linux/drivers/gpu/drm/xe/xe_exec_queue.c

1252 lines
33 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_exec_queue.h"
#include <linux/nospec.h>
#include <drm/drm_device.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_syncobj.h>
#include <uapi/drm/xe_drm.h>
#include "xe_dep_scheduler.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_sriov_vf.h"
#include "xe_hw_engine_class_sysfs.h"
#include "xe_hw_engine_group.h"
#include "xe_hw_fence.h"
#include "xe_irq.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_migrate.h"
#include "xe_pm.h"
#include "xe_ring_ops_types.h"
#include "xe_trace.h"
#include "xe_vm.h"
#include "xe_pxp.h"
/**
* DOC: Execution Queue
*
* An Execution queue is an interface for the HW context of execution.
* The user creates an execution queue, submits the GPU jobs through those
* queues and in the end destroys them.
*
* Execution queues can also be created by XeKMD itself for driver internal
* operations like object migration etc.
*
* An execution queue is associated with a specified HW engine or a group of
* engines (belonging to the same tile and engine class) and any GPU job
* submitted on the queue will be run on one of these engines.
*
* An execution queue is tied to an address space (VM). It holds a reference
* of the associated VM and the underlying Logical Ring Context/s (LRC/s)
* until the queue is destroyed.
*
* The execution queue sits on top of the submission backend. It opaquely
* handles the GuC and Execlist backends whichever the platform uses, and
* the ring operations the different engine classes support.
*/
enum xe_exec_queue_sched_prop {
XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
XE_EXEC_QUEUE_TIMESLICE = 1,
XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
};
static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
u64 extensions, int ext_number);
static void __xe_exec_queue_free(struct xe_exec_queue *q)
{
int i;
for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i)
if (q->tlb_inval[i].dep_scheduler)
xe_dep_scheduler_fini(q->tlb_inval[i].dep_scheduler);
if (xe_exec_queue_uses_pxp(q))
xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
if (q->vm)
xe_vm_put(q->vm);
if (q->xef)
xe_file_put(q->xef);
kfree(q);
}
static int alloc_dep_schedulers(struct xe_device *xe, struct xe_exec_queue *q)
{
struct xe_tile *tile = gt_to_tile(q->gt);
int i;
for (i = 0; i < XE_EXEC_QUEUE_TLB_INVAL_COUNT; ++i) {
struct xe_dep_scheduler *dep_scheduler;
struct xe_gt *gt;
struct workqueue_struct *wq;
if (i == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT)
gt = tile->primary_gt;
else
gt = tile->media_gt;
if (!gt)
continue;
wq = gt->tlb_inval.job_wq;
#define MAX_TLB_INVAL_JOBS 16 /* Picking a reasonable value */
dep_scheduler = xe_dep_scheduler_create(xe, wq, q->name,
MAX_TLB_INVAL_JOBS);
if (IS_ERR(dep_scheduler))
return PTR_ERR(dep_scheduler);
q->tlb_inval[i].dep_scheduler = dep_scheduler;
}
#undef MAX_TLB_INVAL_JOBS
return 0;
}
static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
struct xe_vm *vm,
u32 logical_mask,
u16 width, struct xe_hw_engine *hwe,
u32 flags, u64 extensions)
{
struct xe_exec_queue *q;
struct xe_gt *gt = hwe->gt;
int err;
/* only kernel queues can be permanent */
XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
if (!q)
return ERR_PTR(-ENOMEM);
kref_init(&q->refcount);
q->flags = flags;
q->hwe = hwe;
q->gt = gt;
q->class = hwe->class;
q->width = width;
q->msix_vec = XE_IRQ_DEFAULT_MSIX;
q->logical_mask = logical_mask;
q->fence_irq = &gt->fence_irq[hwe->class];
