linux/drivers/gpu/nova-core/firmware/booter.rs

376 lines
13 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Support for loading and patching the `Booter` firmware. `Booter` is a Heavy Secured firmware
//! running on [`Sec2`], that is used on Turing/Ampere to load the GSP firmware into the GSP falcon
//! (and optionally unload it through a separate firmware image).
use core::marker::PhantomData;
use core::mem::size_of;
use core::ops::Deref;
use kernel::device;
use kernel::prelude::*;
use kernel::transmute::FromBytes;
use crate::dma::DmaObject;
use crate::driver::Bar0;
use crate::falcon::sec2::Sec2;
use crate::falcon::{Falcon, FalconBromParams, FalconFirmware, FalconLoadParams, FalconLoadTarget};
use crate::firmware::{BinFirmware, FirmwareDmaObject, FirmwareSignature, Signed, Unsigned};
use crate::gpu::Chipset;
/// Local convenience function to return a copy of `S` by reinterpreting the bytes starting at
/// `offset` in `slice`.
fn frombytes_at<S: FromBytes + Sized>(slice: &[u8], offset: usize) -> Result<S> {
slice
.get(offset..offset + size_of::<S>())
.and_then(S::from_bytes_copy)
.ok_or(EINVAL)
}
/// Heavy-Secured firmware header.
///
/// Such firmwares have an application-specific payload that needs to be patched with a given
/// signature.
#[repr(C)]
#[derive(Debug, Clone)]
struct HsHeaderV2 {
/// Offset to the start of the signatures.
sig_prod_offset: u32,
/// Size in bytes of the signatures.
sig_prod_size: u32,
/// Offset to a `u32` containing the location at which to patch the signature in the microcode
/// image.
patch_loc_offset: u32,
/// Offset to a `u32` containing the index of the signature to patch.
patch_sig_offset: u32,
/// Start offset to the signature metadata.
meta_data_offset: u32,
/// Size in bytes of the signature metadata.
meta_data_size: u32,
/// Offset to a `u32` containing the number of signatures in the signatures section.
num_sig_offset: u32,
/// Offset of the application-specific header.
header_offset: u32,
/// Size in bytes of the application-specific header.
header_size: u32,
}
// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
unsafe impl FromBytes for HsHeaderV2 {}
/// Heavy-Secured Firmware image container.
///
/// This provides convenient access to the fields of [`HsHeaderV2`] that are actually indices to
/// read from in the firmware data.
struct HsFirmwareV2<'a> {
hdr: HsHeaderV2,
fw: &'a [u8],
}
impl<'a> HsFirmwareV2<'a> {
/// Interprets the header of `bin_fw` as a [`HsHeaderV2`] and returns an instance of
/// `HsFirmwareV2` for further parsing.
///
/// Fails if the header pointed at by `bin_fw` is not within the bounds of the firmware image.
fn new(bin_fw: &BinFirmware<'a>) -> Result<Self> {
frombytes_at::<HsHeaderV2>(bin_fw.fw, bin_fw.hdr.header_offset as usize)
.map(|hdr| Self { hdr, fw: bin_fw.fw })
}
/// Returns the location at which the signatures should be patched in the microcode image.
///
/// Fails if the offset of the patch location is outside the bounds of the firmware
/// image.
fn patch_location(&self) -> Result<u32> {
frombytes_at::<u32>(self.fw, self.hdr.patch_loc_offset as usize)
}
/// Returns an iterator to the signatures of the firmware. The iterator can be empty if the
/// firmware is unsigned.
///
/// Fails if the pointed signatures are outside the bounds of the firmware image.
fn signatures_iter(&'a self) -> Result<impl Iterator<Item = BooterSignature<'a>>> {
let num_sig = frombytes_at::<u32>(self.fw, self.hdr.num_sig_offset as usize)?;
let iter = match self.hdr.sig_prod_size.checked_div(num_sig) {
// If there are no signatures, return an iterator that will yield zero elements.
None => (&[] as &[u8]).chunks_exact(1),
Some(sig_size) => {
let patch_sig = frombytes_at::<u32>(self.fw, self.hdr.patch_sig_offset as usize)?;
let signatures_start = (self.hdr.sig_prod_offset + patch_sig) as usize;
self.fw
// Get signatures range.
.get(signatures_start..signatures_start + self.hdr.sig_prod_size as usize)
.ok_or(EINVAL)?
