mirror of https://github.com/torvalds/linux.git
736 lines
27 KiB
Rust
736 lines
27 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
||
// Copyright (c) 2025 Samsung Electronics Co., Ltd.
|
||
// Author: Michal Wilczynski <m.wilczynski@samsung.com>
|
||
|
||
//! PWM subsystem abstractions.
|
||
//!
|
||
//! C header: [`include/linux/pwm.h`](srctree/include/linux/pwm.h).
|
||
|
||
use crate::{
|
||
bindings,
|
||
container_of,
|
||
device::{self, Bound},
|
||
devres,
|
||
error::{self, to_result},
|
||
prelude::*,
|
||
types::{ARef, AlwaysRefCounted, Opaque}, //
|
||
};
|
||
use core::{marker::PhantomData, ptr::NonNull};
|
||
|
||
/// Represents a PWM waveform configuration.
|
||
/// Mirrors struct [`struct pwm_waveform`](srctree/include/linux/pwm.h).
|
||
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
|
||
pub struct Waveform {
|
||
/// Total duration of one complete PWM cycle, in nanoseconds.
|
||
pub period_length_ns: u64,
|
||
|
||
/// Duty-cycle active time, in nanoseconds.
|
||
///
|
||
/// For a typical normal polarity configuration (active-high) this is the
|
||
/// high time of the signal.
|
||
pub duty_length_ns: u64,
|
||
|
||
/// Duty-cycle start offset, in nanoseconds.
|
||
///
|
||
/// Delay from the beginning of the period to the first active edge.
|
||
/// In most simple PWM setups this is `0`, so the duty cycle starts
|
||
/// immediately at each period’s start.
|
||
pub duty_offset_ns: u64,
|
||
}
|
||
|
||
impl From<bindings::pwm_waveform> for Waveform {
|
||
fn from(wf: bindings::pwm_waveform) -> Self {
|
||
Waveform {
|
||
period_length_ns: wf.period_length_ns,
|
||
duty_length_ns: wf.duty_length_ns,
|
||
duty_offset_ns: wf.duty_offset_ns,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl From<Waveform> for bindings::pwm_waveform {
|
||
fn from(wf: Waveform) -> Self {
|
||
bindings::pwm_waveform {
|
||
period_length_ns: wf.period_length_ns,
|
||
duty_length_ns: wf.duty_length_ns,
|
||
duty_offset_ns: wf.duty_offset_ns,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Describes the outcome of a `round_waveform` operation.
|
||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||
pub enum RoundingOutcome {
|
||
/// The requested waveform was achievable exactly or by rounding values down.
|
||
ExactOrRoundedDown,
|
||
|
||
/// The requested waveform could only be achieved by rounding up.
|
||
RoundedUp,
|
||
}
|
||
|
||
/// Wrapper for a PWM device [`struct pwm_device`](srctree/include/linux/pwm.h).
|
||
#[repr(transparent)]
|
||
pub struct Device(Opaque<bindings::pwm_device>);
|
||
|
||
impl Device {
|
||
/// Creates a reference to a [`Device`] from a valid C pointer.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
|
||
/// returned [`Device`] reference.
|
||
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_device) -> &'a Self {
|
||
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
|
||
// `Device` type being transparent makes the cast ok.
|
||
unsafe { &*ptr.cast::<Self>() }
|
||
}
|
||
|
||
/// Returns a raw pointer to the underlying `pwm_device`.
|
||
fn as_raw(&self) -> *mut bindings::pwm_device {
|
||
self.0.get()
|
||
}
|
||
|
||
/// Gets the hardware PWM index for this device within its chip.
|
||
pub fn hwpwm(&self) -> u32 {
|
||
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
|
||
unsafe { (*self.as_raw()).hwpwm }
|
||
}
|
||
|
||
/// Gets a reference to the parent `Chip` that this device belongs to.
|
||
pub fn chip<T: PwmOps>(&self) -> &Chip<T> {
|
||
// SAFETY: `self.as_raw()` provides a valid pointer. (*self.as_raw()).chip
|
||
// is assumed to be a valid pointer to `pwm_chip` managed by the kernel.
