mirror of https://github.com/torvalds/linux.git
1177 lines
33 KiB
C
1177 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
|
|
/* Copyright (C) 2024 Nokia
|
|
*
|
|
* Author: Koen De Schepper <koen.de_schepper@nokia-bell-labs.com>
|
|
* Author: Olga Albisser <olga@albisser.org>
|
|
* Author: Henrik Steen <henrist@henrist.net>
|
|
* Author: Olivier Tilmans <olivier.tilmans@nokia.com>
|
|
* Author: Chia-Yu Chang <chia-yu.chang@nokia-bell-labs.com>
|
|
*
|
|
* DualPI Improved with a Square (dualpi2):
|
|
* - Supports congestion controls that comply with the Prague requirements
|
|
* in RFC9331 (e.g. TCP-Prague)
|
|
* - Supports coupled dual-queue with PI2 as defined in RFC9332
|
|
* - Supports ECN L4S-identifier (IP.ECN==0b*1)
|
|
*
|
|
* note: Although DCTCP and BBRv3 can use shallow-threshold ECN marks,
|
|
* they do not meet the 'Prague L4S Requirements' listed in RFC 9331
|
|
* Section 4, so they can only be used with DualPI2 in a datacenter
|
|
* context.
|
|
*
|
|
* References:
|
|
* - RFC9332: https://datatracker.ietf.org/doc/html/rfc9332
|
|
* - De Schepper, Koen, et al. "PI 2: A linearized AQM for both classic and
|
|
* scalable TCP." in proc. ACM CoNEXT'16, 2016.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/module.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <net/gso.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/pkt_cls.h>
|
|
#include <net/pkt_sched.h>
|
|
|
|
/* 32b enable to support flows with windows up to ~8.6 * 1e9 packets
|
|
* i.e., twice the maximal snd_cwnd.
|
|
* MAX_PROB must be consistent with the RNG in dualpi2_roll().
|
|
*/
|
|
#define MAX_PROB U32_MAX
|
|
|
|
/* alpha/beta values exchanged over netlink are in units of 256ns */
|
|
#define ALPHA_BETA_SHIFT 8
|
|
|
|
/* Scaled values of alpha/beta must fit in 32b to avoid overflow in later
|
|
* computations. Consequently (see and dualpi2_scale_alpha_beta()), their
|
|
* netlink-provided values can use at most 31b, i.e. be at most (2^23)-1
|
|
* (~4MHz) as those are given in 1/256th. This enable to tune alpha/beta to
|
|
* control flows whose maximal RTTs can be in usec up to few secs.
|
|
*/
|
|
#define ALPHA_BETA_MAX ((1U << 31) - 1)
|
|
|
|
/* Internal alpha/beta are in units of 64ns.
|
|
* This enables to use all alpha/beta values in the allowed range without loss
|
|
* of precision due to rounding when scaling them internally, e.g.,
|
|
* scale_alpha_beta(1) will not round down to 0.
|
|
*/
|
|
#define ALPHA_BETA_GRANULARITY 6
|
|
|
|
#define ALPHA_BETA_SCALING (ALPHA_BETA_SHIFT - ALPHA_BETA_GRANULARITY)
|
|
|
|
/* We express the weights (wc, wl) in %, i.e., wc + wl = 100 */
|
|
#define MAX_WC 100
|
|
|
|
struct dualpi2_sched_data {
|
|
struct Qdisc *l_queue; /* The L4S Low latency queue (L-queue) */
|
|
struct Qdisc *sch; /* The Classic queue (C-queue) */
|
|
|
|
/* Registered tc filters */
|
|
struct tcf_proto __rcu *tcf_filters;
|
|
struct tcf_block *tcf_block;
|
|
|
|
/* PI2 parameters */
|
|
u64 pi2_target; /* Target delay in nanoseconds */
|
|
u32 pi2_tupdate; /* Timer frequency in nanoseconds */
|
|
u32 pi2_prob; /* Base PI probability */
|
|
u32 pi2_alpha; /* Gain factor for the integral rate response */
|
|
u32 pi2_beta; /* Gain factor for the proportional response */
|
|
struct hrtimer pi2_timer; /* prob update timer */
|
|
|
|
/* Step AQM (L-queue only) parameters */
|
|
u32 step_thresh; /* Step threshold */
|
|
bool step_in_packets; /* Step thresh in packets (1) or time (0) */
|
|
|
|
/* C-queue starvation protection */
|
|
s32 c_protection_credit; /* Credit (sign indicates which queue) */
|
|
s32 c_protection_init; /* Reset value of the credit */
|
|
u8 c_protection_wc; /* C-queue weight (between 0 and MAX_WC) */
|
|
u8 c_protection_wl; /* L-queue weight (MAX_WC - wc) */
|
|
|
|
/* General dualQ parameters */
|
|
u32 memory_limit; /* Memory limit of both queues */
|
|
u8 coupling_factor;/* Coupling factor (k) between both queues */
|
|
u8 ecn_mask; /* Mask to match packets into L-queue */
|
|
u32 min_qlen_step; /* Minimum queue length to apply step thresh */
|
|
bool drop_early; /* Drop at enqueue (1) instead of dequeue (0) */
|
|
bool drop_overload; /* Drop (1) on overload, or overflow (0) */
|
|
bool split_gso; /* Split aggregated skb (1) or leave as is (0) */
|
|
|
|
/* Statistics */
|
|
u64 c_head_ts; /* Enqueue timestamp of the C-queue head */
|
|
u64 l_head_ts; /* Enqueue timestamp of the L-queue head */
|
|
u64 last_qdelay; /* Q delay val at the last probability update */
|
|
u32 packets_in_c; /* Enqueue packet counter of the C-queue */
|
|
u32 packets_in_l; /* Enqueue packet counter of the L-queue */
