linux/tools/testing/selftests/bpf/usdt.h

546 lines
24 KiB
C++

// SPDX-License-Identifier: BSD-2-Clause
/*
* This single-header library defines a collection of variadic macros for
* defining and triggering USDTs (User Statically-Defined Tracepoints):
*
* - For USDTs without associated semaphore:
* USDT(group, name, args...)
*
* - For USDTs with implicit (transparent to the user) semaphore:
* USDT_WITH_SEMA(group, name, args...)
* USDT_IS_ACTIVE(group, name)
*
* - For USDTs with explicit (user-defined and provided) semaphore:
* USDT_WITH_EXPLICIT_SEMA(sema, group, name, args...)
* USDT_SEMA_IS_ACTIVE(sema)
*
* all of which emit a NOP instruction into the instruction stream, and so
* have *zero* overhead for the surrounding code. USDTs are identified by
* a combination of `group` and `name` identifiers, which is used by external
* tracing tooling (tracers) for identifying exact USDTs of interest.
*
* USDTs can have an associated (2-byte) activity counter (USDT semaphore),
* automatically maintained by Linux kernel whenever any correctly written
* BPF-based tracer is attached to the USDT. This USDT semaphore can be used
* to check whether there is a need to do any extra data collection and
* processing for a given USDT (if necessary), and otherwise avoid extra work
* for a common case of USDT not being traced ("active").
*
* See documentation for USDT_WITH_SEMA()/USDT_IS_ACTIVE() or
* USDT_WITH_EXPLICIT_SEMA()/USDT_SEMA_IS_ACTIVE() APIs below for details on
* working with USDTs with implicitly or explicitly associated
* USDT semaphores, respectively.
*
* There is also some additional data recorded into an auxiliary note
* section. The data in the note section describes the operands, in terms of
* size and location, used by tracing tooling to know where to find USDT
* arguments. Each location is encoded as an assembler operand string.
* Tracing tools (bpftrace and BPF-based tracers, systemtap, etc) insert
* breakpoints on top of the nop, and decode the location operand-strings,
* like an assembler, to find the values being passed.
*
* The operand strings are selected by the compiler for each operand.
* They are constrained by inline-assembler codes.The default is:
*
* #define USDT_ARG_CONSTRAINT nor
*
* This is a good default if the operands tend to be integral and
* moderate in number (smaller than number of registers). In other
* cases, the compiler may report "'asm' requires impossible reload" or
* similar. In this case, consider simplifying the macro call (fewer
* and simpler operands), reduce optimization, or override the default
* constraints string via:
*
* #define USDT_ARG_CONSTRAINT g
* #include <usdt.h>
*
* For some historical description of USDT v3 format (the one used by this
* library and generally recognized and assumed by BPF-based tracing tools)
* see [0]. The more formal specification can be found at [1]. Additional
* argument constraints information can be found at [2].
*
* Original SystemTap's sys/sdt.h implementation ([3]) was used as a base for
* this USDT library implementation. Current implementation differs *a lot* in
* terms of exposed user API and general usability, which was the main goal
* and focus of the reimplementation work. Nevertheless, underlying recorded
* USDT definitions are fully binary compatible and any USDT-based tooling
* should work equally well with USDTs defined by either SystemTap's or this
* library's USDT implementation.
*
* [0] https://ecos.sourceware.org/ml/systemtap/2010-q3/msg00145.html
* [1] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
* [2] https://gcc.gnu.org/onlinedocs/gcc/Constraints.html
* [3] https://sourceware.org/git/?p=systemtap.git;a=blob;f=includes/sys/sdt.h
*/
#ifndef __USDT_H
#define __USDT_H
/*
* Changelog:
*
* 0.1.0
* -----
* - Initial release
*/
#define USDT_MAJOR_VERSION 0
#define USDT_MINOR_VERSION 1
#define USDT_PATCH_VERSION 0
/* C++20 and C23 added __VA_OPT__ as a standard replacement for non-standard `##__VA_ARGS__` extension */
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ > 201710L) || (defined(__cplusplus) && __cplusplus > 201703L)
#define __usdt_va_opt 1
#define __usdt_va_args(...) __VA_OPT__(,) __VA_ARGS__
#else
#define __usdt_va_args(...) , ##__VA_ARGS__
#endif
/*
* Trigger USDT with `group`:`name` identifier and pass through `args` as its
* arguments. Zero arguments are acceptable as well. No USDT semaphore is
* associated with this USDT.
