linux/drivers/spi/spi-rzv2h-rspi.c

688 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Renesas RZ/V2H Renesas Serial Peripheral Interface (RSPI)
*
* Copyright (C) 2025 Renesas Electronics Corporation
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/limits.h>
#include <linux/log2.h>
#include <linux/math.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#include <linux/wait.h>
/* Registers */
#define RSPI_SPDR 0x00
#define RSPI_SPCR 0x08
#define RSPI_SPPCR 0x0e
#define RSPI_SSLP 0x10
#define RSPI_SPBR 0x11
#define RSPI_SPSCR 0x13
#define RSPI_SPCMD 0x14
#define RSPI_SPDCR2 0x44
#define RSPI_SPSR 0x52
#define RSPI_SPSRC 0x6a
#define RSPI_SPFCR 0x6c
/* Register SPCR */
#define RSPI_SPCR_BPEN BIT(31)
#define RSPI_SPCR_MSTR BIT(30)
#define RSPI_SPCR_SPRIE BIT(17)
#define RSPI_SPCR_SCKASE BIT(12)
#define RSPI_SPCR_SPE BIT(0)
/* Register SPPCR */
#define RSPI_SPPCR_SPLP2 BIT(1)
/* Register SPBR */
#define RSPI_SPBR_SPR_MIN 0
#define RSPI_SPBR_SPR_PCLK_MIN 1
#define RSPI_SPBR_SPR_MAX 255
/* Register SPCMD */
#define RSPI_SPCMD_SSLA GENMASK(25, 24)
#define RSPI_SPCMD_SPB GENMASK(20, 16)
#define RSPI_SPCMD_LSBF BIT(12)
#define RSPI_SPCMD_SSLKP BIT(7)
#define RSPI_SPCMD_BRDV GENMASK(3, 2)
#define RSPI_SPCMD_CPOL BIT(1)
#define RSPI_SPCMD_CPHA BIT(0)
#define RSPI_SPCMD_BRDV_MIN 0
#define RSPI_SPCMD_BRDV_MAX 3
/* Register SPDCR2 */
#define RSPI_SPDCR2_TTRG GENMASK(11, 8)
#define RSPI_SPDCR2_RTRG GENMASK(3, 0)
/* Register SPSR */
#define RSPI_SPSR_SPRF BIT(15)
/* Register RSPI_SPSRC */
#define RSPI_SPSRC_CLEAR 0xfd80
#define RSPI_RESET_NUM 2
struct rzv2h_rspi_best_clock {
struct clk *clk;
unsigned long clk_rate;
unsigned long error;
u32 actual_hz;
u8 brdv;
u8 spr;
};
struct rzv2h_rspi_info {
void (*find_tclk_rate)(struct clk *clk, u32 hz, u8 spr_min, u8 spr_max,
struct rzv2h_rspi_best_clock *best_clk);
void (*find_pclk_rate)(struct clk *clk, u32 hz, u8 spr_low, u8 spr_high,
struct rzv2h_rspi_best_clock *best_clk);
const char *tclk_name;
unsigned int fifo_size;
unsigned int num_clks;
};
struct rzv2h_rspi_priv {
struct reset_control_bulk_data resets[RSPI_RESET_NUM];
struct spi_controller *controller;
const struct rzv2h_rspi_info *info;
void __iomem *base;
struct clk *tclk;
struct clk *pclk;
wait_queue_head_t wait;
unsigned int bytes_per_word;
u32 last_speed_hz;
u32 freq;
u16 status;
u8 spr;
u8 brdv;
bool use_pclk;
};
#define RZV2H_RSPI_TX(func, type) \
static inline void rzv2h_rspi_tx_##type(struct rzv2h_rspi_priv *rspi, \