|
|
u32 maxq; /* Maximum queue size of the C-queue */
|
|
u32 ecn_mark; /* ECN mark pkt counter due to PI probability */
|
|
u32 step_marks; /* ECN mark pkt counter due to step AQM */
|
|
u32 memory_used; /* Memory used of both queues */
|
|
u32 max_memory_used;/* Maximum used memory */
|
|
|
|
/* Deferred drop statistics */
|
|
u32 deferred_drops_cnt; /* Packets dropped */
|
|
u32 deferred_drops_len; /* Bytes dropped */
|
|
};
|
|
|
|
struct dualpi2_skb_cb {
|
|
u64 ts; /* Timestamp at enqueue */
|
|
u8 apply_step:1, /* Can we apply the step threshold */
|
|
classified:2, /* Packet classification results */
|
|
ect:2; /* Packet ECT codepoint */
|
|
};
|
|
|
|
enum dualpi2_classification_results {
|
|
DUALPI2_C_CLASSIC = 0, /* C-queue */
|
|
DUALPI2_C_L4S = 1, /* L-queue (scale mark/classic drop) */
|
|
DUALPI2_C_LLLL = 2, /* L-queue (no drops/marks) */
|
|
__DUALPI2_C_MAX /* Keep last*/
|
|
};
|
|
|
|
static struct dualpi2_skb_cb *dualpi2_skb_cb(struct sk_buff *skb)
|
|
{
|
|
qdisc_cb_private_validate(skb, sizeof(struct dualpi2_skb_cb));
|
|
return (struct dualpi2_skb_cb *)qdisc_skb_cb(skb)->data;
|
|
}
|
|
|
|
static u64 dualpi2_sojourn_time(struct sk_buff *skb, u64 reference)
|
|
{
|
|
return reference - dualpi2_skb_cb(skb)->ts;
|
|
}
|
|
|
|
static u64 head_enqueue_time(struct Qdisc *q)
|
|
{
|
|
struct sk_buff *skb = qdisc_peek_head(q);
|
|
|
|
return skb ? dualpi2_skb_cb(skb)->ts : 0;
|
|
}
|
|
|
|
static u32 dualpi2_scale_alpha_beta(u32 param)
|
|
{
|
|
u64 tmp = ((u64)param * MAX_PROB >> ALPHA_BETA_SCALING);
|
|
|
|
do_div(tmp, NSEC_PER_SEC);
|
|
return tmp;
|
|
}
|
|
|
|
static u32 dualpi2_unscale_alpha_beta(u32 param)
|
|
{
|
|
u64 tmp = ((u64)param * NSEC_PER_SEC << ALPHA_BETA_SCALING);
|
|
|
|
do_div(tmp, MAX_PROB);
|
|
return tmp;
|
|
}
|
|
|
|
static ktime_t next_pi2_timeout(struct dualpi2_sched_data *q)
|
|
{
|
|
return ktime_add_ns(ktime_get_ns(), q->pi2_tupdate);
|
|
}
|
|
|
|
static bool skb_is_l4s(struct sk_buff *skb)
|
|
{
|
|
return dualpi2_skb_cb(skb)->classified == DUALPI2_C_L4S;
|
|
}
|
|
|
|
static bool skb_in_l_queue(struct sk_buff *skb)
|
|
{
|
|
return dualpi2_skb_cb(skb)->classified != DUALPI2_C_CLASSIC;
|
|
}
|
|
|
|
static bool skb_apply_step(struct sk_buff *skb, struct dualpi2_sched_data *q)
|
|
{
|
|
return skb_is_l4s(skb) && qdisc_qlen(q->l_queue) >= q->min_qlen_step;
|
|
}
|
|
|
|
static bool dualpi2_mark(struct dualpi2_sched_data *q, struct sk_buff *skb)
|
|
{
|
|
if (INET_ECN_set_ce(skb)) {
|
|
q->ecn_mark++;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void dualpi2_reset_c_protection(struct dualpi2_sched_data *q)
|
|
{
|
|
q->c_protection_credit = q->c_protection_init;
|
|
}
|
|
|
|
/* This computes the initial credit value and WRR weight for the L queue (wl)
|
|
* from the weight of the C queue (wc).
|
|
* If wl > wc, the scheduler will start with the L queue when reset.
|
|
*/
|
|
static void dualpi2_calculate_c_protection(struct Qdisc *sch,
|
|
struct dualpi2_sched_data *q, u32 wc)
|
|
{
|
|
q->c_protection_wc = wc;
|
|
q->c_protection_wl = MAX_WC - wc;
|
|
q->c_protection_init = (s32)psched_mtu(qdisc_dev(sch)) *
|
|
((int)q->c_protection_wc - (int)q->c_protection_wl);
|
|
dualpi2_reset_c_protection(q);
|
|
}
|
|
|
|
static bool dualpi2_roll(u32 prob)
|
|
{
|
|
return get_random_u32() <= prob;
|
|
}
|
|
|
|
/* Packets in the C-queue are subject to a marking probability pC, which is the
|
|
* square of the internal PI probability (i.e., have an overall lower mark/drop
|
|
* probability). If the qdisc is overloaded, ignore ECT values and only drop.
|
|
*
|
|
* Note that this marking scheme is also applied to L4S packets during overload.
|
|
* Return true if packet dropping is required in C queue
|
|
*/
|
|
static bool dualpi2_classic_marking(struct dualpi2_sched_data *q,
|
|
struct sk_buff *skb, u32 prob,
|
|
bool overload)
|
|
{
|
|
if (dualpi2_roll(prob) && dualpi2_roll(prob)) {
|
|
if (overload || dualpi2_skb_cb(skb)->ect == INET_ECN_NOT_ECT)
|
|
return true;
|
|
dualpi2_mark(q, skb);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Packets in the L-queue are subject to a marking probability pL given by the
|
|
* internal PI probability scaled by the coupling factor.
|
|
*
|
|
* On overload (i.e., @local_l_prob is >= 100%):
|
|
* - if the qdisc is configured to trade losses to preserve latency (i.e.,
|
|
* @q->drop_overload), apply classic drops first before marking.
|
|
* - otherwise, preserve the "no loss" property of ECN at the cost of queueing
|
|
* delay, eventually resulting in taildrop behavior once sch->limit is
|
|
* reached.
