1] = dgamma->g[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_dig_gamma,
ARRAY_SIZE(cmd_set_dig_gamma));
}
hx8279_set_page(hx, dsi_ctx, 9 + pg_neg);
for (i = 0; i < ARRAY_SIZE(dgamma->b); i++) {
cmd_set_dig_gamma[0] = HX8279_PG_DIGITAL_GAMMA + i;
cmd_set_dig_gamma[1] = dgamma->b[i];
mipi_dsi_generic_write_multi(dsi_ctx, cmd_set_dig_gamma,
ARRAY_SIZE(cmd_set_dig_gamma));
}
}
}
static int hx8279_on(struct hx8279 *hx)
{
struct mipi_dsi_device *dsi = hx->dsi[0];
struct mipi_dsi_multi_context dsi_ctx = { .dsi = dsi };
/* Page 5 */
hx8279_set_mipi_cfg(hx, &dsi_ctx);
/* Page 1 */
hx8279_set_gmux(hx, &dsi_ctx);
/* Page 2 */
hx8279_set_analog_gamma(hx, &dsi_ctx);
/* Page 3 */
hx8279_set_goa_cfg(hx, &dsi_ctx);
hx8279_set_goa_timing(hx, &dsi_ctx);
/* Page 0 - Driver/Module Configuration */
hx8279_set_module_config(hx, &dsi_ctx);
/* Page 6 */
hx8279_set_adv_cfg(hx, &dsi_ctx);
/* Pages 7..12 */
hx8279_set_digital_gamma(hx, &dsi_ctx);
return dsi_ctx.accum_err;
}
static void hx8279_power_off(struct hx8279 *hx)
{
gpiod_set_value_cansleep(hx->reset_gpio, 0);
usleep_range(100, 500);
gpiod_set_value_cansleep(hx->enable_gpio, 0);
regulator_bulk_disable(ARRAY_SIZE(hx->vregs), hx->vregs);
}
static int hx8279_disable(struct drm_panel *panel)
{
struct hx8279 *hx = to_hx8279(panel);
struct mipi_dsi_device *dsi = hx->dsi[0];
struct mipi_dsi_multi_context dsi_ctx = { .dsi = dsi };
mipi_dsi_dcs_set_display_off_multi(&dsi_ctx);
return 0;
}
static int hx8279_enable(struct drm_panel *panel)
{
struct hx8279 *hx = to_hx8279(panel);
struct mipi_dsi_device *dsi = hx->dsi[0];
struct mipi_dsi_multi_context dsi_ctx = { .dsi = dsi };
mipi_dsi_dcs_set_display_on_multi(&dsi_ctx);
return 0;
}
static int hx8279_prepare(struct drm_panel *panel)
{
struct hx8279 *hx = to_hx8279(panel);
struct mipi_dsi_device *dsi = hx->dsi[0];
struct mipi_dsi_multi_context dsi_ctx = { .dsi = dsi };
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(hx->vregs), hx->vregs);
if (ret)
return ret;
gpiod_set_value_cansleep(hx->enable_gpio, 1);
usleep_range(5000, 6000);
gpiod_set_value_cansleep(hx->reset_gpio, 1);
usleep_range(6000, 7000);
dsi->mode_flags |= MIPI_DSI_MODE_LPM;
if (hx->dsi[1])
hx->dsi[1]->mode_flags |= MIPI_DSI_MODE_LPM;
ret = hx8279_on(hx);
if (ret) {
hx8279_power_off(hx);
return ret;
}
mipi_dsi_dcs_exit_sleep_mode_multi(&dsi_ctx);
mipi_dsi_msleep(&dsi_ctx, 130);
return dsi_ctx.accum_err;
}
static int hx8279_unprepare(struct drm_panel *panel)
{
struct hx8279 *hx = to_hx8279(panel);
struct mipi_dsi_device *dsi = hx->dsi[0];
