mirror of https://github.com/torvalds/linux.git
880 lines
25 KiB
C
880 lines
25 KiB
C
#include <linux/bpf.h>
|
||
#include <linux/btf.h>
|
||
#include <linux/err.h>
|
||
#include <linux/irq_work.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/filter.h>
|
||
#include <linux/mm.h>
|
||
#include <linux/vmalloc.h>
|
||
#include <linux/wait.h>
|
||
#include <linux/poll.h>
|
||
#include <linux/kmemleak.h>
|
||
#include <uapi/linux/btf.h>
|
||
#include <linux/btf_ids.h>
|
||
#include <asm/rqspinlock.h>
|
||
|
||
#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE | BPF_F_RB_OVERWRITE)
|
||
|
||
/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
|
||
#define RINGBUF_PGOFF \
|
||
(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
|
||
/* consumer page and producer page */
|
||
#define RINGBUF_POS_PAGES 2
|
||
#define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
|
||
|
||
#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
|
||
|
||
struct bpf_ringbuf {
|
||
wait_queue_head_t waitq;
|
||
struct irq_work work;
|
||
u64 mask;
|
||
struct page **pages;
|
||
int nr_pages;
|
||
bool overwrite_mode;
|
||
rqspinlock_t spinlock ____cacheline_aligned_in_smp;
|
||
/* For user-space producer ring buffers, an atomic_t busy bit is used
|
||
* to synchronize access to the ring buffers in the kernel, rather than
|
||
* the spinlock that is used for kernel-producer ring buffers. This is
|
||
* done because the ring buffer must hold a lock across a BPF program's
|
||
* callback:
|
||
*
|
||
* __bpf_user_ringbuf_peek() // lock acquired
|
||
* -> program callback_fn()
|
||
* -> __bpf_user_ringbuf_sample_release() // lock released
|
||
*
|
||
* It is unsafe and incorrect to hold an IRQ spinlock across what could
|
||
* be a long execution window, so we instead simply disallow concurrent
|
||
* access to the ring buffer by kernel consumers, and return -EBUSY from
|
||
* __bpf_user_ringbuf_peek() if the busy bit is held by another task.
|
||
*/
|
||
atomic_t busy ____cacheline_aligned_in_smp;
|
||
/* Consumer and producer counters are put into separate pages to
|
||
* allow each position to be mapped with different permissions.
|
||
* This prevents a user-space application from modifying the
|
||
* position and ruining in-kernel tracking. The permissions of the
|
||
* pages depend on who is producing samples: user-space or the
|
||
* kernel. Note that the pending counter is placed in the same
|
||
* page as the producer, so that it shares the same cache line.
|
||
*
|
||
* Kernel-producer
|
||
* ---------------
|
||
* The producer position and data pages are mapped as r/o in
|
||
* userspace. For this approach, bits in the header of samples are
|
||
* used to signal to user-space, and to other producers, whether a
|
||
* sample is currently being written.
|
||
*
|
||
* User-space producer
|
||
* -------------------
|
||
* Only the page containing the consumer position is mapped r/o in
|
||
* user-space. User-space producers also use bits of the header to
|
||
* communicate to the kernel, but the kernel must carefully check and
|
||
* validate each sample to ensure that they're correctly formatted, and
|
||
* fully contained within the ring buffer.
|
||
*/
|
||
unsigned long consumer_pos __aligned(PAGE_SIZE);
|
||
unsigned long producer_pos __aligned(PAGE_SIZE);
|
||
unsigned long pending_pos;
|
||
unsigned long overwrite_pos; /* position after the last overwritten record */
|
||
char data[] __aligned(PAGE_SIZE);
|
||
};
|
||
|
||
struct bpf_ringbuf_map {
|
||
struct bpf_map map;
|
||
struct bpf_ringbuf *rb;
|
||
};
|
||
|
||
/* 8-byte ring buffer record header structure */
|
||
struct bpf_ringbuf_hdr {
|
||
u32 len;
|
||
u32 pg_off;
|
||
};
|
||
|
||
static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
|
||
{
|
||
const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
|
||
__GFP_NOWARN | __GFP_ZERO;
|
||
int nr_meta_pages = RINGBUF_NR_META_PAGES;
|
||
int nr_data_pages = data_sz >> PAGE_SHIFT;
|
||
int nr_pages = nr_meta_pages + nr_data_pages;
|
||
struct page **pages, *page;
|
||
struct bpf_ringbuf *rb;
|
||
size_t array_size;
|
||
int i;
|
||
|
||
/* Each data page is mapped twice to allow "virtual"
|
||
* continuous read of samples wrapping around the end of ring
|
||
* buffer area:
|
||
* ------------------------------------------------------
|
||
* | meta pages | real data pages | same data pages |
|
||
* ------------------------------------------------------
|
||
* | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
|
||
* ------------------------------------------------------
|
||
* | | TA DA | TA DA |
|
||
* ------------------------------------------------------
|
||
* ^^^^^^^
|
||
* |
|
||
* Here, no need to worry about special handling of wrapped-around
|
||
* data due to double-mapped data pages. This works both in kernel and
|
||
* when mmap()'ed in user-space, simplifying both kernel and
|
||
* user-space implementations significantly.