|
|
* Return true if packet dropping is required in L queue
|
|
*/
|
|
static bool dualpi2_scalable_marking(struct dualpi2_sched_data *q,
|
|
struct sk_buff *skb,
|
|
u64 local_l_prob, u32 prob,
|
|
bool overload)
|
|
{
|
|
if (overload) {
|
|
/* Apply classic drop */
|
|
if (!q->drop_overload ||
|
|
!(dualpi2_roll(prob) && dualpi2_roll(prob)))
|
|
goto mark;
|
|
return true;
|
|
}
|
|
|
|
/* We can safely cut the upper 32b as overload==false */
|
|
if (dualpi2_roll(local_l_prob)) {
|
|
/* Non-ECT packets could have classified as L4S by filters. */
|
|
if (dualpi2_skb_cb(skb)->ect == INET_ECN_NOT_ECT)
|
|
return true;
|
|
mark:
|
|
dualpi2_mark(q, skb);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Decide whether a given packet must be dropped (or marked if ECT), according
|
|
* to the PI2 probability.
|
|
*
|
|
* Never mark/drop if we have a standing queue of less than 2 MTUs.
|
|
*/
|
|
static bool must_drop(struct Qdisc *sch, struct dualpi2_sched_data *q,
|
|
struct sk_buff *skb)
|
|
{
|
|
u64 local_l_prob;
|
|
bool overload;
|
|
u32 prob;
|
|
|
|
if (sch->qstats.backlog < 2 * psched_mtu(qdisc_dev(sch)))
|
|
return false;
|
|
|
|
prob = READ_ONCE(q->pi2_prob);
|
|
local_l_prob = (u64)prob * q->coupling_factor;
|
|
overload = local_l_prob > MAX_PROB;
|
|
|
|
switch (dualpi2_skb_cb(skb)->classified) {
|
|
case DUALPI2_C_CLASSIC:
|
|
return dualpi2_classic_marking(q, skb, prob, overload);
|
|
case DUALPI2_C_L4S:
|
|
return dualpi2_scalable_marking(q, skb, local_l_prob, prob,
|
|
overload);
|
|
default: /* DUALPI2_C_LLLL */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void dualpi2_read_ect(struct sk_buff *skb)
|
|
{
|
|
struct dualpi2_skb_cb *cb = dualpi2_skb_cb(skb);
|
|
int wlen = skb_network_offset(skb);
|
|
|
|
switch (skb_protocol(skb, true)) {
|
|
case htons(ETH_P_IP):
|
|
wlen += sizeof(struct iphdr);
|
|
if (!pskb_may_pull(skb, wlen) ||
|
|
skb_try_make_writable(skb, wlen))
|
|
goto not_ecn;
|
|
|
|
cb->ect = ipv4_get_dsfield(ip_hdr(skb)) & INET_ECN_MASK;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
wlen += sizeof(struct ipv6hdr);
|
|
if (!pskb_may_pull(skb, wlen) ||
|
|
skb_try_make_writable(skb, wlen))
|
|
goto not_ecn;
|
|
|
|
cb->ect = ipv6_get_dsfield(ipv6_hdr(skb)) & INET_ECN_MASK;
|
|
break;
|
|
default:
|
|
goto not_ecn;
|
|
}
|
|
return;
|
|
|
|
not_ecn:
|
|
/* Non pullable/writable packets can only be dropped hence are
|
|
* classified as not ECT.
|
|
*/
|
|
cb->ect = INET_ECN_NOT_ECT;
|
|
}
|
|
|
|
static int dualpi2_skb_classify(struct dualpi2_sched_data *q,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct dualpi2_skb_cb *cb = dualpi2_skb_cb(skb);
|
|
struct tcf_result res;
|
|
struct tcf_proto *fl;
|
|
int result;
|
|
|
|
dualpi2_read_ect(skb);
|
|
if (cb->ect & q->ecn_mask) {
|
|
cb->classified = DUALPI2_C_L4S;
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
if (TC_H_MAJ(skb->priority) == q->sch->handle &&
|
|
TC_H_MIN(skb->priority) < __DUALPI2_C_MAX) {
|
|
cb->classified = TC_H_MIN(skb->priority);
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
fl = rcu_dereference_bh(q->tcf_filters);
|
|
if (!fl) {
|
|
cb->classified = DUALPI2_C_CLASSIC;
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
result = tcf_classify(skb, NULL, fl, &res, false);
|
|
if (result >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_QUEUED:
|
|
case TC_ACT_TRAP:
|
|
return NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
case TC_ACT_SHOT:
|
|
return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
}
|
|
#endif
|
|
cb->classified = TC_H_MIN(res.classid) < __DUALPI2_C_MAX ?
|
|
TC_H_MIN(res.classid) : DUALPI2_C_CLASSIC;
|
|
}
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static int dualpi2_enqueue_skb(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
struct dualpi2_skb_cb *cb;
|
|
|
|
if (unlikely(qdisc_qlen(sch) >= sch->limit) ||
|
|
unlikely((u64)q->memory_used + skb->truesize > q->memory_limit)) {
|
|
qdisc_qstats_overlimit(sch);
|
|
if (skb_in_l_queue(skb))
|
|
qdisc_qstats_overlimit(q->l_queue);
|
|
return qdisc_drop_reason(skb, sch, to_free,
|
|
SKB_DROP_REASON_QDISC_OVERLIMIT);
|
|
}
|
|
|
|
if (q->drop_early && must_drop(sch, q, skb)) {
|
|
qdisc_drop_reason(skb, sch, to_free,
|
|
SKB_DROP_REASON_QDISC_CONGESTED);
|
|
return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
}
|
|
|
|
cb = dualpi2_skb_cb(skb);
|
|
cb->ts = ktime_get_ns();
|
|
q->memory_used += skb->truesize;
|
|
if (q->memory_used > q->max_memory_used)
|
|
q->max_memory_used = q->memory_used;
|
|
|
|
if (qdisc_qlen(sch) > q->maxq)
|
|
q->maxq = qdisc_qlen(sch);
|
|
|
|
if (skb_in_l_queue(skb)) {
|
|
/* Apply step thresh if skb is L4S && L-queue len >= min_qlen */
|
|
dualpi2_skb_cb(skb)->apply_step = skb_apply_step(skb, q);
|
|
|
|
/* Keep the overall qdisc stats consistent */
|
|
++sch->q.qlen;
|
|
qdisc_qstats_backlog_inc(sch, skb);
|
|
++q->packets_in_l;
|
|
if (!q->l_head_ts)
|
|
q->l_head_ts = cb->ts;
|
|
return qdisc_enqueue_tail(skb, q->l_queue);
|
|
}
|
|
++q->packets_in_c;
|
|
if (!q->c_head_ts)
|
|
q->c_head_ts = cb->ts;
|
|
return qdisc_enqueue_tail(skb, sch);
|
|
}
|
|
|
|
/* By default, dualpi2 will split GSO skbs into independent skbs and enqueue
|
|
* each of those individually. This yields the following benefits, at the
|
|
* expense of CPU usage:
|
|
* - Finer-grained AQM actions as the sub-packets of a burst no longer share the
|
|
* same fate (e.g., the random mark/drop probability is applied individually)
|
|
* - Improved precision of the starvation protection/WRR scheduler at dequeue,
|
|
* as the size of the dequeued packets will be smaller.