const void *txbuf, \
unsigned int index) { \
type buf = 0; \
\
if (txbuf) \
buf = ((type *)txbuf)[index]; \
\
func(buf, rspi->base + RSPI_SPDR); \
}
#define RZV2H_RSPI_RX(func, type) \
static inline void rzv2h_rspi_rx_##type(struct rzv2h_rspi_priv *rspi, \
void *rxbuf, \
unsigned int index) { \
type buf = func(rspi->base + RSPI_SPDR); \
\
if (rxbuf) \
((type *)rxbuf)[index] = buf; \
}
RZV2H_RSPI_TX(writel, u32)
RZV2H_RSPI_TX(writew, u16)
RZV2H_RSPI_TX(writeb, u8)
RZV2H_RSPI_RX(readl, u32)
RZV2H_RSPI_RX(readw, u16)
RZV2H_RSPI_RX(readl, u8)
static void rzv2h_rspi_reg_rmw(const struct rzv2h_rspi_priv *rspi,
int reg_offs, u32 bit_mask, u32 value)
{
u32 tmp;
value <<= __ffs(bit_mask);
tmp = (readl(rspi->base + reg_offs) & ~bit_mask) | value;
writel(tmp, rspi->base + reg_offs);
}
static inline void rzv2h_rspi_spe_disable(const struct rzv2h_rspi_priv *rspi)
{
rzv2h_rspi_reg_rmw(rspi, RSPI_SPCR, RSPI_SPCR_SPE, 0);
}
static inline void rzv2h_rspi_spe_enable(const struct rzv2h_rspi_priv *rspi)
{
rzv2h_rspi_reg_rmw(rspi, RSPI_SPCR, RSPI_SPCR_SPE, 1);
}
static inline void rzv2h_rspi_clear_fifos(const struct rzv2h_rspi_priv *rspi)
{
writeb(1, rspi->base + RSPI_SPFCR);
}
static inline void rzv2h_rspi_clear_all_irqs(struct rzv2h_rspi_priv *rspi)
{
writew(RSPI_SPSRC_CLEAR, rspi->base + RSPI_SPSRC);
rspi->status = 0;
}
static irqreturn_t rzv2h_rx_irq_handler(int irq, void *data)
{
struct rzv2h_rspi_priv *rspi = data;
rspi->status = readw(rspi->base + RSPI_SPSR);
wake_up(&rspi->wait);
return IRQ_HANDLED;
}
static inline int rzv2h_rspi_wait_for_interrupt(struct rzv2h_rspi_priv *rspi,
u32 wait_mask)
{
return wait_event_timeout(rspi->wait, (rspi->status & wait_mask),
HZ) == 0 ? -ETIMEDOUT : 0;
}
static void rzv2h_rspi_send(struct rzv2h_rspi_priv *rspi, const void *txbuf,
unsigned int index)
{
switch (rspi->bytes_per_word) {
case 4:
rzv2h_rspi_tx_u32(rspi, txbuf, index);
break;
case 2:
rzv2h_rspi_tx_u16(rspi, txbuf, index);
break;
default:
rzv2h_rspi_tx_u8(rspi, txbuf, index);
}
}
static int rzv2h_rspi_receive(struct rzv2h_rspi_priv *rspi, void *rxbuf,
unsigned int index)
{
int ret;
ret = rzv2h_rspi_wait_for_interrupt(rspi, RSPI_SPSR_SPRF);
if (ret)
return ret;
switch (rspi->bytes_per_word) {
case 4:
rzv2h_rspi_rx_u32(rspi, rxbuf, index);
break;
case 2:
rzv2h_rspi_rx_u16(rspi, rxbuf, index);
break;
default:
rzv2h_rspi_rx_u8(rspi, rxbuf, index);
}
return 0;
}
static int rzv2h_rspi_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct rzv2h_rspi_priv *rspi = spi_controller_get_devdata(controller);