|
||
*/
|
||
array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
|
||
pages = bpf_map_area_alloc(array_size, numa_node);
|
||
if (!pages)
|
||
return NULL;
|
||
|
||
for (i = 0; i < nr_pages; i++) {
|
||
page = alloc_pages_node(numa_node, flags, 0);
|
||
if (!page) {
|
||
nr_pages = i;
|
||
goto err_free_pages;
|
||
}
|
||
pages[i] = page;
|
||
if (i >= nr_meta_pages)
|
||
pages[nr_data_pages + i] = page;
|
||
}
|
||
|
||
rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
|
||
VM_MAP | VM_USERMAP, PAGE_KERNEL);
|
||
if (rb) {
|
||
kmemleak_not_leak(pages);
|
||
rb->pages = pages;
|
||
rb->nr_pages = nr_pages;
|
||
return rb;
|
||
}
|
||
|
||
err_free_pages:
|
||
for (i = 0; i < nr_pages; i++)
|
||
__free_page(pages[i]);
|
||
bpf_map_area_free(pages);
|
||
return NULL;
|
||
}
|
||
|
||
static void bpf_ringbuf_notify(struct irq_work *work)
|
||
{
|
||
struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
|
||
|
||
wake_up_all(&rb->waitq);
|
||
}
|
||
|
||
/* Maximum size of ring buffer area is limited by 32-bit page offset within
|
||
* record header, counted in pages. Reserve 8 bits for extensibility, and
|
||
* take into account few extra pages for consumer/producer pages and
|
||
* non-mmap()'able parts, the current maximum size would be:
|
||
*
|
||
* (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
|
||
*
|
||
* This gives 64GB limit, which seems plenty for single ring buffer. Now
|
||
* considering that the maximum value of data_sz is (4GB - 1), there
|
||
* will be no overflow, so just note the size limit in the comments.
|
||
*/
|
||
static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node, bool overwrite_mode)
|
||
{
|
||
struct bpf_ringbuf *rb;
|
||
|
||
rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
|
||
if (!rb)
|
||
return NULL;
|
||
|
||
raw_res_spin_lock_init(&rb->spinlock);
|
||
atomic_set(&rb->busy, 0);
|
||
init_waitqueue_head(&rb->waitq);
|
||
init_irq_work(&rb->work, bpf_ringbuf_notify);
|
||
|
||
rb->mask = data_sz - 1;
|
||
rb->consumer_pos = 0;
|
||
rb->producer_pos = 0;
|
||
rb->pending_pos = 0;
|
||
rb->overwrite_mode = overwrite_mode;
|
||
|
||
return rb;
|
||
}
|
||
|
||
static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
|
||
{
|
||
bool overwrite_mode = false;
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
|
||
return ERR_PTR(-EINVAL);
|
||
|
||
if (attr->map_flags & BPF_F_RB_OVERWRITE) {
|
||
if (attr->map_type != BPF_MAP_TYPE_RINGBUF)
|
||
return ERR_PTR(-EINVAL);
|
||
overwrite_mode = true;
|
||
}
|
||
|
||
if (attr->key_size || attr->value_size ||
|
||
!is_power_of_2(attr->max_entries) ||
|
||
!PAGE_ALIGNED(attr->max_entries))
|
||
return ERR_PTR(-EINVAL);
|
||
|
||
rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
|
||
if (!rb_map)
|
||
return ERR_PTR(-ENOMEM);
|
||
|
||
bpf_map_init_from_attr(&rb_map->map, attr);
|
||
|
||
rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node, overwrite_mode);
|
||
if (!rb_map->rb) {
|
||
bpf_map_area_free(rb_map);
|
||
return ERR_PTR(-ENOMEM);
|
||
}
|
||
|
||
return &rb_map->map;
|
||
}
|
||
|
||
static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
|
||
{
|
||
irq_work_sync(&rb->work);
|
||
|
||
/* copy pages pointer and nr_pages to local variable, as we are going
|
||
* to unmap rb itself with vunmap() below
|
||
*/
|
||
struct page **pages = rb->pages;
|
||
int i, nr_pages = rb->nr_pages;
|
||
|
||
vunmap(rb);
|
||
for (i = 0; i < nr_pages; i++)
|
||
__free_page(pages[i]);
|
||
bpf_map_area_free(pages);
|
||
}
|
||
|
||
static void ringbuf_map_free(struct bpf_map *map)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
bpf_ringbuf_free(rb_map->rb);
|
||
bpf_map_area_free(rb_map);
|
||
}
|
||
|
||
static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
|
||
{
|
||
