linux/kernel/nstree.c

814 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2025 Christian Brauner <brauner@kernel.org> */
#include <linux/nstree.h>
#include <linux/proc_ns.h>
#include <linux/rculist.h>
#include <linux/vfsdebug.h>
#include <linux/syscalls.h>
#include <linux/user_namespace.h>
static __cacheline_aligned_in_smp DEFINE_SEQLOCK(ns_tree_lock);
DEFINE_LOCK_GUARD_0(ns_tree_writer,
write_seqlock(&ns_tree_lock),
write_sequnlock(&ns_tree_lock))
DEFINE_LOCK_GUARD_0(ns_tree_locked_reader,
read_seqlock_excl(&ns_tree_lock),
read_sequnlock_excl(&ns_tree_lock))
static struct ns_tree_root ns_unified_root = { /* protected by ns_tree_lock */
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(ns_unified_root.ns_list_head),
};
struct ns_tree_root mnt_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(mnt_ns_tree.ns_list_head),
};
struct ns_tree_root net_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(net_ns_tree.ns_list_head),
};
EXPORT_SYMBOL_GPL(net_ns_tree);
struct ns_tree_root uts_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(uts_ns_tree.ns_list_head),
};
struct ns_tree_root user_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(user_ns_tree.ns_list_head),
};
struct ns_tree_root ipc_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(ipc_ns_tree.ns_list_head),
};
struct ns_tree_root pid_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(pid_ns_tree.ns_list_head),
};
struct ns_tree_root cgroup_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(cgroup_ns_tree.ns_list_head),
};
struct ns_tree_root time_ns_tree = {
.ns_rb = RB_ROOT,
.ns_list_head = LIST_HEAD_INIT(time_ns_tree.ns_list_head),
};
/**
* ns_tree_node_init - Initialize a namespace tree node
* @node: The node to initialize
*
* Initializes both the rbtree node and list entry.
*/
void ns_tree_node_init(struct ns_tree_node *node)
{
RB_CLEAR_NODE(&node->ns_node);
INIT_LIST_HEAD(&node->ns_list_entry);
}
/**
* ns_tree_root_init - Initialize a namespace tree root
* @root: The root to initialize
*
* Initializes both the rbtree root and list head.
*/
void ns_tree_root_init(struct ns_tree_root *root)
{
root->ns_rb = RB_ROOT;
INIT_LIST_HEAD(&root->ns_list_head);
}
/**
* ns_tree_node_empty - Check if a namespace tree node is empty
* @node: The node to check
*
* Returns true if the node is not in any tree.
*/
bool ns_tree_node_empty(const struct ns_tree_node *node)
{
return RB_EMPTY_NODE(&node->ns_node);
}
/**
* ns_tree_node_add - Add a node to a namespace tree
* @node: The node to add
* @root: The tree root to add to
* @cmp: Comparison function for rbtree insertion
*
* Adds the node to both the rbtree and the list, maintaining sorted order.
* The list is maintained in the same order as the rbtree to enable efficient
* iteration.
*
* Returns: NULL if insertion succeeded, existing node if duplicate found
*/
struct rb_node *ns_tree_node_add(struct ns_tree_node *node,
struct ns_tree_root *root,
int (*cmp)(struct rb_node *, const struct rb_node *))
{
struct rb_node *ret, *prev;
/* Add to rbtree */
ret = rb_find_add_rcu(&node->ns_node, &root->ns_rb, cmp);
/* Add to list in sorted order */
prev = rb_prev(&node->ns_node);
if (!prev) {
/* No previous node, add at head */
list_add_rcu(&node->ns_list_entry, &root->ns_list_head);
} else {
/* Add after previous node */
struct ns_tree_node *prev_node;
prev_node = rb_entry(prev, struct ns_tree_node, ns_node);
list_add_rcu(&node->ns_list_entry, &prev_node->ns_list_entry);
}
return ret;
}
/**
* ns_tree_node_del - Remove a node from a namespace tree
* @node: The node to remove
* @root: The tree root to remove from
*
* Removes the node from both the rbtree and the list atomically.