struct mipi_dsi_multi_context dsi_ctx = { .dsi = dsi };
mipi_dsi_dcs_enter_sleep_mode_multi(&dsi_ctx);
mipi_dsi_msleep(&dsi_ctx, 130);
dsi->mode_flags &= ~MIPI_DSI_MODE_LPM;
if (hx->dsi[1])
hx->dsi[1]->mode_flags &= ~MIPI_DSI_MODE_LPM;
hx8279_power_off(hx);
return dsi_ctx.accum_err;
}
static int hx8279_get_modes(struct drm_panel *panel, struct drm_connector *connector)
{
struct hx8279 *hx = to_hx8279(panel);
int i;
for (i = 0; i < hx->desc->num_modes; i++) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(connector->dev, &hx->desc->mode_data[i].mode);
if (!mode)
return -ENOMEM;
drm_mode_set_name(mode);
mode->type |= DRM_MODE_TYPE_DRIVER;
if (hx->desc->num_modes == 1)
mode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_probed_add(connector, mode);
}
connector->display_info.bpc = hx->desc->mode_data[0].bpc;
connector->display_info.height_mm = hx->desc->mode_data[0].mode.height_mm;
connector->display_info.width_mm = hx->desc->mode_data[0].mode.width_mm;
return hx->desc->num_modes;
}
static const struct drm_panel_funcs hx8279_panel_funcs = {
.disable = hx8279_disable,
.unprepare = hx8279_unprepare,
.prepare = hx8279_prepare,
.enable = hx8279_enable,
.get_modes = hx8279_get_modes,
};
static int hx8279_init_vregs(struct hx8279 *hx, struct device *dev)
{
int ret;
hx->vregs[0].supply = "vdd";
hx->vregs[1].supply = "iovcc";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hx->vregs),
hx->vregs);
if (ret < 0)
return ret;
ret = regulator_is_supported_voltage(hx->vregs[0].consumer,
3000000, 5000000);
if (!ret)
return -EINVAL;
ret = regulator_is_supported_voltage(hx->vregs[1].consumer,
1700000, 1900000);
if (!ret)
return -EINVAL;
return 0;
}
static int hx8279_check_gmux_config(struct hx8279 *hx, struct device *dev)
{
const struct hx8279_panel_desc *desc = hx->desc;
const struct hx8279_goa_mux *gmux = desc->gmux;
int i;
/* No gmux defined means we simply skip the GOA mux configuration */
if (!gmux)
return 0;
for (i = 0; i < ARRAY_SIZE(gmux->gout_l); i++) {
if (gmux->gout_l[i] > (HX8279_GOUT_STB | HX8279_GOUT_SEL))
return dev_err_probe(dev, -EINVAL,
"Invalid value found in gout_l[%d]\n", i);
}
for (i = 0; i < ARRAY_SIZE(gmux->gout_r); i++) {
if (gmux->gout_r[i] > (HX8279_GOUT_STB | HX8279_GOUT_SEL))
return dev_err_probe(dev, -EINVAL,
"Invalid value found in gout_r[%d]\n", i);
}
return 0;
}
static int hx8279_check_goa_config(struct hx8279 *hx, struct device *dev)
{
const struct hx8279_panel_desc *desc = hx->desc;
bool goa_odd_valid, goa_even_valid;
int i, num_zero, num_clr = 0;
/* Up to 4 zero values is a valid configuration. Check them all. */