return ERR_PTR(-ENOTSUPP);
|
||
}
|
||
|
||
static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
|
||
u64 flags)
|
||
{
|
||
return -ENOTSUPP;
|
||
}
|
||
|
||
static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
|
||
{
|
||
return -ENOTSUPP;
|
||
}
|
||
|
||
static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
|
||
void *next_key)
|
||
{
|
||
return -ENOTSUPP;
|
||
}
|
||
|
||
static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
|
||
if (vma->vm_flags & VM_WRITE) {
|
||
/* allow writable mapping for the consumer_pos only */
|
||
if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
|
||
return -EPERM;
|
||
}
|
||
/* remap_vmalloc_range() checks size and offset constraints */
|
||
return remap_vmalloc_range(vma, rb_map->rb,
|
||
vma->vm_pgoff + RINGBUF_PGOFF);
|
||
}
|
||
|
||
static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
|
||
if (vma->vm_flags & VM_WRITE) {
|
||
if (vma->vm_pgoff == 0)
|
||
/* Disallow writable mappings to the consumer pointer,
|
||
* and allow writable mappings to both the producer
|
||
* position, and the ring buffer data itself.
|
||
*/
|
||
return -EPERM;
|
||
}
|
||
/* remap_vmalloc_range() checks size and offset constraints */
|
||
return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
|
||
}
|
||
|
||
/*
|
||
* Return an estimate of the available data in the ring buffer.
|
||
* Note: the returned value can exceed the actual ring buffer size because the
|
||
* function is not synchronized with the producer. The producer acquires the
|
||
* ring buffer's spinlock, but this function does not.
|
||
*/
|
||
static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
|
||
{
|
||
unsigned long cons_pos, prod_pos, over_pos;
|
||
|
||
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
||
|
||
if (unlikely(rb->overwrite_mode)) {
|
||
over_pos = smp_load_acquire(&rb->overwrite_pos);
|
||
prod_pos = smp_load_acquire(&rb->producer_pos);
|
||
return prod_pos - max(cons_pos, over_pos);
|
||
} else {
|
||
prod_pos = smp_load_acquire(&rb->producer_pos);
|
||
return prod_pos - cons_pos;
|
||
}
|
||
}
|
||
|
||
static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
|
||
{
|
||
return rb->mask + 1;
|
||
}
|
||
|
||
static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
|
||
struct poll_table_struct *pts)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
poll_wait(filp, &rb_map->rb->waitq, pts);
|
||
|
||
if (ringbuf_avail_data_sz(rb_map->rb))
|
||
return EPOLLIN | EPOLLRDNORM;
|
||
return 0;
|
||
}
|
||
|
||
static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
|
||
struct poll_table_struct *pts)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
poll_wait(filp, &rb_map->rb->waitq, pts);
|
||
|
||
if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
|
||
return EPOLLOUT | EPOLLWRNORM;
|
||
return 0;
|
||
}
|
||
|
||
static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
|
||
{
|
||
struct bpf_ringbuf *rb;
|
||
int nr_data_pages;
|
||
int nr_meta_pages;
|
||
u64 usage = sizeof(struct bpf_ringbuf_map);
|
||
|
||
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
||
usage += (u64)rb->nr_pages << PAGE_SHIFT;
|
||
nr_meta_pages = RINGBUF_NR_META_PAGES;
|
||
nr_data_pages = map->max_entries >> PAGE_SHIFT;
|
||
usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
|
||
return usage;
|
||
}
|
||
|
||
BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
||
const struct bpf_map_ops ringbuf_map_ops = {
|
||
.map_meta_equal = bpf_map_meta_equal,
|
||
.map_alloc = ringbuf_map_alloc,
|
||
.map_free = ringbuf_map_free,
|
||
.map_mmap = ringbuf_map_mmap_kern,
|
||
.map_poll = ringbuf_map_poll_kern,
|
||
.map_lookup_elem = ringbuf_map_lookup_elem,
|
||
.map_update_elem = ringbuf_map_update_elem,
|
||
.map_delete_elem = ringbuf_map_delete_elem,
|
||