*
* Such "semaphoreless" USDTs are commonly used when there is no extra data
* collection or processing needed to collect and prepare USDT arguments and
* they are just available in the surrounding code. USDT() macro will just
* record their locations in CPU registers or in memory for tracing tooling to
* be able to access them, if necessary.
*/
#ifdef __usdt_va_opt
#define USDT(group, name, ...) \
__usdt_probe(group, name, __usdt_sema_none, 0 __VA_OPT__(,) __VA_ARGS__)
#else
#define USDT(group, name, ...) \
__usdt_probe(group, name, __usdt_sema_none, 0, ##__VA_ARGS__)
#endif
/*
* Trigger USDT with `group`:`name` identifier and pass through `args` as its
* arguments. Zero arguments are acceptable as well. USDT also get an
* implicitly-defined associated USDT semaphore, which will be "activated" by
* tracing tooling and can be used to check whether USDT is being actively
* observed.
*
* USDTs with semaphore are commonly used when there is a need to perform
* additional data collection and processing to prepare USDT arguments, which
* otherwise might not be necessary for the rest of application logic. In such
* case, USDT semaphore can be used to avoid unnecessary extra work. If USDT
* is not traced (which is presumed to be a common situation), the associated
* USDT semaphore is "inactive", and so there is no need to waste resources to
* prepare USDT arguments. Use USDT_IS_ACTIVE(group, name) to check whether
* USDT is "active".
*
* N.B. There is an inherent (albeit short) gap between checking whether USDT
* is active and triggering corresponding USDT, in which external tracer can
* be attached to an USDT and activate USDT semaphore after the activity check.
* If such a race occurs, tracers might miss one USDT execution. Tracers are
* expected to accommodate such possibility and this is expected to not be
* a problem for applications and tracers.
*
* N.B. Implicit USDT semaphore defined by USDT_WITH_SEMA() is contained
* within a single executable or shared library and is not shared outside
* them. I.e., if you use USDT_WITH_SEMA() with the same USDT group and name
* identifier across executable and shared library, it will work and won't
* conflict, per se, but will define independent USDT semaphores, one for each
* shared library/executable in which USDT_WITH_SEMA(group, name) is used.
* That is, if you attach to this USDT in one shared library (or executable),
* then only USDT semaphore within that shared library (or executable) will be
* updated by the kernel, while other libraries (or executable) will not see
* activated USDT semaphore. In short, it's best to use unique USDT group:name
* identifiers across different shared libraries (and, equivalently, between
* executable and shared library). This is advanced consideration and is
* rarely (if ever) seen in practice, but just to avoid surprises this is
* called out here. (Static libraries become a part of final executable, once
* linked by linker, so the above considerations don't apply to them.)
*/
#ifdef __usdt_va_opt
#define USDT_WITH_SEMA(group, name, ...) \
__usdt_probe(group, name, \
__usdt_sema_implicit, __usdt_sema_name(group, name) \
__VA_OPT__(,) __VA_ARGS__)
#else
#define USDT_WITH_SEMA(group, name, ...) \
__usdt_probe(group, name, \
__usdt_sema_implicit, __usdt_sema_name(group, name), \
##__VA_ARGS__)
#endif
struct usdt_sema { volatile unsigned short active; };
/*
* Check if USDT with `group`:`name` identifier is "active" (i.e., whether it
* is attached to by external tracing tooling and is actively observed).
*
* This macro can be used to decide whether any additional and potentially
* expensive data collection or processing should be done to pass extra
* information into the given USDT. It is assumed that USDT is triggered with
* USDT_WITH_SEMA() macro which will implicitly define associated USDT
* semaphore. (If one needs more control over USDT semaphore, see
* USDT_DEFINE_SEMA() and USDT_WITH_EXPLICIT_SEMA() macros below.)
