linux/drivers/gpu/drm/xe/xe_pagefault.c

445 lines
11 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2025 Intel Corporation
*/
#include <linux/circ_buf.h>
#include <drm/drm_exec.h>
#include <drm/drm_managed.h>
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt_printk.h"
#include "xe_gt_types.h"
#include "xe_gt_stats.h"
#include "xe_hw_engine.h"
#include "xe_pagefault.h"
#include "xe_pagefault_types.h"
#include "xe_svm.h"
#include "xe_trace_bo.h"
#include "xe_vm.h"
/**
* DOC: Xe page faults
*
* Xe page faults are handled in two layers. The producer layer interacts with
* hardware or firmware to receive and parse faults into struct xe_pagefault,
* then forwards them to the consumer. The consumer layer services the faults
* (e.g., memory migration, page table updates) and acknowledges the result back
* to the producer, which then forwards the results to the hardware or firmware.
* The consumer uses a page fault queue sized to absorb all potential faults and
* a multi-threaded worker to process them. Multiple producers are supported,
* with a single shared consumer.
*
* xe_pagefault.c implements the consumer layer.
*/
static int xe_pagefault_entry_size(void)
{
/*
* Power of two alignment is not a hardware requirement, rather a
* software restriction which makes the math for page fault queue
* management simplier.
*/
return roundup_pow_of_two(sizeof(struct xe_pagefault));
}
static int xe_pagefault_begin(struct drm_exec *exec, struct xe_vma *vma,
struct xe_vram_region *vram, bool need_vram_move)
{
struct xe_bo *bo = xe_vma_bo(vma);
struct xe_vm *vm = xe_vma_vm(vma);
int err;
err = xe_vm_lock_vma(exec, vma);
if (err)
return err;
if (!bo)
return 0;
return need_vram_move ? xe_bo_migrate(bo, vram->placement, NULL, exec) :
xe_bo_validate(bo, vm, true, exec);
}
static int xe_pagefault_handle_vma(struct xe_gt *gt, struct xe_vma *vma,
bool atomic)
{
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_validation_ctx ctx;
struct drm_exec exec;
struct dma_fence *fence;
int err, needs_vram;
lockdep_assert_held_write(&vm->lock);
needs_vram = xe_vma_need_vram_for_atomic(vm->xe, vma, atomic);
if (needs_vram < 0 || (needs_vram && xe_vma_is_userptr(vma)))
return needs_vram < 0 ? needs_vram : -EACCES;
xe_gt_stats_incr(gt, XE_GT_STATS_ID_VMA_PAGEFAULT_COUNT, 1);
xe_gt_stats_incr(gt, XE_GT_STATS_ID_VMA_PAGEFAULT_KB,
xe_vma_size(vma) / SZ_1K);
trace_xe_vma_pagefault(vma);
/* Check if VMA is valid, opportunistic check only */
if (xe_vm_has_valid_gpu_mapping(tile, vma->tile_present,
vma->tile_invalidated) && !atomic)
return 0;
retry_userptr:
if (xe_vma_is_userptr(vma) &&
xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
struct xe_userptr_vma *uvma = to_userptr_vma(vma);
err = xe_vma_userptr_pin_pages(uvma);
if (err)
return err;
}
/* Lock VM and BOs dma-resv */
xe_validation_ctx_init(&ctx, &vm->xe->val, &exec, (struct xe_val_flags) {});
drm_exec_until_all_locked(&exec) {
err = xe_pagefault_begin(&exec, vma, tile->mem.vram,
needs_vram == 1);
drm_exec_retry_on_contention(&exec);
xe_validation_retry_on_oom(&ctx, &err);
if (err)
goto unlock_dma_resv;
/* Bind VMA only to the GT that has faulted */
trace_xe_vma_pf_bind(vma);
xe_vm_set_validation_exec(vm, &exec);
fence = xe_vma_rebind(vm, vma, BIT(tile->id));
xe_vm_set_validation_exec(vm, NULL);
if (IS_ERR(fence)) {
err = PTR_ERR(fence);
xe_validation_retry_on_oom(&ctx, &err);
goto unlock_dma_resv;
}
}
dma_fence_wait(fence, false);
dma_fence_put(fence);
unlock_dma_resv:
xe_validation_ctx_fini(&ctx);
if (err == -EAGAIN)
goto retry_userptr;
return err;
}
static bool
xe_pagefault_access_is_atomic(enum xe_pagefault_access_type access_type)
{
return access_type == XE_PAGEFAULT_ACCESS_TYPE_ATOMIC;
}
static struct xe_vm *xe_pagefault_asid_to_vm(struct xe_device *xe, u32 asid)
{
struct xe_vm *vm;
down_read(&xe->usm.lock);
vm = xa_load(&xe->usm.asid_to_vm, asid);
if (vm && xe_vm_in_fault_mode(vm))
xe_vm_get(vm);
else
vm = ERR_PTR(-EINVAL);
up_read(&xe->usm.lock);
return vm;
}
static int xe_pagefault_service(struct xe_pagefault *pf)
{
struct xe_gt *gt = pf->gt;
struct xe_device *xe = gt_to_xe(gt);
struct xe_vm *vm;
struct xe_vma *vma = NULL;
int err;
bool atomic;
/* Producer flagged this fault to be nacked */
if (pf->consumer.fault_level == XE_PAGEFAULT_LEVEL_NACK)
return -EFAULT;
vm = xe_pagefault_asid_to_vm(xe, pf->consumer.asid);
if (IS_ERR(vm))
return PTR_ERR(vm);
/*
* TODO: Change to read lock? Using write lock for simplicity.