q->ring_ops = gt->ring_ops[hwe->class];
q->ops = gt->exec_queue_ops;
INIT_LIST_HEAD(&q->lr.link);
INIT_LIST_HEAD(&q->multi_gt_link);
INIT_LIST_HEAD(&q->hw_engine_group_link);
INIT_LIST_HEAD(&q->pxp.link);
q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
q->sched_props.preempt_timeout_us =
hwe->eclass->sched_props.preempt_timeout_us;
q->sched_props.job_timeout_ms =
hwe->eclass->sched_props.job_timeout_ms;
if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
else
q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
if (q->flags & (EXEC_QUEUE_FLAG_MIGRATE | EXEC_QUEUE_FLAG_VM)) {
err = alloc_dep_schedulers(xe, q);
if (err) {
__xe_exec_queue_free(q);
return ERR_PTR(err);
}
}
if (vm)
q->vm = xe_vm_get(vm);
if (extensions) {
/*
* may set q->usm, must come before xe_lrc_create(),
* may overwrite q->sched_props, must come before q->ops->init()
*/
err = exec_queue_user_extensions(xe, q, extensions, 0);
if (err) {
__xe_exec_queue_free(q);
return ERR_PTR(err);
}
}
return q;
}
static int __xe_exec_queue_init(struct xe_exec_queue *q, u32 exec_queue_flags)
{
int i, err;
u32 flags = 0;
/*
* PXP workloads executing on RCS or CCS must run in isolation (i.e. no
* other workload can use the EUs at the same time). On MTL this is done
* by setting the RUNALONE bit in the LRC, while starting on Xe2 there
* is a dedicated bit for it.
*/
if (xe_exec_queue_uses_pxp(q) &&
(q->class == XE_ENGINE_CLASS_RENDER || q->class == XE_ENGINE_CLASS_COMPUTE)) {
if (GRAPHICS_VER(gt_to_xe(q->gt)) >= 20)
flags |= XE_LRC_CREATE_PXP;
else
flags |= XE_LRC_CREATE_RUNALONE;
}
if (!(exec_queue_flags & EXEC_QUEUE_FLAG_KERNEL))
flags |= XE_LRC_CREATE_USER_CTX;
err = q->ops->init(q);
if (err)
return err;
/*
* This must occur after q->ops->init to avoid race conditions during VF
* post-migration recovery, as the fixups for the LRC GGTT addresses
* depend on the queue being present in the backend tracking structure.
*
* In addition to above, we must wait on inflight GGTT changes to avoid
* writing out stale values here. Such wait provides a solid solution
* (without a race) only if the function can detect migration instantly
* from the moment vCPU resumes execution.
*/
for (i = 0; i < q->width; ++i) {
struct xe_lrc *lrc;
xe_gt_sriov_vf_wait_valid_ggtt(q->gt);
lrc = xe_lrc_create(q->hwe, q->vm, xe_lrc_ring_size(),
q->msix_vec, flags);
if (IS_ERR(lrc)) {
err = PTR_ERR(lrc);
goto err_lrc;
}
/* Pairs with READ_ONCE to xe_exec_queue_contexts_hwsp_rebase */
WRITE_ONCE(q->lrc[i], lrc);
}
return 0;
err_lrc:
for (i = i - 1; i >= 0; --i)
xe_lrc_put(q->lrc[i]);
return err;
}
static void __xe_exec_queue_fini(struct xe_exec_queue *q)
{
int i;
q->ops->fini(q);
for (i = 0; i < q->width; ++i)
xe_lrc_put(q->lrc[i]);
}
struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
u32 logical_mask, u16 width,
struct xe_hw_engine *hwe, u32 flags,
u64 extensions)
{
struct xe_exec_queue *q;
int err;
/* VMs for GSCCS queues (and only those) must have the XE_VM_FLAG_GSC flag */
xe_assert(xe, !vm || (!!(vm->flags & XE_VM_FLAG_GSC) == !!(hwe->engine_id == XE_HW_ENGINE_GSCCS0)));
q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
extensions);
if (IS_ERR(q))
return q;
err = __xe_exec_queue_init(q, flags);
if (err)
goto err_post_alloc;
/*
* We can only add the queue to the PXP list after the init is complete,
* because the PXP termination can call exec_queue_kill and that will
* go bad if the queue is only half-initialized. This means that we
* can't do it when we handle the PXP extension in __xe_exec_queue_alloc
* and we need to do it here instead.
