linux/drivers/gpu/drm/xe/xe_svm.c

1539 lines
42 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include <drm/drm_drv.h>
#include "xe_bo.h"
#include "xe_exec_queue_types.h"
#include "xe_gt_stats.h"
#include "xe_migrate.h"
#include "xe_module.h"
#include "xe_pm.h"
#include "xe_pt.h"
#include "xe_svm.h"
#include "xe_tile.h"
#include "xe_ttm_vram_mgr.h"
#include "xe_vm.h"
#include "xe_vm_types.h"
#include "xe_vram_types.h"
static bool xe_svm_range_in_vram(struct xe_svm_range *range)
{
/*
* Advisory only check whether the range is currently backed by VRAM
* memory.
*/
struct drm_gpusvm_pages_flags flags = {
/* Pairs with WRITE_ONCE in drm_gpusvm.c */
.__flags = READ_ONCE(range->base.pages.flags.__flags),
};
return flags.has_devmem_pages;
}
static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
{
/* Not reliable without notifier lock */
return xe_svm_range_in_vram(range) && range->tile_present;
}
static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
{
return container_of(gpusvm, struct xe_vm, svm.gpusvm);
}
static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
{
return gpusvm_to_vm(r->gpusvm);
}
#define range_debug(r__, operation__) \
vm_dbg(&range_to_vm(&(r__)->base)->xe->drm, \
"%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
"start=0x%014lx, end=0x%014lx, size=%lu", \
(operation__), range_to_vm(&(r__)->base)->usm.asid, \
(r__)->base.gpusvm, \
xe_svm_range_in_vram((r__)) ? 1 : 0, \
xe_svm_range_has_vram_binding((r__)) ? 1 : 0, \
(r__)->base.pages.notifier_seq, \
xe_svm_range_start((r__)), xe_svm_range_end((r__)), \
xe_svm_range_size((r__)))
void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
{
range_debug(range, operation);
}
static struct drm_gpusvm_range *
xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
{
struct xe_svm_range *range;
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (!range)
return NULL;
INIT_LIST_HEAD(&range->garbage_collector_link);
xe_vm_get(gpusvm_to_vm(gpusvm));
return &range->base;
}
static void xe_svm_range_free(struct drm_gpusvm_range *range)
{
xe_vm_put(range_to_vm(range));
kfree(range);
}
static void
xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
const struct mmu_notifier_range *mmu_range)
{
struct xe_device *xe = vm->xe;
range_debug(range, "GARBAGE COLLECTOR ADD");
drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
spin_lock(&vm->svm.garbage_collector.lock);
if (list_empty(&range->garbage_collector_link))
list_add_tail(&range->garbage_collector_link,
&vm->svm.garbage_collector.range_list);
spin_unlock(&vm->svm.garbage_collector.lock);
queue_work(xe_device_get_root_tile(xe)->primary_gt->usm.pf_wq,
&vm->svm.garbage_collector.work);
}
static void xe_svm_tlb_inval_count_stats_incr(struct xe_gt *gt)
{
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_TLB_INVAL_COUNT, 1);
}
static u8
xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
const struct mmu_notifier_range *mmu_range,
u64 *adj_start, u64 *adj_end)
{
struct xe_svm_range *range = to_xe_range(r);
struct xe_device *xe = vm->xe;
struct xe_tile *tile;
u8 tile_mask = 0;
u8 id;
xe_svm_assert_in_notifier(vm);
range_debug(range, "NOTIFIER");
/* Skip if already unmapped or if no binding exist */
if (range->base.pages.flags.unmapped || !range->tile_present)
return 0;
range_debug(range, "NOTIFIER - EXECUTE");
/* Adjust invalidation to range boundaries */
*adj_start = min(xe_svm_range_start(range), mmu_range->start);
*adj_end = max(xe_svm_range_end(range), mmu_range->end);
/*
* XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
* invalidation code can't correctly cope with sparse ranges or
* invalidations spanning multiple ranges.
*/
for_each_tile(tile, xe, id)
if (xe_pt_zap_ptes_range(tile, vm, range)) {
/*
* WRITE_ONCE pairs with READ_ONCE in
* xe_vm_has_valid_gpu_mapping()
*/
WRITE_ONCE(range->tile_invalidated,
range->tile_invalidated | BIT(id));
if (!(tile_mask & BIT(id))) {
xe_svm_tlb_inval_count_stats_incr(tile->primary_gt);
if (tile->media_gt)
xe_svm_tlb_inval_count_stats_incr(tile->media_gt);
tile_mask |= BIT(id);
}
}
return tile_mask;
}
static void
xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
const struct mmu_notifier_range *mmu_range)
{
struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
xe_svm_assert_in_notifier(vm);
drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
mmu_range);
}
static s64 xe_svm_stats_ktime_us_delta(ktime_t start)
{
return IS_ENABLED(CONFIG_DEBUG_FS) ?
ktime_us_delta(ktime_get(), start) : 0;
}
static void xe_svm_tlb_inval_us_stats_incr(struct xe_gt *gt, ktime_t start)
{
s64 us_delta = xe_svm_stats_ktime_us_delta(start);
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_TLB_INVAL_US, us_delta);
}
static ktime_t xe_svm_stats_ktime_get(void)
{
return IS_ENABLED(CONFIG_DEBUG_FS) ? ktime_get() : 0;
}
static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
struct drm_gpusvm_notifier *notifier,
const struct mmu_notifier_range *mmu_range)
{
struct xe_vm *vm = gpusvm_to_vm(gpusvm);
struct xe_device *xe = vm->xe;
struct drm_gpusvm_range *r, *first;
struct xe_tile *tile;
ktime_t start = xe_svm_stats_ktime_get();
u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
u8 tile_mask = 0, id;
long err;
xe_svm_assert_in_notifier(vm);
vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
"INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
mmu_range->start, mmu_range->end, mmu_range->event);
/* Adjust invalidation to notifier boundaries */
adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
if (!first)
return;
/*
* PTs may be getting destroyed so not safe to touch these but PT should
* be invalidated at this point in time. Regardless we still need to
* ensure any dma mappings are unmapped in the here.
