mirror of https://github.com/torvalds/linux.git
308 lines
9.8 KiB
C
308 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* POLYVAL library functions
|
|
*
|
|
* Copyright 2025 Google LLC
|
|
*/
|
|
|
|
#include <crypto/polyval.h>
|
|
#include <linux/export.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <linux/unaligned.h>
|
|
|
|
/*
|
|
* POLYVAL is an almost-XOR-universal hash function. Similar to GHASH, POLYVAL
|
|
* interprets the message as the coefficients of a polynomial in GF(2^128) and
|
|
* evaluates that polynomial at a secret point. POLYVAL has a simple
|
|
* mathematical relationship with GHASH, but it uses a better field convention
|
|
* which makes it easier and faster to implement.
|
|
*
|
|
* POLYVAL is not a cryptographic hash function, and it should be used only by
|
|
* algorithms that are specifically designed to use it.
|
|
*
|
|
* POLYVAL is specified by "AES-GCM-SIV: Nonce Misuse-Resistant Authenticated
|
|
* Encryption" (https://datatracker.ietf.org/doc/html/rfc8452)
|
|
*
|
|
* POLYVAL is also used by HCTR2. See "Length-preserving encryption with HCTR2"
|
|
* (https://eprint.iacr.org/2021/1441.pdf).
|
|
*
|
|
* This file provides a library API for POLYVAL. This API can delegate to
|
|
* either a generic implementation or an architecture-optimized implementation.
|
|
*
|
|
* For the generic implementation, we don't use the traditional table approach
|
|
* to GF(2^128) multiplication. That approach is not constant-time and requires
|
|
* a lot of memory. Instead, we use a different approach which emulates
|
|
* carryless multiplication using standard multiplications by spreading the data
|
|
* bits apart using "holes". This allows the carries to spill harmlessly. This
|
|
* approach is borrowed from BoringSSL, which in turn credits BearSSL's
|
|
* documentation (https://bearssl.org/constanttime.html#ghash-for-gcm) for the
|
|
* "holes" trick and a presentation by Shay Gueron
|
|
* (https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf) for the
|
|
* 256-bit => 128-bit reduction algorithm.
|
|
*/
|
|
|
|
#ifdef CONFIG_ARCH_SUPPORTS_INT128
|
|
|
|
/* Do a 64 x 64 => 128 bit carryless multiplication. */
|
|
static void clmul64(u64 a, u64 b, u64 *out_lo, u64 *out_hi)
|
|
{
|
|
/*
|
|
* With 64-bit multiplicands and one term every 4 bits, there would be
|
|
* up to 64 / 4 = 16 one bits per column when each multiplication is
|
|
* written out as a series of additions in the schoolbook manner.
|
|
* Unfortunately, that doesn't work since the value 16 is 1 too large to
|
|
* fit in 4 bits. Carries would sometimes overflow into the next term.
|
|
*
|
|
* Using one term every 5 bits would work. However, that would cost
|
|
* 5 x 5 = 25 multiplications instead of 4 x 4 = 16.
|
|
*
|
|
* Instead, mask off 4 bits from one multiplicand, giving a max of 15
|
|
* one bits per column. Then handle those 4 bits separately.
