mirror of https://github.com/torvalds/linux.git
583 lines
17 KiB
C
583 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Resource Director Technology(RDT)
|
|
* - Monitoring code
|
|
*
|
|
* Copyright (C) 2017 Intel Corporation
|
|
*
|
|
* Author:
|
|
* Vikas Shivappa <vikas.shivappa@intel.com>
|
|
*
|
|
* This replaces the cqm.c based on perf but we reuse a lot of
|
|
* code and datastructures originally from Peter Zijlstra and Matt Fleming.
|
|
*
|
|
* More information about RDT be found in the Intel (R) x86 Architecture
|
|
* Software Developer Manual June 2016, volume 3, section 17.17.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "resctrl: " fmt
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/resctrl.h>
|
|
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/msr.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Global boolean for rdt_monitor which is true if any
|
|
* resource monitoring is enabled.
|
|
*/
|
|
bool rdt_mon_capable;
|
|
|
|
#define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5))
|
|
|
|
static int snc_nodes_per_l3_cache = 1;
|
|
|
|
/*
|
|
* The correction factor table is documented in Documentation/filesystems/resctrl.rst.
|
|
* If rmid > rmid threshold, MBM total and local values should be multiplied
|
|
* by the correction factor.
|
|
*
|
|
* The original table is modified for better code:
|
|
*
|
|
* 1. The threshold 0 is changed to rmid count - 1 so don't do correction
|
|
* for the case.
|
|
* 2. MBM total and local correction table indexed by core counter which is
|
|
* equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
|
|
* 3. The correction factor is normalized to 2^20 (1048576) so it's faster
|
|
* to calculate corrected value by shifting:
|
|
* corrected_value = (original_value * correction_factor) >> 20
|
|
*/
|
|
static const struct mbm_correction_factor_table {
|
|
u32 rmidthreshold;
|
|
u64 cf;
|
|
} mbm_cf_table[] __initconst = {
|
|
{7, CF(1.000000)},
|
|
{15, CF(1.000000)},
|
|
{15, CF(0.969650)},
|
|
{31, CF(1.000000)},
|
|
{31, CF(1.066667)},
|
|
{31, CF(0.969650)},
|
|
{47, CF(1.142857)},
|
|
{63, CF(1.000000)},
|
|
{63, CF(1.185115)},
|
|
{63, CF(1.066553)},
|
|
{79, CF(1.454545)},
|
|
{95, CF(1.000000)},
|
|
{95, CF(1.230769)},
|
|
{95, CF(1.142857)},
|
|
{95, CF(1.066667)},
|
|
{127, CF(1.000000)},
|
|
{127, CF(1.254863)},
|
|
{127, CF(1.185255)},
|
|
{151, CF(1.000000)},
|
|
{127, CF(1.066667)},
|
|
{167, CF(1.000000)},
|
|
{159, CF(1.454334)},
|
|
{183, CF(1.000000)},
|
|
{127, CF(0.969744)},
|
|
{191, CF(1.280246)},
|
|
{191, CF(1.230921)},
|
|
{215, CF(1.000000)},
|
|
{191, CF(1.143118)},
|
|
};
|
|
|
|
static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
|
|
|
|
static u64 mbm_cf __read_mostly;
|
|
|
|
static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
|
|
{
|
|
/* Correct MBM value. */
|
|
if (rmid > mbm_cf_rmidthreshold)
|
|
val = (val * mbm_cf) >> 20;
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* When Sub-NUMA Cluster (SNC) mode is not enabled (as indicated by
|
|
* "snc_nodes_per_l3_cache == 1") no translation of the RMID value is
|
|
* needed. The physical RMID is the same as the logical RMID.
|
|
*
|
|
* On a platform with SNC mode enabled, Linux enables RMID sharing mode
|
|
* via MSR 0xCA0 (see the "RMID Sharing Mode" section in the "Intel
|
|
* Resource Director Technology Architecture Specification" for a full
|
|
* description of RMID sharing mode).
|
|
*
|
|
* In RMID sharing mode there are fewer "logical RMID" values available
|
|
* to accumulate data ("physical RMIDs" are divided evenly between SNC
|
|
* nodes that share an L3 cache). Linux creates an rdt_mon_domain for
|
|
* each SNC node.
|
|
*
|
|
* The value loaded into IA32_PQR_ASSOC is the "logical RMID".
|
|
*
|
|
* Data is collected independently on each SNC node and can be retrieved
|
|
* using the "physical RMID" value computed by this function and loaded
|
|
* into IA32_QM_EVTSEL. @cpu can be any CPU in the SNC node.