*/
void ns_tree_node_del(struct ns_tree_node *node, struct ns_tree_root *root)
{
rb_erase(&node->ns_node, &root->ns_rb);
RB_CLEAR_NODE(&node->ns_node);
list_bidir_del_rcu(&node->ns_list_entry);
}
static inline struct ns_common *node_to_ns(const struct rb_node *node)
{
if (!node)
return NULL;
return rb_entry(node, struct ns_common, ns_tree_node.ns_node);
}
static inline struct ns_common *node_to_ns_unified(const struct rb_node *node)
{
if (!node)
return NULL;
return rb_entry(node, struct ns_common, ns_unified_node.ns_node);
}
static inline struct ns_common *node_to_ns_owner(const struct rb_node *node)
{
if (!node)
return NULL;
return rb_entry(node, struct ns_common, ns_owner_node.ns_node);
}
static int ns_id_cmp(u64 id_a, u64 id_b)
{
if (id_a < id_b)
return -1;
if (id_a > id_b)
return 1;
return 0;
}
static int ns_cmp(struct rb_node *a, const struct rb_node *b)
{
return ns_id_cmp(node_to_ns(a)->ns_id, node_to_ns(b)->ns_id);
}
static int ns_cmp_unified(struct rb_node *a, const struct rb_node *b)
{
return ns_id_cmp(node_to_ns_unified(a)->ns_id, node_to_ns_unified(b)->ns_id);
}
static int ns_cmp_owner(struct rb_node *a, const struct rb_node *b)
{
return ns_id_cmp(node_to_ns_owner(a)->ns_id, node_to_ns_owner(b)->ns_id);
}
void __ns_tree_add_raw(struct ns_common *ns, struct ns_tree_root *ns_tree)
{
struct rb_node *node;
const struct proc_ns_operations *ops = ns->ops;
VFS_WARN_ON_ONCE(!ns->ns_id);
guard(ns_tree_writer)();
/* Add to per-type tree and list */
node = ns_tree_node_add(&ns->ns_tree_node, ns_tree, ns_cmp);
/* Add to unified tree and list */
ns_tree_node_add(&ns->ns_unified_node, &ns_unified_root, ns_cmp_unified);
/* Add to owner's tree if applicable */
if (ops) {
struct user_namespace *user_ns;
VFS_WARN_ON_ONCE(!ops->owner);
user_ns = ops->owner(ns);
if (user_ns) {
struct ns_common *owner = &user_ns->ns;
VFS_WARN_ON_ONCE(owner->ns_type != CLONE_NEWUSER);
/* Insert into owner's tree and list */
ns_tree_node_add(&ns->ns_owner_node, &owner->ns_owner_root, ns_cmp_owner);
} else {
/* Only the initial user namespace doesn't have an owner. */
VFS_WARN_ON_ONCE(ns != to_ns_common(&init_user_ns));
}
}
VFS_WARN_ON_ONCE(node);
}
void __ns_tree_remove(struct ns_common *ns, struct ns_tree_root *ns_tree)
{
const struct proc_ns_operations *ops = ns->ops;
struct user_namespace *user_ns;
VFS_WARN_ON_ONCE(ns_tree_node_empty(&ns->ns_tree_node));
VFS_WARN_ON_ONCE(list_empty(&ns->ns_tree_node.ns_list_entry));
write_seqlock(&ns_tree_lock);
/* Remove from per-type tree and list */
ns_tree_node_del(&ns->ns_tree_node, ns_tree);
/* Remove from unified tree and list */
ns_tree_node_del(&ns->ns_unified_node, &ns_unified_root);
/* Remove from owner's tree if applicable */
if (ops) {
user_ns = ops->owner(ns);
if (user_ns) {
struct ns_common *owner = &user_ns->ns;
ns_tree_node_del(&ns->ns_owner_node, &owner->ns_owner_root);
}
}
write_sequnlock(&ns_tree_lock);
}
EXPORT_SYMBOL_GPL(__ns_tree_remove);
static int ns_find(const void *key, const struct rb_node *node)
{
const u64 ns_id = *(u64 *)key;