*/
if (xe_vm_is_closed(vm))
goto range_notifier_event_end;
/*
* XXX: Less than ideal to always wait on VM's resv slots if an
* invalidation is not required. Could walk range list twice to figure
* out if an invalidations is need, but also not ideal.
*/
err = dma_resv_wait_timeout(xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP,
false, MAX_SCHEDULE_TIMEOUT);
XE_WARN_ON(err <= 0);
r = first;
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
&adj_start,
&adj_end);
if (!tile_mask)
goto range_notifier_event_end;
xe_device_wmb(xe);
err = xe_vm_range_tilemask_tlb_inval(vm, adj_start, adj_end, tile_mask);
WARN_ON_ONCE(err);
range_notifier_event_end:
r = first;
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
xe_svm_range_notifier_event_end(vm, r, mmu_range);
for_each_tile(tile, xe, id) {
if (tile_mask & BIT(id)) {
xe_svm_tlb_inval_us_stats_incr(tile->primary_gt, start);
if (tile->media_gt)
xe_svm_tlb_inval_us_stats_incr(tile->media_gt, start);
}
}
}
static int __xe_svm_garbage_collector(struct xe_vm *vm,
struct xe_svm_range *range)
{
struct dma_fence *fence;
range_debug(range, "GARBAGE COLLECTOR");
xe_vm_lock(vm, false);
fence = xe_vm_range_unbind(vm, range);
xe_vm_unlock(vm);
if (IS_ERR(fence))
return PTR_ERR(fence);
dma_fence_put(fence);
drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
return 0;
}
static int xe_svm_range_set_default_attr(struct xe_vm *vm, u64 range_start, u64 range_end)
{
struct xe_vma *vma;
struct xe_vma_mem_attr default_attr = {
.preferred_loc = {
.devmem_fd = DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE,
.migration_policy = DRM_XE_MIGRATE_ALL_PAGES,
},
.atomic_access = DRM_XE_ATOMIC_UNDEFINED,
};
int err = 0;
vma = xe_vm_find_vma_by_addr(vm, range_start);
if (!vma)
return -EINVAL;
if (!(vma->gpuva.flags & XE_VMA_MADV_AUTORESET)) {
drm_dbg(&vm->xe->drm, "Skipping madvise reset for vma.\n");
return 0;
}
if (xe_vma_has_default_mem_attrs(vma))
return 0;
vm_dbg(&vm->xe->drm, "Existing VMA start=0x%016llx, vma_end=0x%016llx",
xe_vma_start(vma), xe_vma_end(vma));
if (xe_vma_start(vma) == range_start && xe_vma_end(vma) == range_end) {
default_attr.pat_index = vma->attr.default_pat_index;
default_attr.default_pat_index = vma->attr.default_pat_index;
vma->attr = default_attr;
} else {
vm_dbg(&vm->xe->drm, "Split VMA start=0x%016llx, vma_end=0x%016llx",
range_start, range_end);
err = xe_vm_alloc_cpu_addr_mirror_vma(vm, range_start, range_end - range_start);
if (err) {
drm_warn(&vm->xe->drm, "VMA SPLIT failed: %pe\n", ERR_PTR(err));
xe_vm_kill(vm, true);
return err;
}
}
/*
* On call from xe_svm_handle_pagefault original VMA might be changed
* signal this to lookup for VMA again.
*/
return -EAGAIN;
}
static int xe_svm_garbage_collector(struct xe_vm *vm)
{
struct xe_svm_range *range;
u64 range_start;
u64 range_end;
int err, ret = 0;
lockdep_assert_held_write(&vm->lock);
if (xe_vm_is_closed_or_banned(vm))
return -ENOENT;
for (;;) {
spin_lock(&vm->svm.garbage_collector.lock);
range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
typeof(*range),
garbage_collector_link);
if (!range)
break;
range_start = xe_svm_range_start(range);
range_end = xe_svm_range_end(range);
list_del(&range->garbage_collector_link);
spin_unlock(&vm->svm.garbage_collector.lock);
err = __xe_svm_garbage_collector(vm, range);
if (err) {
drm_warn(&vm->xe->drm,
"Garbage collection failed: %pe\n",
ERR_PTR(err));
xe_vm_kill(vm, true);
return err;
}
err = xe_svm_range_set_default_attr(vm, range_start, range_end);
if (err) {
if (err == -EAGAIN)
ret = -EAGAIN;
else
return err;
}
}
spin_unlock(&vm->svm.garbage_collector.lock);
return ret;
}
static void xe_svm_garbage_collector_work_func(struct work_struct *w)
{
struct xe_vm *vm = container_of(w, struct xe_vm,
svm.garbage_collector.work);
down_write(&vm->lock);
xe_svm_garbage_collector(vm);
up_write(&vm->lock);
}
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
static struct xe_vram_region *page_to_vr(struct page *page)
{
return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
}
static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
struct page *page)
{
u64 dpa;
u64 pfn = page_to_pfn(page);
u64 offset;
xe_assert(vr->xe, is_device_private_page(page));
xe_assert(vr->xe, (pfn << PAGE_SHIFT) >= vr->hpa_base);
offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
dpa = vr->dpa_base + offset;
return dpa;
}
enum xe_svm_copy_dir {
XE_SVM_COPY_TO_VRAM,
XE_SVM_COPY_TO_SRAM,
};
static void xe_svm_copy_kb_stats_incr(struct xe_gt *gt,
const enum xe_svm_copy_dir dir,
int kb)
{
if (dir == XE_SVM_COPY_TO_VRAM)
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_DEVICE_COPY_KB, kb);
else
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_CPU_COPY_KB, kb);
}
static void xe_svm_copy_us_stats_incr(struct xe_gt *gt,
const enum xe_svm_copy_dir dir,
unsigned long npages,
ktime_t start)
{
s64 us_delta = xe_svm_stats_ktime_us_delta(start);
