mirror of https://github.com/torvalds/linux.git
1710 lines
44 KiB
C
1710 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Cryptographic API.
|
|
*
|
|
* s390 implementation of the AES Cipher Algorithm with protected keys.
|
|
*
|
|
* s390 Version:
|
|
* Copyright IBM Corp. 2017, 2025
|
|
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
* Harald Freudenberger <freude@de.ibm.com>
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "paes_s390"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/spinlock.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/engine.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/xts.h>
|
|
#include <asm/cpacf.h>
|
|
#include <asm/pkey.h>
|
|
|
|
/*
|
|
* Key blobs smaller/bigger than these defines are rejected
|
|
* by the common code even before the individual setkey function
|
|
* is called. As paes can handle different kinds of key blobs
|
|
* and padding is also possible, the limits need to be generous.
|
|
*/
|
|
#define PAES_MIN_KEYSIZE 16
|
|
#define PAES_MAX_KEYSIZE MAXEP11AESKEYBLOBSIZE
|
|
#define PAES_256_PROTKEY_SIZE (32 + 32) /* key + verification pattern */
|
|
#define PXTS_256_PROTKEY_SIZE (32 + 32 + 32) /* k1 + k2 + verification pattern */
|
|
|
|
static u8 *ctrblk;
|
|
static DEFINE_MUTEX(ctrblk_lock);
|
|
|
|
static cpacf_mask_t km_functions, kmc_functions, kmctr_functions;
|
|
|
|
static struct crypto_engine *paes_crypto_engine;
|
|
#define MAX_QLEN 10
|
|
|
|
/*
|
|
* protected key specific stuff
|
|
*/
|
|
|
|
struct paes_protkey {
|
|
u32 type;
|
|
u32 len;
|
|
u8 protkey[PXTS_256_PROTKEY_SIZE];
|
|
};
|
|
|
|
#define PK_STATE_NO_KEY 0
|
|
#define PK_STATE_CONVERT_IN_PROGRESS 1
|
|
#define PK_STATE_VALID 2
|
|
|
|
struct s390_paes_ctx {
|
|
/* source key material used to derive a protected key from */
|
|
u8 keybuf[PAES_MAX_KEYSIZE];
|
|
unsigned int keylen;
|
|
|
|
/* cpacf function code to use with this protected key type */
|
|
long fc;
|
|
|
|
/* nr of requests enqueued via crypto engine which use this tfm ctx */
|
|
atomic_t via_engine_ctr;
|
|
|
|
/* spinlock to atomic read/update all the following fields */
|
|
spinlock_t pk_lock;
|
|
|
|
/* see PK_STATE* defines above, < 0 holds convert failure rc */
|
|
int pk_state;
|
|
/* if state is valid, pk holds the protected key */
|
|
struct paes_protkey pk;
|
|
};
|
|
|
|
struct s390_pxts_ctx {
|
|
/* source key material used to derive a protected key from */
|
|
u8 keybuf[2 * PAES_MAX_KEYSIZE];
|
|
unsigned int keylen;
|
|
|
|
/* cpacf function code to use with this protected key type */
|
|
long fc;
|
|
|
|
/* nr of requests enqueued via crypto engine which use this tfm ctx */
|
|
atomic_t via_engine_ctr;
|
|
|
|
/* spinlock to atomic read/update all the following fields */
|
|
spinlock_t pk_lock;
|
|
|
|
/* see PK_STATE* defines above, < 0 holds convert failure rc */
|
|
int pk_state;
|
|
/* if state is valid, pk[] hold(s) the protected key(s) */
|
|
struct paes_protkey pk[2];
|
|
};
|
|
|
|
/*
|
|
* make_clrkey_token() - wrap the raw key ck with pkey clearkey token
|
|
* information.
|
|
* @returns the size of the clearkey token
|
|
*/
|
|
static inline u32 make_clrkey_token(const u8 *ck, size_t cklen, u8 *dest)
|
|
{
|
|
struct clrkey_token {
|
|
u8 type;
|
|
u8 res0[3];
|
|
u8 version;
|
|
u8 res1[3];
|
|
u32 keytype;
|
|
u32 len;
|
|
u8 key[];
|
|
} __packed *token = (struct clrkey_token *)dest;
|
|
|
|
token->type = 0x00;
|
|
token->version = 0x02;
|
|
token->keytype = (cklen - 8) >> 3;
|
|
token->len = cklen;
|
|
memcpy(token->key, ck, cklen);
|
|
|
|
return sizeof(*token) + cklen;
|
|
}
|
|
|
|
/*
|
|
* paes_ctx_setkey() - Set key value into context, maybe construct
|
|
* a clear key token digestible by pkey from a clear key value.
|
|
*/
|
|
static inline int paes_ctx_setkey(struct s390_paes_ctx *ctx,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
if (keylen > sizeof(ctx->keybuf))
|
|
return -EINVAL;
|
|
|
|
switch (keylen) {
|
|
case 16:
|
|
case 24:
|
|
case 32:
|
|
/* clear key value, prepare pkey clear key token in keybuf */
|
|
memset(ctx->keybuf, 0, sizeof(ctx->keybuf));
|
|
ctx->keylen = make_clrkey_token(key, keylen, ctx->keybuf);
|
|
break;
|
|
default:
|
|
/* other key material, let pkey handle this */
|
|
memcpy(ctx->keybuf, key, keylen);
|
|
ctx->keylen = keylen;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pxts_ctx_setkey() - Set key value into context, maybe construct
|
|
* a clear key token digestible by pkey from a clear key value.
|
|
*/
|
|
static inline int pxts_ctx_setkey(struct s390_pxts_ctx *ctx,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
size_t cklen = keylen / 2;
|
|
|
|
if (keylen > sizeof(ctx->keybuf))
|
|
return -EINVAL;
|
|
|
|
switch (keylen) {
|
|
case 32:
|
|
case 64:
|
|
/* clear key value, prepare pkey clear key tokens in keybuf */
|
|
memset(ctx->keybuf, 0, sizeof(ctx->keybuf));
|
|
ctx->keylen = make_clrkey_token(key, cklen, ctx->keybuf);
|
|
ctx->keylen += make_clrkey_token(key + cklen, cklen,
|
|
ctx->keybuf + ctx->keylen);
|
|
break;
|
|
default:
|
|
/* other key material, let pkey handle this */
|
|
memcpy(ctx->keybuf, key, keylen);
|
|
ctx->keylen = keylen;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert the raw key material into a protected key via PKEY api.
|
|
* This function may sleep - don't call in non-sleeping context.