*/
if (xe_exec_queue_uses_pxp(q)) {
err = xe_pxp_exec_queue_add(xe->pxp, q);
if (err)
goto err_post_init;
}
return q;
err_post_init:
__xe_exec_queue_fini(q);
err_post_alloc:
__xe_exec_queue_free(q);
return ERR_PTR(err);
}
ALLOW_ERROR_INJECTION(xe_exec_queue_create, ERRNO);
struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
struct xe_vm *vm,
enum xe_engine_class class,
u32 flags, u64 extensions)
{
struct xe_hw_engine *hwe, *hwe0 = NULL;
enum xe_hw_engine_id id;
u32 logical_mask = 0;
for_each_hw_engine(hwe, gt, id) {
if (xe_hw_engine_is_reserved(hwe))
continue;
if (hwe->class == class) {
logical_mask |= BIT(hwe->logical_instance);
if (!hwe0)
hwe0 = hwe;
}
}
if (!logical_mask)
return ERR_PTR(-ENODEV);
return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
}
/**
* xe_exec_queue_create_bind() - Create bind exec queue.
* @xe: Xe device.
* @tile: tile which bind exec queue belongs to.
* @flags: exec queue creation flags
* @extensions: exec queue creation extensions
*
* Normalize bind exec queue creation. Bind exec queue is tied to migration VM
* for access to physical memory required for page table programming. On a
* faulting devices the reserved copy engine instance must be used to avoid
* deadlocking (user binds cannot get stuck behind faults as kernel binds which
* resolve faults depend on user binds). On non-faulting devices any copy engine
* can be used.
*
* Returns exec queue on success, ERR_PTR on failure
*/
struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
struct xe_tile *tile,
u32 flags, u64 extensions)
{
struct xe_gt *gt = tile->primary_gt;
struct xe_exec_queue *q;
struct xe_vm *migrate_vm;
migrate_vm = xe_migrate_get_vm(tile->migrate);
if (xe->info.has_usm) {
struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
XE_ENGINE_CLASS_COPY,
gt->usm.reserved_bcs_instance,
false);
if (!hwe) {
xe_vm_put(migrate_vm);
return ERR_PTR(-EINVAL);
}
q = xe_exec_queue_create(xe, migrate_vm,
BIT(hwe->logical_instance), 1, hwe,
flags, extensions);
} else {
q = xe_exec_queue_create_class(xe, gt, migrate_vm,
XE_ENGINE_CLASS_COPY, flags,
extensions);
}
xe_vm_put(migrate_vm);
if (!IS_ERR(q)) {
int err = drm_syncobj_create(&q->ufence_syncobj,
DRM_SYNCOBJ_CREATE_SIGNALED,
NULL);
if (err) {
xe_exec_queue_put(q);
return ERR_PTR(err);
}
}
return q;
}
ALLOW_ERROR_INJECTION(xe_exec_queue_create_bind, ERRNO);
void xe_exec_queue_destroy(struct kref *ref)
{
struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
struct xe_exec_queue *eq, *next;
int i;
xe_assert(gt_to_xe(q->gt), atomic_read(&q->job_cnt) == 0);
if (q->ufence_syncobj)
drm_syncobj_put(q->ufence_syncobj);
if (xe_exec_queue_uses_pxp(q))
xe_pxp_exec_queue_remove(gt_to_xe(q->gt)->pxp, q);
xe_exec_queue_last_fence_put_unlocked(q);
for_each_tlb_inval(i)
xe_exec_queue_tlb_inval_last_fence_put_unlocked(q, i);
if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
list_for_each_entry_safe(eq, next, &q->multi_gt_list,
multi_gt_link)
xe_exec_queue_put(eq);
}
q->ops->destroy(q);
}
void xe_exec_queue_fini(struct xe_exec_queue *q)
{
/*
* Before releasing our ref to lrc and xef, accumulate our run ticks
* and wakeup any waiters.