*
* N.B. Such checks are necessarily racy and speculative. Between checking
* whether USDT is active and triggering the USDT itself, tracer can be
* detached with no notification. This race should be extremely rare and worst
* case should result in one-time wasted extra data collection and processing.
*/
#define USDT_IS_ACTIVE(group, name) ({ \
extern struct usdt_sema __usdt_sema_name(group, name) \
__usdt_asm_name(__usdt_sema_name(group, name)); \
__usdt_sema_implicit(__usdt_sema_name(group, name)); \
__usdt_sema_name(group, name).active > 0; \
})
/*
* APIs for working with user-defined explicit USDT semaphores.
*
* This is a less commonly used advanced API for use cases in which user needs
* an explicit control over (potentially shared across multiple USDTs) USDT
* semaphore instance. This can be used when there is a group of logically
* related USDTs that all need extra data collection and processing whenever
* any of a family of related USDTs are "activated" (i.e., traced). In such
* a case, all such related USDTs will be associated with the same shared USDT
* semaphore defined with USDT_DEFINE_SEMA() and the USDTs themselves will be
* triggered with USDT_WITH_EXPLICIT_SEMA() macros, taking an explicit extra
* USDT semaphore identifier as an extra parameter.
*/
/**
* Underlying C global variable name for user-defined USDT semaphore with
* `sema` identifier. Could be useful for debugging, but normally shouldn't be
* used explicitly.
*/
#define USDT_SEMA(sema) __usdt_sema_##sema
/*
* Define storage for user-defined USDT semaphore `sema`.
*
* Should be used only once in non-header source file to let compiler allocate
* space for the semaphore variable. Just like with any other global variable.
*
* This macro can be used anywhere where global variable declaration is
* allowed. Just like with global variable definitions, there should be only
* one definition of user-defined USDT semaphore with given `sema` identifier,
* otherwise compiler or linker will complain about duplicate variable
* definition.
*
* For C++, it is allowed to use USDT_DEFINE_SEMA() both in global namespace
* and inside namespaces (including nested namespaces). Just make sure that
* USDT_DECLARE_SEMA() is placed within the namespace where this semaphore is
* referenced, or any of its parent namespaces, so the C++ language-level
* identifier is visible to the code that needs to reference the semaphore.
* At the lowest layer, USDT semaphores have global naming and visibility
* (they have a corresponding `__usdt_sema_<name>` symbol, which can be linked
* against from C or C++ code, if necessary). To keep it simple, putting
* USDT_DECLARE_SEMA() declarations into global namespaces is the simplest
* no-brainer solution. All these aspects are irrelevant for plain C, because
* C doesn't have namespaces and everything is always in the global namespace.
*
* N.B. Due to USDT metadata being recorded in non-allocatable ELF note
* section, it has limitations when it comes to relocations, which, in
* practice, means that it's not possible to correctly share USDT semaphores
* between main executable and shared libraries, or even between multiple
* shared libraries. USDT semaphore has to be contained to individual shared
* library or executable to avoid unpleasant surprises with half-working USDT
* semaphores. We enforce this by marking semaphore ELF symbols as having
* a hidden visibility. This is quite an advanced use case and consideration
* and for most users this should have no consequences whatsoever.
*/
#define USDT_DEFINE_SEMA(sema) \
struct usdt_sema __usdt_sema_sec USDT_SEMA(sema) \
__usdt_asm_name(USDT_SEMA(sema)) \
__attribute__((visibility("hidden"))) = { 0 }
/*
* Declare extern reference to user-defined USDT semaphore `sema`.
*
* Refers to a variable defined in another compilation unit by
* USDT_DEFINE_SEMA() and allows to use the same USDT semaphore across
* multiple compilation units (i.e., .c and .cpp files).
*
* See USDT_DEFINE_SEMA() notes above for C++ language usage peculiarities.