|
||
// Chip::from_raw's safety conditions must be met.
|
||
unsafe { Chip::<T>::from_raw((*self.as_raw()).chip) }
|
||
}
|
||
|
||
/// Gets the label for this PWM device, if any.
|
||
pub fn label(&self) -> Option<&CStr> {
|
||
// SAFETY: self.as_raw() provides a valid pointer.
|
||
let label_ptr = unsafe { (*self.as_raw()).label };
|
||
if label_ptr.is_null() {
|
||
return None;
|
||
}
|
||
|
||
// SAFETY: label_ptr is non-null and points to a C string
|
||
// managed by the kernel, valid for the lifetime of the PWM device.
|
||
Some(unsafe { CStr::from_char_ptr(label_ptr) })
|
||
}
|
||
|
||
/// Sets the PWM waveform configuration and enables the PWM signal.
|
||
pub fn set_waveform(&self, wf: &Waveform, exact: bool) -> Result {
|
||
let c_wf = bindings::pwm_waveform::from(*wf);
|
||
|
||
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
|
||
// `&c_wf` is a valid pointer to a `pwm_waveform` struct. The C function
|
||
// handles all necessary internal locking.
|
||
let ret = unsafe { bindings::pwm_set_waveform_might_sleep(self.as_raw(), &c_wf, exact) };
|
||
to_result(ret)
|
||
}
|
||
|
||
/// Queries the hardware for the configuration it would apply for a given
|
||
/// request.
|
||
pub fn round_waveform(&self, wf: &mut Waveform) -> Result<RoundingOutcome> {
|
||
let mut c_wf = bindings::pwm_waveform::from(*wf);
|
||
|
||
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
|
||
// `&mut c_wf` is a valid pointer to a mutable `pwm_waveform` struct that
|
||
// the C function will update.
|
||
let ret = unsafe { bindings::pwm_round_waveform_might_sleep(self.as_raw(), &mut c_wf) };
|
||
|
||
to_result(ret)?;
|
||
|
||
*wf = Waveform::from(c_wf);
|
||
|
||
if ret == 1 {
|
||
Ok(RoundingOutcome::RoundedUp)
|
||
} else {
|
||
Ok(RoundingOutcome::ExactOrRoundedDown)
|
||
}
|
||
}
|
||
|
||
/// Reads the current waveform configuration directly from the hardware.
|
||
pub fn get_waveform(&self) -> Result<Waveform> {
|
||
let mut c_wf = bindings::pwm_waveform::default();
|
||
|
||
// SAFETY: `self.as_raw()` is a valid pointer. We provide a valid pointer
|
||
// to a stack-allocated `pwm_waveform` struct for the kernel to fill.
|
||
let ret = unsafe { bindings::pwm_get_waveform_might_sleep(self.as_raw(), &mut c_wf) };
|
||
|
||
to_result(ret)?;
|
||
|
||
Ok(Waveform::from(c_wf))
|
||
}
|
||
}
|
||
|
||
/// The result of a `round_waveform_tohw` operation.
|
||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||
pub struct RoundedWaveform<WfHw> {
|
||
/// A status code, 0 for success or 1 if values were rounded up.
|
||
pub status: c_int,
|
||
/// The driver-specific hardware representation of the waveform.
|
||
pub hardware_waveform: WfHw,
|
||
}
|
||
|
||
/// Trait defining the operations for a PWM driver.
|
||
pub trait PwmOps: 'static + Sized {
|
||
/// The driver-specific hardware representation of a waveform.
|
||
///
|
||
/// This type must be [`Copy`], [`Default`], and fit within `PWM_WFHWSIZE`.
|
||
type WfHw: Copy + Default;
|
||
|
||
/// Optional hook for when a PWM device is requested.
|
||
fn request(_chip: &Chip<Self>, _pwm: &Device, _parent_dev: &device::Device<Bound>) -> Result {
|
||
Ok(())
|
||
}
|
||
|
||
/// Optional hook for capturing a PWM signal.