.chunks_exact(sig_size as usize)
}
};
// Map the byte slices into signatures.
Ok(iter.map(BooterSignature))
}
}
/// Signature parameters, as defined in the firmware.
#[repr(C)]
struct HsSignatureParams {
/// Fuse version to use.
fuse_ver: u32,
/// Mask of engine IDs this firmware applies to.
engine_id_mask: u32,
/// ID of the microcode.
ucode_id: u32,
}
// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
unsafe impl FromBytes for HsSignatureParams {}
impl HsSignatureParams {
/// Returns the signature parameters contained in `hs_fw`.
///
/// Fails if the meta data parameter of `hs_fw` is outside the bounds of the firmware image, or
/// if its size doesn't match that of [`HsSignatureParams`].
fn new(hs_fw: &HsFirmwareV2<'_>) -> Result<Self> {
let start = hs_fw.hdr.meta_data_offset as usize;
let end = start
.checked_add(hs_fw.hdr.meta_data_size as usize)
.ok_or(EINVAL)?;
hs_fw
.fw
.get(start..end)
.and_then(Self::from_bytes_copy)
.ok_or(EINVAL)
}
}
/// Header for code and data load offsets.
#[repr(C)]
#[derive(Debug, Clone)]
struct HsLoadHeaderV2 {
// Offset at which the code starts.
os_code_offset: u32,
// Total size of the code, for all apps.
os_code_size: u32,
// Offset at which the data starts.
os_data_offset: u32,
// Size of the data.
os_data_size: u32,
// Number of apps following this header. Each app is described by a [`HsLoadHeaderV2App`].
num_apps: u32,
}
// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
unsafe impl FromBytes for HsLoadHeaderV2 {}
impl HsLoadHeaderV2 {
/// Returns the load header contained in `hs_fw`.
///
/// Fails if the header pointed at by `hs_fw` is not within the bounds of the firmware image.
fn new(hs_fw: &HsFirmwareV2<'_>) -> Result<Self> {
frombytes_at::<Self>(hs_fw.fw, hs_fw.hdr.header_offset as usize)
}
}
/// Header for app code loader.
#[repr(C)]
#[derive(Debug, Clone)]
struct HsLoadHeaderV2App {
/// Offset at which to load the app code.
offset: u32,
/// Length in bytes of the app code.
len: u32,
}
// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
unsafe impl FromBytes for HsLoadHeaderV2App {}
impl HsLoadHeaderV2App {
/// Returns the [`HsLoadHeaderV2App`] for app `idx` of `hs_fw`.
///
/// Fails if `idx` is larger than the number of apps declared in `hs_fw`, or if the header is
/// not within the bounds of the firmware image.
fn new(hs_fw: &HsFirmwareV2<'_>, idx: u32) -> Result<Self> {
let load_hdr = HsLoadHeaderV2::new(hs_fw)?;
if idx >= load_hdr.num_apps {
Err(EINVAL)
} else {
frombytes_at::<Self>(
hs_fw.fw,
(hs_fw.hdr.header_offset as usize)
// Skip the load header...
.checked_add(size_of::<HsLoadHeaderV2>())
// ... and jump to app header `idx`.
.and_then(|offset| {
offset.checked_add((idx as usize).checked_mul(size_of::<Self>())?)
})
.ok_or(EINVAL)?,
)
}
}
}
/// Signature for Booter firmware. Their size is encoded into the header and not known a compile
/// time, so we just wrap a byte slices on which we can implement [`FirmwareSignature`].
struct BooterSignature<'a>(&'a [u8]);
impl<'a> AsRef<[u8]> for BooterSignature<'a> {
fn as_ref(&self) -> &[u8] {
self.0
}
}
impl<'a> FirmwareSignature<BooterFirmware> for BooterSignature<'a> {}
/// The `Booter` loader firmware, responsible for loading the GSP.
pub(crate) struct BooterFirmware {
// Load parameters for `IMEM` falcon memory.
imem_load_target: FalconLoadTarget,
// Load parameters for `DMEM` falcon memory.
dmem_load_target: FalconLoadTarget,
// BROM falcon parameters.
brom_params: FalconBromParams,
// Device-mapped firmware image.