|
|
*/
|
|
static inline int convert_key(const u8 *key, unsigned int keylen,
|
|
struct paes_protkey *pk)
|
|
{
|
|
int rc, i;
|
|
|
|
pk->len = sizeof(pk->protkey);
|
|
|
|
/*
|
|
* In case of a busy card retry with increasing delay
|
|
* of 200, 400, 800 and 1600 ms - in total 3 s.
|
|
*/
|
|
for (rc = -EIO, i = 0; rc && i < 5; i++) {
|
|
if (rc == -EBUSY && msleep_interruptible((1 << i) * 100)) {
|
|
rc = -EINTR;
|
|
goto out;
|
|
}
|
|
rc = pkey_key2protkey(key, keylen,
|
|
pk->protkey, &pk->len, &pk->type,
|
|
PKEY_XFLAG_NOMEMALLOC);
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* (Re-)Convert the raw key material from the ctx into a protected key
|
|
* via convert_key() function. Update the pk_state, pk_type, pk_len
|
|
* and the protected key in the tfm context.
|
|
* Please note this function may be invoked concurrently with the very
|
|
* same tfm context. The pk_lock spinlock in the context ensures an
|
|
* atomic update of the pk and the pk state but does not guarantee any
|
|
* order of update. So a fresh converted valid protected key may get
|
|
* updated with an 'old' expired key value. As the cpacf instructions
|
|
* detect this, refuse to operate with an invalid key and the calling
|
|
* code triggers a (re-)conversion this does no harm. This may lead to
|
|
* unnecessary additional conversion but never to invalid data on en-
|
|
* or decrypt operations.
|
|
*/
|
|
static int paes_convert_key(struct s390_paes_ctx *ctx)
|
|
{
|
|
struct paes_protkey pk;
|
|
int rc;
|
|
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
ctx->pk_state = PK_STATE_CONVERT_IN_PROGRESS;
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
|
|
rc = convert_key(ctx->keybuf, ctx->keylen, &pk);
|
|
|
|
/* update context */
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
if (rc) {
|
|
ctx->pk_state = rc;
|
|
} else {
|
|
ctx->pk_state = PK_STATE_VALID;
|
|
ctx->pk = pk;
|
|
}
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
|
|
memzero_explicit(&pk, sizeof(pk));
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* (Re-)Convert the raw xts key material from the ctx into a
|
|
* protected key via convert_key() function. Update the pk_state,
|
|
* pk_type, pk_len and the protected key in the tfm context.
|
|
* See also comments on function paes_convert_key.
|
|
*/
|
|
static int pxts_convert_key(struct s390_pxts_ctx *ctx)
|
|
{
|
|
struct paes_protkey pk0, pk1;
|
|
size_t split_keylen;
|
|
int rc;
|
|
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
ctx->pk_state = PK_STATE_CONVERT_IN_PROGRESS;
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
|
|
rc = convert_key(ctx->keybuf, ctx->keylen, &pk0);
|
|
if (rc)
|
|
goto out;
|
|
|
|
switch (pk0.type) {
|
|
case PKEY_KEYTYPE_AES_128:
|
|
case PKEY_KEYTYPE_AES_256:
|
|
/* second keytoken required */
|
|
if (ctx->keylen % 2) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
split_keylen = ctx->keylen / 2;
|
|
rc = convert_key(ctx->keybuf + split_keylen,
|
|
split_keylen, &pk1);
|
|
if (rc)
|
|
goto out;
|
|
if (pk0.type != pk1.type) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
case PKEY_KEYTYPE_AES_XTS_128:
|
|
case PKEY_KEYTYPE_AES_XTS_256:
|
|
/* single key */
|
|
pk1.type = 0;
|
|
break;
|
|
default:
|
|
/* unsupported protected keytype */
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
/* update context */
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
if (rc) {
|
|
ctx->pk_state = rc;
|
|
} else {
|
|
ctx->pk_state = PK_STATE_VALID;
|
|
ctx->pk[0] = pk0;
|
|
ctx->pk[1] = pk1;
|
|
}
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
|
|
memzero_explicit(&pk0, sizeof(pk0));
|
|
memzero_explicit(&pk1, sizeof(pk1));
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* PAES ECB implementation
|
|
*/
|
|
|
|
struct ecb_param {
|
|
u8 key[PAES_256_PROTKEY_SIZE];
|
|
} __packed;
|
|
|
|
struct s390_pecb_req_ctx {
|
|
unsigned long modifier;
|
|
struct skcipher_walk walk;
|
|
bool param_init_done;
|
|
struct ecb_param param;
|
|
};
|
|
|
|
static int ecb_paes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
long fc;
|
|
int rc;
|
|
|
|
/* set raw key into context */
|
|
rc = paes_ctx_setkey(ctx, in_key, key_len);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* convert key into protected key */
|
|
rc = paes_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Pick the correct function code based on the protected key type */
|
|
switch (ctx->pk.type) {
|
|
case PKEY_KEYTYPE_AES_128:
|
|
fc = CPACF_KM_PAES_128;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_192:
|
|
fc = CPACF_KM_PAES_192;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_256:
|
|
fc = CPACF_KM_PAES_256;
|
|
break;
|
|
default:
|
|
fc = 0;
|
|
break;
|
|
}
|
|
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
|
|
|
|
rc = fc ? 0 : -EINVAL;
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int ecb_paes_do_crypt(struct s390_paes_ctx *ctx,
|
|
struct s390_pecb_req_ctx *req_ctx,
|
|
bool maysleep)
|
|
{
|
|
struct ecb_param *param = &req_ctx->param;
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
unsigned int nbytes, n, k;
|
|
int pk_state, rc = 0;
|
|
|
|
if (!req_ctx->param_init_done) {
|
|
/* fetch and check protected key state */
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
pk_state = ctx->pk_state;
|
|
switch (pk_state) {
|
|
case PK_STATE_NO_KEY:
|
|
rc = -ENOKEY;
|
|
break;
|
|
case PK_STATE_CONVERT_IN_PROGRESS:
|
|
rc = -EKEYEXPIRED;
|
|
break;
|
|
case PK_STATE_VALID:
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
req_ctx->param_init_done = true;
|
|
break;
|
|
default:
|
|
rc = pk_state < 0 ? pk_state : -EIO;
|
|
break;
|
|
}
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
if (rc)
|
|
goto out;
|
|
|
|
/*
|
|
* Note that in case of partial processing or failure the walk
|
|
* is NOT unmapped here. So a follow up task may reuse the walk
|
|
* or in case of unrecoverable failure needs to unmap it.
