mirror of https://github.com/torvalds/linux.git
400 lines
11 KiB
C
400 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* APM X-Gene MSI Driver
|
|
*
|
|
* Copyright (c) 2014, Applied Micro Circuits Corporation
|
|
* Author: Tanmay Inamdar <tinamdar@apm.com>
|
|
* Duc Dang <dhdang@apm.com>
|
|
*/
|
|
#include <linux/bitfield.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/module.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/irqchip/chained_irq.h>
|
|
#include <linux/irqchip/irq-msi-lib.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of_pci.h>
|
|
|
|
#define MSI_IR0 0x000000
|
|
#define MSI_INT0 0x800000
|
|
#define IDX_PER_GROUP 8
|
|
#define IRQS_PER_IDX 16
|
|
#define NR_HW_IRQS 16
|
|
#define NR_MSI_BITS (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
|
|
#define NR_MSI_VEC (NR_MSI_BITS / num_possible_cpus())
|
|
|
|
#define MSI_GROUP_MASK GENMASK(22, 19)
|
|
#define MSI_INDEX_MASK GENMASK(18, 16)
|
|
#define MSI_INTR_MASK GENMASK(19, 16)
|
|
|
|
#define MSInRx_HWIRQ_MASK GENMASK(6, 4)
|
|
#define DATA_HWIRQ_MASK GENMASK(3, 0)
|
|
|
|
struct xgene_msi {
|
|
struct irq_domain *inner_domain;
|
|
u64 msi_addr;
|
|
void __iomem *msi_regs;
|
|
unsigned long *bitmap;
|
|
struct mutex bitmap_lock;
|
|
unsigned int gic_irq[NR_HW_IRQS];
|
|
};
|
|
|
|
/* Global data */
|
|
static struct xgene_msi *xgene_msi_ctrl;
|
|
|
|
/*
|
|
* X-Gene v1 has 16 frames of MSI termination registers MSInIRx, where n is
|
|
* frame number (0..15), x is index of registers in each frame (0..7). Each
|
|
* 32b register is at the beginning of a 64kB region, each frame occupying
|
|
* 512kB (and the whole thing 8MB of PA space).
|
|
*
|
|
* Each register supports 16 MSI vectors (0..15) to generate interrupts. A
|
|
* write to the MSInIRx from the PCI side generates an interrupt. A read
|
|
* from the MSInRx on the CPU side returns a bitmap of the pending MSIs in
|
|
* the lower 16 bits. A side effect of this read is that all pending
|
|
* interrupts are acknowledged and cleared).
|
|
*
|
|
* Additionally, each MSI termination frame has 1 MSIINTn register (n is
|
|
* 0..15) to indicate the MSI pending status caused by any of its 8
|
|
* termination registers, reported as a bitmap in the lower 8 bits. Each 32b
|
|
* register is at the beginning of a 64kB region (and overall occupying an
|
|
* extra 1MB).
|
|
*
|
|
* There is one GIC IRQ assigned for each MSI termination frame, 16 in
|
|
* total.
|
|
*
|
|
* The register layout is as follows:
|
|
* MSI0IR0 base_addr
|
|
* MSI0IR1 base_addr + 0x10000
|
|
* ... ...
|
|
* MSI0IR6 base_addr + 0x60000
|
|
* MSI0IR7 base_addr + 0x70000
|
|
* MSI1IR0 base_addr + 0x80000
|
|
* MSI1IR1 base_addr + 0x90000
|
|
* ... ...
|
|
* MSI1IR7 base_addr + 0xF0000
|
|
* MSI2IR0 base_addr + 0x100000
|
|
* ... ...
|
|
* MSIFIR0 base_addr + 0x780000
|
|
* MSIFIR1 base_addr + 0x790000
|
|
* ... ...
|
|
* MSIFIR7 base_addr + 0x7F0000
|
|
* MSIINT0 base_addr + 0x800000
|
|
* MSIINT1 base_addr + 0x810000
|
|
* ... ...