if (dir == XE_SVM_COPY_TO_VRAM) {
switch (npages) {
case 1:
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_DEVICE_COPY_US,
us_delta);
break;
case 16:
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_DEVICE_COPY_US,
us_delta);
break;
case 512:
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_DEVICE_COPY_US,
us_delta);
break;
}
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_DEVICE_COPY_US,
us_delta);
} else {
switch (npages) {
case 1:
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_CPU_COPY_US,
us_delta);
break;
case 16:
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_CPU_COPY_US,
us_delta);
break;
case 512:
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_CPU_COPY_US,
us_delta);
break;
}
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_CPU_COPY_US,
us_delta);
}
}
static int xe_svm_copy(struct page **pages,
struct drm_pagemap_addr *pagemap_addr,
unsigned long npages, const enum xe_svm_copy_dir dir)
{
struct xe_vram_region *vr = NULL;
struct xe_gt *gt = NULL;
struct xe_device *xe;
struct dma_fence *fence = NULL;
unsigned long i;
#define XE_VRAM_ADDR_INVALID ~0x0ull
u64 vram_addr = XE_VRAM_ADDR_INVALID;
int err = 0, pos = 0;
bool sram = dir == XE_SVM_COPY_TO_SRAM;
ktime_t start = xe_svm_stats_ktime_get();
/*
* This flow is complex: it locates physically contiguous device pages,
* derives the starting physical address, and performs a single GPU copy
* to for every 8M chunk in a DMA address array. Both device pages and
* DMA addresses may be sparsely populated. If either is NULL, a copy is
* triggered based on the current search state. The last GPU copy is
* waited on to ensure all copies are complete.
*/
for (i = 0; i < npages; ++i) {
struct page *spage = pages[i];
struct dma_fence *__fence;
u64 __vram_addr;
bool match = false, chunk, last;
#define XE_MIGRATE_CHUNK_SIZE SZ_8M
chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
last = (i + 1) == npages;
/* No CPU page and no device pages queue'd to copy */
if (!pagemap_addr[i].addr && vram_addr == XE_VRAM_ADDR_INVALID)
continue;
if (!vr && spage) {
vr = page_to_vr(spage);
gt = xe_migrate_exec_queue(vr->migrate)->gt;
xe = vr->xe;
}
XE_WARN_ON(spage && page_to_vr(spage) != vr);
/*
* CPU page and device page valid, capture physical address on
* first device page, check if physical contiguous on subsequent
* device pages.
*/
if (pagemap_addr[i].addr && spage) {
__vram_addr = xe_vram_region_page_to_dpa(vr, spage);
if (vram_addr == XE_VRAM_ADDR_INVALID) {
vram_addr = __vram_addr;
pos = i;
}
match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
/* Expected with contiguous memory */
xe_assert(vr->xe, match);
if (pagemap_addr[i].order) {
i += NR_PAGES(pagemap_addr[i].order) - 1;
chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
last = (i + 1) == npages;
}
}
/*
* Mismatched physical address, 8M copy chunk, or last page -
* trigger a copy.
*/
if (!match || chunk || last) {
/*
* Extra page for first copy if last page and matching
* physical address.
*/
int incr = (match && last) ? 1 : 0;
if (vram_addr != XE_VRAM_ADDR_INVALID) {
xe_svm_copy_kb_stats_incr(gt, dir,
(i - pos + incr) *
(PAGE_SIZE / SZ_1K));
if (sram) {
vm_dbg(&xe->drm,
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
vram_addr,
(u64)pagemap_addr[pos].addr, i - pos + incr);
__fence = xe_migrate_from_vram(vr->migrate,
i - pos + incr,
vram_addr,
&pagemap_addr[pos]);
} else {
vm_dbg(&xe->drm,
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
(u64)pagemap_addr[pos].addr, vram_addr,
i - pos + incr);
__fence = xe_migrate_to_vram(vr->migrate,
i - pos + incr,
&pagemap_addr[pos],
vram_addr);
}
if (IS_ERR(__fence)) {
err = PTR_ERR(__fence);
goto err_out;
}
dma_fence_put(fence);
fence = __fence;
}
/* Setup physical address of next device page */
if (pagemap_addr[i].addr && spage) {
vram_addr = __vram_addr;
pos = i;
} else {
vram_addr = XE_VRAM_ADDR_INVALID;
}
/* Extra mismatched device page, copy it */
if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
xe_svm_copy_kb_stats_incr(gt, dir,
(PAGE_SIZE / SZ_1K));
if (sram) {
vm_dbg(&xe->drm,
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
vram_addr, (u64)pagemap_addr[pos].addr, 1);
__fence = xe_migrate_from_vram(vr->migrate, 1,
vram_addr,
&pagemap_addr[pos]);
} else {
vm_dbg(&xe->drm,
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
(u64)pagemap_addr[pos].addr, vram_addr, 1);
__fence = xe_migrate_to_vram(vr->migrate, 1,
&pagemap_addr[pos],
vram_addr);
}
if (IS_ERR(__fence)) {
err = PTR_ERR(__fence);
goto err_out;
}
dma_fence_put(fence);
fence = __fence;
}
}
}
err_out:
/* Wait for all copies to complete */
if (fence) {
dma_fence_wait(fence, false);
dma_fence_put(fence);
}
/*
* XXX: We can't derive the GT here (or anywhere in this functions, but
* compute always uses the primary GT so accumlate stats on the likely
* GT of the fault.