|
|
*/
|
|
while ((nbytes = walk->nbytes) != 0) {
|
|
/* only use complete blocks */
|
|
n = nbytes & ~(AES_BLOCK_SIZE - 1);
|
|
k = cpacf_km(ctx->fc | req_ctx->modifier, param,
|
|
walk->dst.virt.addr, walk->src.virt.addr, n);
|
|
if (k)
|
|
rc = skcipher_walk_done(walk, nbytes - k);
|
|
if (k < n) {
|
|
if (!maysleep) {
|
|
rc = -EKEYEXPIRED;
|
|
goto out;
|
|
}
|
|
rc = paes_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
|
|
{
|
|
struct s390_pecb_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/*
|
|
* Attempt synchronous encryption first. If it fails, schedule the request
|
|
* asynchronously via the crypto engine. To preserve execution order,
|
|
* once a request is queued to the engine, further requests using the same
|
|
* tfm will also be routed through the engine.
|
|
*/
|
|
|
|
rc = skcipher_walk_virt(walk, req, false);
|
|
if (rc)
|
|
goto out;
|
|
|
|
req_ctx->modifier = modifier;
|
|
req_ctx->param_init_done = false;
|
|
|
|
/* Try synchronous operation if no active engine usage */
|
|
if (!atomic_read(&ctx->via_engine_ctr)) {
|
|
rc = ecb_paes_do_crypt(ctx, req_ctx, false);
|
|
if (rc == 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If sync operation failed or key expired or there are already
|
|
* requests enqueued via engine, fallback to async. Mark tfm as
|
|
* using engine to serialize requests.
|
|
*/
|
|
if (rc == 0 || rc == -EKEYEXPIRED) {
|
|
atomic_inc(&ctx->via_engine_ctr);
|
|
rc = crypto_transfer_skcipher_request_to_engine(paes_crypto_engine, req);
|
|
if (rc != -EINPROGRESS)
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
}
|
|
|
|
if (rc != -EINPROGRESS)
|
|
skcipher_walk_done(walk, rc);
|
|
|
|
out:
|
|
if (rc != -EINPROGRESS)
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int ecb_paes_encrypt(struct skcipher_request *req)
|
|
{
|
|
return ecb_paes_crypt(req, 0);
|
|
}
|
|
|
|
static int ecb_paes_decrypt(struct skcipher_request *req)
|
|
{
|
|
return ecb_paes_crypt(req, CPACF_DECRYPT);
|
|
}
|
|
|
|
static int ecb_paes_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
spin_lock_init(&ctx->pk_lock);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct s390_pecb_req_ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ecb_paes_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memzero_explicit(ctx, sizeof(*ctx));
|
|
}
|
|
|
|
static int ecb_paes_do_one_request(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct skcipher_request *req = skcipher_request_cast(areq);
|
|
struct s390_pecb_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/* walk has already been prepared */
|
|
|
|
rc = ecb_paes_do_crypt(ctx, req_ctx, true);
|
|
if (rc == -EKEYEXPIRED) {
|
|
/*
|
|
* Protected key expired, conversion is in process.
|
|
* Trigger a re-schedule of this request by returning
|
|
* -ENOSPC ("hardware queue is full") to the crypto engine.
|
|
* To avoid immediately re-invocation of this callback,
|
|
* tell the scheduler to voluntarily give up the CPU here.
|
|
*/
|
|
cond_resched();
|
|
pr_debug("rescheduling request\n");
|
|
return -ENOSPC;
|
|
} else if (rc) {
|
|
skcipher_walk_done(walk, rc);
|
|
}
|
|
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("request complete with rc=%d\n", rc);
|
|
local_bh_disable();
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
crypto_finalize_skcipher_request(engine, req, rc);
|
|
local_bh_enable();
|
|
return rc;
|
|
}
|
|
|
|
static struct skcipher_engine_alg ecb_paes_alg = {
|
|
.base = {
|
|
.base.cra_name = "ecb(paes)",
|
|
.base.cra_driver_name = "ecb-paes-s390",
|
|
.base.cra_priority = 401, /* combo: aes + ecb + 1 */
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct s390_paes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.base.cra_list = LIST_HEAD_INIT(ecb_paes_alg.base.base.cra_list),
|
|
.init = ecb_paes_init,
|
|
.exit = ecb_paes_exit,
|
|
.min_keysize = PAES_MIN_KEYSIZE,
|
|
.max_keysize = PAES_MAX_KEYSIZE,
|
|
.setkey = ecb_paes_setkey,
|
|
.encrypt = ecb_paes_encrypt,
|
|
.decrypt = ecb_paes_decrypt,
|
|
},
|
|
.op = {
|
|
.do_one_request = ecb_paes_do_one_request,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* PAES CBC implementation
|
|
*/
|
|
|
|
struct cbc_param {
|
|
u8 iv[AES_BLOCK_SIZE];
|
|
u8 key[PAES_256_PROTKEY_SIZE];
|
|
} __packed;
|
|
|
|
struct s390_pcbc_req_ctx {
|
|
unsigned long modifier;
|
|
struct skcipher_walk walk;
|
|
bool param_init_done;
|
|
struct cbc_param param;
|
|
};
|
|
|
|
static int cbc_paes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
long fc;
|
|
int rc;
|
|
|
|
/* set raw key into context */
|
|
rc = paes_ctx_setkey(ctx, in_key, key_len);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* convert raw key into protected key */
|
|
rc = paes_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Pick the correct function code based on the protected key type */
|
|
switch (ctx->pk.type) {
|
|
case PKEY_KEYTYPE_AES_128:
|
|
fc = CPACF_KMC_PAES_128;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_192:
|
|
fc = CPACF_KMC_PAES_192;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_256:
|
|
fc = CPACF_KMC_PAES_256;
|
|
break;
|
|
default:
|
|
fc = 0;
|
|
break;
|
|
}
|
|
ctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
|
|
|
|
rc = fc ? 0 : -EINVAL;
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int cbc_paes_do_crypt(struct s390_paes_ctx *ctx,
|
|
struct s390_pcbc_req_ctx *req_ctx,
|
|
bool maysleep)
|
|
{
|
|
struct cbc_param *param = &req_ctx->param;
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
unsigned int nbytes, n, k;
|
|
int pk_state, rc = 0;
|
|
|
|
if (!req_ctx->param_init_done) {
|
|
/* fetch and check protected key state */
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
pk_state = ctx->pk_state;
|
|
switch (pk_state) {
|
|
case PK_STATE_NO_KEY:
|
|
rc = -ENOKEY;
|
|
break;
|
|
case PK_STATE_CONVERT_IN_PROGRESS:
|
|
rc = -EKEYEXPIRED;
|
|
break;
|
|
case PK_STATE_VALID:
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
req_ctx->param_init_done = true;
|
|
break;
|
|
default:
|
|
rc = pk_state < 0 ? pk_state : -EIO;
|
|
break;
|
|
}
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
if (rc)
|
|
goto out;
|
|
|
|
memcpy(param->iv, walk->iv, AES_BLOCK_SIZE);
|
|
|
|
/*
|
|
* Note that in case of partial processing or failure the walk
|
|
* is NOT unmapped here. So a follow up task may reuse the walk
|
|
* or in case of unrecoverable failure needs to unmap it.