*/
xe_exec_queue_update_run_ticks(q);
if (q->xef && atomic_dec_and_test(&q->xef->exec_queue.pending_removal))
wake_up_var(&q->xef->exec_queue.pending_removal);
__xe_exec_queue_fini(q);
__xe_exec_queue_free(q);
}
void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
{
switch (q->class) {
case XE_ENGINE_CLASS_RENDER:
snprintf(q->name, sizeof(q->name), "rcs%d", instance);
break;
case XE_ENGINE_CLASS_VIDEO_DECODE:
snprintf(q->name, sizeof(q->name), "vcs%d", instance);
break;
case XE_ENGINE_CLASS_VIDEO_ENHANCE:
snprintf(q->name, sizeof(q->name), "vecs%d", instance);
break;
case XE_ENGINE_CLASS_COPY:
snprintf(q->name, sizeof(q->name), "bcs%d", instance);
break;
case XE_ENGINE_CLASS_COMPUTE:
snprintf(q->name, sizeof(q->name), "ccs%d", instance);
break;
case XE_ENGINE_CLASS_OTHER:
snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
break;
default:
XE_WARN_ON(q->class);
}
}
struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
{
struct xe_exec_queue *q;
mutex_lock(&xef->exec_queue.lock);
q = xa_load(&xef->exec_queue.xa, id);
if (q)
xe_exec_queue_get(q);
mutex_unlock(&xef->exec_queue.lock);
return q;
}
enum xe_exec_queue_priority
xe_exec_queue_device_get_max_priority(struct xe_device *xe)
{
return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
XE_EXEC_QUEUE_PRIORITY_NORMAL;
}
static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
u64 value)
{
if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
return -EINVAL;
if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
return -EPERM;
q->sched_props.priority = value;
return 0;
}
static bool xe_exec_queue_enforce_schedule_limit(void)
{
#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
return true;
#else
return !capable(CAP_SYS_NICE);
#endif
}
static void
xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
enum xe_exec_queue_sched_prop prop,
u32 *min, u32 *max)
{
switch (prop) {
case XE_EXEC_QUEUE_JOB_TIMEOUT:
*min = eclass->sched_props.job_timeout_min;
*max = eclass->sched_props.job_timeout_max;
break;
case XE_EXEC_QUEUE_TIMESLICE:
*min = eclass->sched_props.timeslice_min;
*max = eclass->sched_props.timeslice_max;
break;
case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
*min = eclass->sched_props.preempt_timeout_min;
*max = eclass->sched_props.preempt_timeout_max;
break;
default:
break;
}
#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
if (capable(CAP_SYS_NICE)) {
switch (prop) {
case XE_EXEC_QUEUE_JOB_TIMEOUT:
*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
break;
case XE_EXEC_QUEUE_TIMESLICE:
*min = XE_HW_ENGINE_TIMESLICE_MIN;
*max = XE_HW_ENGINE_TIMESLICE_MAX;
break;
case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
break;
default:
break;
}
}
#endif
}
static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
u64 value)
{
u32 min = 0, max = 0;
xe_exec_queue_get_prop_minmax(q->hwe->eclass,
XE_EXEC_QUEUE_TIMESLICE, &min, &max);
if (xe_exec_queue_enforce_schedule_limit() &&
!xe_hw_engine_timeout_in_range(value, min, max))
return -EINVAL;
q->sched_props.timeslice_us = value;
return 0;
}
static int
exec_queue_set_pxp_type(struct xe_device *xe, struct xe_exec_queue *q, u64 value)
{
if (value == DRM_XE_PXP_TYPE_NONE)
return 0;
/* we only support HWDRM sessions right now */
if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
return -EINVAL;
if (!xe_pxp_is_enabled(xe->pxp))
return -ENODEV;
return xe_pxp_exec_queue_set_type(xe->pxp, q, DRM_XE_PXP_TYPE_HWDRM);
}
typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
struct xe_exec_queue *q,
u64 value);
static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE] = exec_queue_set_pxp_type,
};
static int exec_queue_user_ext_set_property(struct xe_device *xe,
struct xe_exec_queue *q,
u64 extension)
{
u64 __user *address = u64_to_user_ptr(extension);
struct drm_xe_ext_set_property ext;