const struct ns_common *ns = node_to_ns(node);
if (ns_id < ns->ns_id)
return -1;
if (ns_id > ns->ns_id)
return 1;
return 0;
}
static int ns_find_unified(const void *key, const struct rb_node *node)
{
const u64 ns_id = *(u64 *)key;
const struct ns_common *ns = node_to_ns_unified(node);
if (ns_id < ns->ns_id)
return -1;
if (ns_id > ns->ns_id)
return 1;
return 0;
}
static struct ns_tree_root *ns_tree_from_type(int ns_type)
{
switch (ns_type) {
case CLONE_NEWCGROUP:
return &cgroup_ns_tree;
case CLONE_NEWIPC:
return &ipc_ns_tree;
case CLONE_NEWNS:
return &mnt_ns_tree;
case CLONE_NEWNET:
return &net_ns_tree;
case CLONE_NEWPID:
return &pid_ns_tree;
case CLONE_NEWUSER:
return &user_ns_tree;
case CLONE_NEWUTS:
return &uts_ns_tree;
case CLONE_NEWTIME:
return &time_ns_tree;
}
return NULL;
}
static struct ns_common *__ns_unified_tree_lookup_rcu(u64 ns_id)
{
struct rb_node *node;
unsigned int seq;
do {
seq = read_seqbegin(&ns_tree_lock);
node = rb_find_rcu(&ns_id, &ns_unified_root.ns_rb, ns_find_unified);
if (node)
break;
} while (read_seqretry(&ns_tree_lock, seq));
return node_to_ns_unified(node);
}
static struct ns_common *__ns_tree_lookup_rcu(u64 ns_id, int ns_type)
{
struct ns_tree_root *ns_tree;
struct rb_node *node;
unsigned int seq;
ns_tree = ns_tree_from_type(ns_type);
if (!ns_tree)
return NULL;
do {
seq = read_seqbegin(&ns_tree_lock);
node = rb_find_rcu(&ns_id, &ns_tree->ns_rb, ns_find);
if (node)
break;
} while (read_seqretry(&ns_tree_lock, seq));
return node_to_ns(node);
}
struct ns_common *ns_tree_lookup_rcu(u64 ns_id, int ns_type)
{
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_lookup_rcu() usage");
if (ns_type)
return __ns_tree_lookup_rcu(ns_id, ns_type);
return __ns_unified_tree_lookup_rcu(ns_id);
}
/**
* __ns_tree_adjoined_rcu - find the next/previous namespace in the same
* tree
* @ns: namespace to start from
* @ns_tree: namespace tree to search in
* @previous: if true find the previous namespace, otherwise the next
*
* Find the next or previous namespace in the same tree as @ns. If
* there is no next/previous namespace, -ENOENT is returned.
*/
struct ns_common *__ns_tree_adjoined_rcu(struct ns_common *ns,
struct ns_tree_root *ns_tree, bool previous)
{
struct list_head *list;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_adjoined_rcu() usage");
if (previous)
list = rcu_dereference(list_bidir_prev_rcu(&ns->ns_tree_node.ns_list_entry));
else
list = rcu_dereference(list_next_rcu(&ns->ns_tree_node.ns_list_entry));
if (list_is_head(list, &ns_tree->ns_list_head))
return ERR_PTR(-ENOENT);
return list_entry_rcu(list, struct ns_common, ns_tree_node.ns_list_entry);
}
/**
* __ns_tree_gen_id - generate a new namespace id
* @ns: namespace to generate id for
* @id: if non-zero, this is the initial namespace and this is a fixed id
*
* Generates a new namespace id and assigns it to the namespace. All
* namespaces types share the same id space and thus can be compared
* directly. IOW, when two ids of two namespace are equal, they are
* identical.