.map_get_next_key = ringbuf_map_get_next_key,
|
||
.map_mem_usage = ringbuf_map_mem_usage,
|
||
.map_btf_id = &ringbuf_map_btf_ids[0],
|
||
};
|
||
|
||
BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
|
||
const struct bpf_map_ops user_ringbuf_map_ops = {
|
||
.map_meta_equal = bpf_map_meta_equal,
|
||
.map_alloc = ringbuf_map_alloc,
|
||
.map_free = ringbuf_map_free,
|
||
.map_mmap = ringbuf_map_mmap_user,
|
||
.map_poll = ringbuf_map_poll_user,
|
||
.map_lookup_elem = ringbuf_map_lookup_elem,
|
||
.map_update_elem = ringbuf_map_update_elem,
|
||
.map_delete_elem = ringbuf_map_delete_elem,
|
||
.map_get_next_key = ringbuf_map_get_next_key,
|
||
.map_mem_usage = ringbuf_map_mem_usage,
|
||
.map_btf_id = &user_ringbuf_map_btf_ids[0],
|
||
};
|
||
|
||
/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
|
||
* calculate offset from record metadata to ring buffer in pages, rounded
|
||
* down. This page offset is stored as part of record metadata and allows to
|
||
* restore struct bpf_ringbuf * from record pointer. This page offset is
|
||
* stored at offset 4 of record metadata header.
|
||
*/
|
||
static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
|
||
struct bpf_ringbuf_hdr *hdr)
|
||
{
|
||
return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
|
||
}
|
||
|
||
/* Given pointer to ring buffer record header, restore pointer to struct
|
||
* bpf_ringbuf itself by using page offset stored at offset 4
|
||
*/
|
||
static struct bpf_ringbuf *
|
||
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
|
||
{
|
||
unsigned long addr = (unsigned long)(void *)hdr;
|
||
unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
|
||
|
||
return (void*)((addr & PAGE_MASK) - off);
|
||
}
|
||
|
||
static bool bpf_ringbuf_has_space(const struct bpf_ringbuf *rb,
|
||
unsigned long new_prod_pos,
|
||
unsigned long cons_pos,
|
||
unsigned long pend_pos)
|
||
{
|
||
/*
|
||
* No space if oldest not yet committed record until the newest
|
||
* record span more than (ringbuf_size - 1).
|
||
*/
|
||
if (new_prod_pos - pend_pos > rb->mask)
|
||
return false;
|
||
|
||
/* Ok, we have space in overwrite mode */
|
||
if (unlikely(rb->overwrite_mode))
|
||
return true;
|
||
|
||
/*
|
||
* No space if producer position advances more than (ringbuf_size - 1)
|
||
* ahead of consumer position when not in overwrite mode.
|
||
*/
|
||
if (new_prod_pos - cons_pos > rb->mask)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static u32 bpf_ringbuf_round_up_hdr_len(u32 hdr_len)
|
||
{
|
||
hdr_len &= ~BPF_RINGBUF_DISCARD_BIT;
|
||
return round_up(hdr_len + BPF_RINGBUF_HDR_SZ, 8);
|
||
}
|
||
|
||
static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
|
||
{
|
||
unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, over_pos, flags;
|
||
struct bpf_ringbuf_hdr *hdr;
|
||
u32 len, pg_off, hdr_len;
|
||
|
||
if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
|
||
return NULL;
|
||
|
||
len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
||
if (len > ringbuf_total_data_sz(rb))
|
||
return NULL;
|
||
|
||
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
||
|
||
if (raw_res_spin_lock_irqsave(&rb->spinlock, flags))
|
||
return NULL;
|
||
|
||
pend_pos = rb->pending_pos;
|
||
prod_pos = rb->producer_pos;
|
||
new_prod_pos = prod_pos + len;
|
||
|
||
while (pend_pos < prod_pos) {
|
||
hdr = (void *)rb->data + (pend_pos & rb->mask);
|
||
hdr_len = READ_ONCE(hdr->len);
|
||
if (hdr_len & BPF_RINGBUF_BUSY_BIT)
|
||
break;
|
||
pend_pos += bpf_ringbuf_round_up_hdr_len(hdr_len);
|
||
}
|
||
rb->pending_pos = pend_pos;
|
||
|
||
if (!bpf_ringbuf_has_space(rb, new_prod_pos, cons_pos, pend_pos)) {
|
||
raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* In overwrite mode, advance overwrite_pos when the ring buffer is full.