*/
#define USDT_DECLARE_SEMA(sema) \
extern struct usdt_sema USDT_SEMA(sema) __usdt_asm_name(USDT_SEMA(sema))
/*
* Check if user-defined USDT semaphore `sema` is "active" (i.e., whether it
* is attached to by external tracing tooling and is actively observed).
*
* This macro can be used to decide whether any additional and potentially
* expensive data collection or processing should be done to pass extra
* information into USDT(s) associated with USDT semaphore `sema`.
*
* N.B. Such checks are necessarily racy. Between checking the state of USDT
* semaphore and triggering associated USDT(s), the active tracer might attach
* or detach. This race should be extremely rare and worst case should result
* in one-time missed USDT event or wasted extra data collection and
* processing. USDT-using tracers should be written with this in mind and is
* not a concern of the application defining USDTs with associated semaphore.
*/
#define USDT_SEMA_IS_ACTIVE(sema) (USDT_SEMA(sema).active > 0)
/*
* Invoke USDT specified by `group` and `name` identifiers and associate
* explicitly user-defined semaphore `sema` with it. Pass through `args` as
* USDT arguments. `args` are optional and zero arguments are acceptable.
*
* Semaphore is defined with the help of USDT_DEFINE_SEMA() macro and can be
* checked whether active with USDT_SEMA_IS_ACTIVE().
*/
#ifdef __usdt_va_opt
#define USDT_WITH_EXPLICIT_SEMA(sema, group, name, ...) \
__usdt_probe(group, name, __usdt_sema_explicit, USDT_SEMA(sema), ##__VA_ARGS__)
#else
#define USDT_WITH_EXPLICIT_SEMA(sema, group, name, ...) \
__usdt_probe(group, name, __usdt_sema_explicit, USDT_SEMA(sema) __VA_OPT__(,) __VA_ARGS__)
#endif
/*
* Adjustable implementation aspects
*/
#ifndef USDT_ARG_CONSTRAINT
#if defined __powerpc__
#define USDT_ARG_CONSTRAINT nZr
#elif defined __arm__
#define USDT_ARG_CONSTRAINT g
#elif defined __loongarch__
#define USDT_ARG_CONSTRAINT nmr
#else
#define USDT_ARG_CONSTRAINT nor
#endif
#endif /* USDT_ARG_CONSTRAINT */
#ifndef USDT_NOP
#if defined(__ia64__) || defined(__s390__) || defined(__s390x__)
#define USDT_NOP nop 0
#else
#define USDT_NOP nop
#endif
#endif /* USDT_NOP */
/*
* Implementation details
*/
/* USDT name for implicitly-defined USDT semaphore, derived from group:name */
#define __usdt_sema_name(group, name) __usdt_sema_##group##__##name
/* ELF section into which USDT semaphores are put */
#define __usdt_sema_sec __attribute__((section(".probes")))
#define __usdt_concat(a, b) a ## b
#define __usdt_apply(fn, n) __usdt_concat(fn, n)
#ifndef __usdt_nth
#define __usdt_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, N, ...) N
#endif
#ifndef __usdt_narg
#ifdef __usdt_va_opt
#define __usdt_narg(...) __usdt_nth(_ __VA_OPT__(,) __VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#else
#define __usdt_narg(...) __usdt_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#endif
#endif /* __usdt_narg */
#define __usdt_hash #
#define __usdt_str_(x) #x
#define __usdt_str(x) __usdt_str_(x)
#ifndef __usdt_asm_name
#define __usdt_asm_name(name) __asm__(__usdt_str(name))
#endif
#define __usdt_asm0() "\n"
#define __usdt_asm1(x) __usdt_str(x) "\n"