num_zero = 1;
for (i = 0; i < ARRAY_SIZE(desc->goa_odd_timing); i++) {
if (desc->goa_odd_timing[i])
num_zero++;
}
goa_odd_valid = (num_zero != ARRAY_SIZE(desc->goa_odd_timing));
/* Up to 3 zeroes is a valid config. Check them all. */
num_zero = 1;
for (i = 0; i < ARRAY_SIZE(desc->goa_even_timing); i++) {
if (desc->goa_even_timing[i])
num_zero++;
}
goa_even_valid = (num_zero != ARRAY_SIZE(desc->goa_even_timing));
/* Programming one without the other would make no sense! */
if (goa_odd_valid != goa_even_valid)
return -EINVAL;
/* We know that both are either true or false now, check just one */
if (!goa_odd_valid)
hx->skip_goa_timing = true;
if (!desc->goa_unk_ba && !desc->goa_stv_lead_time_ck &&
!desc->goa_ckv_lead_time_ck && !desc->goa_ckv_dummy_vblank_num &&
!desc->goa_ckv_rise_precharge && !desc->goa_ckv_fall_precharge &&
!desc->goa_clr1_width_adj && !desc->goa_clr234_width_adj &&
!desc->goa_unk_e4 && !desc->goa_unk_e5) {
hx->skip_goa_config = true;
return 0;
}
if ((desc->goa_stv_lead_time_ck > HX8279_P3_GOA_STV_LEAD) ||
(desc->goa_ckv_lead_time_ck > HX8279_P3_GOA_CKV_LEAD) ||
(desc->goa_ckv_dummy_vblank_num > HX8279_P3_GOA_CKV_DUMMY))
return dev_err_probe(dev, -EINVAL,
"Invalid lead timings in GOA config\n");
/*
* Don't perform zero check for polarity and start position, as
* both pol=0 and start=0 are valid configuration values.
*/
for (i = 0; i < ARRAY_SIZE(desc->goa_clr_start_pos); i++) {
if (desc->goa_clr_start_pos[i] < 0)
continue;
else if (desc->goa_clr_start_pos[i] > HX8279_P3_GOA_CLR_CFG_STARTPOS)
return dev_err_probe(dev, -EINVAL,
"Invalid start position for CLR%d\n", i + 1);
else
num_clr++;
}
if (!num_clr)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(desc->goa_clr_polarity); i++) {
if (num_clr < 0)
return -EINVAL;
if (desc->goa_clr_polarity[i] < 0)
continue;
else if (desc->goa_clr_polarity[i] > 1)
return dev_err_probe(dev, -EINVAL,
"Invalid polarity for CLR%d\n", i + 1);
else
num_clr--;
}
return 0;
}
static int hx8279_check_dig_gamma(struct hx8279 *hx, struct device *dev, const u8 *component)
{
u8 gamma_high_bits[4];
u16 prev_val = 0;
int i, j, k, x;
/*
* The gamma values are 10 bits long and shall be incremental
* to form a digital gamma correction reference curve.
*
* As for the registers format: the first 24 bytes contain each the
* lowest 8 bits for each of the gamma level references, and the last
* 6 bytes contain the high two bits of 4 registers at a time, where
* the first two bits are relative to the last register, and the last
* two are relative to the first register.