*/
u64 __ns_tree_gen_id(struct ns_common *ns, u64 id)
{
static atomic64_t namespace_cookie = ATOMIC64_INIT(NS_LAST_INIT_ID + 1);
if (id)
ns->ns_id = id;
else
ns->ns_id = atomic64_inc_return(&namespace_cookie);
return ns->ns_id;
}
struct klistns {
u64 __user *uns_ids;
u32 nr_ns_ids;
u64 last_ns_id;
u64 user_ns_id;
u32 ns_type;
struct user_namespace *user_ns;
bool userns_capable;
struct ns_common *first_ns;
};
static void __free_klistns_free(const struct klistns *kls)
{
if (kls->user_ns_id != LISTNS_CURRENT_USER)
put_user_ns(kls->user_ns);
if (kls->first_ns && kls->first_ns->ops)
kls->first_ns->ops->put(kls->first_ns);
}
#define NS_ALL (PID_NS | USER_NS | MNT_NS | UTS_NS | IPC_NS | NET_NS | CGROUP_NS | TIME_NS)
static int copy_ns_id_req(const struct ns_id_req __user *req,
struct ns_id_req *kreq)
{
int ret;
size_t usize;
BUILD_BUG_ON(sizeof(struct ns_id_req) != NS_ID_REQ_SIZE_VER0);
ret = get_user(usize, &req->size);
if (ret)
return -EFAULT;
if (unlikely(usize > PAGE_SIZE))
return -E2BIG;
if (unlikely(usize < NS_ID_REQ_SIZE_VER0))
return -EINVAL;
memset(kreq, 0, sizeof(*kreq));
ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
if (ret)
return ret;
if (kreq->spare != 0)
return -EINVAL;
if (kreq->ns_type & ~NS_ALL)
return -EOPNOTSUPP;
return 0;
}
static inline int prepare_klistns(struct klistns *kls, struct ns_id_req *kreq,
u64 __user *ns_ids, size_t nr_ns_ids)
{
kls->last_ns_id = kreq->ns_id;
kls->user_ns_id = kreq->user_ns_id;
kls->nr_ns_ids = nr_ns_ids;
kls->ns_type = kreq->ns_type;
kls->uns_ids = ns_ids;
return 0;
}
/*
* Lookup a namespace owned by owner with id >= ns_id.
* Returns the namespace with the smallest id that is >= ns_id.
*/
static struct ns_common *lookup_ns_owner_at(u64 ns_id, struct ns_common *owner)
{
struct ns_common *ret = NULL;
struct rb_node *node;
VFS_WARN_ON_ONCE(owner->ns_type != CLONE_NEWUSER);
guard(ns_tree_locked_reader)();
node = owner->ns_owner_root.ns_rb.rb_node;
while (node) {
struct ns_common *ns;
ns = node_to_ns_owner(node);
if (ns_id <= ns->ns_id) {
ret = ns;
if (ns_id == ns->ns_id)
break;
node = node->rb_left;
} else {
node = node->rb_right;
}
}
if (ret)
ret = ns_get_unless_inactive(ret);
return ret;
}
static struct ns_common *lookup_ns_id(u64 mnt_ns_id, int ns_type)
{
struct ns_common *ns;
guard(rcu)();
ns = ns_tree_lookup_rcu(mnt_ns_id, ns_type);
if (!ns)
return NULL;
if (!ns_get_unless_inactive(ns))
return NULL;
return ns;
}
static inline bool __must_check ns_requested(const struct klistns *kls,
const struct ns_common *ns)
{
return !kls->ns_type || (kls->ns_type & ns->ns_type);
}