int err;
u32 idx;
err = copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.property >=
ARRAY_SIZE(exec_queue_set_property_funcs)) ||
XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE &&
ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE))
return -EINVAL;
idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
if (!exec_queue_set_property_funcs[idx])
return -EINVAL;
return exec_queue_set_property_funcs[idx](xe, q, ext.value);
}
typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
struct xe_exec_queue *q,
u64 extension);
static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
};
#define MAX_USER_EXTENSIONS 16
static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
u64 extensions, int ext_number)
{
u64 __user *address = u64_to_user_ptr(extensions);
struct drm_xe_user_extension ext;
int err;
u32 idx;
if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
return -E2BIG;
err = copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.name >=
ARRAY_SIZE(exec_queue_user_extension_funcs)))
return -EINVAL;
idx = array_index_nospec(ext.name,
ARRAY_SIZE(exec_queue_user_extension_funcs));
err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
if (XE_IOCTL_DBG(xe, err))
return err;
if (ext.next_extension)
return exec_queue_user_extensions(xe, q, ext.next_extension,
++ext_number);
return 0;
}
static u32 calc_validate_logical_mask(struct xe_device *xe,
struct drm_xe_engine_class_instance *eci,
u16 width, u16 num_placements)
{
int len = width * num_placements;
int i, j, n;
u16 class;
u16 gt_id;
u32 return_mask = 0, prev_mask;
if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
len > 1))
return 0;
for (i = 0; i < width; ++i) {
u32 current_mask = 0;
for (j = 0; j < num_placements; ++j) {
struct xe_hw_engine *hwe;
n = j * width + i;
hwe = xe_hw_engine_lookup(xe, eci[n]);
if (XE_IOCTL_DBG(xe, !hwe))
return 0;
if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
return 0;
if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
return 0;
class = eci[n].engine_class;
gt_id = eci[n].gt_id;
if (width == 1 || !i)
return_mask |= BIT(eci[n].engine_instance);
current_mask |= BIT(eci[n].engine_instance);
}
/* Parallel submissions must be logically contiguous */
if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
return 0;
prev_mask = current_mask;
}
return return_mask;
}
int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_create *args = data;
struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
struct drm_xe_engine_class_instance __user *user_eci =
u64_to_user_ptr(args->instances);
struct xe_hw_engine *hwe;
struct xe_vm *vm;
struct xe_tile *tile;
struct xe_exec_queue *q = NULL;
u32 logical_mask;
u32 flags = 0;
u32 id;
u32 len;
int err;
if (XE_IOCTL_DBG(xe, args->flags & ~DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
len = args->width * args->num_placements;
if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
return -EINVAL;
err = copy_from_user(eci, user_eci,
sizeof(struct drm_xe_engine_class_instance) * len);
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, !xe_device_get_gt(xe, eci[0].gt_id)))
return -EINVAL;
if (args->flags & DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT)
flags |= EXEC_QUEUE_FLAG_LOW_LATENCY;
if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
if (XE_IOCTL_DBG(xe, args->width != 1) ||
XE_IOCTL_DBG(xe, args->num_placements != 1) ||
XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
return -EINVAL;
for_each_tile(tile, xe, id) {
struct xe_exec_queue *new;
flags |= EXEC_QUEUE_FLAG_VM;
if (id)
flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
new = xe_exec_queue_create_bind(xe, tile, flags,
args->extensions);
if (IS_ERR(new)) {
err = PTR_ERR(new);
if (q)
goto put_exec_queue;
return err;
}
if (id == 0)
q = new;
else
list_add_tail(&new->multi_gt_list,