unsigned int words_to_transfer, i;
int ret = 0;
transfer->effective_speed_hz = rspi->freq;
words_to_transfer = transfer->len / rspi->bytes_per_word;
for (i = 0; i < words_to_transfer; i++) {
rzv2h_rspi_clear_all_irqs(rspi);
rzv2h_rspi_send(rspi, transfer->tx_buf, i);
ret = rzv2h_rspi_receive(rspi, transfer->rx_buf, i);
if (ret)
break;
}
rzv2h_rspi_clear_all_irqs(rspi);
if (ret)
transfer->error = SPI_TRANS_FAIL_IO;
spi_finalize_current_transfer(controller);
return ret;
}
static inline u32 rzv2h_rspi_calc_bitrate(unsigned long tclk_rate, u8 spr,
u8 brdv)
{
return DIV_ROUND_UP(tclk_rate, (2 * (spr + 1) * (1 << brdv)));
}
static void rzv2h_rspi_find_rate_variable(struct clk *clk, u32 hz,
u8 spr_min, u8 spr_max,
struct rzv2h_rspi_best_clock *best)
{
long clk_rate, clk_min_rate, clk_max_rate;
int min_rate_spr, max_rate_spr;
unsigned long error;
u32 actual_hz;
u8 brdv;
int spr;
/*
* On T2H / N2H, the source for the SPI clock is PCLKSPIn, which is a
* 1/32, 1/30, 1/25 or 1/24 divider of PLL4, which is 2400MHz,
* resulting in either 75MHz, 80MHz, 96MHz or 100MHz.
*/
clk_min_rate = clk_round_rate(clk, 0);
if (clk_min_rate < 0)
return;
clk_max_rate = clk_round_rate(clk, ULONG_MAX);
if (clk_max_rate < 0)
return;
/*
* From the manual:
* Bit rate = f(PCLKSPIn) / (2 * (n + 1) * 2^N)
*
* If we adapt it to the current context, we get the following:
* hz = rate / ((spr + 1) * (1 << (brdv + 1)))
*
* This can be written in multiple forms depending on what we want to
* determine.
*
* To find the rate, having hz, spr and brdv:
* rate = hz * (spr + 1) * (1 << (brdv + 1)
*
* To find the spr, having rate, hz, and spr:
* spr = rate / (hz * (1 << (brdv + 1)) - 1
*/
for (brdv = RSPI_SPCMD_BRDV_MIN; brdv <= RSPI_SPCMD_BRDV_MAX; brdv++) {
/* Calculate the divisor needed to find the SPR from a rate. */
u32 rate_div = hz * (1 << (brdv + 1));
/*
* If the SPR for the minimum rate is greater than the maximum
* allowed value skip this BRDV. The divisor increases with each
* BRDV iteration, so the following BRDV might result in a
* minimum SPR that is in the valid range.
*/
min_rate_spr = DIV_ROUND_CLOSEST(clk_min_rate, rate_div) - 1;
if (min_rate_spr > spr_max)
continue;
/*
* If the SPR for the maximum rate is less than the minimum
* allowed value, exit. The divisor only increases with each
* BRDV iteration, so the following BRDV cannot result in a
* maximum SPR that is in the valid range.
