mirror of https://github.com/torvalds/linux.git
170 lines
4.7 KiB
Rust
170 lines
4.7 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Pre-defined atomic types
|
|
|
|
use crate::static_assert;
|
|
use core::mem::{align_of, size_of};
|
|
|
|
// SAFETY: `i32` has the same size and alignment with itself, and is round-trip transmutable to
|
|
// itself.
|
|
unsafe impl super::AtomicType for i32 {
|
|
type Repr = i32;
|
|
}
|
|
|
|
// SAFETY: The wrapping add result of two `i32`s is a valid `i32`.
|
|
unsafe impl super::AtomicAdd<i32> for i32 {
|
|
fn rhs_into_delta(rhs: i32) -> i32 {
|
|
rhs
|
|
}
|
|
}
|
|
|
|
// SAFETY: `i64` has the same size and alignment with itself, and is round-trip transmutable to
|
|
// itself.
|
|
unsafe impl super::AtomicType for i64 {
|
|
type Repr = i64;
|
|
}
|
|
|
|
// SAFETY: The wrapping add result of two `i64`s is a valid `i64`.
|
|
unsafe impl super::AtomicAdd<i64> for i64 {
|
|
fn rhs_into_delta(rhs: i64) -> i64 {
|
|
rhs
|
|
}
|
|
}
|
|
|
|
// Defines an internal type that always maps to the integer type which has the same size alignment
|
|
// as `isize` and `usize`, and `isize` and `usize` are always bi-directional transmutable to
|
|
// `isize_atomic_repr`, which also always implements `AtomicImpl`.
|
|
#[allow(non_camel_case_types)]
|
|
#[cfg(not(CONFIG_64BIT))]
|
|
type isize_atomic_repr = i32;
|
|
#[allow(non_camel_case_types)]
|
|
#[cfg(CONFIG_64BIT)]
|
|
type isize_atomic_repr = i64;
|
|
|
|
// Ensure size and alignment requirements are checked.
|
|
static_assert!(size_of::<isize>() == size_of::<isize_atomic_repr>());
|
|
static_assert!(align_of::<isize>() == align_of::<isize_atomic_repr>());
|
|
static_assert!(size_of::<usize>() == size_of::<isize_atomic_repr>());
|
|
static_assert!(align_of::<usize>() == align_of::<isize_atomic_repr>());
|
|
|
|
// SAFETY: `isize` has the same size and alignment with `isize_atomic_repr`, and is round-trip
|
|
// transmutable to `isize_atomic_repr`.
|
|
unsafe impl super::AtomicType for isize {
|
|
type Repr = isize_atomic_repr;
|
|
}
|
|
|
|
// SAFETY: The wrapping add result of two `isize_atomic_repr`s is a valid `usize`.
|
|
unsafe impl super::AtomicAdd<isize> for isize {
|
|
fn rhs_into_delta(rhs: isize) -> isize_atomic_repr {
|
|
rhs as isize_atomic_repr
|
|
}
|
|
}
|
|
|
|
// SAFETY: `u32` and `i32` has the same size and alignment, and `u32` is round-trip transmutable to
|
|
// `i32`.
|
|
unsafe impl super::AtomicType for u32 {
|
|
type Repr = i32;
|
|
}
|
|
|
|
// SAFETY: The wrapping add result of two `i32`s is a valid `u32`.
|
|
unsafe impl super::AtomicAdd<u32> for u32 {
|
|
fn rhs_into_delta(rhs: u32) -> i32 {
|
|
rhs as i32
|
|
}
|
|
}
|
|
|
|
// SAFETY: `u64` and `i64` has the same size and alignment, and `u64` is round-trip transmutable to
|
|
// `i64`.
|
|
unsafe impl super::AtomicType for u64 {
|
|
type Repr = i64;
|
|
}
|
|
|
|
// SAFETY: The wrapping add result of two `i64`s is a valid `u64`.
|
|
unsafe impl super::AtomicAdd<u64> for u64 {
|
|
fn rhs_into_delta(rhs: u64) -> i64 {
|
|
rhs as i64
|
|
}
|
|
}
|
|
|
|
// SAFETY: `usize` has the same size and alignment with `isize_atomic_repr`, and is round-trip
|
|
// transmutable to `isize_atomic_repr`.
|
|
unsafe impl super::AtomicType for usize {
|
|
type Repr = isize_atomic_repr;
|
|
}
|
|
|
|
// SAFETY: The wrapping add result of two `isize_atomic_repr`s is a valid `usize`.
|
|
unsafe impl super::AtomicAdd<usize> for usize {
|
|
fn rhs_into_delta(rhs: usize) -> isize_atomic_repr {
|
|
rhs as isize_atomic_repr
|
|
}
|
|
}
|
|
|
|
use crate::macros::kunit_tests;
|
|
|
|
#[kunit_tests(rust_atomics)]
|
|
mod tests {
|
|
use super::super::*;
|
|
|
|
// Call $fn($val) with each $type of $val.
|
|
macro_rules! for_each_type {
|
|
($val:literal in [$($type:ty),*] $fn:expr) => {
|
|
$({
|
|
let v: $type = $val;
|
|
|
|
$fn(v);
|
|
})*
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn atomic_basic_tests() {
|
|
for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
|
|
let x = Atomic::new(v);
|
|
|
|
assert_eq!(v, x.load(Relaxed));
|
|
});
|
|
}
|
|
|
|
#[test]
|
|
fn atomic_xchg_tests() {
|
|
for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
|
|
let x = Atomic::new(v);
|
|
|
|
let old = v;
|
|
let new = v + 1;
|
|
|
|
assert_eq!(old, x.xchg(new, Full));
|
|
assert_eq!(new, x.load(Relaxed));
|
|
});
|
|
}
|
|
|
|
#[test]
|
|
fn atomic_cmpxchg_tests() {
|
|
for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
|
|
let x = Atomic::new(v);
|
|
|
|
let old = v;
|
|
let new = v + 1;
|
|
|
|
assert_eq!(Err(old), x.cmpxchg(new, new, Full));
|
|
assert_eq!(old, x.load(Relaxed));
|
|
assert_eq!(Ok(old), x.cmpxchg(old, new, Relaxed));
|
|
assert_eq!(new, x.load(Relaxed));
|
|
});
|
|
}
|
|
|
|
#[test]
|
|
fn atomic_arithmetic_tests() {
|
|
for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
|
|
let x = Atomic::new(v);
|
|
|
|
assert_eq!(v, x.fetch_add(12, Full));
|
|
assert_eq!(v + 12, x.load(Relaxed));
|
|
|
|
x.add(13, Relaxed);
|
|
|
|
assert_eq!(v + 25, x.load(Relaxed));
|
|
});
|
|
}
|
|
}
|