|
|
*/
|
|
while ((nbytes = walk->nbytes) != 0) {
|
|
/* only use complete blocks */
|
|
n = nbytes & ~(AES_BLOCK_SIZE - 1);
|
|
k = cpacf_kmc(ctx->fc | req_ctx->modifier, param,
|
|
walk->dst.virt.addr, walk->src.virt.addr, n);
|
|
if (k) {
|
|
memcpy(walk->iv, param->iv, AES_BLOCK_SIZE);
|
|
rc = skcipher_walk_done(walk, nbytes - k);
|
|
}
|
|
if (k < n) {
|
|
if (!maysleep) {
|
|
rc = -EKEYEXPIRED;
|
|
goto out;
|
|
}
|
|
rc = paes_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
|
|
{
|
|
struct s390_pcbc_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/*
|
|
* Attempt synchronous encryption first. If it fails, schedule the request
|
|
* asynchronously via the crypto engine. To preserve execution order,
|
|
* once a request is queued to the engine, further requests using the same
|
|
* tfm will also be routed through the engine.
|
|
*/
|
|
|
|
rc = skcipher_walk_virt(walk, req, false);
|
|
if (rc)
|
|
goto out;
|
|
|
|
req_ctx->modifier = modifier;
|
|
req_ctx->param_init_done = false;
|
|
|
|
/* Try synchronous operation if no active engine usage */
|
|
if (!atomic_read(&ctx->via_engine_ctr)) {
|
|
rc = cbc_paes_do_crypt(ctx, req_ctx, false);
|
|
if (rc == 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If sync operation failed or key expired or there are already
|
|
* requests enqueued via engine, fallback to async. Mark tfm as
|
|
* using engine to serialize requests.
|
|
*/
|
|
if (rc == 0 || rc == -EKEYEXPIRED) {
|
|
atomic_inc(&ctx->via_engine_ctr);
|
|
rc = crypto_transfer_skcipher_request_to_engine(paes_crypto_engine, req);
|
|
if (rc != -EINPROGRESS)
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
}
|
|
|
|
if (rc != -EINPROGRESS)
|
|
skcipher_walk_done(walk, rc);
|
|
|
|
out:
|
|
if (rc != -EINPROGRESS)
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int cbc_paes_encrypt(struct skcipher_request *req)
|
|
{
|
|
return cbc_paes_crypt(req, 0);
|
|
}
|
|
|
|
static int cbc_paes_decrypt(struct skcipher_request *req)
|
|
{
|
|
return cbc_paes_crypt(req, CPACF_DECRYPT);
|
|
}
|
|
|
|
static int cbc_paes_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
spin_lock_init(&ctx->pk_lock);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct s390_pcbc_req_ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cbc_paes_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memzero_explicit(ctx, sizeof(*ctx));
|
|
}
|
|
|
|
static int cbc_paes_do_one_request(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct skcipher_request *req = skcipher_request_cast(areq);
|
|
struct s390_pcbc_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/* walk has already been prepared */
|
|
|
|
rc = cbc_paes_do_crypt(ctx, req_ctx, true);
|
|
if (rc == -EKEYEXPIRED) {
|
|
/*
|
|
* Protected key expired, conversion is in process.
|
|
* Trigger a re-schedule of this request by returning
|
|
* -ENOSPC ("hardware queue is full") to the crypto engine.
|
|
* To avoid immediately re-invocation of this callback,
|
|
* tell the scheduler to voluntarily give up the CPU here.
|
|
*/
|
|
cond_resched();
|
|
pr_debug("rescheduling request\n");
|
|
return -ENOSPC;
|
|
} else if (rc) {
|
|
skcipher_walk_done(walk, rc);
|
|
}
|
|
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("request complete with rc=%d\n", rc);
|
|
local_bh_disable();
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
crypto_finalize_skcipher_request(engine, req, rc);
|
|
local_bh_enable();
|
|
return rc;
|
|
}
|
|
|
|
static struct skcipher_engine_alg cbc_paes_alg = {
|
|
.base = {
|
|
.base.cra_name = "cbc(paes)",
|
|
.base.cra_driver_name = "cbc-paes-s390",
|
|
.base.cra_priority = 402, /* cbc-paes-s390 + 1 */
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct s390_paes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.base.cra_list = LIST_HEAD_INIT(cbc_paes_alg.base.base.cra_list),
|
|
.init = cbc_paes_init,
|
|
.exit = cbc_paes_exit,
|
|
.min_keysize = PAES_MIN_KEYSIZE,
|
|
.max_keysize = PAES_MAX_KEYSIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = cbc_paes_setkey,
|
|
.encrypt = cbc_paes_encrypt,
|
|
.decrypt = cbc_paes_decrypt,
|
|
},
|
|
.op = {
|
|
.do_one_request = cbc_paes_do_one_request,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* PAES CTR implementation
|
|
*/
|
|
|
|
struct ctr_param {
|
|
u8 key[PAES_256_PROTKEY_SIZE];
|
|
} __packed;
|
|
|
|
struct s390_pctr_req_ctx {
|
|
unsigned long modifier;
|
|
struct skcipher_walk walk;
|
|
bool param_init_done;
|
|
struct ctr_param param;
|
|
};
|
|
|
|
static int ctr_paes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
long fc;
|
|
int rc;
|
|
|
|
/* set raw key into context */
|
|
rc = paes_ctx_setkey(ctx, in_key, key_len);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* convert raw key into protected key */
|
|
rc = paes_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Pick the correct function code based on the protected key type */
|
|
switch (ctx->pk.type) {
|
|
case PKEY_KEYTYPE_AES_128:
|
|
fc = CPACF_KMCTR_PAES_128;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_192:
|
|
fc = CPACF_KMCTR_PAES_192;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_256:
|
|
fc = CPACF_KMCTR_PAES_256;
|
|
break;
|
|
default:
|
|
fc = 0;
|
|
break;
|
|
}
|
|
ctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
|
|
|
|
rc = fc ? 0 : -EINVAL;
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static inline unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
|
|
{
|
|
unsigned int i, n;
|
|
|
|
/* only use complete blocks, max. PAGE_SIZE */
|
|
memcpy(ctrptr, iv, AES_BLOCK_SIZE);
|
|
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
|
|
for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
|
|
memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
|
|
crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
|
|
ctrptr += AES_BLOCK_SIZE;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int ctr_paes_do_crypt(struct s390_paes_ctx *ctx,
|
|
struct s390_pctr_req_ctx *req_ctx,
|
|
bool maysleep)
|
|
{
|
|
struct ctr_param *param = &req_ctx->param;
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
u8 buf[AES_BLOCK_SIZE], *ctrptr;
|
|
unsigned int nbytes, n, k;
|
|
int pk_state, locked, rc = 0;
|
|
|
|
if (!req_ctx->param_init_done) {
|
|
/* fetch and check protected key state */
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
pk_state = ctx->pk_state;
|
|
switch (pk_state) {
|
|
case PK_STATE_NO_KEY:
|
|
rc = -ENOKEY;
|
|
break;
|
|
case PK_STATE_CONVERT_IN_PROGRESS:
|
|
rc = -EKEYEXPIRED;
|
|
break;
|
|
case PK_STATE_VALID:
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
req_ctx->param_init_done = true;
|
|
break;
|
|
default:
|
|
rc = pk_state < 0 ? pk_state : -EIO;
|
|
break;
|
|
}
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
if (rc)
|
|
goto out;
|
|
|
|
locked = mutex_trylock(&ctrblk_lock);
|
|
|
|
/*
|
|
* Note that in case of partial processing or failure the walk
|
|
* is NOT unmapped here. So a follow up task may reuse the walk
|
|
* or in case of unrecoverable failure needs to unmap it.