*
* Another way of saying, those are the first four LOW values:
* DGMA1_LO = 0xb1, DGMA2_LO = 0xb2, DGMA3_LO = 0xb3, DGMA4_LO = 0xb4
*
* The high values for those four are at DGMA1_4_HI = 0xc9;
* ...and DGMA1_4_HI's data contains the following bits:
* [1:0] = DGMA4_HI, [3:2] = DGMA3_HI, [5:4] = DGMA2_HI, [7:6] = DGMA1_HI
*/
for (i = 0; i < HX8279_PG_DGAMMA_NUM_HI_BYTES; i++) {
k = HX8279_PG_DGAMMA_NUM_LO_BYTES + i;
j = i * 4;
x = 0;
gamma_high_bits[0] = FIELD_GET(HX8279_DGAMMA_DGMA1_HI, component[k]);
gamma_high_bits[1] = FIELD_GET(HX8279_DGAMMA_DGMA2_HI, component[k]);
gamma_high_bits[2] = FIELD_GET(HX8279_DGAMMA_DGMA3_HI, component[k]);
gamma_high_bits[3] = FIELD_GET(HX8279_DGAMMA_DGMA4_HI, component[k]);
do {
u16 cur_val = component[j] | (gamma_high_bits[x] << 8);
if (cur_val < prev_val)
return dev_err_probe(dev, -EINVAL,
"Invalid dgamma values: %u < %u!\n",
cur_val, prev_val);
prev_val = cur_val;
j++;
x++;
} while (x < 4);
};
return 0;
}
static int hx8279_check_params(struct hx8279 *hx, struct device *dev)
{
const struct hx8279_panel_desc *desc = hx->desc;
int ret;
/* Voltages config validation */
if (!desc->vgh_mv && !desc->vgl_mv && !desc->vgph_mv && !desc->vgnh_mv)
hx->skip_voltage_config = true;
else if ((desc->vgh_mv && desc->vgh_mv < HX8279_VGH_MIN_MV) ||
(desc->vgl_mv && desc->vgl_mv < HX8279_VGL_MIN_MV) ||
(desc->vgph_mv && desc->vgph_mv < HX8279_VGPNH_MIN_MV) ||
(desc->vgnh_mv && desc->vgnh_mv < HX8279_VGPNH_MIN_MV))
return -EINVAL;
/* GOA Muxing validation */
ret = hx8279_check_gmux_config(hx, dev);
if (ret)
return ret;
/* GOA Configuration validation */
ret = hx8279_check_goa_config(hx, dev);
if (ret)
return ret;
/* MIPI Configuration validation */
if (!desc->bta_tlpx && !desc->lhs_settle_time_by_osc25 &&
!desc->ths_settle_time && !desc->timing_unk_b8 &&
!desc->timing_unk_bc && !desc->timing_unk_d6)
hx->skip_mipi_timing = true;
/* ENG/Gamma Configuration validation */
if (desc->gamma_ctl > (HX8279_P6_GAMMA_POCGM_CTL | HX8279_P6_GAMMA_POGCMD_CTL))
return -EINVAL;
/* Digital Gamma values validation */
if (desc->dgamma) {
ret = hx8279_check_dig_gamma(hx, dev, desc->dgamma->r);
if (ret)
return ret;
ret = hx8279_check_dig_gamma(hx, dev, desc->dgamma->g);
if (ret)
return ret;
ret = hx8279_check_dig_gamma(hx, dev, desc->dgamma->b);
if (ret)
return ret;
}
return 0;
}
static int hx8279_probe(struct mipi_dsi_device *dsi)
{
struct device *dev = &dsi->dev;
struct device_node *dsi_r;
struct hx8279 *hx;
int i, ret;
hx = devm_drm_panel_alloc(dev, struct hx8279, panel,
&hx8279_panel_funcs, DRM_MODE_CONNECTOR_DSI);
if (IS_ERR(hx))
return PTR_ERR(hx);
ret = hx8279_init_vregs(hx, dev);
if (ret)
return ret;
hx->desc = device_get_match_data(dev);
if (!hx->desc)
return -ENODEV;
/*
* In some DriverICs some or all fields may be OTP: perform a
* basic configuration check before writing to help avoiding
* irreparable mistakes.
*
* Please note that this is not perfect and will only check if
* the values may be plausible; values that are wrong for a
* specific display, but still plausible for DrIC config will
* be accepted.