|
|
*
|
|
* The scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is at the L3
|
|
* cache. So a "physical RMID" may be read from any CPU that shares
|
|
* the L3 cache with the desired SNC node, not just from a CPU in
|
|
* the specific SNC node.
|
|
*/
|
|
static int logical_rmid_to_physical_rmid(int cpu, int lrmid)
|
|
{
|
|
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
|
|
|
|
if (snc_nodes_per_l3_cache == 1)
|
|
return lrmid;
|
|
|
|
return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->mon.num_rmid;
|
|
}
|
|
|
|
static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val)
|
|
{
|
|
u64 msr_val;
|
|
|
|
/*
|
|
* As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
|
|
* with a valid event code for supported resource type and the bits
|
|
* IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
|
|
* IA32_QM_CTR.data (bits 61:0) reports the monitored data.
|
|
* IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
|
|
* are error bits.
|
|
*/
|
|
wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid);
|
|
rdmsrq(MSR_IA32_QM_CTR, msr_val);
|
|
|
|
if (msr_val & RMID_VAL_ERROR)
|
|
return -EIO;
|
|
if (msr_val & RMID_VAL_UNAVAIL)
|
|
return -EINVAL;
|
|
|
|
*val = msr_val;
|
|
return 0;
|
|
}
|
|
|
|
static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_mon_domain *hw_dom,
|
|
u32 rmid,
|
|
enum resctrl_event_id eventid)
|
|
{
|
|
struct arch_mbm_state *state;
|
|
|
|
if (!resctrl_is_mbm_event(eventid))
|
|
return NULL;
|
|
|
|
state = hw_dom->arch_mbm_states[MBM_STATE_IDX(eventid)];
|
|
|
|
return state ? &state[rmid] : NULL;
|
|
}
|
|
|
|
void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
u32 unused, u32 rmid,
|
|
enum resctrl_event_id eventid)
|
|
{
|
|
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
|
|
int cpu = cpumask_any(&d->hdr.cpu_mask);
|
|
struct arch_mbm_state *am;
|
|
u32 prmid;
|
|
|
|
am = get_arch_mbm_state(hw_dom, rmid, eventid);
|
|
if (am) {
|
|
memset(am, 0, sizeof(*am));
|
|
|
|
prmid = logical_rmid_to_physical_rmid(cpu, rmid);
|
|
/* Record any initial, non-zero count value. */
|
|
__rmid_read_phys(prmid, eventid, &am->prev_msr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assumes that hardware counters are also reset and thus that there is
|
|
* no need to record initial non-zero counts.
|
|
*/
|
|
void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
|
|
{
|
|
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
|
|
enum resctrl_event_id eventid;
|
|
int idx;
|
|
|
|
for_each_mbm_event_id(eventid) {
|
|
if (!resctrl_is_mon_event_enabled(eventid))
|
|
continue;
|
|
idx = MBM_STATE_IDX(eventid);
|
|
memset(hw_dom->arch_mbm_states[idx], 0,
|
|
sizeof(*hw_dom->arch_mbm_states[0]) * r->mon.num_rmid);
|
|
}
|
|
}
|
|
|
|
static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
|
|
{
|
|
u64 shift = 64 - width, chunks;
|
|
|
|
chunks = (cur_msr << shift) - (prev_msr << shift);
|
|
return chunks >> shift;
|
|
}
|
|
|
|
static u64 get_corrected_val(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
u32 rmid, enum resctrl_event_id eventid, u64 msr_val)
|
|
{
|
|
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
|
|
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
|
|
struct arch_mbm_state *am;
|
|
u64 chunks;
|
|
|
|
am = get_arch_mbm_state(hw_dom, rmid, eventid);
|
|
if (am) {
|
|
am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
|
|
hw_res->mbm_width);
|
|
chunks = get_corrected_mbm_count(rmid, am->chunks);
|
|
am->prev_msr = msr_val;
|
|
} else {
|
|
chunks = msr_val;
|
|
}
|
|
|
|
return chunks * hw_res->mon_scale;
|
|
}
|
|
|
|
int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