|
|
*/
|
|
static int dualpi2_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
int err;
|
|
|
|
err = dualpi2_skb_classify(q, skb);
|
|
if (err != NET_XMIT_SUCCESS) {
|
|
if (err & __NET_XMIT_BYPASS)
|
|
qdisc_qstats_drop(sch);
|
|
__qdisc_drop(skb, to_free);
|
|
return err;
|
|
}
|
|
|
|
if (q->split_gso && skb_is_gso(skb)) {
|
|
netdev_features_t features;
|
|
struct sk_buff *nskb, *next;
|
|
int cnt, byte_len, orig_len;
|
|
int err;
|
|
|
|
features = netif_skb_features(skb);
|
|
nskb = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
|
|
if (IS_ERR_OR_NULL(nskb))
|
|
return qdisc_drop(skb, sch, to_free);
|
|
|
|
cnt = 1;
|
|
byte_len = 0;
|
|
orig_len = qdisc_pkt_len(skb);
|
|
skb_list_walk_safe(nskb, nskb, next) {
|
|
skb_mark_not_on_list(nskb);
|
|
|
|
/* Iterate through GSO fragments of an skb:
|
|
* (1) Set pkt_len from the single GSO fragments
|
|
* (2) Copy classified and ect values of an skb
|
|
* (3) Enqueue fragment & set ts in dualpi2_enqueue_skb
|
|
*/
|
|
qdisc_skb_cb(nskb)->pkt_len = nskb->len;
|
|
dualpi2_skb_cb(nskb)->classified =
|
|
dualpi2_skb_cb(skb)->classified;
|
|
dualpi2_skb_cb(nskb)->ect = dualpi2_skb_cb(skb)->ect;
|
|
err = dualpi2_enqueue_skb(nskb, sch, to_free);
|
|
|
|
if (err == NET_XMIT_SUCCESS) {
|
|
/* Compute the backlog adjustment that needs
|
|
* to be propagated in the qdisc tree to reflect
|
|
* all new skbs successfully enqueued.
|
|
*/
|
|
++cnt;
|
|
byte_len += nskb->len;
|
|
}
|
|
}
|
|
if (cnt > 1) {
|
|
/* The caller will add the original skb stats to its
|
|
* backlog, compensate this if any nskb is enqueued.
|
|
*/
|
|
--cnt;
|
|
byte_len -= orig_len;
|
|
}
|
|
qdisc_tree_reduce_backlog(sch, -cnt, -byte_len);
|
|
consume_skb(skb);
|
|
return err;
|
|
}
|
|
return dualpi2_enqueue_skb(skb, sch, to_free);
|
|
}
|
|
|
|
/* Select the queue from which the next packet can be dequeued, ensuring that
|
|
* neither queue can starve the other with a WRR scheduler.
|
|
*
|
|
* The sign of the WRR credit determines the next queue, while the size of
|
|
* the dequeued packet determines the magnitude of the WRR credit change. If
|
|
* either queue is empty, the WRR credit is kept unchanged.
|
|
*
|
|
* As the dequeued packet can be dropped later, the caller has to perform the
|
|
* qdisc_bstats_update() calls.
|
|
*/
|
|
static struct sk_buff *dequeue_packet(struct Qdisc *sch,
|
|
struct dualpi2_sched_data *q,
|
|
int *credit_change,
|
|
u64 now)
|
|
{
|
|
struct sk_buff *skb = NULL;
|
|
int c_len;
|
|
|
|
*credit_change = 0;
|
|
c_len = qdisc_qlen(sch) - qdisc_qlen(q->l_queue);
|
|
if (qdisc_qlen(q->l_queue) && (!c_len || q->c_protection_credit <= 0)) {
|
|
skb = __qdisc_dequeue_head(&q->l_queue->q);
|
|
WRITE_ONCE(q->l_head_ts, head_enqueue_time(q->l_queue));
|
|
if (c_len)
|
|
*credit_change = q->c_protection_wc;
|
|
qdisc_qstats_backlog_dec(q->l_queue, skb);
|
|
|
|
/* Keep the global queue size consistent */
|
|
--sch->q.qlen;
|
|
q->memory_used -= skb->truesize;
|
|
} else if (c_len) {
|
|
skb = __qdisc_dequeue_head(&sch->q);
|
|
WRITE_ONCE(q->c_head_ts, head_enqueue_time(sch));
|
|
if (qdisc_qlen(q->l_queue))
|
|
*credit_change = ~((s32)q->c_protection_wl) + 1;
|
|
q->memory_used -= skb->truesize;
|
|
} else {
|
|
dualpi2_reset_c_protection(q);
|
|
return NULL;
|
|
}
|
|
*credit_change *= qdisc_pkt_len(skb);
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
return skb;
|
|
}
|
|
|
|
static int do_step_aqm(struct dualpi2_sched_data *q, struct sk_buff *skb,
|
|
u64 now)
|
|
{
|
|
u64 qdelay = 0;
|
|
|
|
if (q->step_in_packets)
|
|
qdelay = qdisc_qlen(q->l_queue);
|
|
else
|
|
qdelay = dualpi2_sojourn_time(skb, now);
|
|
|
|
if (dualpi2_skb_cb(skb)->apply_step && qdelay > q->step_thresh) {
|
|
if (!dualpi2_skb_cb(skb)->ect) {
|
|
/* Drop this non-ECT packet */
|
|
return 1;
|
|
}
|
|
|
|
if (dualpi2_mark(q, skb))
|
|
++q->step_marks;
|
|
}
|
|
qdisc_bstats_update(q->l_queue, skb);
|
|
return 0;
|
|
}
|
|
|
|
static void drop_and_retry(struct dualpi2_sched_data *q, struct sk_buff *skb,
|
|
struct Qdisc *sch, enum skb_drop_reason reason)
|
|
{
|
|
++q->deferred_drops_cnt;
|
|
q->deferred_drops_len += qdisc_pkt_len(skb);
|
|
kfree_skb_reason(skb, reason);
|
|
qdisc_qstats_drop(sch);
|
|
}
|
|
|
|
static struct sk_buff *dualpi2_qdisc_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
int credit_change;
|
|
u64 now;
|
|
|
|
now = ktime_get_ns();
|
|
|
|
while ((skb = dequeue_packet(sch, q, &credit_change, now))) {
|
|
if (!q->drop_early && must_drop(sch, q, skb)) {