|
||
* The key points are to stay on record boundaries and consume enough records
|
||
* to fit the new one.
|
||
*/
|
||
if (unlikely(rb->overwrite_mode)) {
|
||
over_pos = rb->overwrite_pos;
|
||
while (new_prod_pos - over_pos > rb->mask) {
|
||
hdr = (void *)rb->data + (over_pos & rb->mask);
|
||
hdr_len = READ_ONCE(hdr->len);
|
||
/*
|
||
* The bpf_ringbuf_has_space() check above ensures we won’t
|
||
* step over a record currently being worked on by another
|
||
* producer.
|
||
*/
|
||
over_pos += bpf_ringbuf_round_up_hdr_len(hdr_len);
|
||
}
|
||
/*
|
||
* smp_store_release(&rb->producer_pos, new_prod_pos) at
|
||
* the end of the function ensures that when consumer sees
|
||
* the updated rb->producer_pos, it always sees the updated
|
||
* rb->overwrite_pos, so when consumer reads overwrite_pos
|
||
* after smp_load_acquire(r->producer_pos), the overwrite_pos
|
||
* will always be valid.
|
||
*/
|
||
WRITE_ONCE(rb->overwrite_pos, over_pos);
|
||
}
|
||
|
||
hdr = (void *)rb->data + (prod_pos & rb->mask);
|
||
pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
|
||
hdr->len = size | BPF_RINGBUF_BUSY_BIT;
|
||
hdr->pg_off = pg_off;
|
||
|
||
/* pairs with consumer's smp_load_acquire() */
|
||
smp_store_release(&rb->producer_pos, new_prod_pos);
|
||
|
||
raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
|
||
|
||
return (void *)hdr + BPF_RINGBUF_HDR_SZ;
|
||
}
|
||
|
||
BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
|
||
if (unlikely(flags))
|
||
return 0;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
|
||
.func = bpf_ringbuf_reserve,
|
||
.ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL,
|
||
.arg1_type = ARG_CONST_MAP_PTR,
|
||
.arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
|
||
.arg3_type = ARG_ANYTHING,
|
||
};
|
||
|
||
static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
|
||
{
|
||
unsigned long rec_pos, cons_pos;
|
||
struct bpf_ringbuf_hdr *hdr;
|
||
struct bpf_ringbuf *rb;
|
||
u32 new_len;
|
||
|
||
hdr = sample - BPF_RINGBUF_HDR_SZ;
|
||
rb = bpf_ringbuf_restore_from_rec(hdr);
|
||
new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
|
||
if (discard)
|
||
new_len |= BPF_RINGBUF_DISCARD_BIT;
|
||
|
||
/* update record header with correct final size prefix */
|
||
xchg(&hdr->len, new_len);
|
||
|
||
/* if consumer caught up and is waiting for our record, notify about
|
||
* new data availability
|
||
*/
|
||
rec_pos = (void *)hdr - (void *)rb->data;
|
||
cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
|
||
|
||
if (flags & BPF_RB_FORCE_WAKEUP)
|
||
irq_work_queue(&rb->work);
|
||
else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
|
||
irq_work_queue(&rb->work);
|
||
}
|
||
|
||
BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
|
||
{
|
||
bpf_ringbuf_commit(sample, flags, false /* discard */);
|
||
return 0;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_submit_proto = {
|
||
.func = bpf_ringbuf_submit,
|
||
.ret_type = RET_VOID,
|
||
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
|
||
.arg2_type = ARG_ANYTHING,
|
||
};
|
||
|
||
BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
|
||
{
|
||
bpf_ringbuf_commit(sample, flags, true /* discard */);
|
||
return 0;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_discard_proto = {
|
||
.func = bpf_ringbuf_discard,
|
||
.ret_type = RET_VOID,
|
||
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
|
||
.arg2_type = ARG_ANYTHING,
|
||
};
|
||
|
||
BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
|
||
u64, flags)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
void *rec;
|
||
|
||
if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
|
||
return -EINVAL;
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
rec = __bpf_ringbuf_reserve(rb_map->rb, size);
|
||
if (!rec)
|
||
return -EAGAIN;
|
||
|
||
memcpy(rec, data, size);
|
||
bpf_ringbuf_commit(rec, flags, false /* discard */);
|
||
return 0;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_output_proto = {
|
||
.func = bpf_ringbuf_output,
|
||
.ret_type = RET_INTEGER,
|
||
.arg1_type = ARG_CONST_MAP_PTR,
|
||
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