*/
ret = hx8279_check_params(hx, dev);
if (ret)
return dev_err_probe(dev, ret, "Invalid DriverIC configuration\n");
/* The enable line may be always tied to VCCIO, so this is optional */
hx->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_ASIS);
if (IS_ERR(hx->enable_gpio))
return dev_err_probe(dev, PTR_ERR(hx->enable_gpio),
"Failed to get enable GPIO\n");
hx->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_ASIS);
if (IS_ERR(hx->reset_gpio))
return dev_err_probe(dev, PTR_ERR(hx->reset_gpio),
"Failed to get reset GPIO\n");
/* If the panel is connected on two DSIs then DSI0 left, DSI1 right */
dsi_r = of_graph_get_remote_node(dsi->dev.of_node, 1, -1);
if (dsi_r) {
const struct mipi_dsi_device_info *info = &hx->desc->dsi_info;
struct mipi_dsi_host *dsi_r_host;
dsi_r_host = of_find_mipi_dsi_host_by_node(dsi_r);
of_node_put(dsi_r);
if (!dsi_r_host)
return dev_err_probe(dev, -EPROBE_DEFER,
"Cannot get secondary DSI host\n");
hx->dsi[1] = devm_mipi_dsi_device_register_full(dev, dsi_r_host, info);
if (IS_ERR(hx->dsi[1]))
return dev_err_probe(dev, PTR_ERR(hx->dsi[1]),
"Cannot get secondary DSI node\n");
mipi_dsi_set_drvdata(hx->dsi[1], hx);
}
hx->dsi[0] = dsi;
mipi_dsi_set_drvdata(dsi, hx);
ret = drm_panel_of_backlight(&hx->panel);
if (ret)
return dev_err_probe(dev, ret, "Failed to get backlight\n");
drm_panel_add(&hx->panel);
for (i = 0; i < 2; i++) {
if (!hx->dsi[i])
continue;
hx->dsi[i]->lanes = hx->desc->num_lanes;
hx->dsi[i]->format = MIPI_DSI_FMT_RGB888;
hx->dsi[i]->mode_flags = MIPI_DSI_CLOCK_NON_CONTINUOUS |
MIPI_DSI_MODE_LPM;
if (hx->desc->mode_data[0].is_video_mode)
hx->dsi[i]->mode_flags |= MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
ret = devm_mipi_dsi_attach(dev, hx->dsi[i]);
if (ret < 0) {
drm_panel_remove(&hx->panel);
return dev_err_probe(dev, ret,
"Cannot attach to DSI%d host.\n", i);
}
}
return 0;
}
static void hx8279_remove(struct mipi_dsi_device *dsi)
{
struct hx8279 *hx = mipi_dsi_get_drvdata(dsi);
drm_panel_remove(&hx->panel);
}
static const struct hx8279_panel_mode aoly_sl101pm1794fog_v15_modes[] = {
{
.mode = {
.clock = 159420,
.hdisplay = 1200,
.hsync_start = 1200 + 80,
.hsync_end = 1200 + 80 + 60,
.htotal = 1200 + 80 + 60 + 24,
.vdisplay = 1920,
.vsync_start = 1920 + 10,
.vsync_end = 1920 + 10 + 14,
.vtotal = 1920 + 10 + 14 + 4,
.width_mm = 136,
.height_mm = 217,
.type = DRM_MODE_TYPE_DRIVER
},
.bpc = 8,
.is_video_mode = true,
},
};
static const struct hx8279_panel_mode startek_kd070fhfid078_modes[] = {
{
.mode = {
.clock = 156458,