|
|
drop_and_retry(q, skb, sch,
|
|
SKB_DROP_REASON_QDISC_CONGESTED);
|
|
continue;
|
|
}
|
|
|
|
if (skb_in_l_queue(skb) && do_step_aqm(q, skb, now)) {
|
|
qdisc_qstats_drop(q->l_queue);
|
|
drop_and_retry(q, skb, sch,
|
|
SKB_DROP_REASON_DUALPI2_STEP_DROP);
|
|
continue;
|
|
}
|
|
|
|
q->c_protection_credit += credit_change;
|
|
qdisc_bstats_update(sch, skb);
|
|
break;
|
|
}
|
|
|
|
if (q->deferred_drops_cnt) {
|
|
qdisc_tree_reduce_backlog(sch, q->deferred_drops_cnt,
|
|
q->deferred_drops_len);
|
|
q->deferred_drops_cnt = 0;
|
|
q->deferred_drops_len = 0;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static s64 __scale_delta(u64 diff)
|
|
{
|
|
do_div(diff, 1 << ALPHA_BETA_GRANULARITY);
|
|
return diff;
|
|
}
|
|
|
|
static void get_queue_delays(struct dualpi2_sched_data *q, u64 *qdelay_c,
|
|
u64 *qdelay_l)
|
|
{
|
|
u64 now, qc, ql;
|
|
|
|
now = ktime_get_ns();
|
|
qc = READ_ONCE(q->c_head_ts);
|
|
ql = READ_ONCE(q->l_head_ts);
|
|
|
|
*qdelay_c = qc ? now - qc : 0;
|
|
*qdelay_l = ql ? now - ql : 0;
|
|
}
|
|
|
|
static u32 calculate_probability(struct Qdisc *sch)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
u32 new_prob;
|
|
u64 qdelay_c;
|
|
u64 qdelay_l;
|
|
u64 qdelay;
|
|
s64 delta;
|
|
|
|
get_queue_delays(q, &qdelay_c, &qdelay_l);
|
|
qdelay = max(qdelay_l, qdelay_c);
|
|
|
|
/* Alpha and beta take at most 32b, i.e, the delay difference would
|
|
* overflow for queuing delay differences > ~4.2sec.
|
|
*/
|
|
delta = ((s64)qdelay - (s64)q->pi2_target) * q->pi2_alpha;
|
|
delta += ((s64)qdelay - (s64)q->last_qdelay) * q->pi2_beta;
|
|
q->last_qdelay = qdelay;
|
|
|
|
/* Bound new_prob between 0 and MAX_PROB */
|
|
if (delta > 0) {
|
|
new_prob = __scale_delta(delta) + q->pi2_prob;
|
|
if (new_prob < q->pi2_prob)
|
|
new_prob = MAX_PROB;
|
|
} else {
|
|
new_prob = q->pi2_prob - __scale_delta(~delta + 1);
|
|
if (new_prob > q->pi2_prob)
|
|
new_prob = 0;
|
|
}
|
|
|
|
/* If we do not drop on overload, ensure we cap the L4S probability to
|
|
* 100% to keep window fairness when overflowing.
|
|
*/
|
|
if (!q->drop_overload)
|
|
return min_t(u32, new_prob, MAX_PROB / q->coupling_factor);
|
|
return new_prob;
|
|
}
|
|
|
|
static u32 get_memory_limit(struct Qdisc *sch, u32 limit)
|
|
{
|
|
/* Apply rule of thumb, i.e., doubling the packet length,
|
|
* to further include per packet overhead in memory_limit.
|
|
*/
|
|
u64 memlim = mul_u32_u32(limit, 2 * psched_mtu(qdisc_dev(sch)));
|
|
|
|
if (upper_32_bits(memlim))
|
|
return U32_MAX;
|
|
else
|
|
return lower_32_bits(memlim);
|
|
}
|
|
|
|
static u32 convert_us_to_nsec(u32 us)
|
|
{
|
|
u64 ns = mul_u32_u32(us, NSEC_PER_USEC);
|
|
|
|
if (upper_32_bits(ns))
|
|
return U32_MAX;
|
|
|
|
return lower_32_bits(ns);
|
|
}
|
|
|
|
static u32 convert_ns_to_usec(u64 ns)
|
|
{
|
|
do_div(ns, NSEC_PER_USEC);
|
|
if (upper_32_bits(ns))
|
|
return U32_MAX;
|
|
|
|
return lower_32_bits(ns);
|
|
}
|
|
|
|
static enum hrtimer_restart dualpi2_timer(struct hrtimer *timer)
|
|
{
|
|
struct dualpi2_sched_data *q = timer_container_of(q, timer, pi2_timer);
|
|
struct Qdisc *sch = q->sch;
|
|
spinlock_t *root_lock; /* to lock qdisc for probability calculations */
|
|
|
|
rcu_read_lock();
|
|
root_lock = qdisc_lock(qdisc_root_sleeping(sch));
|
|
spin_lock(root_lock);
|
|
|
|
WRITE_ONCE(q->pi2_prob, calculate_probability(sch));
|
|
hrtimer_set_expires(&q->pi2_timer, next_pi2_timeout(q));
|
|
|
|
spin_unlock(root_lock);
|
|
rcu_read_unlock();
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
static struct netlink_range_validation dualpi2_alpha_beta_range = {
|
|
.min = 1,
|
|
.max = ALPHA_BETA_MAX,
|
|
};
|
|
|
|
static const struct nla_policy dualpi2_policy[TCA_DUALPI2_MAX + 1] = {
|
|
[TCA_DUALPI2_LIMIT] = NLA_POLICY_MIN(NLA_U32, 1),
|
|
[TCA_DUALPI2_MEMORY_LIMIT] = NLA_POLICY_MIN(NLA_U32, 1),
|
|
[TCA_DUALPI2_TARGET] = { .type = NLA_U32 },
|
|
[TCA_DUALPI2_TUPDATE] = NLA_POLICY_MIN(NLA_U32, 1),
|
|
[TCA_DUALPI2_ALPHA] =
|
|
NLA_POLICY_FULL_RANGE(NLA_U32, &dualpi2_alpha_beta_range),
|
|
[TCA_DUALPI2_BETA] =
|
|
NLA_POLICY_FULL_RANGE(NLA_U32, &dualpi2_alpha_beta_range),
|
|
[TCA_DUALPI2_STEP_THRESH_PKTS] = { .type = NLA_U32 },
|
|
[TCA_DUALPI2_STEP_THRESH_US] = { .type = NLA_U32 },
|
|
[TCA_DUALPI2_MIN_QLEN_STEP] = { .type = NLA_U32 },
|
|
[TCA_DUALPI2_COUPLING] = NLA_POLICY_MIN(NLA_U8, 1),
|
|
[TCA_DUALPI2_DROP_OVERLOAD] =
|
|
NLA_POLICY_MAX(NLA_U8, TCA_DUALPI2_DROP_OVERLOAD_MAX),
|
|
[TCA_DUALPI2_DROP_EARLY] =
|
|