|
|
*/
|
|
while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
|
|
n = AES_BLOCK_SIZE;
|
|
if (nbytes >= 2 * AES_BLOCK_SIZE && locked)
|
|
n = __ctrblk_init(ctrblk, walk->iv, nbytes);
|
|
ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk->iv;
|
|
k = cpacf_kmctr(ctx->fc, param, walk->dst.virt.addr,
|
|
walk->src.virt.addr, n, ctrptr);
|
|
if (k) {
|
|
if (ctrptr == ctrblk)
|
|
memcpy(walk->iv, ctrptr + k - AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE);
|
|
crypto_inc(walk->iv, AES_BLOCK_SIZE);
|
|
rc = skcipher_walk_done(walk, nbytes - k);
|
|
}
|
|
if (k < n) {
|
|
if (!maysleep) {
|
|
if (locked)
|
|
mutex_unlock(&ctrblk_lock);
|
|
rc = -EKEYEXPIRED;
|
|
goto out;
|
|
}
|
|
rc = paes_convert_key(ctx);
|
|
if (rc) {
|
|
if (locked)
|
|
mutex_unlock(&ctrblk_lock);
|
|
goto out;
|
|
}
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
}
|
|
if (locked)
|
|
mutex_unlock(&ctrblk_lock);
|
|
|
|
/* final block may be < AES_BLOCK_SIZE, copy only nbytes */
|
|
if (nbytes) {
|
|
memset(buf, 0, AES_BLOCK_SIZE);
|
|
memcpy(buf, walk->src.virt.addr, nbytes);
|
|
while (1) {
|
|
if (cpacf_kmctr(ctx->fc, param, buf,
|
|
buf, AES_BLOCK_SIZE,
|
|
walk->iv) == AES_BLOCK_SIZE)
|
|
break;
|
|
if (!maysleep) {
|
|
rc = -EKEYEXPIRED;
|
|
goto out;
|
|
}
|
|
rc = paes_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key, ctx->pk.protkey, sizeof(param->key));
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
memcpy(walk->dst.virt.addr, buf, nbytes);
|
|
crypto_inc(walk->iv, AES_BLOCK_SIZE);
|
|
rc = skcipher_walk_done(walk, 0);
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int ctr_paes_crypt(struct skcipher_request *req)
|
|
{
|
|
struct s390_pctr_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/*
|
|
* Attempt synchronous encryption first. If it fails, schedule the request
|
|
* asynchronously via the crypto engine. To preserve execution order,
|
|
* once a request is queued to the engine, further requests using the same
|
|
* tfm will also be routed through the engine.
|
|
*/
|
|
|
|
rc = skcipher_walk_virt(walk, req, false);
|
|
if (rc)
|
|
goto out;
|
|
|
|
req_ctx->param_init_done = false;
|
|
|
|
/* Try synchronous operation if no active engine usage */
|
|
if (!atomic_read(&ctx->via_engine_ctr)) {
|
|
rc = ctr_paes_do_crypt(ctx, req_ctx, false);
|
|
if (rc == 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If sync operation failed or key expired or there are already
|
|
* requests enqueued via engine, fallback to async. Mark tfm as
|
|
* using engine to serialize requests.
|
|
*/
|
|
if (rc == 0 || rc == -EKEYEXPIRED) {
|
|
atomic_inc(&ctx->via_engine_ctr);
|
|
rc = crypto_transfer_skcipher_request_to_engine(paes_crypto_engine, req);
|
|
if (rc != -EINPROGRESS)
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
}
|
|
|
|
if (rc != -EINPROGRESS)
|
|
skcipher_walk_done(walk, rc);
|
|
|
|
out:
|
|
if (rc != -EINPROGRESS)
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int ctr_paes_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
spin_lock_init(&ctx->pk_lock);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct s390_pctr_req_ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ctr_paes_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memzero_explicit(ctx, sizeof(*ctx));
|
|
}
|
|
|
|
static int ctr_paes_do_one_request(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct skcipher_request *req = skcipher_request_cast(areq);
|
|
struct s390_pctr_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/* walk has already been prepared */
|
|
|
|
rc = ctr_paes_do_crypt(ctx, req_ctx, true);
|
|
if (rc == -EKEYEXPIRED) {
|
|
/*
|
|
* Protected key expired, conversion is in process.
|
|
* Trigger a re-schedule of this request by returning
|
|
* -ENOSPC ("hardware queue is full") to the crypto engine.
|
|
* To avoid immediately re-invocation of this callback,
|
|
* tell the scheduler to voluntarily give up the CPU here.