*/
max_rate_spr = DIV_ROUND_CLOSEST(clk_max_rate, rate_div) - 1;
if (max_rate_spr < spr_min)
break;
if (min_rate_spr < spr_min)
min_rate_spr = spr_min;
if (max_rate_spr > spr_max)
max_rate_spr = spr_max;
for (spr = min_rate_spr; spr <= max_rate_spr; spr++) {
clk_rate = (spr + 1) * rate_div;
clk_rate = clk_round_rate(clk, clk_rate);
if (clk_rate <= 0)
continue;
actual_hz = rzv2h_rspi_calc_bitrate(clk_rate, spr, brdv);
error = abs((long)hz - (long)actual_hz);
if (error >= best->error)
continue;
*best = (struct rzv2h_rspi_best_clock) {
.clk = clk,
.clk_rate = clk_rate,
.error = error,
.actual_hz = actual_hz,
.brdv = brdv,
.spr = spr,
};
if (!error)
return;
}
}
}
static void rzv2h_rspi_find_rate_fixed(struct clk *clk, u32 hz,
u8 spr_min, u8 spr_max,
struct rzv2h_rspi_best_clock *best)
{
unsigned long clk_rate;
unsigned long error;
u32 actual_hz;
int spr;
u8 brdv;
/*
* From the manual:
* Bit rate = f(RSPI_n_TCLK)/(2*(n+1)*2^(N))
*
* Where:
* * RSPI_n_TCLK is fixed to 200MHz on V2H
* * n = SPR - is RSPI_SPBR.SPR (from 0 to 255)
* * N = BRDV - is RSPI_SPCMD.BRDV (from 0 to 3)
*/
clk_rate = clk_get_rate(clk);
for (brdv = RSPI_SPCMD_BRDV_MIN; brdv <= RSPI_SPCMD_BRDV_MAX; brdv++) {
spr = DIV_ROUND_UP(clk_rate, hz * (1 << (brdv + 1)));
spr--;
if (spr >= spr_min && spr <= spr_max)
goto clock_found;
}
return;
clock_found:
actual_hz = rzv2h_rspi_calc_bitrate(clk_rate, spr, brdv);
error = abs((long)hz - (long)actual_hz);
if (error >= best->error)
return;
*best = (struct rzv2h_rspi_best_clock) {
.clk = clk,
.clk_rate = clk_rate,
.error = error,
.actual_hz = actual_hz,
.brdv = brdv,
.spr = spr,
};
}
static u32 rzv2h_rspi_setup_clock(struct rzv2h_rspi_priv *rspi, u32 hz)
{
struct rzv2h_rspi_best_clock best_clock = {
.error = ULONG_MAX,
};
int ret;
rspi->info->find_tclk_rate(rspi->tclk, hz, RSPI_SPBR_SPR_MIN,
RSPI_SPBR_SPR_MAX, &best_clock);
/*
* T2H and N2H can also use PCLK as a source, which is 125MHz, but not
* when both SPR and BRDV are 0.
*/
if (best_clock.error && rspi->info->find_pclk_rate)
rspi->info->find_pclk_rate(rspi->pclk, hz, RSPI_SPBR_SPR_PCLK_MIN,
RSPI_SPBR_SPR_MAX, &best_clock);
if (!best_clock.clk_rate)
return -EINVAL;
ret = clk_set_rate(best_clock.clk, best_clock.clk_rate);
if (ret)
return 0;
rspi->use_pclk = best_clock.clk == rspi->pclk;
rspi->spr = best_clock.spr;
rspi->brdv = best_clock.brdv;
return best_clock.actual_hz;
}
static int rzv2h_rspi_prepare_message(struct spi_controller *ctlr,
struct spi_message *message)
{
struct rzv2h_rspi_priv *rspi = spi_controller_get_devdata(ctlr);
const struct spi_device *spi = message->spi;
struct spi_transfer *xfer;
u32 speed_hz = U32_MAX;
u8 bits_per_word;
u32 conf32;
u16 conf16;
u8 conf8;
/* Make sure SPCR.SPE is 0 before amending the configuration */
rzv2h_rspi_spe_disable(rspi);
list_for_each_entry(xfer, &message->transfers, transfer_list) {
if (!xfer->speed_hz)
continue;
speed_hz = min(xfer->speed_hz, speed_hz);
bits_per_word = xfer->bits_per_word;