||
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
||
.arg4_type = ARG_ANYTHING,
|
||
};
|
||
|
||
BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
|
||
{
|
||
struct bpf_ringbuf *rb;
|
||
|
||
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
||
|
||
switch (flags) {
|
||
case BPF_RB_AVAIL_DATA:
|
||
return ringbuf_avail_data_sz(rb);
|
||
case BPF_RB_RING_SIZE:
|
||
return ringbuf_total_data_sz(rb);
|
||
case BPF_RB_CONS_POS:
|
||
return smp_load_acquire(&rb->consumer_pos);
|
||
case BPF_RB_PROD_POS:
|
||
return smp_load_acquire(&rb->producer_pos);
|
||
case BPF_RB_OVERWRITE_POS:
|
||
return smp_load_acquire(&rb->overwrite_pos);
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_query_proto = {
|
||
.func = bpf_ringbuf_query,
|
||
.ret_type = RET_INTEGER,
|
||
.arg1_type = ARG_CONST_MAP_PTR,
|
||
.arg2_type = ARG_ANYTHING,
|
||
};
|
||
|
||
BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
|
||
struct bpf_dynptr_kern *, ptr)
|
||
{
|
||
struct bpf_ringbuf_map *rb_map;
|
||
void *sample;
|
||
int err;
|
||
|
||
if (unlikely(flags)) {
|
||
bpf_dynptr_set_null(ptr);
|
||
return -EINVAL;
|
||
}
|
||
|
||
err = bpf_dynptr_check_size(size);
|
||
if (err) {
|
||
bpf_dynptr_set_null(ptr);
|
||
return err;
|
||
}
|
||
|
||
rb_map = container_of(map, struct bpf_ringbuf_map, map);
|
||
|
||
sample = __bpf_ringbuf_reserve(rb_map->rb, size);
|
||
if (!sample) {
|
||
bpf_dynptr_set_null(ptr);
|
||
return -EINVAL;
|
||
}
|
||
|
||
bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
|
||
|
||
return 0;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
|
||
.func = bpf_ringbuf_reserve_dynptr,
|
||
.ret_type = RET_INTEGER,
|
||
.arg1_type = ARG_CONST_MAP_PTR,
|
||
.arg2_type = ARG_ANYTHING,
|
||
.arg3_type = ARG_ANYTHING,
|
||
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
|
||
};
|
||
|
||
BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
||
{
|
||
if (!ptr->data)
|
||
return 0;
|
||
|
||
bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
|
||
|
||
bpf_dynptr_set_null(ptr);
|
||
|
||
return 0;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
|
||
.func = bpf_ringbuf_submit_dynptr,
|
||
.ret_type = RET_VOID,
|
||
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
||
.arg2_type = ARG_ANYTHING,
|
||
};
|
||
|
||
BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
|
||
{
|
||
if (!ptr->data)
|
||
return 0;
|
||
|
||
bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
|
||
|
||
bpf_dynptr_set_null(ptr);
|
||
|
||
return 0;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
|
||
.func = bpf_ringbuf_discard_dynptr,
|
||
.ret_type = RET_VOID,
|
||
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
|
||
.arg2_type = ARG_ANYTHING,
|
||
};
|
||
|
||
static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
|
||
{
|
||
int err;
|
||
u32 hdr_len, sample_len, total_len, flags, *hdr;
|
||
u64 cons_pos, prod_pos;
|
||
|
||
/* Synchronizes with smp_store_release() in user-space producer. */
|
||
prod_pos = smp_load_acquire(&rb->producer_pos);
|
||
if (prod_pos % 8)
|
||
return -EINVAL;
|
||
|
||
/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
|
||
cons_pos = smp_load_acquire(&rb->consumer_pos);
|
||
if (cons_pos >= prod_pos)
|
||
return -ENODATA;
|
||
|
||
hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
|
||
/* Synchronizes with smp_store_release() in user-space producer. */
|
||
hdr_len = smp_load_acquire(hdr);
|
||
flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
|
||
sample_len = hdr_len & ~flags;
|
||
total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
|
||
|
||
/* The sample must fit within the region advertised by the producer position. */
|
||
if (total_len > prod_pos - cons_pos)
|
||
return -EINVAL;
|
||
|
||
/* The sample must fit within the data region of the ring buffer. */
|
||
if (total_len > ringbuf_total_data_sz(rb))
|
||
return -E2BIG;
|
||
|
||
/* The sample must fit into a struct bpf_dynptr. */
|
||
err = bpf_dynptr_check_size(sample_len);
|
||
if (err)
|
||
return -E2BIG;
|
||
|
||
if (flags & BPF_RINGBUF_DISCARD_BIT) {
|
||
/* If the discard bit is set, the sample should be skipped.