|
||
fn capture(
|
||
_chip: &Chip<Self>,
|
||
_pwm: &Device,
|
||
_result: &mut bindings::pwm_capture,
|
||
_timeout: usize,
|
||
_parent_dev: &device::Device<Bound>,
|
||
) -> Result {
|
||
Err(ENOTSUPP)
|
||
}
|
||
|
||
/// Convert a generic waveform to the hardware-specific representation.
|
||
/// This is typically a pure calculation and does not perform I/O.
|
||
fn round_waveform_tohw(
|
||
_chip: &Chip<Self>,
|
||
_pwm: &Device,
|
||
_wf: &Waveform,
|
||
) -> Result<RoundedWaveform<Self::WfHw>> {
|
||
Err(ENOTSUPP)
|
||
}
|
||
|
||
/// Convert a hardware-specific representation back to a generic waveform.
|
||
/// This is typically a pure calculation and does not perform I/O.
|
||
fn round_waveform_fromhw(
|
||
_chip: &Chip<Self>,
|
||
_pwm: &Device,
|
||
_wfhw: &Self::WfHw,
|
||
_wf: &mut Waveform,
|
||
) -> Result {
|
||
Err(ENOTSUPP)
|
||
}
|
||
|
||
/// Read the current hardware configuration into the hardware-specific representation.
|
||
fn read_waveform(
|
||
_chip: &Chip<Self>,
|
||
_pwm: &Device,
|
||
_parent_dev: &device::Device<Bound>,
|
||
) -> Result<Self::WfHw> {
|
||
Err(ENOTSUPP)
|
||
}
|
||
|
||
/// Write a hardware-specific waveform configuration to the hardware.
|
||
fn write_waveform(
|
||
_chip: &Chip<Self>,
|
||
_pwm: &Device,
|
||
_wfhw: &Self::WfHw,
|
||
_parent_dev: &device::Device<Bound>,
|
||
) -> Result {
|
||
Err(ENOTSUPP)
|
||
}
|
||
}
|
||
|
||
/// Bridges Rust `PwmOps` to the C `pwm_ops` vtable.
|
||
struct Adapter<T: PwmOps> {
|
||
_p: PhantomData<T>,
|
||
}
|
||
|
||
impl<T: PwmOps> Adapter<T> {
|
||
const VTABLE: PwmOpsVTable = create_pwm_ops::<T>();
|
||
|
||
/// # Safety
|
||
///
|
||
/// `wfhw_ptr` must be valid for writes of `size_of::<T::WfHw>()` bytes.
|
||
unsafe fn serialize_wfhw(wfhw: &T::WfHw, wfhw_ptr: *mut c_void) -> Result {
|
||
let size = core::mem::size_of::<T::WfHw>();
|
||
|
||
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
|
||
|
||
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
|
||
unsafe {
|
||
core::ptr::copy_nonoverlapping(
|
||
core::ptr::from_ref::<T::WfHw>(wfhw).cast::<u8>(),
|
||
wfhw_ptr.cast::<u8>(),
|
||
size,
|
||
);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// `wfhw_ptr` must be valid for reads of `size_of::<T::WfHw>()` bytes.
|
||
unsafe fn deserialize_wfhw(wfhw_ptr: *const c_void) -> Result<T::WfHw> {
|
||
let size = core::mem::size_of::<T::WfHw>();
|
||
|
||
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
|
||
|
||
let mut wfhw = T::WfHw::default();
|
||
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
|
||
unsafe {
|
||
core::ptr::copy_nonoverlapping(
|
||
wfhw_ptr.cast::<u8>(),
|
||
core::ptr::from_mut::<T::WfHw>(&mut wfhw).cast::<u8>(),
|
||
size,
|
||
);
|
||
}
|
||
|
||
Ok(wfhw)
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// `dev` must be a valid pointer to a `bindings::device` embedded within a
|
||
/// `bindings::pwm_chip`. This function is called by the device core when the
|
||
/// last reference to the device is dropped.
