linux/drivers/gpu/nova-core/firmware/gsp.rs

244 lines
9.2 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
use core::mem::size_of_val;
use kernel::device;
use kernel::dma::{DataDirection, DmaAddress};
use kernel::kvec;
use kernel::prelude::*;
use kernel::scatterlist::{Owned, SGTable};
use crate::dma::DmaObject;
use crate::firmware::riscv::RiscvFirmware;
use crate::gpu::{Architecture, Chipset};
use crate::gsp::GSP_PAGE_SIZE;
/// Ad-hoc and temporary module to extract sections from ELF images.
///
/// Some firmware images are currently packaged as ELF files, where sections names are used as keys
/// to specific and related bits of data. Future firmware versions are scheduled to move away from
/// that scheme before nova-core becomes stable, which means this module will eventually be
/// removed.
mod elf {
use core::mem::size_of;
use kernel::bindings;
use kernel::str::CStr;
use kernel::transmute::FromBytes;
/// Newtype to provide a [`FromBytes`] implementation.
#[repr(transparent)]
struct Elf64Hdr(bindings::elf64_hdr);
// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
unsafe impl FromBytes for Elf64Hdr {}
#[repr(transparent)]
struct Elf64SHdr(bindings::elf64_shdr);
// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
unsafe impl FromBytes for Elf64SHdr {}
/// Tries to extract section with name `name` from the ELF64 image `elf`, and returns it.
pub(super) fn elf64_section<'a, 'b>(elf: &'a [u8], name: &'b str) -> Option<&'a [u8]> {
let hdr = &elf
.get(0..size_of::<bindings::elf64_hdr>())
.and_then(Elf64Hdr::from_bytes)?
.0;
// Get all the section headers.
let mut shdr = {
let shdr_num = usize::from(hdr.e_shnum);
let shdr_start = usize::try_from(hdr.e_shoff).ok()?;
let shdr_end = shdr_num
.checked_mul(size_of::<Elf64SHdr>())
.and_then(|v| v.checked_add(shdr_start))?;
elf.get(shdr_start..shdr_end)
.map(|slice| slice.chunks_exact(size_of::<Elf64SHdr>()))?
};
// Get the strings table.
let strhdr = shdr
.clone()
.nth(usize::from(hdr.e_shstrndx))
.and_then(Elf64SHdr::from_bytes)?;
// Find the section which name matches `name` and return it.
shdr.find(|&sh| {
let Some(hdr) = Elf64SHdr::from_bytes(sh) else {
return false;
};
let Some(name_idx) = strhdr
.0
.sh_offset
.checked_add(u64::from(hdr.0.sh_name))
.and_then(|idx| usize::try_from(idx).ok())
else {
return false;
};
// Get the start of the name.
elf.get(name_idx..)
// Stop at the first `0`.
.and_then(|nstr| nstr.get(0..=nstr.iter().position(|b| *b == 0)?))
// Convert into CStr. This should never fail because of the line above.
.and_then(|nstr| CStr::from_bytes_with_nul(nstr).ok())
// Convert into str.
.and_then(|c_str| c_str.to_str().ok())
// Check that the name matches.
.map(|str| str == name)
.unwrap_or(false)
})
// Return the slice containing the section.
.and_then(|sh| {
let hdr = Elf64SHdr::from_bytes(sh)?;
let start = usize::try_from(hdr.0.sh_offset).ok()?;
let end = usize::try_from(hdr.0.sh_size)
.ok()
.and_then(|sh_size| start.checked_add(sh_size))?;
elf.get(start..end)
})
}
}
/// GSP firmware with 3-level radix page tables for the GSP bootloader.
///
/// The bootloader expects firmware to be mapped starting at address 0 in GSP's virtual address
/// space:
///
/// ```text
/// Level 0: 1 page, 1 entry -> points to first level 1 page
/// Level 1: Multiple pages/entries -> each entry points to a level 2 page
/// Level 2: Multiple pages/entries -> each entry points to a firmware page
/// ```
///
/// Each page is 4KB, each entry is 8 bytes (64-bit DMA address).
/// Also known as "Radix3" firmware.
#[pin_data]
pub(crate) struct GspFirmware {
/// The GSP firmware inside a [`VVec`], device-mapped via a SG table.
#[pin]
fw: SGTable<Owned<VVec<u8>>>,
/// Level 2 page table whose entries contain DMA addresses of firmware pages.
#[pin]
level2: SGTable<Owned<VVec<u8>>>,
/// Level 1 page table whose entries contain DMA addresses of level 2 pages.