|
|
* MSIINTF base_addr + 0x8F0000
|
|
*/
|
|
|
|
/* MSInIRx read helper */
|
|
static u32 xgene_msi_ir_read(struct xgene_msi *msi, u32 msi_grp, u32 msir_idx)
|
|
{
|
|
return readl_relaxed(msi->msi_regs + MSI_IR0 +
|
|
(FIELD_PREP(MSI_GROUP_MASK, msi_grp) |
|
|
FIELD_PREP(MSI_INDEX_MASK, msir_idx)));
|
|
}
|
|
|
|
/* MSIINTn read helper */
|
|
static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
|
|
{
|
|
return readl_relaxed(msi->msi_regs + MSI_INT0 +
|
|
FIELD_PREP(MSI_INTR_MASK, msi_grp));
|
|
}
|
|
|
|
/*
|
|
* In order to allow an MSI to be moved from one CPU to another without
|
|
* having to repaint both the address and the data (which cannot be done
|
|
* atomically), we statically partitions the MSI frames between CPUs. Given
|
|
* that XGene-1 has 8 CPUs, each CPU gets two frames assigned to it
|
|
*
|
|
* We adopt the convention that when an MSI is moved, it is configured to
|
|
* target the same register number in the congruent frame assigned to the
|
|
* new target CPU. This reserves a given MSI across all CPUs, and reduces
|
|
* the MSI capacity from 2048 to 256.
|
|
*
|
|
* Effectively, this amounts to:
|
|
* - hwirq[7]::cpu[2:0] is the target frame number (n in MSInIRx)
|
|
* - hwirq[6:4] is the register index in any given frame (x in MSInIRx)
|
|
* - hwirq[3:0] is the MSI data
|
|
*/
|
|
static irq_hw_number_t compute_hwirq(u8 frame, u8 index, u8 data)
|
|
{
|
|
return (FIELD_PREP(BIT(7), FIELD_GET(BIT(3), frame)) |
|
|
FIELD_PREP(MSInRx_HWIRQ_MASK, index) |
|
|
FIELD_PREP(DATA_HWIRQ_MASK, data));
|
|
}
|
|
|
|
static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
|
|
{
|
|
struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
|
|
u64 target_addr;
|
|
u32 frame, msir;
|
|
int cpu;
|
|
|
|
cpu = cpumask_first(irq_data_get_effective_affinity_mask(data));
|
|
msir = FIELD_GET(MSInRx_HWIRQ_MASK, data->hwirq);
|
|
frame = FIELD_PREP(BIT(3), FIELD_GET(BIT(7), data->hwirq)) | cpu;
|
|
|
|
target_addr = msi->msi_addr;
|
|
target_addr += (FIELD_PREP(MSI_GROUP_MASK, frame) |
|
|
FIELD_PREP(MSI_INTR_MASK, msir));
|
|
|
|
msg->address_hi = upper_32_bits(target_addr);
|
|
msg->address_lo = lower_32_bits(target_addr);
|
|
msg->data = FIELD_GET(DATA_HWIRQ_MASK, data->hwirq);
|
|
}
|
|
|
|
static int xgene_msi_set_affinity(struct irq_data *irqdata,
|
|
const struct cpumask *mask, bool force)
|
|
{
|
|
int target_cpu = cpumask_first(mask);
|
|
|
|
irq_data_update_effective_affinity(irqdata, cpumask_of(target_cpu));
|
|
|
|
/* Force the core code to regenerate the message */
|
|
return IRQ_SET_MASK_OK;
|
|
}
|
|
|
|
static struct irq_chip xgene_msi_bottom_irq_chip = {
|
|
.name = "MSI",
|
|
.irq_set_affinity = xgene_msi_set_affinity,
|
|
.irq_compose_msi_msg = xgene_compose_msi_msg,
|
|
};
|
|
|
|
static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *args)
|
|
{
|
|
struct xgene_msi *msi = domain->host_data;
|
|
irq_hw_number_t hwirq;
|
|
|
|
mutex_lock(&msi->bitmap_lock);
|
|
|
|