.hdisplay = 1200,
.hsync_start = 1200 + 50,
.hsync_end = 1200 + 50 + 24,
.htotal = 1200 + 50 + 24 + 66,
.vdisplay = 1920,
.vsync_start = 1920 + 14,
.vsync_end = 1920 + 14 + 2,
.vtotal = 1920 + 14 + 2 + 10,
.width_mm = 95,
.height_mm = 151,
.type = DRM_MODE_TYPE_DRIVER
},
.bpc = 8,
.is_video_mode = true,
},
};
static const struct hx8279_goa_mux aoly_sl101pm1794fog_v15_gmux = {
.gout_l = { 0x5, 0x5, 0xb, 0xb, 0x9, 0x9, 0x16, 0x16, 0xe, 0xe,
0x7, 0x7, 0x26, 0x26, 0x15, 0x15, 0x1, 0x1, 0x3, 0x3 },
.gout_r = { 0x6, 0x6, 0xc, 0xc, 0xa, 0xa, 0x16, 0x16, 0xe, 0xe,
0x8, 0x8, 0x26, 0x26, 0x15, 0x15, 0x2, 0x2, 0x4, 0x4 },
};
static const struct hx8279_analog_gamma aoly_sl101pm1794fog_v15_ana_gamma = {
.pos = { 0x0, 0xd, 0x17, 0x26, 0x31, 0x1c, 0x2c, 0x33, 0x31,
0x37, 0x37, 0x37, 0x39, 0x2e, 0x2f, 0x2f, 0x7 },
.neg = { 0x0, 0xd, 0x17, 0x26, 0x31, 0x3f, 0x3f, 0x3f, 0x3f,
0x37, 0x37, 0x37, 0x39, 0x2e, 0x2f, 0x2f, 0x7 },
};
static const struct hx8279_digital_gamma aoly_sl101pm1794fog_v15_dig_gamma = {
.r = { 0x0, 0x5, 0x10, 0x22, 0x36, 0x4a, 0x6c, 0x9a, 0xd7, 0x17,
0x92, 0x15, 0x18, 0x8c, 0x0, 0x3a, 0x72, 0x8c, 0xa5, 0xb1,
0xbe, 0xca, 0xd1, 0xd4, 0x0, 0x0, 0x16, 0xaf, 0xff, 0xff },
.g = { 0x4, 0x5, 0x11, 0x24, 0x39, 0x4e, 0x72, 0xa3, 0xe1, 0x25,
0xa8, 0x2e, 0x32, 0xad, 0x28, 0x63, 0x9b, 0xb5, 0xcf, 0xdb,
0xe8, 0xf5, 0xfa, 0xfc, 0x0, 0x0, 0x16, 0xaf, 0xff, 0xff },
.b = { 0x4, 0x4, 0xf, 0x22, 0x37, 0x4d, 0x71, 0xa2, 0xe1, 0x26,
0xa9, 0x2f, 0x33, 0xac, 0x24, 0x5d, 0x94, 0xac, 0xc5, 0xd1,
0xdc, 0xe8, 0xed, 0xf0, 0x0, 0x0, 0x16, 0xaf, 0xff, 0xff },
};
static const struct hx8279_panel_desc aoly_sl101pm1794fog_v15 = {
.dsi_info = {
.type = "L101PM1794FOG-V15",
.channel = 0,
.node = NULL,
},
.mode_data = aoly_sl101pm1794fog_v15_modes,
.num_modes = ARRAY_SIZE(aoly_sl101pm1794fog_v15_modes),
.num_lanes = 4,
/* Driver/Module Configuration: LC Matrix voltages */
.vgh_mv = 16500,
.vgl_mv = 11200,
.vgph_mv = 4600,
.vgnh_mv = 4600,
/* Analog Gamma correction */
.agamma = &aoly_sl101pm1794fog_v15_ana_gamma,
/* Gate driver On Array (GOA) Muxing */
.gmux = &aoly_sl101pm1794fog_v15_gmux,
/* Gate driver On Array (GOA) Mux Config */
.goa_unk_ba = 0xf0,
.goa_odd_timing = { 0, 0, 0, 42, 0, 0 },
.goa_even_timing = { 1, 42, 0, 0 },
.goa_stv_lead_time_ck = 11,
.goa_ckv_lead_time_ck = 7,
.goa_ckv_dummy_vblank_num = 3,
.goa_ckv_rise_precharge = 1,
.goa_clr1_width_adj = 0,
.goa_clr234_width_adj = 0,
.goa_clr_polarity = { 1, 0, 0, 0 },
.goa_clr_start_pos = { 8, 9, 3, 4 },
.goa_unk_e4 = 0xc0,
.goa_unk_e5 = 0x0d,
/* MIPI Configuration */