#[pin]
level1: SGTable<Owned<VVec<u8>>>,
/// Level 0 page table (single 4KB page) with one entry: DMA address of first level 1 page.
level0: DmaObject,
/// Size in bytes of the firmware contained in [`Self::fw`].
size: usize,
/// Device-mapped GSP signatures matching the GPU's [`Chipset`].
signatures: DmaObject,
/// GSP bootloader, verifies the GSP firmware before loading and running it.
bootloader: RiscvFirmware,
}
impl GspFirmware {
/// Loads the GSP firmware binaries, map them into `dev`'s address-space, and creates the page
/// tables expected by the GSP bootloader to load it.
pub(crate) fn new<'a, 'b>(
dev: &'a device::Device<device::Bound>,
chipset: Chipset,
ver: &'b str,
) -> Result<impl PinInit<Self, Error> + 'a> {
let fw = super::request_firmware(dev, chipset, "gsp", ver)?;
let fw_section = elf::elf64_section(fw.data(), ".fwimage").ok_or(EINVAL)?;
let sigs_section = match chipset.arch() {
Architecture::Ampere => ".fwsignature_ga10x",
_ => return Err(ENOTSUPP),
};
let signatures = elf::elf64_section(fw.data(), sigs_section)
.ok_or(EINVAL)
.and_then(|data| DmaObject::from_data(dev, data))?;
let size = fw_section.len();
// Move the firmware into a vmalloc'd vector and map it into the device address
// space.
let fw_vvec = VVec::with_capacity(fw_section.len(), GFP_KERNEL)
.and_then(|mut v| {
v.extend_from_slice(fw_section, GFP_KERNEL)?;
Ok(v)
})
.map_err(|_| ENOMEM)?;
let bl = super::request_firmware(dev, chipset, "bootloader", ver)?;
let bootloader = RiscvFirmware::new(dev, &bl)?;
Ok(try_pin_init!(Self {
fw <- SGTable::new(dev, fw_vvec, DataDirection::ToDevice, GFP_KERNEL),
level2 <- {
// Allocate the level 2 page table, map the firmware onto it, and map it into the
// device address space.
VVec::<u8>::with_capacity(
fw.iter().count() * core::mem::size_of::<u64>(),
GFP_KERNEL,
)
.map_err(|_| ENOMEM)
.and_then(|level2| map_into_lvl(&fw, level2))
.map(|level2| SGTable::new(dev, level2, DataDirection::ToDevice, GFP_KERNEL))?
},
level1 <- {
// Allocate the level 1 page table, map the level 2 page table onto it, and map it
// into the device address space.
VVec::<u8>::with_capacity(
level2.iter().count() * core::mem::size_of::<u64>(),
GFP_KERNEL,
)
.map_err(|_| ENOMEM)
.and_then(|level1| map_into_lvl(&level2, level1))
.map(|level1| SGTable::new(dev, level1, DataDirection::ToDevice, GFP_KERNEL))?
},
level0: {
// Allocate the level 0 page table as a device-visible DMA object, and map the
// level 1 page table onto it.
// Level 0 page table data.
let mut level0_data = kvec![0u8; GSP_PAGE_SIZE]?;
// Fill level 1 page entry.
#[allow(clippy::useless_conversion)]
let level1_entry = u64::from(level1.iter().next().unwrap().dma_address());
let dst = &mut level0_data[..size_of_val(&level1_entry)];
dst.copy_from_slice(&level1_entry.to_le_bytes());
// Turn the level0 page table into a [`DmaObject`].
DmaObject::from_data(dev, &level0_data)?
},
size,
signatures,
bootloader,
}))
}
#[expect(unused)]
/// Returns the DMA handle of the radix3 level 0 page table.
pub(crate) fn radix3_dma_handle(&self) -> DmaAddress {
self.level0.dma_handle()
}
}
/// Build a page table from a scatter-gather list.
///
/// Takes each DMA-mapped region from `sg_table` and writes page table entries
/// for all 4KB pages within that region. For example, a 16KB SG entry becomes
/// 4 consecutive page table entries.
fn map_into_lvl(sg_table: &SGTable<Owned<VVec<u8>>>, mut dst: VVec<u8>) -> Result<VVec<u8>> {
for sg_entry in sg_table.iter() {
// Number of pages we need to map.
let num_pages = (sg_entry.dma_len() as usize).div_ceil(GSP_PAGE_SIZE);
for i in 0..num_pages {
let entry = sg_entry.dma_address() + (i as u64 * GSP_PAGE_SIZE as u64);
dst.extend_from_slice(&entry.to_le_bytes(), GFP_KERNEL)?;
}
}
Ok(dst)
}