}
if (speed_hz == U32_MAX)
return -EINVAL;
rspi->bytes_per_word = roundup_pow_of_two(BITS_TO_BYTES(bits_per_word));
if (speed_hz != rspi->last_speed_hz) {
rspi->freq = rzv2h_rspi_setup_clock(rspi, speed_hz);
if (!rspi->freq)
return -EINVAL;
rspi->last_speed_hz = speed_hz;
}
writeb(rspi->spr, rspi->base + RSPI_SPBR);
/* Configure the device to work in "host" mode */
conf32 = RSPI_SPCR_MSTR;
/* Auto-stop function */
conf32 |= RSPI_SPCR_SCKASE;
/* SPI receive buffer full interrupt enable */
conf32 |= RSPI_SPCR_SPRIE;
/* Bypass synchronization circuit */
conf32 |= FIELD_PREP(RSPI_SPCR_BPEN, rspi->use_pclk);
writel(conf32, rspi->base + RSPI_SPCR);
/* Use SPCMD0 only */
writeb(0x0, rspi->base + RSPI_SPSCR);
/* Setup loopback */
conf8 = FIELD_PREP(RSPI_SPPCR_SPLP2, !!(spi->mode & SPI_LOOP));
writeb(conf8, rspi->base + RSPI_SPPCR);
/* Setup mode */
conf32 = FIELD_PREP(RSPI_SPCMD_CPOL, !!(spi->mode & SPI_CPOL));
conf32 |= FIELD_PREP(RSPI_SPCMD_CPHA, !!(spi->mode & SPI_CPHA));
conf32 |= FIELD_PREP(RSPI_SPCMD_LSBF, !!(spi->mode & SPI_LSB_FIRST));
conf32 |= FIELD_PREP(RSPI_SPCMD_SPB, bits_per_word - 1);
conf32 |= FIELD_PREP(RSPI_SPCMD_BRDV, rspi->brdv);
conf32 |= FIELD_PREP(RSPI_SPCMD_SSLKP, 1);
conf32 |= FIELD_PREP(RSPI_SPCMD_SSLA, spi_get_chipselect(spi, 0));
writel(conf32, rspi->base + RSPI_SPCMD);
if (spi->mode & SPI_CS_HIGH)
writeb(BIT(spi_get_chipselect(spi, 0)), rspi->base + RSPI_SSLP);
else
writeb(0, rspi->base + RSPI_SSLP);
/* Setup FIFO thresholds */
conf16 = FIELD_PREP(RSPI_SPDCR2_TTRG, rspi->info->fifo_size - 1);
conf16 |= FIELD_PREP(RSPI_SPDCR2_RTRG, 0);
writew(conf16, rspi->base + RSPI_SPDCR2);
rzv2h_rspi_clear_fifos(rspi);
rzv2h_rspi_spe_enable(rspi);
return 0;
}
static int rzv2h_rspi_unprepare_message(struct spi_controller *ctlr,
struct spi_message *message)
{
struct rzv2h_rspi_priv *rspi = spi_controller_get_devdata(ctlr);
rzv2h_rspi_spe_disable(rspi);
return 0;
}
static int rzv2h_rspi_probe(struct platform_device *pdev)
{
struct spi_controller *controller;
struct device *dev = &pdev->dev;
struct rzv2h_rspi_priv *rspi;
struct clk_bulk_data *clks;
int irq_rx, ret, i;
long tclk_rate;
controller = devm_spi_alloc_host(dev, sizeof(*rspi));
if (!controller)
return -ENOMEM;
rspi = spi_controller_get_devdata(controller);
platform_set_drvdata(pdev, rspi);
rspi->controller = controller;
rspi->info = device_get_match_data(dev);
rspi->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rspi->base))
return PTR_ERR(rspi->base);
ret = devm_clk_bulk_get_all_enabled(dev, &clks);
if (ret != rspi->info->num_clks)
return dev_err_probe(dev, ret >= 0 ? -EINVAL : ret,
"cannot get clocks\n");
for (i = 0; i < rspi->info->num_clks; i++) {
if (!strcmp(clks[i].id, rspi->info->tclk_name)) {
rspi->tclk = clks[i].clk;
} else if (rspi->info->find_pclk_rate &&
!strcmp(clks[i].id, "pclk")) {
rspi->pclk = clks[i].clk;
}
}
if (!rspi->tclk)
return dev_err_probe(dev, -EINVAL, "Failed to get tclk\n");