hwirq = find_first_zero_bit(msi->bitmap, NR_MSI_VEC);
|
|
if (hwirq < NR_MSI_VEC)
|
|
set_bit(hwirq, msi->bitmap);
|
|
|
|
mutex_unlock(&msi->bitmap_lock);
|
|
|
|
if (hwirq >= NR_MSI_VEC)
|
|
return -ENOSPC;
|
|
|
|
irq_domain_set_info(domain, virq, hwirq,
|
|
&xgene_msi_bottom_irq_chip, domain->host_data,
|
|
handle_simple_irq, NULL, NULL);
|
|
irqd_set_resend_when_in_progress(irq_get_irq_data(virq));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xgene_irq_domain_free(struct irq_domain *domain,
|
|
unsigned int virq, unsigned int nr_irqs)
|
|
{
|
|
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
|
|
struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
|
|
|
|
mutex_lock(&msi->bitmap_lock);
|
|
|
|
clear_bit(d->hwirq, msi->bitmap);
|
|
|
|
mutex_unlock(&msi->bitmap_lock);
|
|
|
|
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
|
|
}
|
|
|
|
static const struct irq_domain_ops xgene_msi_domain_ops = {
|
|
.alloc = xgene_irq_domain_alloc,
|
|
.free = xgene_irq_domain_free,
|
|
};
|
|
|
|
static const struct msi_parent_ops xgene_msi_parent_ops = {
|
|
.supported_flags = (MSI_GENERIC_FLAGS_MASK |
|
|
MSI_FLAG_PCI_MSIX),
|
|
.required_flags = (MSI_FLAG_USE_DEF_DOM_OPS |
|
|
MSI_FLAG_USE_DEF_CHIP_OPS),
|
|
.bus_select_token = DOMAIN_BUS_PCI_MSI,
|
|
.init_dev_msi_info = msi_lib_init_dev_msi_info,
|
|
};
|
|
|
|
static int xgene_allocate_domains(struct device_node *node,
|
|
struct xgene_msi *msi)
|
|
{
|
|
struct irq_domain_info info = {
|
|
.fwnode = of_fwnode_handle(node),
|
|
.ops = &xgene_msi_domain_ops,
|
|
.size = NR_MSI_VEC,
|
|
.host_data = msi,
|
|
};
|
|
|
|
msi->inner_domain = msi_create_parent_irq_domain(&info, &xgene_msi_parent_ops);
|
|
return msi->inner_domain ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static int xgene_msi_init_allocator(struct device *dev)
|
|
{
|
|
xgene_msi_ctrl->bitmap = devm_bitmap_zalloc(dev, NR_MSI_VEC, GFP_KERNEL);
|
|
if (!xgene_msi_ctrl->bitmap)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&xgene_msi_ctrl->bitmap_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xgene_msi_isr(struct irq_desc *desc)
|
|
{
|
|
unsigned int *irqp = irq_desc_get_handler_data(desc);
|
|
struct irq_chip *chip = irq_desc_get_chip(desc);
|
|
struct xgene_msi *xgene_msi = xgene_msi_ctrl;
|
|
unsigned long grp_pending;
|
|
int msir_idx;
|
|
u32 msi_grp;
|
|
|
|
chained_irq_enter(chip, desc);
|
|
|
|
msi_grp = irqp - xgene_msi->gic_irq;
|
|
|
|
grp_pending = xgene_msi_int_read(xgene_msi, msi_grp);
|
|
|
|
for_each_set_bit(msir_idx, &grp_pending, IDX_PER_GROUP) {
|
|
unsigned long msir;
|
|
int intr_idx;
|
|
|
|
msir = xgene_msi_ir_read(xgene_msi, msi_grp, msir_idx);
|
|
|
|
for_each_set_bit(intr_idx, &msir, IRQS_PER_IDX) {
|
|
irq_hw_number_t hwirq;
|
|
int ret;
|
|
|
|
hwirq = compute_hwirq(msi_grp, msir_idx, intr_idx);
|
|
ret = generic_handle_domain_irq(xgene_msi->inner_domain,
|
|
hwirq);
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
}
|
|
|
|
chained_irq_exit(chip, desc);