|
||
unsafe extern "C" fn release_callback(dev: *mut bindings::device) {
|
||
// SAFETY: The function's contract guarantees that `dev` points to a `device`
|
||
// field embedded within a valid `pwm_chip`. `container_of!` can therefore
|
||
// safely calculate the address of the containing struct.
|
||
let c_chip_ptr = unsafe { container_of!(dev, bindings::pwm_chip, dev) };
|
||
|
||
// SAFETY: `c_chip_ptr` is a valid pointer to a `pwm_chip` as established
|
||
// above. Calling this FFI function is safe.
|
||
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
|
||
|
||
// SAFETY: The driver data was initialized in `new`. We run its destructor here.
|
||
unsafe { core::ptr::drop_in_place(drvdata_ptr.cast::<T>()) };
|
||
|
||
// Now, call the original release function to free the `pwm_chip` itself.
|
||
// SAFETY: `dev` is the valid pointer passed into this callback, which is
|
||
// the expected argument for `pwmchip_release`.
|
||
unsafe {
|
||
bindings::pwmchip_release(dev);
|
||
}
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// Pointers from C must be valid.
|
||
unsafe extern "C" fn request_callback(
|
||
chip_ptr: *mut bindings::pwm_chip,
|
||
pwm_ptr: *mut bindings::pwm_device,
|
||
) -> c_int {
|
||
// SAFETY: PWM core guarentees `chip_ptr` and `pwm_ptr` are valid pointers.
|
||
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
|
||
|
||
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
|
||
let bound_parent = unsafe { chip.bound_parent_device() };
|
||
match T::request(chip, pwm, bound_parent) {
|
||
Ok(()) => 0,
|
||
Err(e) => e.to_errno(),
|
||
}
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// Pointers from C must be valid.
|
||
unsafe extern "C" fn capture_callback(
|
||
chip_ptr: *mut bindings::pwm_chip,
|
||
pwm_ptr: *mut bindings::pwm_device,
|
||
res: *mut bindings::pwm_capture,
|
||
timeout: usize,
|
||
) -> c_int {
|
||
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
|
||
// pointers.
|
||
let (chip, pwm, result) = unsafe {
|
||
(
|
||
Chip::<T>::from_raw(chip_ptr),
|
||
Device::from_raw(pwm_ptr),
|
||
&mut *res,
|
||
)
|
||
};
|
||
|
||
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
|
||
let bound_parent = unsafe { chip.bound_parent_device() };
|
||
match T::capture(chip, pwm, result, timeout, bound_parent) {
|
||
Ok(()) => 0,
|
||
Err(e) => e.to_errno(),
|
||
}
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// Pointers from C must be valid.
|
||
unsafe extern "C" fn round_waveform_tohw_callback(
|
||
chip_ptr: *mut bindings::pwm_chip,
|
||
pwm_ptr: *mut bindings::pwm_device,
|
||
wf_ptr: *const bindings::pwm_waveform,
|
||
wfhw_ptr: *mut c_void,
|
||
) -> c_int {
|
||
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
|
||
// pointers.
|
||
let (chip, pwm, wf) = unsafe {
|
||
(
|
||
Chip::<T>::from_raw(chip_ptr),
|
||
Device::from_raw(pwm_ptr),
|
||
Waveform::from(*wf_ptr),
|
||
)
|
||
};
|
||
match T::round_waveform_tohw(chip, pwm, &wf) {
|
||
Ok(rounded) => {
|
||
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
|
||
if unsafe { Self::serialize_wfhw(&rounded.hardware_waveform, wfhw_ptr) }.is_err() {
|
||
return EINVAL.to_errno();
|
||
}
|
||
rounded.status
|
||
}
|
||
Err(e) => e.to_errno(),
|
||
}
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// Pointers from C must be valid.