|
|
*/
|
|
cond_resched();
|
|
pr_debug("rescheduling request\n");
|
|
return -ENOSPC;
|
|
} else if (rc) {
|
|
skcipher_walk_done(walk, rc);
|
|
}
|
|
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("request complete with rc=%d\n", rc);
|
|
local_bh_disable();
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
crypto_finalize_skcipher_request(engine, req, rc);
|
|
local_bh_enable();
|
|
return rc;
|
|
}
|
|
|
|
static struct skcipher_engine_alg ctr_paes_alg = {
|
|
.base = {
|
|
.base.cra_name = "ctr(paes)",
|
|
.base.cra_driver_name = "ctr-paes-s390",
|
|
.base.cra_priority = 402, /* ecb-paes-s390 + 1 */
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct s390_paes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.base.cra_list = LIST_HEAD_INIT(ctr_paes_alg.base.base.cra_list),
|
|
.init = ctr_paes_init,
|
|
.exit = ctr_paes_exit,
|
|
.min_keysize = PAES_MIN_KEYSIZE,
|
|
.max_keysize = PAES_MAX_KEYSIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = ctr_paes_setkey,
|
|
.encrypt = ctr_paes_crypt,
|
|
.decrypt = ctr_paes_crypt,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
},
|
|
.op = {
|
|
.do_one_request = ctr_paes_do_one_request,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* PAES XTS implementation
|
|
*/
|
|
|
|
struct xts_full_km_param {
|
|
u8 key[64];
|
|
u8 tweak[16];
|
|
u8 nap[16];
|
|
u8 wkvp[32];
|
|
} __packed;
|
|
|
|
struct xts_km_param {
|
|
u8 key[PAES_256_PROTKEY_SIZE];
|
|
u8 init[16];
|
|
} __packed;
|
|
|
|
struct xts_pcc_param {
|
|
u8 key[PAES_256_PROTKEY_SIZE];
|
|
u8 tweak[16];
|
|
u8 block[16];
|
|
u8 bit[16];
|
|
u8 xts[16];
|
|
} __packed;
|
|
|
|
struct s390_pxts_req_ctx {
|
|
unsigned long modifier;
|
|
struct skcipher_walk walk;
|
|
bool param_init_done;
|
|
union {
|
|
struct xts_full_km_param full_km_param;
|
|
struct xts_km_param km_param;
|
|
} param;
|
|
};
|
|
|
|
static int xts_paes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int in_keylen)
|
|
{
|
|
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
u8 ckey[2 * AES_MAX_KEY_SIZE];
|
|
unsigned int ckey_len;
|
|
long fc;
|
|
int rc;
|
|
|
|
if ((in_keylen == 32 || in_keylen == 64) &&
|
|
xts_verify_key(tfm, in_key, in_keylen))
|
|
return -EINVAL;
|
|
|
|
/* set raw key into context */
|
|
rc = pxts_ctx_setkey(ctx, in_key, in_keylen);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* convert raw key(s) into protected key(s) */
|
|
rc = pxts_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/*
|
|
* xts_verify_key verifies the key length is not odd and makes
|
|
* sure that the two keys are not the same. This can be done
|
|
* on the two protected keys as well - but not for full xts keys.
|
|
*/
|
|
if (ctx->pk[0].type == PKEY_KEYTYPE_AES_128 ||
|
|
ctx->pk[0].type == PKEY_KEYTYPE_AES_256) {
|
|
ckey_len = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ?
|
|
AES_KEYSIZE_128 : AES_KEYSIZE_256;
|
|
memcpy(ckey, ctx->pk[0].protkey, ckey_len);
|
|
memcpy(ckey + ckey_len, ctx->pk[1].protkey, ckey_len);
|
|
rc = xts_verify_key(tfm, ckey, 2 * ckey_len);
|
|
memzero_explicit(ckey, sizeof(ckey));
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
/* Pick the correct function code based on the protected key type */
|
|
switch (ctx->pk[0].type) {
|
|
case PKEY_KEYTYPE_AES_128:
|
|
fc = CPACF_KM_PXTS_128;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_256:
|
|
fc = CPACF_KM_PXTS_256;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_XTS_128:
|
|
fc = CPACF_KM_PXTS_128_FULL;
|
|
break;
|
|
case PKEY_KEYTYPE_AES_XTS_256:
|
|
fc = CPACF_KM_PXTS_256_FULL;
|
|
break;
|
|
default:
|
|
fc = 0;
|
|
break;
|
|
}
|
|
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
|
|
|
|
rc = fc ? 0 : -EINVAL;
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int xts_paes_do_crypt_fullkey(struct s390_pxts_ctx *ctx,
|
|
struct s390_pxts_req_ctx *req_ctx,
|
|
bool maysleep)
|
|
{
|
|
struct xts_full_km_param *param = &req_ctx->param.full_km_param;
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
unsigned int keylen, offset, nbytes, n, k;
|
|
int rc = 0;
|
|
|
|
/*
|
|
* The calling function xts_paes_do_crypt() ensures the
|
|
* protected key state is always PK_STATE_VALID when this
|
|
* function is invoked.
|
|
*/
|
|
|
|
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 64;
|
|
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 0;
|
|
|
|
if (!req_ctx->param_init_done) {
|
|
memset(param, 0, sizeof(*param));
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key + offset, ctx->pk[0].protkey, keylen);
|
|
memcpy(param->wkvp, ctx->pk[0].protkey + keylen, sizeof(param->wkvp));
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
memcpy(param->tweak, walk->iv, sizeof(param->tweak));
|
|
param->nap[0] = 0x01; /* initial alpha power (1, little-endian) */
|
|
req_ctx->param_init_done = true;
|
|
}
|
|
|
|
/*
|
|
* Note that in case of partial processing or failure the walk
|
|
* is NOT unmapped here. So a follow up task may reuse the walk
|
|
* or in case of unrecoverable failure needs to unmap it.