*/
down_write(&vm->lock);
if (xe_vm_is_closed(vm)) {
err = -ENOENT;
goto unlock_vm;
}
vma = xe_vm_find_vma_by_addr(vm, pf->consumer.page_addr);
if (!vma) {
err = -EINVAL;
goto unlock_vm;
}
atomic = xe_pagefault_access_is_atomic(pf->consumer.access_type);
if (xe_vma_is_cpu_addr_mirror(vma))
err = xe_svm_handle_pagefault(vm, vma, gt,
pf->consumer.page_addr, atomic);
else
err = xe_pagefault_handle_vma(gt, vma, atomic);
unlock_vm:
if (!err)
vm->usm.last_fault_vma = vma;
up_write(&vm->lock);
xe_vm_put(vm);
return err;
}
static bool xe_pagefault_queue_pop(struct xe_pagefault_queue *pf_queue,
struct xe_pagefault *pf)
{
bool found_fault = false;
spin_lock_irq(&pf_queue->lock);
if (pf_queue->tail != pf_queue->head) {
memcpy(pf, pf_queue->data + pf_queue->tail, sizeof(*pf));
pf_queue->tail = (pf_queue->tail + xe_pagefault_entry_size()) %
pf_queue->size;
found_fault = true;
}
spin_unlock_irq(&pf_queue->lock);
return found_fault;
}
static void xe_pagefault_print(struct xe_pagefault *pf)
{
xe_gt_dbg(pf->gt, "\n\tASID: %d\n"
"\tFaulted Address: 0x%08x%08x\n"
"\tFaultType: %d\n"
"\tAccessType: %d\n"
"\tFaultLevel: %d\n"
"\tEngineClass: %d %s\n"
"\tEngineInstance: %d\n",
pf->consumer.asid,
upper_32_bits(pf->consumer.page_addr),
lower_32_bits(pf->consumer.page_addr),
pf->consumer.fault_type,
pf->consumer.access_type,
pf->consumer.fault_level,
pf->consumer.engine_class,
xe_hw_engine_class_to_str(pf->consumer.engine_class),
pf->consumer.engine_instance);
}
static void xe_pagefault_queue_work(struct work_struct *w)
{
struct xe_pagefault_queue *pf_queue =
container_of(w, typeof(*pf_queue), worker);
struct xe_pagefault pf;
unsigned long threshold;
#define USM_QUEUE_MAX_RUNTIME_MS 20
threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
while (xe_pagefault_queue_pop(pf_queue, &pf)) {
int err;
if (!pf.gt) /* Fault squashed during reset */
continue;
err = xe_pagefault_service(&pf);
if (err) {
xe_pagefault_print(&pf);
xe_gt_dbg(pf.gt, "Fault response: Unsuccessful %pe\n",
ERR_PTR(err));
}
pf.producer.ops->ack_fault(&pf, err);
if (time_after(jiffies, threshold)) {
queue_work(gt_to_xe(pf.gt)->usm.pf_wq, w);
break;
}
}
#undef USM_QUEUE_MAX_RUNTIME_MS
}
static int xe_pagefault_queue_init(struct xe_device *xe,
struct xe_pagefault_queue *pf_queue)
{
struct xe_gt *gt;
int total_num_eus = 0;
u8 id;
for_each_gt(gt, xe, id) {
xe_dss_mask_t all_dss;
int num_dss, num_eus;
bitmap_or(all_dss, gt->fuse_topo.g_dss_mask,
gt->fuse_topo.c_dss_mask, XE_MAX_DSS_FUSE_BITS);
num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS);
num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss,
XE_MAX_EU_FUSE_BITS) * num_dss;
total_num_eus += num_eus;
}
xe_assert(xe, total_num_eus);
/*
* user can issue separate page faults per EU and per CS
*
* XXX: Multiplier required as compute UMD are getting PF queue errors
* without it. Follow on why this multiplier is required.