#define __usdt_asm2(x, ...) __usdt_str(x) "," __usdt_asm1(__VA_ARGS__)
#define __usdt_asm3(x, ...) __usdt_str(x) "," __usdt_asm2(__VA_ARGS__)
#define __usdt_asm4(x, ...) __usdt_str(x) "," __usdt_asm3(__VA_ARGS__)
#define __usdt_asm5(x, ...) __usdt_str(x) "," __usdt_asm4(__VA_ARGS__)
#define __usdt_asm6(x, ...) __usdt_str(x) "," __usdt_asm5(__VA_ARGS__)
#define __usdt_asm7(x, ...) __usdt_str(x) "," __usdt_asm6(__VA_ARGS__)
#define __usdt_asm8(x, ...) __usdt_str(x) "," __usdt_asm7(__VA_ARGS__)
#define __usdt_asm9(x, ...) __usdt_str(x) "," __usdt_asm8(__VA_ARGS__)
#define __usdt_asm10(x, ...) __usdt_str(x) "," __usdt_asm9(__VA_ARGS__)
#define __usdt_asm11(x, ...) __usdt_str(x) "," __usdt_asm10(__VA_ARGS__)
#define __usdt_asm12(x, ...) __usdt_str(x) "," __usdt_asm11(__VA_ARGS__)
#define __usdt_asm(...) __usdt_apply(__usdt_asm, __usdt_narg(__VA_ARGS__))(__VA_ARGS__)
#ifdef __LP64__
#define __usdt_asm_addr .8byte
#else
#define __usdt_asm_addr .4byte
#endif
#define __usdt_asm_strz_(x) __usdt_asm1(.asciz #x)
#define __usdt_asm_strz(x) __usdt_asm_strz_(x)
#define __usdt_asm_str_(x) __usdt_asm1(.ascii #x)
#define __usdt_asm_str(x) __usdt_asm_str_(x)
/* "semaphoreless" USDT case */
#ifndef __usdt_sema_none
#define __usdt_sema_none(sema)
#endif
/* implicitly defined __usdt_sema__group__name semaphore (using weak symbols) */
#ifndef __usdt_sema_implicit
#define __usdt_sema_implicit(sema) \
__asm__ __volatile__ ( \
__usdt_asm1(.ifndef sema) \
__usdt_asm3( .pushsection .probes, "aw", "progbits") \
__usdt_asm1( .weak sema) \
__usdt_asm1( .hidden sema) \
__usdt_asm1( .align 2) \
__usdt_asm1(sema:) \
__usdt_asm1( .zero 2) \
__usdt_asm2( .type sema, @object) \
__usdt_asm2( .size sema, 2) \
__usdt_asm1( .popsection) \
__usdt_asm1(.endif) \
);
#endif
/* externally defined semaphore using USDT_DEFINE_SEMA() and passed explicitly by user */
#ifndef __usdt_sema_explicit
#define __usdt_sema_explicit(sema) \
__asm__ __volatile__ ("" :: "m" (sema));
#endif
/* main USDT definition (nop and .note.stapsdt metadata) */
#define __usdt_probe(group, name, sema_def, sema, ...) do { \
sema_def(sema) \
__asm__ __volatile__ ( \
__usdt_asm( 990: USDT_NOP) \
__usdt_asm3( .pushsection .note.stapsdt, "", "note") \
__usdt_asm1( .balign 4) \
__usdt_asm3( .4byte 992f-991f,994f-993f,3) \
__usdt_asm1(991: .asciz "stapsdt") \
__usdt_asm1(992: .balign 4) \
__usdt_asm1(993: __usdt_asm_addr 990b) \
__usdt_asm1( __usdt_asm_addr _.stapsdt.base) \
__usdt_asm1( __usdt_asm_addr sema) \
__usdt_asm_strz(group) \
__usdt_asm_strz(name) \
__usdt_asm_args(__VA_ARGS__) \
__usdt_asm1( .ascii "\0") \
__usdt_asm1(994: .balign 4) \
__usdt_asm1( .popsection) \
__usdt_asm1(.ifndef _.stapsdt.base) \
__usdt_asm5( .pushsection .stapsdt.base,"aG","progbits",.stapsdt.base,comdat)\
__usdt_asm1( .weak _.stapsdt.base) \
__usdt_asm1( .hidden _.stapsdt.base) \
__usdt_asm1(_.stapsdt.base:) \
__usdt_asm1( .space 1) \
__usdt_asm2( .size _.stapsdt.base, 1) \
__usdt_asm1( .popsection) \
__usdt_asm1(.endif) \
:: __usdt_asm_ops(__VA_ARGS__) \
); \
} while (0)
/*
* NB: gdb PR24541 highlighted an unspecified corner of the sdt.h
* operand note format.