*/
if (gt)
xe_svm_copy_us_stats_incr(gt, dir, npages, start);
return err;
#undef XE_MIGRATE_CHUNK_SIZE
#undef XE_VRAM_ADDR_INVALID
}
static int xe_svm_copy_to_devmem(struct page **pages,
struct drm_pagemap_addr *pagemap_addr,
unsigned long npages)
{
return xe_svm_copy(pages, pagemap_addr, npages, XE_SVM_COPY_TO_VRAM);
}
static int xe_svm_copy_to_ram(struct page **pages,
struct drm_pagemap_addr *pagemap_addr,
unsigned long npages)
{
return xe_svm_copy(pages, pagemap_addr, npages, XE_SVM_COPY_TO_SRAM);
}
static struct xe_bo *to_xe_bo(struct drm_pagemap_devmem *devmem_allocation)
{
return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
}
static void xe_svm_devmem_release(struct drm_pagemap_devmem *devmem_allocation)
{
struct xe_bo *bo = to_xe_bo(devmem_allocation);
struct xe_device *xe = xe_bo_device(bo);
xe_bo_put_async(bo);
xe_pm_runtime_put(xe);
}
static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
{
return PHYS_PFN(offset + vr->hpa_base);
}
static struct drm_buddy *vram_to_buddy(struct xe_vram_region *vram)
{
return &vram->ttm.mm;
}
static int xe_svm_populate_devmem_pfn(struct drm_pagemap_devmem *devmem_allocation,
unsigned long npages, unsigned long *pfn)
{
struct xe_bo *bo = to_xe_bo(devmem_allocation);
struct ttm_resource *res = bo->ttm.resource;
struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
struct drm_buddy_block *block;
int j = 0;
list_for_each_entry(block, blocks, link) {
struct xe_vram_region *vr = block->private;
struct drm_buddy *buddy = vram_to_buddy(vr);
u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
int i;
for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
pfn[j++] = block_pfn + i;
}
return 0;
}
static const struct drm_pagemap_devmem_ops dpagemap_devmem_ops = {
.devmem_release = xe_svm_devmem_release,
.populate_devmem_pfn = xe_svm_populate_devmem_pfn,
.copy_to_devmem = xe_svm_copy_to_devmem,
.copy_to_ram = xe_svm_copy_to_ram,
};
#endif
static const struct drm_gpusvm_ops gpusvm_ops = {
.range_alloc = xe_svm_range_alloc,
.range_free = xe_svm_range_free,
.invalidate = xe_svm_invalidate,
};
static const unsigned long fault_chunk_sizes[] = {
SZ_2M,
SZ_64K,
SZ_4K,
};
/**
* xe_svm_init() - SVM initialize
* @vm: The VM.
*
* Initialize SVM state which is embedded within the VM.
*
* Return: 0 on success, negative error code on error.
*/
int xe_svm_init(struct xe_vm *vm)
{
int err;
if (vm->flags & XE_VM_FLAG_FAULT_MODE) {
spin_lock_init(&vm->svm.garbage_collector.lock);
INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
INIT_WORK(&vm->svm.garbage_collector.work,
xe_svm_garbage_collector_work_func);
err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
current->mm, 0, vm->size,
xe_modparam.svm_notifier_size * SZ_1M,
&gpusvm_ops, fault_chunk_sizes,
ARRAY_SIZE(fault_chunk_sizes));
drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
} else {
err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM (simple)",
&vm->xe->drm, NULL, 0, 0, 0, NULL,
NULL, 0);
}
return err;
}
/**
* xe_svm_close() - SVM close
* @vm: The VM.
*
* Close SVM state (i.e., stop and flush all SVM actions).
*/
void xe_svm_close(struct xe_vm *vm)
{
xe_assert(vm->xe, xe_vm_is_closed(vm));
flush_work(&vm->svm.garbage_collector.work);
}
/**
* xe_svm_fini() - SVM finalize
* @vm: The VM.
*
* Finalize SVM state which is embedded within the VM.
*/
void xe_svm_fini(struct xe_vm *vm)
{
xe_assert(vm->xe, xe_vm_is_closed(vm));
drm_gpusvm_fini(&vm->svm.gpusvm);
}
static bool xe_svm_range_is_valid(struct xe_svm_range *range,
struct xe_tile *tile,
bool devmem_only)
{
return (xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
range->tile_invalidated) &&
(!devmem_only || xe_svm_range_in_vram(range)));
}
/** xe_svm_range_migrate_to_smem() - Move range pages from VRAM to SMEM
* @vm: xe_vm pointer
* @range: Pointer to the SVM range structure
*
* The xe_svm_range_migrate_to_smem() checks range has pages in VRAM
* and migrates them to SMEM
*/
void xe_svm_range_migrate_to_smem(struct xe_vm *vm, struct xe_svm_range *range)
{
if (xe_svm_range_in_vram(range))
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
}
/**
* xe_svm_range_validate() - Check if the SVM range is valid
* @vm: xe_vm pointer
* @range: Pointer to the SVM range structure
* @tile_mask: Mask representing the tiles to be checked
* @devmem_preferred : if true range needs to be in devmem
*
* The xe_svm_range_validate() function checks if a range is
* valid and located in the desired memory region.