|
|
*/
|
|
u64 a0 = a & 0x1111111111111110;
|
|
u64 a1 = a & 0x2222222222222220;
|
|
u64 a2 = a & 0x4444444444444440;
|
|
u64 a3 = a & 0x8888888888888880;
|
|
|
|
u64 b0 = b & 0x1111111111111111;
|
|
u64 b1 = b & 0x2222222222222222;
|
|
u64 b2 = b & 0x4444444444444444;
|
|
u64 b3 = b & 0x8888888888888888;
|
|
|
|
/* Multiply the high 60 bits of @a by @b. */
|
|
u128 c0 = (a0 * (u128)b0) ^ (a1 * (u128)b3) ^
|
|
(a2 * (u128)b2) ^ (a3 * (u128)b1);
|
|
u128 c1 = (a0 * (u128)b1) ^ (a1 * (u128)b0) ^
|
|
(a2 * (u128)b3) ^ (a3 * (u128)b2);
|
|
u128 c2 = (a0 * (u128)b2) ^ (a1 * (u128)b1) ^
|
|
(a2 * (u128)b0) ^ (a3 * (u128)b3);
|
|
u128 c3 = (a0 * (u128)b3) ^ (a1 * (u128)b2) ^
|
|
(a2 * (u128)b1) ^ (a3 * (u128)b0);
|
|
|
|
/* Multiply the low 4 bits of @a by @b. */
|
|
u64 e0 = -(a & 1) & b;
|
|
u64 e1 = -((a >> 1) & 1) & b;
|
|
u64 e2 = -((a >> 2) & 1) & b;
|
|
u64 e3 = -((a >> 3) & 1) & b;
|
|
u64 extra_lo = e0 ^ (e1 << 1) ^ (e2 << 2) ^ (e3 << 3);
|
|
u64 extra_hi = (e1 >> 63) ^ (e2 >> 62) ^ (e3 >> 61);
|
|
|
|
/* Add all the intermediate products together. */
|
|
*out_lo = (((u64)c0) & 0x1111111111111111) ^
|
|
(((u64)c1) & 0x2222222222222222) ^
|
|
(((u64)c2) & 0x4444444444444444) ^
|
|
(((u64)c3) & 0x8888888888888888) ^ extra_lo;
|
|
*out_hi = (((u64)(c0 >> 64)) & 0x1111111111111111) ^
|
|
(((u64)(c1 >> 64)) & 0x2222222222222222) ^
|
|
(((u64)(c2 >> 64)) & 0x4444444444444444) ^
|
|
(((u64)(c3 >> 64)) & 0x8888888888888888) ^ extra_hi;
|
|
}
|
|
|
|
#else /* CONFIG_ARCH_SUPPORTS_INT128 */
|
|
|
|
/* Do a 32 x 32 => 64 bit carryless multiplication. */
|
|
static u64 clmul32(u32 a, u32 b)
|
|
{
|
|
/*
|
|
* With 32-bit multiplicands and one term every 4 bits, there are up to
|
|
* 32 / 4 = 8 one bits per column when each multiplication is written
|
|
* out as a series of additions in the schoolbook manner. The value 8
|
|
* fits in 4 bits, so the carries don't overflow into the next term.
|
|
*/
|
|
u32 a0 = a & 0x11111111;
|
|
u32 a1 = a & 0x22222222;
|
|
u32 a2 = a & 0x44444444;
|
|
u32 a3 = a & 0x88888888;
|
|
|
|
u32 b0 = b & 0x11111111;
|
|
u32 b1 = b & 0x22222222;
|
|
u32 b2 = b & 0x44444444;
|
|
u32 b3 = b & 0x88888888;
|
|
|
|
u64 c0 = (a0 * (u64)b0) ^ (a1 * (u64)b3) ^
|
|
(a2 * (u64)b2) ^ (a3 * (u64)b1);
|
|
u64 c1 = (a0 * (u64)b1) ^ (a1 * (u64)b0) ^
|
|
(a2 * (u64)b3) ^ (a3 * (u64)b2);
|
|
u64 c2 = (a0 * (u64)b2) ^ (a1 * (u64)b1) ^
|
|
(a2 * (u64)b0) ^ (a3 * (u64)b3);
|
|
u64 c3 = (a0 * (u64)b3) ^ (a1 * (u64)b2) ^
|
|
(a2 * (u64)b1) ^ (a3 * (u64)b0);
|
|
|
|
/* Add all the intermediate products together. */
|
|
return (c0 & 0x1111111111111111) ^
|
|
(c1 & 0x2222222222222222) ^
|
|
(c2 & 0x4444444444444444) ^
|
|
(c3 & 0x8888888888888888);
|
|
}
|
|
|
|
/* Do a 64 x 64 => 128 bit carryless multiplication. */
|
|
static void clmul64(u64 a, u64 b, u64 *out_lo, u64 *out_hi)
|
|
{
|
|
u32 a_lo = (u32)a;
|
|
u32 a_hi = a >> 32;
|
|
u32 b_lo = (u32)b;
|
|
u32 b_hi = b >> 32;
|
|
|
|
/* Karatsuba multiplication */
|
|
u64 lo = clmul32(a_lo, b_lo);
|
|
u64 hi = clmul32(a_hi, b_hi);
|
|