u32 unused, u32 rmid, enum resctrl_event_id eventid,
|
|
u64 *val, void *ignored)
|
|
{
|
|
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
|
|
int cpu = cpumask_any(&d->hdr.cpu_mask);
|
|
struct arch_mbm_state *am;
|
|
u64 msr_val;
|
|
u32 prmid;
|
|
int ret;
|
|
|
|
resctrl_arch_rmid_read_context_check();
|
|
|
|
prmid = logical_rmid_to_physical_rmid(cpu, rmid);
|
|
ret = __rmid_read_phys(prmid, eventid, &msr_val);
|
|
|
|
if (!ret) {
|
|
*val = get_corrected_val(r, d, rmid, eventid, msr_val);
|
|
} else if (ret == -EINVAL) {
|
|
am = get_arch_mbm_state(hw_dom, rmid, eventid);
|
|
if (am)
|
|
am->prev_msr = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __cntr_id_read(u32 cntr_id, u64 *val)
|
|
{
|
|
u64 msr_val;
|
|
|
|
/*
|
|
* QM_EVTSEL Register definition:
|
|
* =======================================================
|
|
* Bits Mnemonic Description
|
|
* =======================================================
|
|
* 63:44 -- Reserved
|
|
* 43:32 RMID RMID or counter ID in ABMC mode
|
|
* when reading an MBM event
|
|
* 31 ExtendedEvtID Extended Event Identifier
|
|
* 30:8 -- Reserved
|
|
* 7:0 EvtID Event Identifier
|
|
* =======================================================
|
|
* The contents of a specific counter can be read by setting the
|
|
* following fields in QM_EVTSEL.ExtendedEvtID(=1) and
|
|
* QM_EVTSEL.EvtID = L3CacheABMC (=1) and setting QM_EVTSEL.RMID
|
|
* to the desired counter ID. Reading the QM_CTR then returns the
|
|
* contents of the specified counter. The RMID_VAL_ERROR bit is set
|
|
* if the counter configuration is invalid, or if an invalid counter
|
|
* ID is set in the QM_EVTSEL.RMID field. The RMID_VAL_UNAVAIL bit
|
|
* is set if the counter data is unavailable.
|
|
*/
|
|
wrmsr(MSR_IA32_QM_EVTSEL, ABMC_EXTENDED_EVT_ID | ABMC_EVT_ID, cntr_id);
|
|
rdmsrl(MSR_IA32_QM_CTR, msr_val);
|
|
|
|
if (msr_val & RMID_VAL_ERROR)
|
|
return -EIO;
|
|
if (msr_val & RMID_VAL_UNAVAIL)
|
|
return -EINVAL;
|
|
|
|
*val = msr_val;
|
|
return 0;
|
|
}
|
|
|
|
void resctrl_arch_reset_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
u32 unused, u32 rmid, int cntr_id,
|
|
enum resctrl_event_id eventid)
|
|
{
|
|
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
|
|
struct arch_mbm_state *am;
|
|
|
|
am = get_arch_mbm_state(hw_dom, rmid, eventid);
|
|
if (am) {
|
|
memset(am, 0, sizeof(*am));
|
|
|
|
/* Record any initial, non-zero count value. */
|
|
__cntr_id_read(cntr_id, &am->prev_msr);
|
|
}
|
|
}
|
|
|
|
int resctrl_arch_cntr_read(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
u32 unused, u32 rmid, int cntr_id,
|
|
enum resctrl_event_id eventid, u64 *val)
|
|
{
|
|
u64 msr_val;
|
|
int ret;
|
|
|
|
ret = __cntr_id_read(cntr_id, &msr_val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = get_corrected_val(r, d, rmid, eventid, msr_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The power-on reset value of MSR_RMID_SNC_CONFIG is 0x1
|
|
* which indicates that RMIDs are configured in legacy mode.
|
|
* This mode is incompatible with Linux resctrl semantics
|
|
* as RMIDs are partitioned between SNC nodes, which requires
|
|
* a user to know which RMID is allocated to a task.
|
|
* Clearing bit 0 reconfigures the RMID counters for use
|
|
* in RMID sharing mode. This mode is better for Linux.
|
|
* The RMID space is divided between all SNC nodes with the
|
|
* RMIDs renumbered to start from zero in each node when
|
|
* counting operations from tasks. Code to read the counters
|
|
* must adjust RMID counter numbers based on SNC node. See
|
|
* logical_rmid_to_physical_rmid() for code that does this.