|
||
*
|
||
* Update the consumer pos, and return -EAGAIN so the caller
|
||
* knows to skip this sample and try to read the next one.
|
||
*/
|
||
smp_store_release(&rb->consumer_pos, cons_pos + total_len);
|
||
return -EAGAIN;
|
||
}
|
||
|
||
if (flags & BPF_RINGBUF_BUSY_BIT)
|
||
return -ENODATA;
|
||
|
||
*sample = (void *)((uintptr_t)rb->data +
|
||
(uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
|
||
*size = sample_len;
|
||
return 0;
|
||
}
|
||
|
||
static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
|
||
{
|
||
u64 consumer_pos;
|
||
u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
|
||
|
||
/* Using smp_load_acquire() is unnecessary here, as the busy-bit
|
||
* prevents another task from writing to consumer_pos after it was read
|
||
* by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
|
||
*/
|
||
consumer_pos = rb->consumer_pos;
|
||
/* Synchronizes with smp_load_acquire() in user-space producer. */
|
||
smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
|
||
}
|
||
|
||
BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
|
||
void *, callback_fn, void *, callback_ctx, u64, flags)
|
||
{
|
||
struct bpf_ringbuf *rb;
|
||
long samples, discarded_samples = 0, ret = 0;
|
||
bpf_callback_t callback = (bpf_callback_t)callback_fn;
|
||
u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
|
||
int busy = 0;
|
||
|
||
if (unlikely(flags & ~wakeup_flags))
|
||
return -EINVAL;
|
||
|
||
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
|
||
|
||
/* If another consumer is already consuming a sample, wait for them to finish. */
|
||
if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
|
||
return -EBUSY;
|
||
|
||
for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
|
||
int err;
|
||
u32 size;
|
||
void *sample;
|
||
struct bpf_dynptr_kern dynptr;
|
||
|
||
err = __bpf_user_ringbuf_peek(rb, &sample, &size);
|
||
if (err) {
|
||
if (err == -ENODATA) {
|
||
break;
|
||
} else if (err == -EAGAIN) {
|
||
discarded_samples++;
|
||
continue;
|
||
} else {
|
||
ret = err;
|
||
goto schedule_work_return;
|
||
}
|
||
}
|
||
|
||
bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
|
||
ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
|
||
__bpf_user_ringbuf_sample_release(rb, size, flags);
|
||
}
|
||
ret = samples - discarded_samples;
|
||
|
||
schedule_work_return:
|
||
/* Prevent the clearing of the busy-bit from being reordered before the
|
||
* storing of any rb consumer or producer positions.
|
||
*/
|
||
atomic_set_release(&rb->busy, 0);
|
||
|
||
if (flags & BPF_RB_FORCE_WAKEUP)
|
||
irq_work_queue(&rb->work);
|
||
else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
|
||
irq_work_queue(&rb->work);
|
||
return ret;
|
||
}
|
||
|
||
const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
|
||
.func = bpf_user_ringbuf_drain,
|
||
.ret_type = RET_INTEGER,
|
||
.arg1_type = ARG_CONST_MAP_PTR,
|
||
.arg2_type = ARG_PTR_TO_FUNC,
|
||
.arg3_type = ARG_PTR_TO_STACK_OR_NULL,
|
||
.arg4_type = ARG_ANYTHING,
|
||
};
|