u64 mi = clmul32(a_lo ^ a_hi, b_lo ^ b_hi) ^ lo ^ hi;
|
|
|
|
*out_lo = lo ^ (mi << 32);
|
|
*out_hi = hi ^ (mi >> 32);
|
|
}
|
|
#endif /* !CONFIG_ARCH_SUPPORTS_INT128 */
|
|
|
|
/* Compute @a = @a * @b * x^-128 in the POLYVAL field. */
|
|
static void __maybe_unused
|
|
polyval_mul_generic(struct polyval_elem *a, const struct polyval_elem *b)
|
|
{
|
|
u64 c0, c1, c2, c3, mi0, mi1;
|
|
|
|
/*
|
|
* Carryless-multiply @a by @b using Karatsuba multiplication. Store
|
|
* the 256-bit product in @c0 (low) through @c3 (high).
|
|
*/
|
|
clmul64(le64_to_cpu(a->lo), le64_to_cpu(b->lo), &c0, &c1);
|
|
clmul64(le64_to_cpu(a->hi), le64_to_cpu(b->hi), &c2, &c3);
|
|
clmul64(le64_to_cpu(a->lo ^ a->hi), le64_to_cpu(b->lo ^ b->hi),
|
|
&mi0, &mi1);
|
|
mi0 ^= c0 ^ c2;
|
|
mi1 ^= c1 ^ c3;
|
|
c1 ^= mi0;
|
|
c2 ^= mi1;
|
|
|
|
/*
|
|
* Cancel out the low 128 bits of the product by adding multiples of
|
|
* G(x) = x^128 + x^127 + x^126 + x^121 + 1. Do this in two steps, each
|
|
* of which cancels out 64 bits. Note that we break G(x) into three
|
|
* parts: 1, x^64 * (x^63 + x^62 + x^57), and x^128 * 1.
|
|
*/
|
|
|
|
/*
|
|
* First, add G(x) times c0 as follows:
|
|
*
|
|
* (c0, c1, c2) = (0,
|
|
* c1 + (c0 * (x^63 + x^62 + x^57) mod x^64),
|
|
* c2 + c0 + floor((c0 * (x^63 + x^62 + x^57)) / x^64))
|
|
*/
|
|
c1 ^= (c0 << 63) ^ (c0 << 62) ^ (c0 << 57);
|
|
c2 ^= c0 ^ (c0 >> 1) ^ (c0 >> 2) ^ (c0 >> 7);
|
|
|
|
/*
|
|
* Second, add G(x) times the new c1:
|
|
*
|
|
* (c1, c2, c3) = (0,
|
|
* c2 + (c1 * (x^63 + x^62 + x^57) mod x^64),
|
|
* c3 + c1 + floor((c1 * (x^63 + x^62 + x^57)) / x^64))
|
|
*/
|
|
c2 ^= (c1 << 63) ^ (c1 << 62) ^ (c1 << 57);
|
|
c3 ^= c1 ^ (c1 >> 1) ^ (c1 >> 2) ^ (c1 >> 7);
|
|
|
|
/* Return (c2, c3). This implicitly multiplies by x^-128. */
|
|
a->lo = cpu_to_le64(c2);
|
|
a->hi = cpu_to_le64(c3);
|
|
}
|
|
|
|
static void __maybe_unused
|
|
polyval_blocks_generic(struct polyval_elem *acc, const struct polyval_elem *key,
|
|
const u8 *data, size_t nblocks)
|
|
{
|
|
do {
|
|
acc->lo ^= get_unaligned((__le64 *)data);
|
|
acc->hi ^= get_unaligned((__le64 *)(data + 8));
|
|
polyval_mul_generic(acc, key);
|
|
data += POLYVAL_BLOCK_SIZE;
|
|
} while (--nblocks);
|
|
}
|
|
|
|
/* Include the arch-optimized implementation of POLYVAL, if one is available. */
|
|
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
|
|
#include "polyval.h" /* $(SRCARCH)/polyval.h */
|
|
void polyval_preparekey(struct polyval_key *key,
|
|
const u8 raw_key[POLYVAL_BLOCK_SIZE])
|
|
{
|
|
polyval_preparekey_arch(key, raw_key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(polyval_preparekey);
|
|
#endif /* Else, polyval_preparekey() is an inline function. */
|
|
|
|
/*
|
|
* polyval_mul_generic() and polyval_blocks_generic() take the key as a
|
|
* polyval_elem rather than a polyval_key, so that arch-optimized
|
|
* implementations with a different key format can use it as a fallback (if they
|
|
* have H^1 stored somewhere in their struct). Thus, the following dispatch
|
|
* code is needed to pass the appropriate key argument.