.bta_tlpx = 2,
.lhs_settle_time_by_osc25 = true,
.ths_settle_time = 2,
.timing_unk_b8 = 0xa5,
.timing_unk_bc = 0x20,
.timing_unk_d6 = 0x7f,
/* ENG/Gamma Configuration */
.gamma_ctl = 0,
.volt_adj = FIELD_PREP_CONST(HX8279_P6_VOLT_ADJ_VCCIFS, 3) |
FIELD_PREP_CONST(HX8279_P6_VOLT_ADJ_VCCS, 3),
.src_delay_time_adj_ck = 50,
/* Digital Gamma Adjustment */
.dgamma = &aoly_sl101pm1794fog_v15_dig_gamma,
};
static const struct hx8279_goa_mux startek_kd070fhfid078_gmux = {
.gout_l = { 0xd, 0xd, 0x6, 0x6, 0x8, 0x8, 0xa, 0xa, 0xc, 0xc,
0x0, 0x0, 0xe, 0xe, 0x1, 0x1, 0x4, 0x4, 0x0, 0x0 },
.gout_r = { 0xd, 0xd, 0x5, 0x5, 0x7, 0x7, 0x9, 0x9, 0xb, 0xb,
0x0, 0x0, 0xe, 0xe, 0x1, 0x1, 0x3, 0x3, 0x0, 0x0 },
};
static const struct hx8279_panel_desc startek_kd070fhfid078 = {
.dsi_info = {
.type = "KD070FHFID078",
.channel = 0,
.node = NULL,
},
.mode_data = startek_kd070fhfid078_modes,
.num_modes = ARRAY_SIZE(startek_kd070fhfid078_modes),
.num_lanes = 4,
/* Driver/Module Configuration: LC Matrix voltages */
.vgh_mv = 18000,
.vgl_mv = 12100,
.vgph_mv = 5500,
.vgnh_mv = 5500,
/* Gate driver On Array (GOA) Mux Config */
.gmux = &startek_kd070fhfid078_gmux,
/* Gate driver On Array (GOA) Configuration */
.goa_unk_ba = 0xf0,
.goa_stv_lead_time_ck = 7,
.goa_ckv_lead_time_ck = 3,
.goa_ckv_dummy_vblank_num = 1,
.goa_ckv_rise_precharge = 0,
.goa_ckv_fall_precharge = 0,
.goa_clr1_width_adj = 1,
.goa_clr234_width_adj = 5,
.goa_clr_polarity = { 0, 1, -1, -1 },
.goa_clr_start_pos = { 5, 10, -1, -1 },
.goa_unk_e4 = 0xc0,
.goa_unk_e5 = 0x00,
/* MIPI Configuration */
.bta_tlpx = 2,
.lhs_settle_time_by_osc25 = true,
.ths_settle_time = 2,
.timing_unk_b8 = 0x7f,
.timing_unk_bc = 0x20,
.timing_unk_d6 = 0x7f,
/* ENG/Gamma Configuration */
.gamma_ctl = FIELD_PREP_CONST(HX8279_P6_GAMMA_POCGM_CTL, 1) |
FIELD_PREP_CONST(HX8279_P6_GAMMA_POGCMD_CTL, 1),
.src_delay_time_adj_ck = 72,
};
static const struct of_device_id hx8279_of_match[] = {
{ .compatible = "aoly,sl101pm1794fog-v15", .data = &aoly_sl101pm1794fog_v15 },
{ .compatible = "startek,kd070fhfid078", .data = &startek_kd070fhfid078 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, hx8279_of_match);
static struct mipi_dsi_driver hx8279_driver = {
.probe = hx8279_probe,
.remove = hx8279_remove,
.driver = {
.name = "panel-himax-hx8279",
.of_match_table = hx8279_of_match,
},
};
module_mipi_dsi_driver(hx8279_driver);
MODULE_AUTHOR("AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>");
MODULE_DESCRIPTION("Himax HX8279 DriverIC panels driver");
MODULE_LICENSE("GPL");