&q->multi_gt_link);
}
} else {
logical_mask = calc_validate_logical_mask(xe, eci,
args->width,
args->num_placements);
if (XE_IOCTL_DBG(xe, !logical_mask))
return -EINVAL;
hwe = xe_hw_engine_lookup(xe, eci[0]);
if (XE_IOCTL_DBG(xe, !hwe))
return -EINVAL;
vm = xe_vm_lookup(xef, args->vm_id);
if (XE_IOCTL_DBG(xe, !vm))
return -ENOENT;
err = down_read_interruptible(&vm->lock);
if (err) {
xe_vm_put(vm);
return err;
}
if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
up_read(&vm->lock);
xe_vm_put(vm);
return -ENOENT;
}
q = xe_exec_queue_create(xe, vm, logical_mask,
args->width, hwe, flags,
args->extensions);
up_read(&vm->lock);
xe_vm_put(vm);
if (IS_ERR(q))
return PTR_ERR(q);
if (xe_vm_in_preempt_fence_mode(vm)) {
q->lr.context = dma_fence_context_alloc(1);
err = xe_vm_add_compute_exec_queue(vm, q);
if (XE_IOCTL_DBG(xe, err))
goto put_exec_queue;
}
if (q->vm && q->hwe->hw_engine_group) {
err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
if (err)
goto put_exec_queue;
}
}
q->xef = xe_file_get(xef);
/* user id alloc must always be last in ioctl to prevent UAF */
err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
if (err)
goto kill_exec_queue;
args->exec_queue_id = id;
return 0;
kill_exec_queue:
xe_exec_queue_kill(q);
put_exec_queue:
xe_exec_queue_put(q);
return err;
}
int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_get_property *args = data;
struct xe_exec_queue *q;
int ret;
if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
q = xe_exec_queue_lookup(xef, args->exec_queue_id);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
switch (args->property) {
case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
args->value = q->ops->reset_status(q);
ret = 0;
break;
default:
ret = -EINVAL;
}
xe_exec_queue_put(q);
return ret;
}
/**
* xe_exec_queue_lrc() - Get the LRC from exec queue.
* @q: The exec_queue.
*
* Retrieves the primary LRC for the exec queue. Note that this function
* returns only the first LRC instance, even when multiple parallel LRCs
* are configured.
*
* Return: Pointer to LRC on success, error on failure
*/
struct xe_lrc *xe_exec_queue_lrc(struct xe_exec_queue *q)
{
return q->lrc[0];
}
/**
* xe_exec_queue_is_lr() - Whether an exec_queue is long-running
* @q: The exec_queue
*
* Return: True if the exec_queue is long-running, false otherwise.
*/
bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
{
return q->vm && xe_vm_in_lr_mode(q->vm) &&
!(q->flags & EXEC_QUEUE_FLAG_VM);
}
/**
* xe_exec_queue_is_idle() - Whether an exec_queue is idle.
* @q: The exec_queue
*
* FIXME: Need to determine what to use as the short-lived
* timeline lock for the exec_queues, so that the return value
* of this function becomes more than just an advisory
* snapshot in time. The timeline lock must protect the
* seqno from racing submissions on the same exec_queue.
* Typically vm->resv, but user-created timeline locks use the migrate vm
* and never grabs the migrate vm->resv so we have a race there.
*
* Return: True if the exec_queue is idle, false otherwise.
*/
bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
{
if (xe_exec_queue_is_parallel(q)) {
int i;
for (i = 0; i < q->width; ++i) {
if (xe_lrc_seqno(q->lrc[i]) !=
q->lrc[i]->fence_ctx.next_seqno - 1)
return false;
}
return true;
}
return xe_lrc_seqno(q->lrc[0]) ==
q->lrc[0]->fence_ctx.next_seqno - 1;
}
/**
* xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
* from hw
* @q: The exec queue
*
* Update the timestamp saved by HW for this exec queue and save run ticks
* calculated by using the delta from last update.
*/
void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
{
struct xe_device *xe = gt_to_xe(q->gt);
struct xe_lrc *lrc;
u64 old_ts, new_ts;
int idx;
/*
* Jobs that are executed by kernel doesn't have a corresponding xe_file
* and thus are not accounted.