*/
#define PF_MULTIPLIER 8
pf_queue->size = (total_num_eus + XE_NUM_HW_ENGINES) *
xe_pagefault_entry_size() * PF_MULTIPLIER;
pf_queue->size = roundup_pow_of_two(pf_queue->size);
#undef PF_MULTIPLIER
drm_dbg(&xe->drm, "xe_pagefault_entry_size=%d, total_num_eus=%d, pf_queue->size=%u",
xe_pagefault_entry_size(), total_num_eus, pf_queue->size);
spin_lock_init(&pf_queue->lock);
INIT_WORK(&pf_queue->worker, xe_pagefault_queue_work);
pf_queue->data = drmm_kzalloc(&xe->drm, pf_queue->size, GFP_KERNEL);
if (!pf_queue->data)
return -ENOMEM;
return 0;
}
static void xe_pagefault_fini(void *arg)
{
struct xe_device *xe = arg;
destroy_workqueue(xe->usm.pf_wq);
}
/**
* xe_pagefault_init() - Page fault init
* @xe: xe device instance
*
* Initialize Xe page fault state. Must be done after reading fuses.
*
* Return: 0 on Success, errno on failure
*/
int xe_pagefault_init(struct xe_device *xe)
{
int err, i;
if (!xe->info.has_usm)
return 0;
xe->usm.pf_wq = alloc_workqueue("xe_page_fault_work_queue",
WQ_UNBOUND | WQ_HIGHPRI,
XE_PAGEFAULT_QUEUE_COUNT);
if (!xe->usm.pf_wq)
return -ENOMEM;
for (i = 0; i < XE_PAGEFAULT_QUEUE_COUNT; ++i) {
err = xe_pagefault_queue_init(xe, xe->usm.pf_queue + i);
if (err)
goto err_out;
}
return devm_add_action_or_reset(xe->drm.dev, xe_pagefault_fini, xe);
err_out:
destroy_workqueue(xe->usm.pf_wq);
return err;
}
static void xe_pagefault_queue_reset(struct xe_device *xe, struct xe_gt *gt,
struct xe_pagefault_queue *pf_queue)
{
u32 i;
/* Driver load failure guard / USM not enabled guard */
if (!pf_queue->data)
return;
/* Squash all pending faults on the GT */
spin_lock_irq(&pf_queue->lock);
for (i = pf_queue->tail; i != pf_queue->head;
i = (i + xe_pagefault_entry_size()) % pf_queue->size) {
struct xe_pagefault *pf = pf_queue->data + i;
if (pf->gt == gt)
pf->gt = NULL;
}
spin_unlock_irq(&pf_queue->lock);
}
/**
* xe_pagefault_reset() - Page fault reset for a GT
* @xe: xe device instance
* @gt: GT being reset
*
* Reset the Xe page fault state for a GT; that is, squash any pending faults on
* the GT.
*/
void xe_pagefault_reset(struct xe_device *xe, struct xe_gt *gt)
{
int i;
for (i = 0; i < XE_PAGEFAULT_QUEUE_COUNT; ++i)
xe_pagefault_queue_reset(xe, gt, xe->usm.pf_queue + i);
}
static bool xe_pagefault_queue_full(struct xe_pagefault_queue *pf_queue)
{
lockdep_assert_held(&pf_queue->lock);
return CIRC_SPACE(pf_queue->head, pf_queue->tail, pf_queue->size) <=
xe_pagefault_entry_size();
}
/**
* xe_pagefault_handler() - Page fault handler
* @xe: xe device instance
* @pf: Page fault
*
* Sink the page fault to a queue (i.e., a memory buffer) and queue a worker to
* service it. Safe to be called from IRQ or process context. Reclaim safe.
*
* Return: 0 on success, errno on failure
*/
int xe_pagefault_handler(struct xe_device *xe, struct xe_pagefault *pf)
{
struct xe_pagefault_queue *pf_queue = xe->usm.pf_queue +
(pf->consumer.asid % XE_PAGEFAULT_QUEUE_COUNT);
unsigned long flags;
bool full;
spin_lock_irqsave(&pf_queue->lock, flags);
full = xe_pagefault_queue_full(pf_queue);
if (!full) {
memcpy(pf_queue->data + pf_queue->head, pf, sizeof(*pf));
pf_queue->head = (pf_queue->head + xe_pagefault_entry_size()) %
pf_queue->size;
queue_work(xe->usm.pf_wq, &pf_queue->worker);
} else {
drm_warn(&xe->drm,
"PageFault Queue (%d) full, shouldn't be possible\n",
pf->consumer.asid % XE_PAGEFAULT_QUEUE_COUNT);
}
spin_unlock_irqrestore(&pf_queue->lock, flags);
return full ? -ENOSPC : 0;
}