|
|
*/
|
|
|
|
static void polyval_mul(struct polyval_ctx *ctx)
|
|
{
|
|
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
|
|
polyval_mul_arch(&ctx->acc, ctx->key);
|
|
#else
|
|
polyval_mul_generic(&ctx->acc, &ctx->key->h);
|
|
#endif
|
|
}
|
|
|
|
static void polyval_blocks(struct polyval_ctx *ctx,
|
|
const u8 *data, size_t nblocks)
|
|
{
|
|
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
|
|
polyval_blocks_arch(&ctx->acc, ctx->key, data, nblocks);
|
|
#else
|
|
polyval_blocks_generic(&ctx->acc, &ctx->key->h, data, nblocks);
|
|
#endif
|
|
}
|
|
|
|
void polyval_update(struct polyval_ctx *ctx, const u8 *data, size_t len)
|
|
{
|
|
if (unlikely(ctx->partial)) {
|
|
size_t n = min(len, POLYVAL_BLOCK_SIZE - ctx->partial);
|
|
|
|
len -= n;
|
|
while (n--)
|
|
ctx->acc.bytes[ctx->partial++] ^= *data++;
|
|
if (ctx->partial < POLYVAL_BLOCK_SIZE)
|
|
return;
|
|
polyval_mul(ctx);
|
|
}
|
|
if (len >= POLYVAL_BLOCK_SIZE) {
|
|
size_t nblocks = len / POLYVAL_BLOCK_SIZE;
|
|
|
|
polyval_blocks(ctx, data, nblocks);
|
|
data += len & ~(POLYVAL_BLOCK_SIZE - 1);
|
|
len &= POLYVAL_BLOCK_SIZE - 1;
|
|
}
|
|
for (size_t i = 0; i < len; i++)
|
|
ctx->acc.bytes[i] ^= data[i];
|
|
ctx->partial = len;
|
|
}
|
|
EXPORT_SYMBOL_GPL(polyval_update);
|
|
|
|
void polyval_final(struct polyval_ctx *ctx, u8 out[POLYVAL_BLOCK_SIZE])
|
|
{
|
|
if (unlikely(ctx->partial))
|
|
polyval_mul(ctx);
|
|
memcpy(out, &ctx->acc, POLYVAL_BLOCK_SIZE);
|
|
memzero_explicit(ctx, sizeof(*ctx));
|
|
}
|
|
EXPORT_SYMBOL_GPL(polyval_final);
|
|
|
|
#ifdef polyval_mod_init_arch
|
|
static int __init polyval_mod_init(void)
|
|
{
|
|
polyval_mod_init_arch();
|
|
return 0;
|
|
}
|
|
subsys_initcall(polyval_mod_init);
|
|
|
|
static void __exit polyval_mod_exit(void)
|
|
{
|
|
}
|
|
module_exit(polyval_mod_exit);
|
|
#endif
|
|
|
|
MODULE_DESCRIPTION("POLYVAL almost-XOR-universal hash function");
|
|
MODULE_LICENSE("GPL");
|