*
* Return: true if the range is valid, false otherwise
*/
bool xe_svm_range_validate(struct xe_vm *vm,
struct xe_svm_range *range,
u8 tile_mask, bool devmem_preferred)
{
bool ret;
xe_svm_notifier_lock(vm);
ret = (range->tile_present & ~range->tile_invalidated & tile_mask) == tile_mask &&
(devmem_preferred == range->base.pages.flags.has_devmem_pages);
xe_svm_notifier_unlock(vm);
return ret;
}
/**
* xe_svm_find_vma_start - Find start of CPU VMA
* @vm: xe_vm pointer
* @start: start address
* @end: end address
* @vma: Pointer to struct xe_vma
*
*
* This function searches for a cpu vma, within the specified
* range [start, end] in the given VM. It adjusts the range based on the
* xe_vma start and end addresses. If no cpu VMA is found, it returns ULONG_MAX.
*
* Return: The starting address of the VMA within the range,
* or ULONG_MAX if no VMA is found
*/
u64 xe_svm_find_vma_start(struct xe_vm *vm, u64 start, u64 end, struct xe_vma *vma)
{
return drm_gpusvm_find_vma_start(&vm->svm.gpusvm,
max(start, xe_vma_start(vma)),
min(end, xe_vma_end(vma)));
}
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
static int xe_drm_pagemap_populate_mm(struct drm_pagemap *dpagemap,
unsigned long start, unsigned long end,
struct mm_struct *mm,
unsigned long timeslice_ms)
{
struct xe_vram_region *vr = container_of(dpagemap, typeof(*vr), dpagemap);
struct xe_device *xe = vr->xe;
struct device *dev = xe->drm.dev;
struct drm_buddy_block *block;
struct xe_validation_ctx vctx;
struct list_head *blocks;
struct drm_exec exec;
struct xe_bo *bo;
int err = 0, idx;
if (!drm_dev_enter(&xe->drm, &idx))
return -ENODEV;
xe_pm_runtime_get(xe);
xe_validation_guard(&vctx, &xe->val, &exec, (struct xe_val_flags) {}, err) {
bo = xe_bo_create_locked(xe, NULL, NULL, end - start,
ttm_bo_type_device,
(IS_DGFX(xe) ? XE_BO_FLAG_VRAM(vr) : XE_BO_FLAG_SYSTEM) |
XE_BO_FLAG_CPU_ADDR_MIRROR, &exec);
drm_exec_retry_on_contention(&exec);
if (IS_ERR(bo)) {
err = PTR_ERR(bo);
xe_validation_retry_on_oom(&vctx, &err);
break;
}
drm_pagemap_devmem_init(&bo->devmem_allocation, dev, mm,
&dpagemap_devmem_ops, dpagemap, end - start);
blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
list_for_each_entry(block, blocks, link)
block->private = vr;
xe_bo_get(bo);
/* Ensure the device has a pm ref while there are device pages active. */
xe_pm_runtime_get_noresume(xe);
err = drm_pagemap_migrate_to_devmem(&bo->devmem_allocation, mm,
start, end, timeslice_ms,
xe_svm_devm_owner(xe));
if (err)
xe_svm_devmem_release(&bo->devmem_allocation);
xe_bo_unlock(bo);
xe_bo_put(bo);
}
xe_pm_runtime_put(xe);
drm_dev_exit(idx);
return err;
}
#endif
static bool supports_4K_migration(struct xe_device *xe)
{
if (xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
return false;
return true;
}
/**
* xe_svm_range_needs_migrate_to_vram() - SVM range needs migrate to VRAM or not
* @range: SVM range for which migration needs to be decided
* @vma: vma which has range
* @preferred_region_is_vram: preferred region for range is vram
*
* Return: True for range needing migration and migration is supported else false
*/
bool xe_svm_range_needs_migrate_to_vram(struct xe_svm_range *range, struct xe_vma *vma,
bool preferred_region_is_vram)
{
struct xe_vm *vm = range_to_vm(&range->base);
u64 range_size = xe_svm_range_size(range);
if (!range->base.pages.flags.migrate_devmem || !preferred_region_is_vram)
return false;
xe_assert(vm->xe, IS_DGFX(vm->xe));
if (xe_svm_range_in_vram(range)) {
drm_info(&vm->xe->drm, "Range is already in VRAM\n");
return false;
}
if (range_size < SZ_64K && !supports_4K_migration(vm->xe)) {
drm_dbg(&vm->xe->drm, "Platform doesn't support SZ_4K range migration\n");
return false;
}
return true;
}
#define DECL_SVM_RANGE_COUNT_STATS(elem, stat) \
static void xe_svm_range_##elem##_count_stats_incr(struct xe_gt *gt, \
struct xe_svm_range *range) \
{ \
switch (xe_svm_range_size(range)) { \
case SZ_4K: \
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_##stat##_COUNT, 1); \
break; \
case SZ_64K: \
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_##stat##_COUNT, 1); \
break; \
case SZ_2M: \
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_##stat##_COUNT, 1); \
break; \
} \
} \
DECL_SVM_RANGE_COUNT_STATS(fault, PAGEFAULT)
DECL_SVM_RANGE_COUNT_STATS(valid_fault, VALID_PAGEFAULT)
DECL_SVM_RANGE_COUNT_STATS(migrate, MIGRATE)
#define DECL_SVM_RANGE_US_STATS(elem, stat) \
static void xe_svm_range_##elem##_us_stats_incr(struct xe_gt *gt, \
struct xe_svm_range *range, \
ktime_t start) \
{ \
s64 us_delta = xe_svm_stats_ktime_us_delta(start); \
\
switch (xe_svm_range_size(range)) { \
case SZ_4K: \
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_4K_##stat##_US, \
us_delta); \
break; \
case SZ_64K: \
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_64K_##stat##_US, \
us_delta); \
break; \
case SZ_2M: \
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_2M_##stat##_US, \
us_delta); \
break; \
} \
} \
DECL_SVM_RANGE_US_STATS(migrate, MIGRATE)
DECL_SVM_RANGE_US_STATS(get_pages, GET_PAGES)
DECL_SVM_RANGE_US_STATS(bind, BIND)
DECL_SVM_RANGE_US_STATS(fault, PAGEFAULT)
static int __xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
struct xe_gt *gt, u64 fault_addr,
bool need_vram)
{
int devmem_possible = IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_PAGEMAP);
struct drm_gpusvm_ctx ctx = {
.read_only = xe_vma_read_only(vma),
.devmem_possible = devmem_possible,
.check_pages_threshold = devmem_possible ? SZ_64K : 0,
.devmem_only = need_vram && devmem_possible,
.timeslice_ms = need_vram && devmem_possible ?