|
||
unsafe extern "C" fn round_waveform_fromhw_callback(
|
||
chip_ptr: *mut bindings::pwm_chip,
|
||
pwm_ptr: *mut bindings::pwm_device,
|
||
wfhw_ptr: *const c_void,
|
||
wf_ptr: *mut bindings::pwm_waveform,
|
||
) -> c_int {
|
||
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
|
||
// pointers.
|
||
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
|
||
// SAFETY: `deserialize_wfhw`'s safety contract is met by this function's contract.
|
||
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
|
||
Ok(v) => v,
|
||
Err(e) => return e.to_errno(),
|
||
};
|
||
|
||
let mut rust_wf = Waveform::default();
|
||
match T::round_waveform_fromhw(chip, pwm, &wfhw, &mut rust_wf) {
|
||
Ok(()) => {
|
||
// SAFETY: `wf_ptr` is guaranteed valid by the C caller.
|
||
unsafe {
|
||
*wf_ptr = rust_wf.into();
|
||
};
|
||
0
|
||
}
|
||
Err(e) => e.to_errno(),
|
||
}
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// Pointers from C must be valid.
|
||
unsafe extern "C" fn read_waveform_callback(
|
||
chip_ptr: *mut bindings::pwm_chip,
|
||
pwm_ptr: *mut bindings::pwm_device,
|
||
wfhw_ptr: *mut c_void,
|
||
) -> c_int {
|
||
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
|
||
// pointers.
|
||
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
|
||
|
||
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
|
||
let bound_parent = unsafe { chip.bound_parent_device() };
|
||
match T::read_waveform(chip, pwm, bound_parent) {
|
||
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
|
||
Ok(wfhw) => match unsafe { Self::serialize_wfhw(&wfhw, wfhw_ptr) } {
|
||
Ok(()) => 0,
|
||
Err(e) => e.to_errno(),
|
||
},
|
||
Err(e) => e.to_errno(),
|
||
}
|
||
}
|
||
|
||
/// # Safety
|
||
///
|
||
/// Pointers from C must be valid.
|
||
unsafe extern "C" fn write_waveform_callback(
|
||
chip_ptr: *mut bindings::pwm_chip,
|
||
pwm_ptr: *mut bindings::pwm_device,
|
||
wfhw_ptr: *const c_void,
|
||
) -> c_int {
|
||
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
|
||
// pointers.
|
||
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
|
||
|
||
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
|
||
let bound_parent = unsafe { chip.bound_parent_device() };
|
||
|
||
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
|
||
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
|
||
Ok(v) => v,
|
||
Err(e) => return e.to_errno(),
|
||
};
|
||
match T::write_waveform(chip, pwm, &wfhw, bound_parent) {
|
||
Ok(()) => 0,
|
||
Err(e) => e.to_errno(),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// VTable structure wrapper for PWM operations.
|
||
/// Mirrors [`struct pwm_ops`](srctree/include/linux/pwm.h).
|
||
#[repr(transparent)]
|
||
pub struct PwmOpsVTable(bindings::pwm_ops);
|
||
|
||
// SAFETY: PwmOpsVTable is Send. The vtable contains only function pointers
|
||
// and a size, which are simple data types that can be safely moved across
|
||
// threads. The thread-safety of calling these functions is handled by the
|
||
// kernel's locking mechanisms.
|
||
unsafe impl Send for PwmOpsVTable {}
|
||
|
||
// SAFETY: PwmOpsVTable is Sync. The vtable is immutable after it is created,
|
||
// so it can be safely referenced and accessed concurrently by multiple threads
|
||
// e.g. to read the function pointers.
|
||
unsafe impl Sync for PwmOpsVTable {}
|
||
|
||
impl PwmOpsVTable {
|
||
/// Returns a raw pointer to the underlying `pwm_ops` struct.
|
||
pub(crate) fn as_raw(&self) -> *const bindings::pwm_ops {
|
||
&self.0
|
||
}
|
||
}
|
||
|
||
/// Creates a PWM operations vtable for a type `T` that implements `PwmOps`.
|
||
///
|
||
/// This is used to bridge Rust trait implementations to the C `struct pwm_ops`
|
||
/// expected by the kernel.