|
|
*/
|
|
while ((nbytes = walk->nbytes) != 0) {
|
|
/* only use complete blocks */
|
|
n = nbytes & ~(AES_BLOCK_SIZE - 1);
|
|
k = cpacf_km(ctx->fc | req_ctx->modifier, param->key + offset,
|
|
walk->dst.virt.addr, walk->src.virt.addr, n);
|
|
if (k)
|
|
rc = skcipher_walk_done(walk, nbytes - k);
|
|
if (k < n) {
|
|
if (!maysleep) {
|
|
rc = -EKEYEXPIRED;
|
|
goto out;
|
|
}
|
|
rc = pxts_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key + offset, ctx->pk[0].protkey, keylen);
|
|
memcpy(param->wkvp, ctx->pk[0].protkey + keylen, sizeof(param->wkvp));
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static inline int __xts_2keys_prep_param(struct s390_pxts_ctx *ctx,
|
|
struct xts_km_param *param,
|
|
struct skcipher_walk *walk,
|
|
unsigned int keylen,
|
|
unsigned int offset, bool maysleep)
|
|
{
|
|
struct xts_pcc_param pcc_param;
|
|
unsigned long cc = 1;
|
|
int rc = 0;
|
|
|
|
while (cc) {
|
|
memset(&pcc_param, 0, sizeof(pcc_param));
|
|
memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(pcc_param.key + offset, ctx->pk[1].protkey, keylen);
|
|
memcpy(param->key + offset, ctx->pk[0].protkey, keylen);
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
cc = cpacf_pcc(ctx->fc, pcc_param.key + offset);
|
|
if (cc) {
|
|
if (!maysleep) {
|
|
rc = -EKEYEXPIRED;
|
|
break;
|
|
}
|
|
rc = pxts_convert_key(ctx);
|
|
if (rc)
|
|
break;
|
|
continue;
|
|
}
|
|
memcpy(param->init, pcc_param.xts, 16);
|
|
}
|
|
|
|
memzero_explicit(pcc_param.key, sizeof(pcc_param.key));
|
|
return rc;
|
|
}
|
|
|
|
static int xts_paes_do_crypt_2keys(struct s390_pxts_ctx *ctx,
|
|
struct s390_pxts_req_ctx *req_ctx,
|
|
bool maysleep)
|
|
{
|
|
struct xts_km_param *param = &req_ctx->param.km_param;
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
unsigned int keylen, offset, nbytes, n, k;
|
|
int rc = 0;
|
|
|
|
/*
|
|
* The calling function xts_paes_do_crypt() ensures the
|
|
* protected key state is always PK_STATE_VALID when this
|
|
* function is invoked.
|
|
*/
|
|
|
|
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64;
|
|
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0;
|
|
|
|
if (!req_ctx->param_init_done) {
|
|
rc = __xts_2keys_prep_param(ctx, param, walk,
|
|
keylen, offset, maysleep);
|
|
if (rc)
|
|
goto out;
|
|
req_ctx->param_init_done = true;
|
|
}
|
|
|
|
/*
|
|
* Note that in case of partial processing or failure the walk
|
|
* is NOT unmapped here. So a follow up task may reuse the walk
|
|
* or in case of unrecoverable failure needs to unmap it.
|
|
*/
|
|
while ((nbytes = walk->nbytes) != 0) {
|
|
/* only use complete blocks */
|
|
n = nbytes & ~(AES_BLOCK_SIZE - 1);
|
|
k = cpacf_km(ctx->fc | req_ctx->modifier, param->key + offset,
|
|
walk->dst.virt.addr, walk->src.virt.addr, n);
|
|
if (k)
|
|
rc = skcipher_walk_done(walk, nbytes - k);
|
|
if (k < n) {
|
|
if (!maysleep) {
|
|
rc = -EKEYEXPIRED;
|
|
goto out;
|
|
}
|
|
rc = pxts_convert_key(ctx);
|
|
if (rc)
|
|
goto out;
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
memcpy(param->key + offset, ctx->pk[0].protkey, keylen);
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
}
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int xts_paes_do_crypt(struct s390_pxts_ctx *ctx,
|
|
struct s390_pxts_req_ctx *req_ctx,
|
|
bool maysleep)
|
|
{
|
|
int pk_state, rc = 0;
|
|
|
|
/* fetch and check protected key state */
|
|
spin_lock_bh(&ctx->pk_lock);
|
|
pk_state = ctx->pk_state;
|
|
switch (pk_state) {
|
|
case PK_STATE_NO_KEY:
|
|
rc = -ENOKEY;
|
|
break;
|
|
case PK_STATE_CONVERT_IN_PROGRESS:
|
|
rc = -EKEYEXPIRED;
|
|
break;
|
|
case PK_STATE_VALID:
|
|
break;
|
|
default:
|
|
rc = pk_state < 0 ? pk_state : -EIO;
|
|
break;
|
|
}
|
|
spin_unlock_bh(&ctx->pk_lock);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Call the 'real' crypt function based on the xts prot key type. */
|
|
switch (ctx->fc) {
|
|
case CPACF_KM_PXTS_128:
|
|
case CPACF_KM_PXTS_256:
|
|
rc = xts_paes_do_crypt_2keys(ctx, req_ctx, maysleep);
|
|
break;
|
|
case CPACF_KM_PXTS_128_FULL:
|
|
case CPACF_KM_PXTS_256_FULL:
|
|
rc = xts_paes_do_crypt_fullkey(ctx, req_ctx, maysleep);
|
|
break;
|
|
default:
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
out:
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static inline int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
|
|
{
|
|
struct s390_pxts_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/*
|
|
* Attempt synchronous encryption first. If it fails, schedule the request
|
|
* asynchronously via the crypto engine. To preserve execution order,
|
|
* once a request is queued to the engine, further requests using the same
|
|
* tfm will also be routed through the engine.
|
|
*/
|
|
|
|
rc = skcipher_walk_virt(walk, req, false);
|
|
if (rc)
|
|
goto out;
|
|
|
|
req_ctx->modifier = modifier;
|
|
req_ctx->param_init_done = false;
|
|
|
|
/* Try synchronous operation if no active engine usage */
|
|
if (!atomic_read(&ctx->via_engine_ctr)) {
|
|
rc = xts_paes_do_crypt(ctx, req_ctx, false);
|
|
if (rc == 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If sync operation failed or key expired or there are already
|
|
* requests enqueued via engine, fallback to async. Mark tfm as
|
|
* using engine to serialize requests.
|
|
*/
|
|
if (rc == 0 || rc == -EKEYEXPIRED) {
|
|
atomic_inc(&ctx->via_engine_ctr);
|
|
rc = crypto_transfer_skcipher_request_to_engine(paes_crypto_engine, req);
|
|
if (rc != -EINPROGRESS)
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
}
|
|
|
|
if (rc != -EINPROGRESS)
|
|
skcipher_walk_done(walk, rc);
|
|
|
|
out:
|
|
if (rc != -EINPROGRESS)
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
static int xts_paes_encrypt(struct skcipher_request *req)
|
|
{
|
|
return xts_paes_crypt(req, 0);
|
|
}
|
|
|
|
static int xts_paes_decrypt(struct skcipher_request *req)
|
|
{
|
|
return xts_paes_crypt(req, CPACF_DECRYPT);
|
|
}
|
|
|
|
static int xts_paes_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
spin_lock_init(&ctx->pk_lock);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct s390_pxts_req_ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xts_paes_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memzero_explicit(ctx, sizeof(*ctx));
|
|
}
|
|
|
|
static int xts_paes_do_one_request(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct skcipher_request *req = skcipher_request_cast(areq);
|
|
struct s390_pxts_req_ctx *req_ctx = skcipher_request_ctx(req);
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk *walk = &req_ctx->walk;
|
|
int rc;
|
|
|
|
/* walk has already been prepared */
|
|
|
|
rc = xts_paes_do_crypt(ctx, req_ctx, true);
|
|
if (rc == -EKEYEXPIRED) {
|
|
/*
|
|
* Protected key expired, conversion is in process.