NLA_POLICY_MAX(NLA_U8, TCA_DUALPI2_DROP_EARLY_MAX),
|
|
[TCA_DUALPI2_C_PROTECTION] =
|
|
NLA_POLICY_RANGE(NLA_U8, 0, MAX_WC),
|
|
[TCA_DUALPI2_ECN_MASK] =
|
|
NLA_POLICY_RANGE(NLA_U8, TC_DUALPI2_ECN_MASK_L4S_ECT,
|
|
TCA_DUALPI2_ECN_MASK_MAX),
|
|
[TCA_DUALPI2_SPLIT_GSO] =
|
|
NLA_POLICY_MAX(NLA_U8, TCA_DUALPI2_SPLIT_GSO_MAX),
|
|
};
|
|
|
|
static int dualpi2_change(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct nlattr *tb[TCA_DUALPI2_MAX + 1];
|
|
struct dualpi2_sched_data *q;
|
|
int old_backlog;
|
|
int old_qlen;
|
|
int err;
|
|
|
|
if (!opt || !nla_len(opt)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Dualpi2 options are required");
|
|
return -EINVAL;
|
|
}
|
|
err = nla_parse_nested(tb, TCA_DUALPI2_MAX, opt, dualpi2_policy,
|
|
extack);
|
|
if (err < 0)
|
|
return err;
|
|
if (tb[TCA_DUALPI2_STEP_THRESH_PKTS] && tb[TCA_DUALPI2_STEP_THRESH_US]) {
|
|
NL_SET_ERR_MSG_MOD(extack, "multiple step thresh attributes");
|
|
return -EINVAL;
|
|
}
|
|
|
|
q = qdisc_priv(sch);
|
|
sch_tree_lock(sch);
|
|
|
|
if (tb[TCA_DUALPI2_LIMIT]) {
|
|
u32 limit = nla_get_u32(tb[TCA_DUALPI2_LIMIT]);
|
|
|
|
WRITE_ONCE(sch->limit, limit);
|
|
WRITE_ONCE(q->memory_limit, get_memory_limit(sch, limit));
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_MEMORY_LIMIT])
|
|
WRITE_ONCE(q->memory_limit,
|
|
nla_get_u32(tb[TCA_DUALPI2_MEMORY_LIMIT]));
|
|
|
|
if (tb[TCA_DUALPI2_TARGET]) {
|
|
u64 target = nla_get_u32(tb[TCA_DUALPI2_TARGET]);
|
|
|
|
WRITE_ONCE(q->pi2_target, target * NSEC_PER_USEC);
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_TUPDATE]) {
|
|
u64 tupdate = nla_get_u32(tb[TCA_DUALPI2_TUPDATE]);
|
|
|
|
WRITE_ONCE(q->pi2_tupdate, convert_us_to_nsec(tupdate));
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_ALPHA]) {
|
|
u32 alpha = nla_get_u32(tb[TCA_DUALPI2_ALPHA]);
|
|
|
|
WRITE_ONCE(q->pi2_alpha, dualpi2_scale_alpha_beta(alpha));
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_BETA]) {
|
|
u32 beta = nla_get_u32(tb[TCA_DUALPI2_BETA]);
|
|
|
|
WRITE_ONCE(q->pi2_beta, dualpi2_scale_alpha_beta(beta));
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_STEP_THRESH_PKTS]) {
|
|
u32 step_th = nla_get_u32(tb[TCA_DUALPI2_STEP_THRESH_PKTS]);
|
|
|
|
WRITE_ONCE(q->step_in_packets, true);
|
|
WRITE_ONCE(q->step_thresh, step_th);
|
|
} else if (tb[TCA_DUALPI2_STEP_THRESH_US]) {
|
|
u32 step_th = nla_get_u32(tb[TCA_DUALPI2_STEP_THRESH_US]);
|
|
|
|
WRITE_ONCE(q->step_in_packets, false);
|
|
WRITE_ONCE(q->step_thresh, convert_us_to_nsec(step_th));
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_MIN_QLEN_STEP])
|
|
WRITE_ONCE(q->min_qlen_step,
|
|
nla_get_u32(tb[TCA_DUALPI2_MIN_QLEN_STEP]));
|
|
|
|
if (tb[TCA_DUALPI2_COUPLING]) {
|
|
u8 coupling = nla_get_u8(tb[TCA_DUALPI2_COUPLING]);
|
|
|
|
WRITE_ONCE(q->coupling_factor, coupling);
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_DROP_OVERLOAD]) {
|
|
u8 drop_overload = nla_get_u8(tb[TCA_DUALPI2_DROP_OVERLOAD]);
|
|
|
|
WRITE_ONCE(q->drop_overload, (bool)drop_overload);
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_DROP_EARLY]) {
|
|
u8 drop_early = nla_get_u8(tb[TCA_DUALPI2_DROP_EARLY]);
|
|
|
|
WRITE_ONCE(q->drop_early, (bool)drop_early);
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_C_PROTECTION]) {
|
|
u8 wc = nla_get_u8(tb[TCA_DUALPI2_C_PROTECTION]);
|
|
|
|
dualpi2_calculate_c_protection(sch, q, wc);
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_ECN_MASK]) {
|
|
u8 ecn_mask = nla_get_u8(tb[TCA_DUALPI2_ECN_MASK]);
|
|
|
|
WRITE_ONCE(q->ecn_mask, ecn_mask);
|
|
}
|
|
|
|
if (tb[TCA_DUALPI2_SPLIT_GSO]) {
|
|
u8 split_gso = nla_get_u8(tb[TCA_DUALPI2_SPLIT_GSO]);
|
|
|
|
WRITE_ONCE(q->split_gso, (bool)split_gso);
|
|
}
|
|
|
|
old_qlen = qdisc_qlen(sch);
|
|
old_backlog = sch->qstats.backlog;
|
|
while (qdisc_qlen(sch) > sch->limit ||
|
|
q->memory_used > q->memory_limit) {
|
|
struct sk_buff *skb = qdisc_dequeue_internal(sch, true);
|
|
|
|
q->memory_used -= skb->truesize;
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
rtnl_qdisc_drop(skb, sch);
|
|
}
|
|
qdisc_tree_reduce_backlog(sch, old_qlen - qdisc_qlen(sch),
|
|
old_backlog - sch->qstats.backlog);
|
|
|
|
sch_tree_unlock(sch);
|
|
return 0;
|
|
}
|
|
|
|
/* Default alpha/beta values give a 10dB stability margin with max_rtt=100ms. */
|
|
static void dualpi2_reset_default(struct Qdisc *sch)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
|
|
q->sch->limit = 10000; /* Max 125ms at 1Gbps */
|
|
q->memory_limit = get_memory_limit(sch, q->sch->limit);