*/
if (!q->xef)
return;
/* Synchronize with unbind while holding the xe file open */
if (!drm_dev_enter(&xe->drm, &idx))
return;
/*
* Only sample the first LRC. For parallel submission, all of them are
* scheduled together and we compensate that below by multiplying by
* width - this may introduce errors if that premise is not true and
* they don't exit 100% aligned. On the other hand, looping through
* the LRCs and reading them in different time could also introduce
* errors.
*/
lrc = q->lrc[0];
new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
q->xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
drm_dev_exit(idx);
}
/**
* xe_exec_queue_kill - permanently stop all execution from an exec queue
* @q: The exec queue
*
* This function permanently stops all activity on an exec queue. If the queue
* is actively executing on the HW, it will be kicked off the engine; any
* pending jobs are discarded and all future submissions are rejected.
* This function is safe to call multiple times.
*/
void xe_exec_queue_kill(struct xe_exec_queue *q)
{
struct xe_exec_queue *eq = q, *next;
list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
multi_gt_link) {
q->ops->kill(eq);
xe_vm_remove_compute_exec_queue(q->vm, eq);
}
q->ops->kill(q);
xe_vm_remove_compute_exec_queue(q->vm, q);
}
int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_destroy *args = data;
struct xe_exec_queue *q;
if (XE_IOCTL_DBG(xe, args->pad) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
mutex_lock(&xef->exec_queue.lock);
q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
if (q)
atomic_inc(&xef->exec_queue.pending_removal);
mutex_unlock(&xef->exec_queue.lock);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
if (q->vm && q->hwe->hw_engine_group)
xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
xe_exec_queue_kill(q);
trace_xe_exec_queue_close(q);
xe_exec_queue_put(q);
return 0;
}
static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
struct xe_vm *vm)
{
if (q->flags & EXEC_QUEUE_FLAG_MIGRATE) {
xe_migrate_job_lock_assert(q);
} else if (q->flags & EXEC_QUEUE_FLAG_VM) {
lockdep_assert_held(&vm->lock);
} else {
xe_vm_assert_held(vm);
lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
}
}
/**
* xe_exec_queue_last_fence_put() - Drop ref to last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*/
void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_exec_queue_last_fence_put_unlocked(q);
}
/**
* xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
* @q: The exec queue
*
* Only safe to be called from xe_exec_queue_destroy().
*/
void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
{
if (q->last_fence) {
dma_fence_put(q->last_fence);
q->last_fence = NULL;
}
}
/**
* xe_exec_queue_last_fence_get() - Get last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*
* Get last fence, takes a ref
*
* Returns: last fence if not signaled, dma fence stub if signaled
*/
struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
struct xe_vm *vm)
{
struct dma_fence *fence;
xe_exec_queue_last_fence_lockdep_assert(q, vm);
if (q->last_fence &&
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
xe_exec_queue_last_fence_put(q, vm);
fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
dma_fence_get(fence);
return fence;
}
/**
* xe_exec_queue_last_fence_get_for_resume() - Get last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*
* Get last fence, takes a ref. Only safe to be called in the context of
* resuming the hw engine group's long-running exec queue, when the group
* semaphore is held.
*
* Returns: last fence if not signaled, dma fence stub if signaled
*/
struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
struct xe_vm *vm)
{
struct dma_fence *fence;
lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
if (q->last_fence &&
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
xe_exec_queue_last_fence_put_unlocked(q);
fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
dma_fence_get(fence);
return fence;
}
/**
* xe_exec_queue_last_fence_set() - Set last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
* @fence: The fence
*
* Set the last fence for the engine. Increases reference count for fence, when
* closing engine xe_exec_queue_last_fence_put should be called.