|
|
*/
|
|
void arch_mon_domain_online(struct rdt_resource *r, struct rdt_mon_domain *d)
|
|
{
|
|
if (snc_nodes_per_l3_cache > 1)
|
|
msr_clear_bit(MSR_RMID_SNC_CONFIG, 0);
|
|
}
|
|
|
|
/* CPU models that support MSR_RMID_SNC_CONFIG */
|
|
static const struct x86_cpu_id snc_cpu_ids[] __initconst = {
|
|
X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
|
|
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, 0),
|
|
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, 0),
|
|
X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, 0),
|
|
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, 0),
|
|
{}
|
|
};
|
|
|
|
/*
|
|
* There isn't a simple hardware bit that indicates whether a CPU is running
|
|
* in Sub-NUMA Cluster (SNC) mode. Infer the state by comparing the
|
|
* number of CPUs sharing the L3 cache with CPU0 to the number of CPUs in
|
|
* the same NUMA node as CPU0.
|
|
* It is not possible to accurately determine SNC state if the system is
|
|
* booted with a maxcpus=N parameter. That distorts the ratio of SNC nodes
|
|
* to L3 caches. It will be OK if system is booted with hyperthreading
|
|
* disabled (since this doesn't affect the ratio).
|
|
*/
|
|
static __init int snc_get_config(void)
|
|
{
|
|
struct cacheinfo *ci = get_cpu_cacheinfo_level(0, RESCTRL_L3_CACHE);
|
|
const cpumask_t *node0_cpumask;
|
|
int cpus_per_node, cpus_per_l3;
|
|
int ret;
|
|
|
|
if (!x86_match_cpu(snc_cpu_ids) || !ci)
|
|
return 1;
|
|
|
|
cpus_read_lock();
|
|
if (num_online_cpus() != num_present_cpus())
|
|
pr_warn("Some CPUs offline, SNC detection may be incorrect\n");
|
|
cpus_read_unlock();
|
|
|
|
node0_cpumask = cpumask_of_node(cpu_to_node(0));
|
|
|
|
cpus_per_node = cpumask_weight(node0_cpumask);
|
|
cpus_per_l3 = cpumask_weight(&ci->shared_cpu_map);
|
|
|
|
if (!cpus_per_node || !cpus_per_l3)
|
|
return 1;
|
|
|
|
ret = cpus_per_l3 / cpus_per_node;
|
|
|
|
/* sanity check: Only valid results are 1, 2, 3, 4, 6 */
|
|
switch (ret) {
|
|
case 1:
|
|
break;
|
|
case 2 ... 4:
|
|
case 6:
|
|
pr_info("Sub-NUMA Cluster mode detected with %d nodes per L3 cache\n", ret);
|
|
rdt_resources_all[RDT_RESOURCE_L3].r_resctrl.mon_scope = RESCTRL_L3_NODE;
|
|
break;
|
|
default:
|
|
pr_warn("Ignore improbable SNC node count %d\n", ret);
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __init rdt_get_mon_l3_config(struct rdt_resource *r)
|
|
{
|
|
unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
|
|
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
|
|
unsigned int threshold;
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
snc_nodes_per_l3_cache = snc_get_config();
|
|
|
|
resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
|
|
hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache;
|
|
r->mon.num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache;
|
|
hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
|
|
|
|
if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
|
|
hw_res->mbm_width += mbm_offset;
|
|
else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
|
|
pr_warn("Ignoring impossible MBM counter offset\n");
|
|
|
|
/*
|
|
* A reasonable upper limit on the max threshold is the number
|
|
* of lines tagged per RMID if all RMIDs have the same number of
|
|
* lines tagged in the LLC.
|
|
*
|
|
* For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
|
|
*/
|
|
threshold = resctrl_rmid_realloc_limit / r->mon.num_rmid;
|
|
|
|
/*
|
|
* Because num_rmid may not be a power of two, round the value
|
|
* to the nearest multiple of hw_res->mon_scale so it matches a
|
|
* value the hardware will measure. mon_scale may not be a power of 2.
|
|
*/
|
|
resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
|
|
|
|
if (rdt_cpu_has(X86_FEATURE_BMEC) || rdt_cpu_has(X86_FEATURE_ABMC)) {
|
|
/* Detect list of bandwidth sources that can be tracked */
|
|
cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
|
|
r->mon.mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;
|
|
}
|
|
|
|
/*
|
|
* resctrl assumes a system that supports assignable counters can
|
|
* switch to "default" mode. Ensure that there is a "default" mode
|
|
* to switch to. This enforces a dependency between the independent
|
|
* X86_FEATURE_ABMC and X86_FEATURE_CQM_MBM_TOTAL/X86_FEATURE_CQM_MBM_LOCAL
|
|
* hardware features.