|
|
|
|
q->pi2_target = 15 * NSEC_PER_MSEC;
|
|
q->pi2_tupdate = 16 * NSEC_PER_MSEC;
|
|
q->pi2_alpha = dualpi2_scale_alpha_beta(41); /* ~0.16 Hz * 256 */
|
|
q->pi2_beta = dualpi2_scale_alpha_beta(819); /* ~3.20 Hz * 256 */
|
|
|
|
q->step_thresh = 1 * NSEC_PER_MSEC;
|
|
q->step_in_packets = false;
|
|
|
|
dualpi2_calculate_c_protection(q->sch, q, 10); /* wc=10%, wl=90% */
|
|
|
|
q->ecn_mask = TC_DUALPI2_ECN_MASK_L4S_ECT; /* INET_ECN_ECT_1 */
|
|
q->min_qlen_step = 0; /* Always apply step mark in L-queue */
|
|
q->coupling_factor = 2; /* window fairness for equal RTTs */
|
|
q->drop_overload = TC_DUALPI2_DROP_OVERLOAD_DROP; /* Drop overload */
|
|
q->drop_early = TC_DUALPI2_DROP_EARLY_DROP_DEQUEUE; /* Drop dequeue */
|
|
q->split_gso = TC_DUALPI2_SPLIT_GSO_SPLIT_GSO; /* Split GSO */
|
|
}
|
|
|
|
static int dualpi2_init(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
int err;
|
|
|
|
q->l_queue = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
|
|
TC_H_MAKE(sch->handle, 1), extack);
|
|
if (!q->l_queue)
|
|
return -ENOMEM;
|
|
|
|
err = tcf_block_get(&q->tcf_block, &q->tcf_filters, sch, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
q->sch = sch;
|
|
dualpi2_reset_default(sch);
|
|
hrtimer_setup(&q->pi2_timer, dualpi2_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_ABS_PINNED_SOFT);
|
|
|
|
if (opt && nla_len(opt)) {
|
|
err = dualpi2_change(sch, opt, extack);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
hrtimer_start(&q->pi2_timer, next_pi2_timeout(q),
|
|
HRTIMER_MODE_ABS_PINNED_SOFT);
|
|
return 0;
|
|
}
|
|
|
|
static int dualpi2_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *opts;
|
|
bool step_in_pkts;
|
|
u32 step_th;
|
|
|
|
step_in_pkts = READ_ONCE(q->step_in_packets);
|
|
step_th = READ_ONCE(q->step_thresh);
|
|
|
|
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (!opts)
|
|
goto nla_put_failure;
|
|
|
|
if (step_in_pkts &&
|
|
(nla_put_u32(skb, TCA_DUALPI2_LIMIT, READ_ONCE(sch->limit)) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_MEMORY_LIMIT,
|
|
READ_ONCE(q->memory_limit)) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_TARGET,
|
|
convert_ns_to_usec(READ_ONCE(q->pi2_target))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_TUPDATE,
|
|
convert_ns_to_usec(READ_ONCE(q->pi2_tupdate))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_ALPHA,
|
|
dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_alpha))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_BETA,
|
|
dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_beta))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_STEP_THRESH_PKTS, step_th) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_MIN_QLEN_STEP,
|
|
READ_ONCE(q->min_qlen_step)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_COUPLING,
|
|
READ_ONCE(q->coupling_factor)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_DROP_OVERLOAD,
|
|
READ_ONCE(q->drop_overload)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_DROP_EARLY,
|
|
READ_ONCE(q->drop_early)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_C_PROTECTION,
|
|
READ_ONCE(q->c_protection_wc)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_ECN_MASK, READ_ONCE(q->ecn_mask)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_SPLIT_GSO, READ_ONCE(q->split_gso))))
|
|
goto nla_put_failure;
|
|
|
|
if (!step_in_pkts &&
|
|
(nla_put_u32(skb, TCA_DUALPI2_LIMIT, READ_ONCE(sch->limit)) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_MEMORY_LIMIT,
|
|
READ_ONCE(q->memory_limit)) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_TARGET,
|
|
convert_ns_to_usec(READ_ONCE(q->pi2_target))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_TUPDATE,
|
|
convert_ns_to_usec(READ_ONCE(q->pi2_tupdate))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_ALPHA,
|
|
dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_alpha))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_BETA,
|
|
dualpi2_unscale_alpha_beta(READ_ONCE(q->pi2_beta))) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_STEP_THRESH_US,
|
|
convert_ns_to_usec(step_th)) ||
|
|
nla_put_u32(skb, TCA_DUALPI2_MIN_QLEN_STEP,
|
|
READ_ONCE(q->min_qlen_step)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_COUPLING,
|
|
READ_ONCE(q->coupling_factor)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_DROP_OVERLOAD,
|
|
READ_ONCE(q->drop_overload)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_DROP_EARLY,
|
|
READ_ONCE(q->drop_early)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_C_PROTECTION,