rspi->resets[0].id = "presetn";
rspi->resets[1].id = "tresetn";
ret = devm_reset_control_bulk_get_optional_exclusive(dev, RSPI_RESET_NUM,
rspi->resets);
if (ret)
return dev_err_probe(dev, ret, "cannot get resets\n");
irq_rx = platform_get_irq_byname(pdev, "rx");
if (irq_rx < 0)
return dev_err_probe(dev, irq_rx, "cannot get IRQ 'rx'\n");
ret = reset_control_bulk_deassert(RSPI_RESET_NUM, rspi->resets);
if (ret)
return dev_err_probe(dev, ret, "failed to deassert resets\n");
init_waitqueue_head(&rspi->wait);
ret = devm_request_irq(dev, irq_rx, rzv2h_rx_irq_handler, 0,
dev_name(dev), rspi);
if (ret) {
dev_err(dev, "cannot request `rx` IRQ\n");
goto quit_resets;
}
controller->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH |
SPI_LSB_FIRST | SPI_LOOP;
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
controller->prepare_message = rzv2h_rspi_prepare_message;
controller->unprepare_message = rzv2h_rspi_unprepare_message;
controller->num_chipselect = 4;
controller->transfer_one = rzv2h_rspi_transfer_one;
tclk_rate = clk_round_rate(rspi->tclk, 0);
if (tclk_rate < 0) {
ret = tclk_rate;
goto quit_resets;
}
controller->min_speed_hz = rzv2h_rspi_calc_bitrate(tclk_rate,
RSPI_SPBR_SPR_MAX,
RSPI_SPCMD_BRDV_MAX);
tclk_rate = clk_round_rate(rspi->tclk, ULONG_MAX);
if (tclk_rate < 0) {
ret = tclk_rate;
goto quit_resets;
}
controller->max_speed_hz = rzv2h_rspi_calc_bitrate(tclk_rate,
RSPI_SPBR_SPR_MIN,
RSPI_SPCMD_BRDV_MIN);
device_set_node(&controller->dev, dev_fwnode(dev));
ret = spi_register_controller(controller);
if (ret) {
dev_err(dev, "register controller failed\n");
goto quit_resets;
}
return 0;
quit_resets:
reset_control_bulk_assert(RSPI_RESET_NUM, rspi->resets);
return ret;
}
static void rzv2h_rspi_remove(struct platform_device *pdev)
{
struct rzv2h_rspi_priv *rspi = platform_get_drvdata(pdev);
spi_unregister_controller(rspi->controller);
reset_control_bulk_assert(RSPI_RESET_NUM, rspi->resets);
}
static const struct rzv2h_rspi_info rzv2h_info = {
.find_tclk_rate = rzv2h_rspi_find_rate_fixed,
.tclk_name = "tclk",
.fifo_size = 16,
.num_clks = 3,
};
static const struct rzv2h_rspi_info rzt2h_info = {
.find_tclk_rate = rzv2h_rspi_find_rate_variable,
.find_pclk_rate = rzv2h_rspi_find_rate_fixed,
.tclk_name = "pclkspi",
.fifo_size = 4,
.num_clks = 2,
};
static const struct of_device_id rzv2h_rspi_match[] = {
{ .compatible = "renesas,r9a09g057-rspi", &rzv2h_info },
{ .compatible = "renesas,r9a09g077-rspi", &rzt2h_info },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rzv2h_rspi_match);
static struct platform_driver rzv2h_rspi_drv = {
.probe = rzv2h_rspi_probe,
.remove = rzv2h_rspi_remove,
.driver = {
.name = "rzv2h_rspi",
.of_match_table = rzv2h_rspi_match,
},
};
module_platform_driver(rzv2h_rspi_drv);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Fabrizio Castro <fabrizio.castro.jz@renesas.com>");
MODULE_DESCRIPTION("Renesas RZ/V2H(P) Serial Peripheral Interface Driver");