static inline bool __must_check may_list_ns(const struct klistns *kls,
struct ns_common *ns)
{
if (kls->user_ns) {
if (kls->userns_capable)
return true;
} else {
struct ns_common *owner;
struct user_namespace *user_ns;
owner = ns_owner(ns);
if (owner)
user_ns = to_user_ns(owner);
else
user_ns = &init_user_ns;
if (ns_capable_noaudit(user_ns, CAP_SYS_ADMIN))
return true;
}
if (is_current_namespace(ns))
return true;
if (ns->ns_type != CLONE_NEWUSER)
return false;
if (ns_capable_noaudit(to_user_ns(ns), CAP_SYS_ADMIN))
return true;
return false;
}
static inline void ns_put(struct ns_common *ns)
{
if (ns && ns->ops)
ns->ops->put(ns);
}
DEFINE_FREE(ns_put, struct ns_common *, if (!IS_ERR_OR_NULL(_T)) ns_put(_T))
static inline struct ns_common *__must_check legitimize_ns(const struct klistns *kls,
struct ns_common *candidate)
{
struct ns_common *ns __free(ns_put) = NULL;
if (!ns_requested(kls, candidate))
return NULL;
ns = ns_get_unless_inactive(candidate);
if (!ns)
return NULL;
if (!may_list_ns(kls, ns))
return NULL;
return no_free_ptr(ns);
}
static ssize_t do_listns_userns(struct klistns *kls)
{
u64 __user *ns_ids = kls->uns_ids;
size_t nr_ns_ids = kls->nr_ns_ids;
struct ns_common *ns = NULL, *first_ns = NULL, *prev = NULL;
const struct list_head *head;
ssize_t ret;
VFS_WARN_ON_ONCE(!kls->user_ns_id);
if (kls->user_ns_id == LISTNS_CURRENT_USER)
ns = to_ns_common(current_user_ns());
else if (kls->user_ns_id)
ns = lookup_ns_id(kls->user_ns_id, CLONE_NEWUSER);
if (!ns)
return -EINVAL;
kls->user_ns = to_user_ns(ns);
/*
* Use the rbtree to find the first namespace we care about and
* then use it's list entry to iterate from there.
*/
if (kls->last_ns_id) {
kls->first_ns = lookup_ns_owner_at(kls->last_ns_id + 1, ns);
if (!kls->first_ns)
return -ENOENT;
first_ns = kls->first_ns;
}
ret = 0;
head = &to_ns_common(kls->user_ns)->ns_owner_root.ns_list_head;
kls->userns_capable = ns_capable_noaudit(kls->user_ns, CAP_SYS_ADMIN);
rcu_read_lock();
if (!first_ns)
first_ns = list_entry_rcu(head->next, typeof(*first_ns), ns_owner_node.ns_list_entry);
ns = first_ns;
list_for_each_entry_from_rcu(ns, head, ns_owner_node.ns_list_entry) {
struct ns_common *valid;
if (!nr_ns_ids)
break;
valid = legitimize_ns(kls, ns);
if (!valid)
continue;
rcu_read_unlock();
ns_put(prev);
prev = valid;
if (put_user(valid->ns_id, ns_ids + ret)) {
ns_put(prev);
return -EFAULT;
}
nr_ns_ids--;
ret++;
rcu_read_lock();
}
rcu_read_unlock();
ns_put(prev);
return ret;
}
/*
* Lookup a namespace with id >= ns_id in either the unified tree or a type-specific tree.
* Returns the namespace with the smallest id that is >= ns_id.