*
* The named register may be a longer or shorter (!) alias for the
* storage where the value in question is found. For example, on
* i386, 64-bit value may be put in register pairs, and a register
* name stored would identify just one of them. Previously, gcc was
* asked to emit the %w[id] (16-bit alias of some registers holding
* operands), even when a wider 32-bit value was used.
*
* Bottom line: the byte-width given before the @ sign governs. If
* there is a mismatch between that width and that of the named
* register, then a sys/sdt.h note consumer may need to employ
* architecture-specific heuristics to figure out where the compiler
* has actually put the complete value.
*/
#if defined(__powerpc__) || defined(__powerpc64__)
#define __usdt_argref(id) %I[id]%[id]
#elif defined(__i386__)
#define __usdt_argref(id) %k[id] /* gcc.gnu.org/PR80115 sourceware.org/PR24541 */
#else
#define __usdt_argref(id) %[id]
#endif
#define __usdt_asm_arg(n) __usdt_asm_str(%c[__usdt_asz##n]) \
__usdt_asm1(.ascii "@") \
__usdt_asm_str(__usdt_argref(__usdt_aval##n))
#define __usdt_asm_args0 /* no arguments */
#define __usdt_asm_args1 __usdt_asm_arg(1)
#define __usdt_asm_args2 __usdt_asm_args1 __usdt_asm1(.ascii " ") __usdt_asm_arg(2)
#define __usdt_asm_args3 __usdt_asm_args2 __usdt_asm1(.ascii " ") __usdt_asm_arg(3)
#define __usdt_asm_args4 __usdt_asm_args3 __usdt_asm1(.ascii " ") __usdt_asm_arg(4)
#define __usdt_asm_args5 __usdt_asm_args4 __usdt_asm1(.ascii " ") __usdt_asm_arg(5)
#define __usdt_asm_args6 __usdt_asm_args5 __usdt_asm1(.ascii " ") __usdt_asm_arg(6)
#define __usdt_asm_args7 __usdt_asm_args6 __usdt_asm1(.ascii " ") __usdt_asm_arg(7)
#define __usdt_asm_args8 __usdt_asm_args7 __usdt_asm1(.ascii " ") __usdt_asm_arg(8)
#define __usdt_asm_args9 __usdt_asm_args8 __usdt_asm1(.ascii " ") __usdt_asm_arg(9)
#define __usdt_asm_args10 __usdt_asm_args9 __usdt_asm1(.ascii " ") __usdt_asm_arg(10)
#define __usdt_asm_args11 __usdt_asm_args10 __usdt_asm1(.ascii " ") __usdt_asm_arg(11)
#define __usdt_asm_args12 __usdt_asm_args11 __usdt_asm1(.ascii " ") __usdt_asm_arg(12)
#define __usdt_asm_args(...) __usdt_apply(__usdt_asm_args, __usdt_narg(__VA_ARGS__))
#define __usdt_is_arr(x) (__builtin_classify_type(x) == 14 || __builtin_classify_type(x) == 5)
#define __usdt_arg_size(x) (__usdt_is_arr(x) ? sizeof(void *) : sizeof(x))
/*
* We can't use __builtin_choose_expr() in C++, so fall back to table-based
* signedness determination for known types, utilizing templates magic.