|
|
* Trigger a re-schedule of this request by returning
|
|
* -ENOSPC ("hardware queue is full") to the crypto engine.
|
|
* To avoid immediately re-invocation of this callback,
|
|
* tell the scheduler to voluntarily give up the CPU here.
|
|
*/
|
|
cond_resched();
|
|
pr_debug("rescheduling request\n");
|
|
return -ENOSPC;
|
|
} else if (rc) {
|
|
skcipher_walk_done(walk, rc);
|
|
}
|
|
|
|
memzero_explicit(&req_ctx->param, sizeof(req_ctx->param));
|
|
pr_debug("request complete with rc=%d\n", rc);
|
|
local_bh_disable();
|
|
atomic_dec(&ctx->via_engine_ctr);
|
|
crypto_finalize_skcipher_request(engine, req, rc);
|
|
local_bh_enable();
|
|
return rc;
|
|
}
|
|
|
|
static struct skcipher_engine_alg xts_paes_alg = {
|
|
.base = {
|
|
.base.cra_name = "xts(paes)",
|
|
.base.cra_driver_name = "xts-paes-s390",
|
|
.base.cra_priority = 402, /* ecb-paes-s390 + 1 */
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct s390_pxts_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.base.cra_list = LIST_HEAD_INIT(xts_paes_alg.base.base.cra_list),
|
|
.init = xts_paes_init,
|
|
.exit = xts_paes_exit,
|
|
.min_keysize = 2 * PAES_MIN_KEYSIZE,
|
|
.max_keysize = 2 * PAES_MAX_KEYSIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = xts_paes_setkey,
|
|
.encrypt = xts_paes_encrypt,
|
|
.decrypt = xts_paes_decrypt,
|
|
},
|
|
.op = {
|
|
.do_one_request = xts_paes_do_one_request,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* alg register, unregister, module init, exit
|
|
*/
|
|
|
|
static struct miscdevice paes_dev = {
|
|
.name = "paes",
|
|
.minor = MISC_DYNAMIC_MINOR,
|
|
};
|
|
|
|
static inline void __crypto_unregister_skcipher(struct skcipher_engine_alg *alg)
|
|
{
|
|
if (!list_empty(&alg->base.base.cra_list))
|
|
crypto_engine_unregister_skcipher(alg);
|
|
}
|
|
|
|
static void paes_s390_fini(void)
|
|
{
|
|
if (paes_crypto_engine) {
|
|
crypto_engine_stop(paes_crypto_engine);
|
|
crypto_engine_exit(paes_crypto_engine);
|
|
}
|
|
__crypto_unregister_skcipher(&ctr_paes_alg);
|
|
__crypto_unregister_skcipher(&xts_paes_alg);
|
|
__crypto_unregister_skcipher(&cbc_paes_alg);
|
|
__crypto_unregister_skcipher(&ecb_paes_alg);
|
|
if (ctrblk)
|
|
free_page((unsigned long)ctrblk);
|
|
misc_deregister(&paes_dev);
|
|
}
|
|
|
|
static int __init paes_s390_init(void)
|
|
{
|
|
int rc;
|
|
|
|
/* register a simple paes pseudo misc device */
|
|
rc = misc_register(&paes_dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* with this pseudo devie alloc and start a crypto engine */
|
|
paes_crypto_engine =
|
|
crypto_engine_alloc_init_and_set(paes_dev.this_device,
|
|
true, NULL, false, MAX_QLEN);
|
|
if (!paes_crypto_engine) {
|
|
rc = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
rc = crypto_engine_start(paes_crypto_engine);
|
|
if (rc) {
|
|
crypto_engine_exit(paes_crypto_engine);
|
|
paes_crypto_engine = NULL;
|
|
goto out_err;
|
|
}
|
|
|
|
/* Query available functions for KM, KMC and KMCTR */
|
|
cpacf_query(CPACF_KM, &km_functions);
|
|
cpacf_query(CPACF_KMC, &kmc_functions);
|
|
cpacf_query(CPACF_KMCTR, &kmctr_functions);
|
|
|
|
if (cpacf_test_func(&km_functions, CPACF_KM_PAES_128) ||
|
|
cpacf_test_func(&km_functions, CPACF_KM_PAES_192) ||
|
|
cpacf_test_func(&km_functions, CPACF_KM_PAES_256)) {
|
|
rc = crypto_engine_register_skcipher(&ecb_paes_alg);
|
|
if (rc)
|
|
goto out_err;
|
|
pr_debug("%s registered\n", ecb_paes_alg.base.base.cra_driver_name);
|
|
}
|
|
|
|
if (cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) ||
|
|
cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) ||
|
|
cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256)) {
|
|
rc = crypto_engine_register_skcipher(&cbc_paes_alg);
|
|
if (rc)
|
|
goto out_err;
|
|
pr_debug("%s registered\n", cbc_paes_alg.base.base.cra_driver_name);
|
|
}
|
|
|
|
if (cpacf_test_func(&km_functions, CPACF_KM_PXTS_128) ||
|
|
cpacf_test_func(&km_functions, CPACF_KM_PXTS_256)) {
|
|
rc = crypto_engine_register_skcipher(&xts_paes_alg);
|
|
if (rc)
|
|
goto out_err;
|
|
pr_debug("%s registered\n", xts_paes_alg.base.base.cra_driver_name);
|
|
}
|
|
|
|
if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_128) ||
|
|
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_192) ||
|
|
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) {
|
|
ctrblk = (u8 *)__get_free_page(GFP_KERNEL);
|
|
if (!ctrblk) {
|
|
rc = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
rc = crypto_engine_register_skcipher(&ctr_paes_alg);
|
|
if (rc)
|
|
goto out_err;
|
|
pr_debug("%s registered\n", ctr_paes_alg.base.base.cra_driver_name);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
paes_s390_fini();
|
|
return rc;
|
|
}
|
|
|
|
module_init(paes_s390_init);
|
|
module_exit(paes_s390_fini);
|
|
|
|
MODULE_ALIAS_CRYPTO("ecb(paes)");
|
|
MODULE_ALIAS_CRYPTO("cbc(paes)");
|
|
MODULE_ALIAS_CRYPTO("ctr(paes)");
|
|
MODULE_ALIAS_CRYPTO("xts(paes)");
|
|
|
|
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm with protected keys");
|
|
MODULE_LICENSE("GPL");
|