|
|
*/
|
|
if (rdt_cpu_has(X86_FEATURE_ABMC) &&
|
|
(rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL) ||
|
|
rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL))) {
|
|
r->mon.mbm_cntr_assignable = true;
|
|
cpuid_count(0x80000020, 5, &eax, &ebx, &ecx, &edx);
|
|
r->mon.num_mbm_cntrs = (ebx & GENMASK(15, 0)) + 1;
|
|
hw_res->mbm_cntr_assign_enabled = true;
|
|
}
|
|
|
|
r->mon_capable = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init intel_rdt_mbm_apply_quirk(void)
|
|
{
|
|
int cf_index;
|
|
|
|
cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
|
|
if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
|
|
pr_info("No MBM correction factor available\n");
|
|
return;
|
|
}
|
|
|
|
mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
|
|
mbm_cf = mbm_cf_table[cf_index].cf;
|
|
}
|
|
|
|
static void resctrl_abmc_set_one_amd(void *arg)
|
|
{
|
|
bool *enable = arg;
|
|
|
|
if (*enable)
|
|
msr_set_bit(MSR_IA32_L3_QOS_EXT_CFG, ABMC_ENABLE_BIT);
|
|
else
|
|
msr_clear_bit(MSR_IA32_L3_QOS_EXT_CFG, ABMC_ENABLE_BIT);
|
|
}
|
|
|
|
/*
|
|
* ABMC enable/disable requires update of L3_QOS_EXT_CFG MSR on all the CPUs
|
|
* associated with all monitor domains.
|
|
*/
|
|
static void _resctrl_abmc_enable(struct rdt_resource *r, bool enable)
|
|
{
|
|
struct rdt_mon_domain *d;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
list_for_each_entry(d, &r->mon_domains, hdr.list) {
|
|
on_each_cpu_mask(&d->hdr.cpu_mask, resctrl_abmc_set_one_amd,
|
|
&enable, 1);
|
|
resctrl_arch_reset_rmid_all(r, d);
|
|
}
|
|
}
|
|
|
|
int resctrl_arch_mbm_cntr_assign_set(struct rdt_resource *r, bool enable)
|
|
{
|
|
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
|
|
|
|
if (r->mon.mbm_cntr_assignable &&
|
|
hw_res->mbm_cntr_assign_enabled != enable) {
|
|
_resctrl_abmc_enable(r, enable);
|
|
hw_res->mbm_cntr_assign_enabled = enable;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resctrl_arch_mbm_cntr_assign_enabled(struct rdt_resource *r)
|
|
{
|
|
return resctrl_to_arch_res(r)->mbm_cntr_assign_enabled;
|
|
}
|
|
|
|
static void resctrl_abmc_config_one_amd(void *info)
|
|
{
|
|
union l3_qos_abmc_cfg *abmc_cfg = info;
|
|
|
|
wrmsrl(MSR_IA32_L3_QOS_ABMC_CFG, abmc_cfg->full);
|
|
}
|
|
|
|
/*
|
|
* Send an IPI to the domain to assign the counter to RMID, event pair.
|
|
*/
|
|
void resctrl_arch_config_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
|
|
enum resctrl_event_id evtid, u32 rmid, u32 closid,
|
|
u32 cntr_id, bool assign)
|
|
{
|
|
struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
|
|
union l3_qos_abmc_cfg abmc_cfg = { 0 };
|
|
struct arch_mbm_state *am;
|
|
|
|
abmc_cfg.split.cfg_en = 1;
|
|
abmc_cfg.split.cntr_en = assign ? 1 : 0;
|
|
abmc_cfg.split.cntr_id = cntr_id;
|
|
abmc_cfg.split.bw_src = rmid;
|
|
if (assign)
|
|
abmc_cfg.split.bw_type = resctrl_get_mon_evt_cfg(evtid);
|
|
|
|
smp_call_function_any(&d->hdr.cpu_mask, resctrl_abmc_config_one_amd, &abmc_cfg, 1);
|
|
|
|
/*
|
|
* The hardware counter is reset (because cfg_en == 1) so there is no
|
|
* need to record initial non-zero counts.
|
|
*/
|
|
am = get_arch_mbm_state(hw_dom, rmid, evtid);
|
|
if (am)
|
|
memset(am, 0, sizeof(*am));
|
|
}
|
|
|
|
void resctrl_arch_mbm_cntr_assign_set_one(struct rdt_resource *r)
|
|
{
|
|
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
|
|
|
|
resctrl_abmc_set_one_amd(&hw_res->mbm_cntr_assign_enabled);
|
|
}
|