*/
#ifdef __cplusplus
#define __usdt_is_signed(x) (!__usdt_is_arr(x) && __usdt_t<__typeof(x)>::is_signed)
#include <cstddef>
template<typename T> struct __usdt_t { static const bool is_signed = false; };
template<typename A> struct __usdt_t<A[]> : public __usdt_t<A *> {};
template<typename A, size_t N> struct __usdt_t<A[N]> : public __usdt_t<A *> {};
#define __usdt_def_signed(T) \
template<> struct __usdt_t<T> { static const bool is_signed = true; }; \
template<> struct __usdt_t<const T> { static const bool is_signed = true; }; \
template<> struct __usdt_t<volatile T> { static const bool is_signed = true; }; \
template<> struct __usdt_t<const volatile T> { static const bool is_signed = true; }
#define __usdt_maybe_signed(T) \
template<> struct __usdt_t<T> { static const bool is_signed = (T)-1 < (T)1; }; \
template<> struct __usdt_t<const T> { static const bool is_signed = (T)-1 < (T)1; }; \
template<> struct __usdt_t<volatile T> { static const bool is_signed = (T)-1 < (T)1; }; \
template<> struct __usdt_t<const volatile T> { static const bool is_signed = (T)-1 < (T)1; }
__usdt_def_signed(signed char);
__usdt_def_signed(short);
__usdt_def_signed(int);
__usdt_def_signed(long);
__usdt_def_signed(long long);
__usdt_maybe_signed(char);
__usdt_maybe_signed(wchar_t);
#else /* !__cplusplus */
#define __usdt_is_inttype(x) (__builtin_classify_type(x) >= 1 && __builtin_classify_type(x) <= 4)
#define __usdt_inttype(x) __typeof(__builtin_choose_expr(__usdt_is_inttype(x), (x), 0U))
#define __usdt_is_signed(x) ((__usdt_inttype(x))-1 < (__usdt_inttype(x))1)
#endif /* __cplusplus */
#define __usdt_asm_op(n, x) \
[__usdt_asz##n] "n" ((__usdt_is_signed(x) ? (int)-1 : 1) * (int)__usdt_arg_size(x)), \
[__usdt_aval##n] __usdt_str(USDT_ARG_CONSTRAINT)(x)
#define __usdt_asm_ops0() [__usdt_dummy] "g" (0)
#define __usdt_asm_ops1(x) __usdt_asm_op(1, x)
#define __usdt_asm_ops2(a,x) __usdt_asm_ops1(a), __usdt_asm_op(2, x)
#define __usdt_asm_ops3(a,b,x) __usdt_asm_ops2(a,b), __usdt_asm_op(3, x)
#define __usdt_asm_ops4(a,b,c,x) __usdt_asm_ops3(a,b,c), __usdt_asm_op(4, x)
#define __usdt_asm_ops5(a,b,c,d,x) __usdt_asm_ops4(a,b,c,d), __usdt_asm_op(5, x)
#define __usdt_asm_ops6(a,b,c,d,e,x) __usdt_asm_ops5(a,b,c,d,e), __usdt_asm_op(6, x)
#define __usdt_asm_ops7(a,b,c,d,e,f,x) __usdt_asm_ops6(a,b,c,d,e,f), __usdt_asm_op(7, x)
#define __usdt_asm_ops8(a,b,c,d,e,f,g,x) __usdt_asm_ops7(a,b,c,d,e,f,g), __usdt_asm_op(8, x)
#define __usdt_asm_ops9(a,b,c,d,e,f,g,h,x) __usdt_asm_ops8(a,b,c,d,e,f,g,h), __usdt_asm_op(9, x)
#define __usdt_asm_ops10(a,b,c,d,e,f,g,h,i,x) __usdt_asm_ops9(a,b,c,d,e,f,g,h,i), __usdt_asm_op(10, x)
#define __usdt_asm_ops11(a,b,c,d,e,f,g,h,i,j,x) __usdt_asm_ops10(a,b,c,d,e,f,g,h,i,j), __usdt_asm_op(11, x)
#define __usdt_asm_ops12(a,b,c,d,e,f,g,h,i,j,k,x) __usdt_asm_ops11(a,b,c,d,e,f,g,h,i,j,k), __usdt_asm_op(12, x)
#define __usdt_asm_ops(...) __usdt_apply(__usdt_asm_ops, __usdt_narg(__VA_ARGS__))(__VA_ARGS__)
#endif /* __USDT_H */