vm->xe->atomic_svm_timeslice_ms : 0,
.device_private_page_owner = xe_svm_devm_owner(vm->xe),
};
struct xe_validation_ctx vctx;
struct drm_exec exec;
struct xe_svm_range *range;
struct dma_fence *fence;
struct drm_pagemap *dpagemap;
struct xe_tile *tile = gt_to_tile(gt);
int migrate_try_count = ctx.devmem_only ? 3 : 1;
ktime_t start = xe_svm_stats_ktime_get(), bind_start, get_pages_start;
int err;
lockdep_assert_held_write(&vm->lock);
xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
xe_gt_stats_incr(gt, XE_GT_STATS_ID_SVM_PAGEFAULT_COUNT, 1);
retry:
/* Always process UNMAPs first so view SVM ranges is current */
err = xe_svm_garbage_collector(vm);
if (err)
return err;
dpagemap = xe_vma_resolve_pagemap(vma, tile);
if (!dpagemap && !ctx.devmem_only)
ctx.device_private_page_owner = NULL;
range = xe_svm_range_find_or_insert(vm, fault_addr, vma, &ctx);
if (IS_ERR(range))
return PTR_ERR(range);
xe_svm_range_fault_count_stats_incr(gt, range);
if (ctx.devmem_only && !range->base.pages.flags.migrate_devmem) {
err = -EACCES;
goto out;
}
if (xe_svm_range_is_valid(range, tile, ctx.devmem_only)) {
xe_svm_range_valid_fault_count_stats_incr(gt, range);
range_debug(range, "PAGE FAULT - VALID");
goto out;
}
range_debug(range, "PAGE FAULT");
if (--migrate_try_count >= 0 &&
xe_svm_range_needs_migrate_to_vram(range, vma, !!dpagemap || ctx.devmem_only)) {
ktime_t migrate_start = xe_svm_stats_ktime_get();
/* TODO : For multi-device dpagemap will be used to find the
* remote tile and remote device. Will need to modify
* xe_svm_alloc_vram to use dpagemap for future multi-device
* support.
*/
xe_svm_range_migrate_count_stats_incr(gt, range);
err = xe_svm_alloc_vram(tile, range, &ctx);
xe_svm_range_migrate_us_stats_incr(gt, range, migrate_start);
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
if (err) {
if (migrate_try_count || !ctx.devmem_only) {
drm_dbg(&vm->xe->drm,
"VRAM allocation failed, falling back to retrying fault, asid=%u, errno=%pe\n",
vm->usm.asid, ERR_PTR(err));
/*
* In the devmem-only case, mixed mappings may
* be found. The get_pages function will fix
* these up to a single location, allowing the
* page fault handler to make forward progress.
*/
if (ctx.devmem_only)
goto get_pages;
else
goto retry;
} else {
drm_err(&vm->xe->drm,
"VRAM allocation failed, retry count exceeded, asid=%u, errno=%pe\n",
vm->usm.asid, ERR_PTR(err));
return err;
}
}
}
get_pages:
get_pages_start = xe_svm_stats_ktime_get();
range_debug(range, "GET PAGES");
err = xe_svm_range_get_pages(vm, range, &ctx);
/* Corner where CPU mappings have changed */
if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
if (migrate_try_count > 0 || !ctx.devmem_only) {
drm_dbg(&vm->xe->drm,
"Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
range_debug(range, "PAGE FAULT - RETRY PAGES");
goto retry;
} else {
drm_err(&vm->xe->drm,
"Get pages failed, retry count exceeded, asid=%u, gpusvm=%p, errno=%pe\n",
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
}
}
if (err) {
range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
goto out;
}
xe_svm_range_get_pages_us_stats_incr(gt, range, get_pages_start);
range_debug(range, "PAGE FAULT - BIND");
bind_start = xe_svm_stats_ktime_get();
xe_validation_guard(&vctx, &vm->xe->val, &exec, (struct xe_val_flags) {}, err) {
err = xe_vm_drm_exec_lock(vm, &exec);
drm_exec_retry_on_contention(&exec);
xe_vm_set_validation_exec(vm, &exec);
fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
xe_vm_set_validation_exec(vm, NULL);
if (IS_ERR(fence)) {
drm_exec_retry_on_contention(&exec);
err = PTR_ERR(fence);
xe_validation_retry_on_oom(&vctx, &err);
xe_svm_range_bind_us_stats_incr(gt, range, bind_start);
break;
}
}
if (err)
goto err_out;
dma_fence_wait(fence, false);
dma_fence_put(fence);
xe_svm_range_bind_us_stats_incr(gt, range, bind_start);
out:
xe_svm_range_fault_us_stats_incr(gt, range, start);
return 0;
err_out:
if (err == -EAGAIN) {
ctx.timeslice_ms <<= 1; /* Double timeslice if we have to retry */
range_debug(range, "PAGE FAULT - RETRY BIND");
goto retry;
}
return err;
}
/**
* xe_svm_handle_pagefault() - SVM handle page fault
* @vm: The VM.