|
|
READ_ONCE(q->c_protection_wc)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_ECN_MASK, READ_ONCE(q->ecn_mask)) ||
|
|
nla_put_u8(skb, TCA_DUALPI2_SPLIT_GSO, READ_ONCE(q->split_gso))))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(skb, opts);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, opts);
|
|
return -1;
|
|
}
|
|
|
|
static int dualpi2_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
struct tc_dualpi2_xstats st = {
|
|
.prob = READ_ONCE(q->pi2_prob),
|
|
.packets_in_c = q->packets_in_c,
|
|
.packets_in_l = q->packets_in_l,
|
|
.maxq = q->maxq,
|
|
.ecn_mark = q->ecn_mark,
|
|
.credit = q->c_protection_credit,
|
|
.step_marks = q->step_marks,
|
|
.memory_used = q->memory_used,
|
|
.max_memory_used = q->max_memory_used,
|
|
.memory_limit = q->memory_limit,
|
|
};
|
|
u64 qc, ql;
|
|
|
|
get_queue_delays(q, &qc, &ql);
|
|
st.delay_l = convert_ns_to_usec(ql);
|
|
st.delay_c = convert_ns_to_usec(qc);
|
|
return gnet_stats_copy_app(d, &st, sizeof(st));
|
|
}
|
|
|
|
/* Reset both L-queue and C-queue, internal packet counters, PI probability,
|
|
* C-queue protection credit, and timestamps, while preserving current
|
|
* configuration of DUALPI2.
|
|
*/
|
|
static void dualpi2_reset(struct Qdisc *sch)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
|
|
qdisc_reset_queue(sch);
|
|
qdisc_reset_queue(q->l_queue);
|
|
q->c_head_ts = 0;
|
|
q->l_head_ts = 0;
|
|
q->pi2_prob = 0;
|
|
q->packets_in_c = 0;
|
|
q->packets_in_l = 0;
|
|
q->maxq = 0;
|
|
q->ecn_mark = 0;
|
|
q->step_marks = 0;
|
|
q->memory_used = 0;
|
|
q->max_memory_used = 0;
|
|
dualpi2_reset_c_protection(q);
|
|
}
|
|
|
|
static void dualpi2_destroy(struct Qdisc *sch)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
|
|
q->pi2_tupdate = 0;
|
|
hrtimer_cancel(&q->pi2_timer);
|
|
if (q->l_queue)
|
|
qdisc_put(q->l_queue);
|
|
tcf_block_put(q->tcf_block);
|
|
}
|
|
|
|
static struct Qdisc *dualpi2_leaf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long dualpi2_find(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long dualpi2_bind(struct Qdisc *sch, unsigned long parent,
|
|
u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void dualpi2_unbind(struct Qdisc *q, unsigned long cl)
|
|
{
|
|
}
|
|
|
|
static struct tcf_block *dualpi2_tcf_block(struct Qdisc *sch, unsigned long cl,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct dualpi2_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (cl)
|
|
return NULL;
|
|
return q->tcf_block;
|
|
}
|
|
|
|
static void dualpi2_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
/* We statically define only 2 queues */
|
|
for (i = 0; i < 2; i++) {
|
|
if (arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(sch, i + 1, arg) < 0) {
|
|
arg->stop = 1;
|
|
break;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
|
|
/* Minimal class support to handle tc filters */
|
|
static const struct Qdisc_class_ops dualpi2_class_ops = {
|
|
.leaf = dualpi2_leaf,
|
|
.find = dualpi2_find,
|
|
.tcf_block = dualpi2_tcf_block,
|
|
.bind_tcf = dualpi2_bind,
|
|
.unbind_tcf = dualpi2_unbind,
|
|
.walk = dualpi2_walk,
|
|
};
|
|
|
|
static struct Qdisc_ops dualpi2_qdisc_ops __read_mostly = {
|
|
.id = "dualpi2",
|
|
.cl_ops = &dualpi2_class_ops,
|
|
.priv_size = sizeof(struct dualpi2_sched_data),
|
|
.enqueue = dualpi2_qdisc_enqueue,
|
|
.dequeue = dualpi2_qdisc_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.init = dualpi2_init,
|
|
.destroy = dualpi2_destroy,
|
|
.reset = dualpi2_reset,
|
|
.change = dualpi2_change,
|
|
.dump = dualpi2_dump,
|
|
.dump_stats = dualpi2_dump_stats,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init dualpi2_module_init(void)
|
|
{
|
|
return register_qdisc(&dualpi2_qdisc_ops);
|
|
}
|
|
|
|
static void __exit dualpi2_module_exit(void)
|
|
{
|
|
unregister_qdisc(&dualpi2_qdisc_ops);
|
|
}
|
|
|
|
module_init(dualpi2_module_init);
|
|
module_exit(dualpi2_module_exit);
|
|
|
|
MODULE_DESCRIPTION("Dual Queue with Proportional Integral controller Improved with a Square (dualpi2) scheduler");
|
|
MODULE_AUTHOR("Koen De Schepper <koen.de_schepper@nokia-bell-labs.com>");
|
|
MODULE_AUTHOR("Chia-Yu Chang <chia-yu.chang@nokia-bell-labs.com>");
|
|
MODULE_AUTHOR("Olga Albisser <olga@albisser.org>");
|
|
MODULE_AUTHOR("Henrik Steen <henrist@henrist.net>");
|
|
MODULE_AUTHOR("Olivier Tilmans <olivier.tilmans@nokia.com>");
|
|
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_VERSION("1.0");
|