|
||
pub const fn create_pwm_ops<T: PwmOps>() -> PwmOpsVTable {
|
||
// SAFETY: `core::mem::zeroed()` is unsafe. For `pwm_ops`, all fields are
|
||
// `Option<extern "C" fn(...)>` or data, so a zeroed pattern (None/0) is valid initially.
|
||
let mut ops: bindings::pwm_ops = unsafe { core::mem::zeroed() };
|
||
|
||
ops.request = Some(Adapter::<T>::request_callback);
|
||
ops.capture = Some(Adapter::<T>::capture_callback);
|
||
|
||
ops.round_waveform_tohw = Some(Adapter::<T>::round_waveform_tohw_callback);
|
||
ops.round_waveform_fromhw = Some(Adapter::<T>::round_waveform_fromhw_callback);
|
||
ops.read_waveform = Some(Adapter::<T>::read_waveform_callback);
|
||
ops.write_waveform = Some(Adapter::<T>::write_waveform_callback);
|
||
ops.sizeof_wfhw = core::mem::size_of::<T::WfHw>();
|
||
|
||
PwmOpsVTable(ops)
|
||
}
|
||
|
||
/// Wrapper for a PWM chip/controller ([`struct pwm_chip`](srctree/include/linux/pwm.h)).
|
||
#[repr(transparent)]
|
||
pub struct Chip<T: PwmOps>(Opaque<bindings::pwm_chip>, PhantomData<T>);
|
||
|
||
impl<T: PwmOps> Chip<T> {
|
||
/// Creates a reference to a [`Chip`] from a valid pointer.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
|
||
/// returned [`Chip`] reference.
|
||
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_chip) -> &'a Self {
|
||
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
|
||
// `Chip` type being transparent makes the cast ok.
|
||
unsafe { &*ptr.cast::<Self>() }
|
||
}
|
||
|
||
/// Returns a raw pointer to the underlying `pwm_chip`.
|
||
pub(crate) fn as_raw(&self) -> *mut bindings::pwm_chip {
|
||
self.0.get()
|
||
}
|
||
|
||
/// Gets the number of PWM channels (hardware PWMs) on this chip.
|
||
pub fn num_channels(&self) -> u32 {
|
||
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
|
||
unsafe { (*self.as_raw()).npwm }
|
||
}
|
||
|
||
/// Returns `true` if the chip supports atomic operations for configuration.
|
||
pub fn is_atomic(&self) -> bool {
|
||
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
|
||
unsafe { (*self.as_raw()).atomic }
|
||
}
|
||
|
||
/// Returns a reference to the embedded `struct device` abstraction.
|
||
pub fn device(&self) -> &device::Device {
|
||
// SAFETY:
|
||
// - `self.as_raw()` provides a valid pointer to `bindings::pwm_chip`.
|
||
// - The `dev` field is an instance of `bindings::device` embedded
|
||
// within `pwm_chip`.
|
||
// - Taking a pointer to this embedded field is valid.
|
||
// - `device::Device` is `#[repr(transparent)]`.
|
||
// - The lifetime of the returned reference is tied to `self`.
|
||
unsafe { device::Device::from_raw(&raw mut (*self.as_raw()).dev) }
|
||
}
|
||
|
||
/// Gets the typed driver specific data associated with this chip's embedded device.
|
||
pub fn drvdata(&self) -> &T {
|
||
// SAFETY: `pwmchip_get_drvdata` returns the pointer to the private data area,
|
||
// which we know holds our `T`. The pointer is valid for the lifetime of `self`.
|
||
unsafe { &*bindings::pwmchip_get_drvdata(self.as_raw()).cast::<T>() }
|
||
}
|
||
|
||
/// Returns a reference to the parent device of this PWM chip's device.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// The caller must guarantee that the parent device exists and is bound.
|
||
/// This is guaranteed by the PWM core during `PwmOps` callbacks.