ucode: FirmwareDmaObject<Self, Signed>,
}
impl FirmwareDmaObject<BooterFirmware, Unsigned> {
fn new_booter(dev: &device::Device<device::Bound>, data: &[u8]) -> Result<Self> {
DmaObject::from_data(dev, data).map(|ucode| Self(ucode, PhantomData))
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub(crate) enum BooterKind {
Loader,
#[expect(unused)]
Unloader,
}
impl BooterFirmware {
/// Parses the Booter firmware contained in `fw`, and patches the correct signature so it is
/// ready to be loaded and run on `falcon`.
pub(crate) fn new(
dev: &device::Device<device::Bound>,
kind: BooterKind,
chipset: Chipset,
ver: &str,
falcon: &Falcon<<Self as FalconFirmware>::Target>,
bar: &Bar0,
) -> Result<Self> {
let fw_name = match kind {
BooterKind::Loader => "booter_load",
BooterKind::Unloader => "booter_unload",
};
let fw = super::request_firmware(dev, chipset, fw_name, ver)?;
let bin_fw = BinFirmware::new(&fw)?;
// The binary firmware embeds a Heavy-Secured firmware.
let hs_fw = HsFirmwareV2::new(&bin_fw)?;
// The Heavy-Secured firmware embeds a firmware load descriptor.
let load_hdr = HsLoadHeaderV2::new(&hs_fw)?;
// Offset in `ucode` where to patch the signature.
let patch_loc = hs_fw.patch_location()?;
let sig_params = HsSignatureParams::new(&hs_fw)?;
let brom_params = FalconBromParams {
// `load_hdr.os_data_offset` is an absolute index, but `pkc_data_offset` is from the
// signature patch location.
pkc_data_offset: patch_loc
.checked_sub(load_hdr.os_data_offset)
.ok_or(EINVAL)?,
engine_id_mask: u16::try_from(sig_params.engine_id_mask).map_err(|_| EINVAL)?,
ucode_id: u8::try_from(sig_params.ucode_id).map_err(|_| EINVAL)?,
};
let app0 = HsLoadHeaderV2App::new(&hs_fw, 0)?;
// Object containing the firmware microcode to be signature-patched.
let ucode = bin_fw
.data()
.ok_or(EINVAL)
.and_then(|data| FirmwareDmaObject::<Self, _>::new_booter(dev, data))?;
let ucode_signed = {
let mut signatures = hs_fw.signatures_iter()?.peekable();
if signatures.peek().is_none() {
// If there are no signatures, then the firmware is unsigned.
ucode.no_patch_signature()
} else {
// Obtain the version from the fuse register, and extract the corresponding
// signature.
let reg_fuse_version = falcon.signature_reg_fuse_version(
bar,
brom_params.engine_id_mask,
brom_params.ucode_id,
)?;
// `0` means the last signature should be used.
const FUSE_VERSION_USE_LAST_SIG: u32 = 0;
let signature = match reg_fuse_version {
FUSE_VERSION_USE_LAST_SIG => signatures.last(),
// Otherwise hardware fuse version needs to be subtracted to obtain the index.
reg_fuse_version => {
let Some(idx) = sig_params.fuse_ver.checked_sub(reg_fuse_version) else {
dev_err!(dev, "invalid fuse version for Booter firmware\n");
return Err(EINVAL);
};
signatures.nth(idx as usize)
}
}
.ok_or(EINVAL)?;
ucode.patch_signature(&signature, patch_loc as usize)?
}
};
Ok(Self {
imem_load_target: FalconLoadTarget {
src_start: app0.offset,
dst_start: 0,
len: app0.len,
},
dmem_load_target: FalconLoadTarget {
src_start: load_hdr.os_data_offset,
dst_start: 0,
len: load_hdr.os_data_size,
},
brom_params,
ucode: ucode_signed,
})
}
}
impl FalconLoadParams for BooterFirmware {
fn imem_load_params(&self) -> FalconLoadTarget {
self.imem_load_target.clone()
}
fn dmem_load_params(&self) -> FalconLoadTarget {
self.dmem_load_target.clone()
}
fn brom_params(&self) -> FalconBromParams {
self.brom_params.clone()
}
fn boot_addr(&self) -> u32 {
self.imem_load_target.src_start
}
}
impl Deref for BooterFirmware {
type Target = DmaObject;
fn deref(&self) -> &Self::Target {
&self.ucode.0
}
}
impl FalconFirmware for BooterFirmware {
type Target = Sec2;
}