|
|
}
|
|
|
|
static void xgene_msi_remove(struct platform_device *pdev)
|
|
{
|
|
for (int i = 0; i < NR_HW_IRQS; i++) {
|
|
unsigned int irq = xgene_msi_ctrl->gic_irq[i];
|
|
if (!irq)
|
|
continue;
|
|
irq_set_chained_handler_and_data(irq, NULL, NULL);
|
|
}
|
|
|
|
if (xgene_msi_ctrl->inner_domain)
|
|
irq_domain_remove(xgene_msi_ctrl->inner_domain);
|
|
}
|
|
|
|
static int xgene_msi_handler_setup(struct platform_device *pdev)
|
|
{
|
|
struct xgene_msi *xgene_msi = xgene_msi_ctrl;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_HW_IRQS; i++) {
|
|
u32 msi_val;
|
|
int irq, err;
|
|
|
|
/*
|
|
* MSInIRx registers are read-to-clear; before registering
|
|
* interrupt handlers, read all of them to clear spurious
|
|
* interrupts that may occur before the driver is probed.
|
|
*/
|
|
for (int msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
|
|
xgene_msi_ir_read(xgene_msi, i, msi_idx);
|
|
|
|
/* Read MSIINTn to confirm */
|
|
msi_val = xgene_msi_int_read(xgene_msi, i);
|
|
if (msi_val) {
|
|
dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
xgene_msi->gic_irq[i] = irq;
|
|
|
|
/*
|
|
* Statically allocate MSI GIC IRQs to each CPU core.
|
|
* With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
|
|
* to each core.
|
|
*/
|
|
irq_set_status_flags(irq, IRQ_NO_BALANCING);
|
|
err = irq_set_affinity(irq, cpumask_of(i % num_possible_cpus()));
|
|
if (err) {
|
|
pr_err("failed to set affinity for GIC IRQ");
|
|
return err;
|
|
}
|
|
|
|
irq_set_chained_handler_and_data(irq, xgene_msi_isr,
|
|
&xgene_msi_ctrl->gic_irq[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id xgene_msi_match_table[] = {
|
|
{.compatible = "apm,xgene1-msi"},
|
|
{},
|
|
};
|
|
|
|
static int xgene_msi_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
struct xgene_msi *xgene_msi;
|
|
int rc;
|
|
|
|
xgene_msi_ctrl = devm_kzalloc(&pdev->dev, sizeof(*xgene_msi_ctrl),
|
|
GFP_KERNEL);
|
|
if (!xgene_msi_ctrl)
|
|
return -ENOMEM;
|
|
|
|
xgene_msi = xgene_msi_ctrl;
|
|
|
|
xgene_msi->msi_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
|
|
if (IS_ERR(xgene_msi->msi_regs)) {
|
|
rc = PTR_ERR(xgene_msi->msi_regs);
|
|
goto error;
|
|
}
|
|
xgene_msi->msi_addr = res->start;
|
|
|
|
rc = xgene_msi_init_allocator(&pdev->dev);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
|
|
goto error;
|
|
}
|
|
|
|
rc = xgene_allocate_domains(dev_of_node(&pdev->dev), xgene_msi);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
|
|
goto error;
|
|
}
|
|
|
|
rc = xgene_msi_handler_setup(pdev);
|
|
if (rc)
|
|
goto error;
|
|
|
|
dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
|
|
|
|
return 0;
|
|
error:
|
|
xgene_msi_remove(pdev);
|
|
return rc;
|
|
}
|
|
|
|
static struct platform_driver xgene_msi_driver = {
|
|
.driver = {
|
|
.name = "xgene-msi",
|
|
.of_match_table = xgene_msi_match_table,
|
|
},
|
|
.probe = xgene_msi_probe,
|
|
.remove = xgene_msi_remove,
|
|
};
|
|
builtin_platform_driver(xgene_msi_driver);
|