* @vma: The CPU address mirror VMA.
* @gt: The gt upon the fault occurred.
* @fault_addr: The GPU fault address.
* @atomic: The fault atomic access bit.
*
* Create GPU bindings for a SVM page fault. Optionally migrate to device
* memory.
*
* Return: 0 on success, negative error code on error.
*/
int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
struct xe_gt *gt, u64 fault_addr,
bool atomic)
{
int need_vram, ret;
retry:
need_vram = xe_vma_need_vram_for_atomic(vm->xe, vma, atomic);
if (need_vram < 0)
return need_vram;
ret = __xe_svm_handle_pagefault(vm, vma, gt, fault_addr,
need_vram ? true : false);
if (ret == -EAGAIN) {
/*
* Retry once on -EAGAIN to re-lookup the VMA, as the original VMA
* may have been split by xe_svm_range_set_default_attr.
*/
vma = xe_vm_find_vma_by_addr(vm, fault_addr);
if (!vma)
return -EINVAL;
goto retry;
}
return ret;
}
/**
* xe_svm_has_mapping() - SVM has mappings
* @vm: The VM.
* @start: Start address.
* @end: End address.
*
* Check if an address range has SVM mappings.
*
* Return: True if address range has a SVM mapping, False otherwise
*/
bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
{
return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
}
/**
* xe_svm_unmap_address_range - UNMAP SVM mappings and ranges
* @vm: The VM
* @start: start addr
* @end: end addr
*
* This function UNMAPS svm ranges if start or end address are inside them.
*/
void xe_svm_unmap_address_range(struct xe_vm *vm, u64 start, u64 end)
{
struct drm_gpusvm_notifier *notifier, *next;
lockdep_assert_held_write(&vm->lock);
drm_gpusvm_for_each_notifier_safe(notifier, next, &vm->svm.gpusvm, start, end) {
struct drm_gpusvm_range *range, *__next;
drm_gpusvm_for_each_range_safe(range, __next, notifier, start, end) {
if (start > drm_gpusvm_range_start(range) ||
end < drm_gpusvm_range_end(range)) {
if (IS_DGFX(vm->xe) && xe_svm_range_in_vram(to_xe_range(range)))
drm_gpusvm_range_evict(&vm->svm.gpusvm, range);
drm_gpusvm_range_get(range);
__xe_svm_garbage_collector(vm, to_xe_range(range));
if (!list_empty(&to_xe_range(range)->garbage_collector_link)) {
spin_lock(&vm->svm.garbage_collector.lock);
list_del(&to_xe_range(range)->garbage_collector_link);
spin_unlock(&vm->svm.garbage_collector.lock);
}
drm_gpusvm_range_put(range);
}
}
}
}
/**
* xe_svm_bo_evict() - SVM evict BO to system memory
* @bo: BO to evict
*
* SVM evict BO to system memory. GPU SVM layer ensures all device pages
* are evicted before returning.
*
* Return: 0 on success standard error code otherwise
*/
int xe_svm_bo_evict(struct xe_bo *bo)
{
return drm_pagemap_evict_to_ram(&bo->devmem_allocation);
}
/**
* xe_svm_range_find_or_insert- Find or insert GPU SVM range
* @vm: xe_vm pointer
* @addr: address for which range needs to be found/inserted
* @vma: Pointer to struct xe_vma which mirrors CPU
* @ctx: GPU SVM context
*
* This function finds or inserts a newly allocated a SVM range based on the
* address.
*
* Return: Pointer to the SVM range on success, ERR_PTR() on failure.
*/
struct xe_svm_range *xe_svm_range_find_or_insert(struct xe_vm *vm, u64 addr,
struct xe_vma *vma, struct drm_gpusvm_ctx *ctx)
{
struct drm_gpusvm_range *r;
r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, max(addr, xe_vma_start(vma)),
xe_vma_start(vma), xe_vma_end(vma), ctx);
if (IS_ERR(r))
return ERR_CAST(r);
return to_xe_range(r);
}
/**
* xe_svm_range_get_pages() - Get pages for a SVM range
* @vm: Pointer to the struct xe_vm
* @range: Pointer to the xe SVM range structure
* @ctx: GPU SVM context
*
* This function gets pages for a SVM range and ensures they are mapped for
* DMA access. In case of failure with -EOPNOTSUPP, it evicts the range.
*
* Return: 0 on success, negative error code on failure.
*/
int xe_svm_range_get_pages(struct xe_vm *vm, struct xe_svm_range *range,
struct drm_gpusvm_ctx *ctx)
{
int err = 0;
err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, &range->base, ctx);
if (err == -EOPNOTSUPP) {
range_debug(range, "PAGE FAULT - EVICT PAGES");
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
}
return err;
}
/**
* xe_svm_ranges_zap_ptes_in_range - clear ptes of svm ranges in input range
* @vm: Pointer to the xe_vm structure
* @start: Start of the input range
* @end: End of the input range
*
* This function removes the page table entries (PTEs) associated
* with the svm ranges within the given input start and end
*
* Return: tile_mask for which gt's need to be tlb invalidated.
*/
u8 xe_svm_ranges_zap_ptes_in_range(struct xe_vm *vm, u64 start, u64 end)
{
struct drm_gpusvm_notifier *notifier;
struct xe_svm_range *range;
u64 adj_start, adj_end;
struct xe_tile *tile;
u8 tile_mask = 0;
u8 id;
lockdep_assert(lockdep_is_held_type(&vm->svm.gpusvm.notifier_lock, 1) &&
lockdep_is_held_type(&vm->lock, 0));
drm_gpusvm_for_each_notifier(notifier, &vm->svm.gpusvm, start, end) {
struct drm_gpusvm_range *r = NULL;
adj_start = max(start, drm_gpusvm_notifier_start(notifier));
adj_end = min(end, drm_gpusvm_notifier_end(notifier));
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end) {
range = to_xe_range(r);
for_each_tile(tile, vm->xe, id) {
if (xe_pt_zap_ptes_range(tile, vm, range)) {
tile_mask |= BIT(id);
/*
* WRITE_ONCE pairs with READ_ONCE in
* xe_vm_has_valid_gpu_mapping().