*/
void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
struct dma_fence *fence)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_assert(vm->xe, !dma_fence_is_container(fence));
xe_exec_queue_last_fence_put(q, vm);
q->last_fence = dma_fence_get(fence);
}
/**
* xe_exec_queue_tlb_inval_last_fence_put() - Drop ref to last TLB invalidation fence
* @q: The exec queue
* @vm: The VM the engine does a bind for
* @type: Either primary or media GT
*/
void xe_exec_queue_tlb_inval_last_fence_put(struct xe_exec_queue *q,
struct xe_vm *vm,
unsigned int type)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_assert(vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
xe_exec_queue_tlb_inval_last_fence_put_unlocked(q, type);
}
/**
* xe_exec_queue_tlb_inval_last_fence_put_unlocked() - Drop ref to last TLB
* invalidation fence unlocked
* @q: The exec queue
* @type: Either primary or media GT
*
* Only safe to be called from xe_exec_queue_destroy().
*/
void xe_exec_queue_tlb_inval_last_fence_put_unlocked(struct xe_exec_queue *q,
unsigned int type)
{
xe_assert(q->vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
dma_fence_put(q->tlb_inval[type].last_fence);
q->tlb_inval[type].last_fence = NULL;
}
/**
* xe_exec_queue_tlb_inval_last_fence_get() - Get last fence for TLB invalidation
* @q: The exec queue
* @vm: The VM the engine does a bind for
* @type: Either primary or media GT
*
* Get last fence, takes a ref
*
* Returns: last fence if not signaled, dma fence stub if signaled
*/
struct dma_fence *xe_exec_queue_tlb_inval_last_fence_get(struct xe_exec_queue *q,
struct xe_vm *vm,
unsigned int type)
{
struct dma_fence *fence;
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_assert(vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
xe_assert(vm->xe, q->flags & (EXEC_QUEUE_FLAG_VM |
EXEC_QUEUE_FLAG_MIGRATE));
if (q->tlb_inval[type].last_fence &&
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&q->tlb_inval[type].last_fence->flags))
xe_exec_queue_tlb_inval_last_fence_put(q, vm, type);
fence = q->tlb_inval[type].last_fence ?: dma_fence_get_stub();
dma_fence_get(fence);
return fence;
}
/**
* xe_exec_queue_tlb_inval_last_fence_set() - Set last fence for TLB invalidation
* @q: The exec queue
* @vm: The VM the engine does a bind for
* @fence: The fence
* @type: Either primary or media GT
*
* Set the last fence for the tlb invalidation type on the queue. Increases
* reference count for fence, when closing queue
* xe_exec_queue_tlb_inval_last_fence_put should be called.
*/
void xe_exec_queue_tlb_inval_last_fence_set(struct xe_exec_queue *q,
struct xe_vm *vm,
struct dma_fence *fence,
unsigned int type)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_assert(vm->xe, type == XE_EXEC_QUEUE_TLB_INVAL_MEDIA_GT ||
type == XE_EXEC_QUEUE_TLB_INVAL_PRIMARY_GT);
xe_assert(vm->xe, q->flags & (EXEC_QUEUE_FLAG_VM |
EXEC_QUEUE_FLAG_MIGRATE));
xe_assert(vm->xe, !dma_fence_is_container(fence));
xe_exec_queue_tlb_inval_last_fence_put(q, vm, type);
q->tlb_inval[type].last_fence = dma_fence_get(fence);
}
/**
* xe_exec_queue_contexts_hwsp_rebase - Re-compute GGTT references
* within all LRCs of a queue.
* @q: the &xe_exec_queue struct instance containing target LRCs
* @scratch: scratch buffer to be used as temporary storage
*
* Returns: zero on success, negative error code on failure
*/
int xe_exec_queue_contexts_hwsp_rebase(struct xe_exec_queue *q, void *scratch)
{
int i;
int err = 0;
for (i = 0; i < q->width; ++i) {
struct xe_lrc *lrc;
/* Pairs with WRITE_ONCE in __xe_exec_queue_init */
lrc = READ_ONCE(q->lrc[i]);
if (!lrc)
continue;
xe_lrc_update_memirq_regs_with_address(lrc, q->hwe, scratch);
xe_lrc_update_hwctx_regs_with_address(lrc);
err = xe_lrc_setup_wa_bb_with_scratch(lrc, q->hwe, scratch);
if (err)
break;
}
return err;
}