|
||
unsafe fn bound_parent_device(&self) -> &device::Device<Bound> {
|
||
// SAFETY: Per the function's safety contract, the parent device exists.
|
||
let parent = unsafe { self.device().parent().unwrap_unchecked() };
|
||
|
||
// SAFETY: Per the function's safety contract, the parent device is bound.
|
||
// This is guaranteed by the PWM core during `PwmOps` callbacks.
|
||
unsafe { parent.as_bound() }
|
||
}
|
||
|
||
/// Allocates and wraps a PWM chip using `bindings::pwmchip_alloc`.
|
||
///
|
||
/// Returns an [`ARef<Chip>`] managing the chip's lifetime via refcounting
|
||
/// on its embedded `struct device`.
|
||
pub fn new(
|
||
parent_dev: &device::Device,
|
||
num_channels: u32,
|
||
data: impl pin_init::PinInit<T, Error>,
|
||
) -> Result<ARef<Self>> {
|
||
let sizeof_priv = core::mem::size_of::<T>();
|
||
// SAFETY: `pwmchip_alloc` allocates memory for the C struct and our private data.
|
||
let c_chip_ptr_raw =
|
||
unsafe { bindings::pwmchip_alloc(parent_dev.as_raw(), num_channels, sizeof_priv) };
|
||
|
||
let c_chip_ptr: *mut bindings::pwm_chip = error::from_err_ptr(c_chip_ptr_raw)?;
|
||
|
||
// SAFETY: The `drvdata` pointer is the start of the private area, which is where
|
||
// we will construct our `T` object.
|
||
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
|
||
|
||
// SAFETY: We construct the `T` object in-place in the allocated private memory.
|
||
unsafe { data.__pinned_init(drvdata_ptr.cast())? };
|
||
|
||
// SAFETY: `c_chip_ptr` points to a valid chip.
|
||
unsafe {
|
||
(*c_chip_ptr).dev.release = Some(Adapter::<T>::release_callback);
|
||
}
|
||
|
||
// SAFETY: `c_chip_ptr` points to a valid chip.
|
||
// The `Adapter`'s `VTABLE` has a 'static lifetime, so the pointer
|
||
// returned by `as_raw()` is always valid.
|
||
unsafe {
|
||
(*c_chip_ptr).ops = Adapter::<T>::VTABLE.as_raw();
|
||
}
|
||
|
||
// Cast the `*mut bindings::pwm_chip` to `*mut Chip`. This is valid because
|
||
// `Chip` is `repr(transparent)` over `Opaque<bindings::pwm_chip>`, and
|
||
// `Opaque<T>` is `repr(transparent)` over `T`.
|
||
let chip_ptr_as_self = c_chip_ptr.cast::<Self>();
|
||
|
||
// SAFETY: `chip_ptr_as_self` points to a valid `Chip` (layout-compatible with
|
||
// `bindings::pwm_chip`) whose embedded device has refcount 1.
|
||
// `ARef::from_raw` takes this pointer and manages it via `AlwaysRefCounted`.
|
||
Ok(unsafe { ARef::from_raw(NonNull::new_unchecked(chip_ptr_as_self)) })
|
||
}
|
||
}
|
||
|
||
// SAFETY: Implements refcounting for `Chip` using the embedded `struct device`.
|
||
unsafe impl<T: PwmOps> AlwaysRefCounted for Chip<T> {
|
||
#[inline]
|
||
fn inc_ref(&self) {
|
||
// SAFETY: `self.0.get()` points to a valid `pwm_chip` because `self` exists.
|
||
// The embedded `dev` is valid. `get_device` increments its refcount.
|
||
unsafe {
|
||
bindings::get_device(&raw mut (*self.0.get()).dev);
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn dec_ref(obj: NonNull<Chip<T>>) {
|
||
let c_chip_ptr = obj.cast::<bindings::pwm_chip>().as_ptr();
|
||
|
||
// SAFETY: `obj` is a valid pointer to a `Chip` (and thus `bindings::pwm_chip`)
|
||
// with a non-zero refcount. `put_device` handles decrement and final release.