* Must not fail after setting
* tile_invalidated and before
* TLB invalidation.
*/
WRITE_ONCE(range->tile_invalidated,
range->tile_invalidated | BIT(id));
}
}
}
}
return tile_mask;
}
#if IS_ENABLED(CONFIG_DRM_XE_PAGEMAP)
static struct drm_pagemap *tile_local_pagemap(struct xe_tile *tile)
{
return &tile->mem.vram->dpagemap;
}
/**
* xe_vma_resolve_pagemap - Resolve the appropriate DRM pagemap for a VMA
* @vma: Pointer to the xe_vma structure containing memory attributes
* @tile: Pointer to the xe_tile structure used as fallback for VRAM mapping
*
* This function determines the correct DRM pagemap to use for a given VMA.
* It first checks if a valid devmem_fd is provided in the VMA's preferred
* location. If the devmem_fd is negative, it returns NULL, indicating no
* pagemap is available and smem to be used as preferred location.
* If the devmem_fd is equal to the default faulting
* GT identifier, it returns the VRAM pagemap associated with the tile.
*
* Future support for multi-device configurations may use drm_pagemap_from_fd()
* to resolve pagemaps from arbitrary file descriptors.
*
* Return: A pointer to the resolved drm_pagemap, or NULL if none is applicable.
*/
struct drm_pagemap *xe_vma_resolve_pagemap(struct xe_vma *vma, struct xe_tile *tile)
{
s32 fd = (s32)vma->attr.preferred_loc.devmem_fd;
if (fd == DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM)
return NULL;
if (fd == DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE)
return IS_DGFX(tile_to_xe(tile)) ? tile_local_pagemap(tile) : NULL;
/* TODO: Support multi-device with drm_pagemap_from_fd(fd) */
return NULL;
}
/**
* xe_svm_alloc_vram()- Allocate device memory pages for range,
* migrating existing data.
* @tile: tile to allocate vram from
* @range: SVM range
* @ctx: DRM GPU SVM context
*
* Return: 0 on success, error code on failure.
*/
int xe_svm_alloc_vram(struct xe_tile *tile, struct xe_svm_range *range,
const struct drm_gpusvm_ctx *ctx)
{
struct drm_pagemap *dpagemap;
xe_assert(tile_to_xe(tile), range->base.pages.flags.migrate_devmem);
range_debug(range, "ALLOCATE VRAM");
dpagemap = tile_local_pagemap(tile);
return drm_pagemap_populate_mm(dpagemap, xe_svm_range_start(range),
xe_svm_range_end(range),
range->base.gpusvm->mm,
ctx->timeslice_ms);
}
static struct drm_pagemap_addr
xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
struct device *dev,
struct page *page,
unsigned int order,
enum dma_data_direction dir)
{
struct device *pgmap_dev = dpagemap->dev;
enum drm_interconnect_protocol prot;
dma_addr_t addr;
if (pgmap_dev == dev) {
addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
prot = XE_INTERCONNECT_VRAM;
} else {
addr = DMA_MAPPING_ERROR;
prot = 0;
}
return drm_pagemap_addr_encode(addr, prot, order, dir);
}
static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
.device_map = xe_drm_pagemap_device_map,
.populate_mm = xe_drm_pagemap_populate_mm,
};
/**
* xe_devm_add: Remap and provide memmap backing for device memory
* @tile: tile that the memory region belongs to
* @vr: vram memory region to remap
*
* This remap device memory to host physical address space and create
* struct page to back device memory
*
* Return: 0 on success standard error code otherwise
*/
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
{
struct xe_device *xe = tile_to_xe(tile);
struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
struct resource *res;
void *addr;
int ret;
res = devm_request_free_mem_region(dev, &iomem_resource,
vr->usable_size);
if (IS_ERR(res)) {
ret = PTR_ERR(res);
return ret;
}
vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
vr->pagemap.range.start = res->start;
vr->pagemap.range.end = res->end;
vr->pagemap.nr_range = 1;
vr->pagemap.ops = drm_pagemap_pagemap_ops_get();
vr->pagemap.owner = xe_svm_devm_owner(xe);
addr = devm_memremap_pages(dev, &vr->pagemap);
vr->dpagemap.dev = dev;
vr->dpagemap.ops = &xe_drm_pagemap_ops;
if (IS_ERR(addr)) {
devm_release_mem_region(dev, res->start, resource_size(res));
ret = PTR_ERR(addr);
drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
tile->id, ERR_PTR(ret));
return ret;
}
vr->hpa_base = res->start;
drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
return 0;
}
#else
int xe_svm_alloc_vram(struct xe_tile *tile,
struct xe_svm_range *range,
const struct drm_gpusvm_ctx *ctx)
{
return -EOPNOTSUPP;
}
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
{
return 0;
}
struct drm_pagemap *xe_vma_resolve_pagemap(struct xe_vma *vma, struct xe_tile *tile)
{
return NULL;
}
#endif
/**
* xe_svm_flush() - SVM flush
* @vm: The VM.
*
* Flush all SVM actions.
*/
void xe_svm_flush(struct xe_vm *vm)
{
if (xe_vm_in_fault_mode(vm))
flush_work(&vm->svm.garbage_collector.work);
}