|
||
unsafe {
|
||
bindings::put_device(&raw mut (*c_chip_ptr).dev);
|
||
}
|
||
}
|
||
}
|
||
|
||
// SAFETY: `Chip` is a wrapper around `*mut bindings::pwm_chip`. The underlying C
|
||
// structure's state is managed and synchronized by the kernel's device model
|
||
// and PWM core locking mechanisms. Therefore, it is safe to move the `Chip`
|
||
// wrapper (and the pointer it contains) across threads.
|
||
unsafe impl<T: PwmOps + Send> Send for Chip<T> {}
|
||
|
||
// SAFETY: It is safe for multiple threads to have shared access (`&Chip`) because
|
||
// the `Chip` data is immutable from the Rust side without holding the appropriate
|
||
// kernel locks, which the C core is responsible for. Any interior mutability is
|
||
// handled and synchronized by the C kernel code.
|
||
unsafe impl<T: PwmOps + Sync> Sync for Chip<T> {}
|
||
|
||
/// A resource guard that ensures `pwmchip_remove` is called on drop.
|
||
///
|
||
/// This struct is intended to be managed by the `devres` framework by transferring its ownership
|
||
/// via [`devres::register`]. This ties the lifetime of the PWM chip registration
|
||
/// to the lifetime of the underlying device.
|
||
pub struct Registration<T: PwmOps> {
|
||
chip: ARef<Chip<T>>,
|
||
}
|
||
|
||
impl<T: 'static + PwmOps + Send + Sync> Registration<T> {
|
||
/// Registers a PWM chip with the PWM subsystem.
|
||
///
|
||
/// Transfers its ownership to the `devres` framework, which ties its lifetime
|
||
/// to the parent device.
|
||
/// On unbind of the parent device, the `devres` entry will be dropped, automatically
|
||
/// calling `pwmchip_remove`. This function should be called from the driver's `probe`.
|
||
pub fn register(dev: &device::Device<Bound>, chip: ARef<Chip<T>>) -> Result {
|
||
let chip_parent = chip.device().parent().ok_or(EINVAL)?;
|
||
if dev.as_raw() != chip_parent.as_raw() {
|
||
return Err(EINVAL);
|
||
}
|
||
|
||
let c_chip_ptr = chip.as_raw();
|
||
|
||
// SAFETY: `c_chip_ptr` points to a valid chip with its ops initialized.
|
||
// `__pwmchip_add` is the C function to register the chip with the PWM core.
|
||
unsafe {
|
||
to_result(bindings::__pwmchip_add(c_chip_ptr, core::ptr::null_mut()))?;
|
||
}
|
||
|
||
let registration = Registration { chip };
|
||
|
||
devres::register(dev, registration, GFP_KERNEL)
|
||
}
|
||
}
|
||
|
||
impl<T: PwmOps> Drop for Registration<T> {
|
||
fn drop(&mut self) {
|
||
let chip_raw = self.chip.as_raw();
|
||
|
||
// SAFETY: `chip_raw` points to a chip that was successfully registered.
|
||
// `bindings::pwmchip_remove` is the correct C function to unregister it.
|
||
// This `drop` implementation is called automatically by `devres` on driver unbind.
|
||
unsafe {
|
||
bindings::pwmchip_remove(chip_raw);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Declares a kernel module that exposes a single PWM driver.
|
||
///
|
||
/// # Examples
|
||
///
|
||
///```ignore
|
||
/// kernel::module_pwm_platform_driver! {
|
||
/// type: MyDriver,
|
||
/// name: "Module name",
|
||
/// authors: ["Author name"],
|
||
/// description: "Description",
|
||
/// license: "GPL v2",
|
||
/// }
|
||
///```
|
||
#[macro_export]
|
||
macro_rules! module_pwm_platform_driver {
|
||
($($user_args:tt)*) => {
|
||
$crate::module_platform_driver! {
|
||
$($user_args)*
|
||
imports_ns: ["PWM"],
|
||
}
|
||
};
|
||
}
|