*/
static struct ns_common *lookup_ns_id_at(u64 ns_id, int ns_type)
{
struct ns_common *ret = NULL;
struct ns_tree_root *ns_tree = NULL;
struct rb_node *node;
if (ns_type) {
ns_tree = ns_tree_from_type(ns_type);
if (!ns_tree)
return NULL;
}
guard(ns_tree_locked_reader)();
if (ns_tree)
node = ns_tree->ns_rb.rb_node;
else
node = ns_unified_root.ns_rb.rb_node;
while (node) {
struct ns_common *ns;
if (ns_type)
ns = node_to_ns(node);
else
ns = node_to_ns_unified(node);
if (ns_id <= ns->ns_id) {
if (ns_type)
ret = node_to_ns(node);
else
ret = node_to_ns_unified(node);
if (ns_id == ns->ns_id)
break;
node = node->rb_left;
} else {
node = node->rb_right;
}
}
if (ret)
ret = ns_get_unless_inactive(ret);
return ret;
}
static inline struct ns_common *first_ns_common(const struct list_head *head,
struct ns_tree_root *ns_tree)
{
if (ns_tree)
return list_entry_rcu(head->next, struct ns_common, ns_tree_node.ns_list_entry);
return list_entry_rcu(head->next, struct ns_common, ns_unified_node.ns_list_entry);
}
static inline struct ns_common *next_ns_common(struct ns_common *ns,
struct ns_tree_root *ns_tree)
{
if (ns_tree)
return list_entry_rcu(ns->ns_tree_node.ns_list_entry.next, struct ns_common, ns_tree_node.ns_list_entry);
return list_entry_rcu(ns->ns_unified_node.ns_list_entry.next, struct ns_common, ns_unified_node.ns_list_entry);
}
static inline bool ns_common_is_head(struct ns_common *ns,
const struct list_head *head,
struct ns_tree_root *ns_tree)
{
if (ns_tree)
return &ns->ns_tree_node.ns_list_entry == head;
return &ns->ns_unified_node.ns_list_entry == head;
}
static ssize_t do_listns(struct klistns *kls)
{
u64 __user *ns_ids = kls->uns_ids;
size_t nr_ns_ids = kls->nr_ns_ids;
struct ns_common *ns, *first_ns = NULL, *prev = NULL;
struct ns_tree_root *ns_tree = NULL;
const struct list_head *head;
u32 ns_type;
ssize_t ret;
if (hweight32(kls->ns_type) == 1)
ns_type = kls->ns_type;
else
ns_type = 0;
if (ns_type) {
ns_tree = ns_tree_from_type(ns_type);
if (!ns_tree)
return -EINVAL;
}
if (kls->last_ns_id) {
kls->first_ns = lookup_ns_id_at(kls->last_ns_id + 1, ns_type);
if (!kls->first_ns)
return -ENOENT;
first_ns = kls->first_ns;
}
ret = 0;
if (ns_tree)
head = &ns_tree->ns_list_head;
else
head = &ns_unified_root.ns_list_head;
rcu_read_lock();
if (!first_ns)
first_ns = first_ns_common(head, ns_tree);
for (ns = first_ns; !ns_common_is_head(ns, head, ns_tree) && nr_ns_ids;
ns = next_ns_common(ns, ns_tree)) {
struct ns_common *valid;
valid = legitimize_ns(kls, ns);
if (!valid)
continue;
rcu_read_unlock();
ns_put(prev);
prev = valid;
if (put_user(valid->ns_id, ns_ids + ret)) {
ns_put(prev);
return -EFAULT;
}
nr_ns_ids--;
ret++;
rcu_read_lock();
}
rcu_read_unlock();
ns_put(prev);
return ret;
}
SYSCALL_DEFINE4(listns, const struct ns_id_req __user *, req,
u64 __user *, ns_ids, size_t, nr_ns_ids, unsigned int, flags)
{
struct klistns klns __free(klistns_free) = {};
const size_t maxcount = 1000000;
struct ns_id_req kreq;
ssize_t ret;
if (flags)
return -EINVAL;
if (unlikely(nr_ns_ids > maxcount))
return -EOVERFLOW;
if (!access_ok(ns_ids, nr_ns_ids * sizeof(*ns_ids)))
return -EFAULT;
ret = copy_ns_id_req(req, &kreq);
if (ret)
return ret;
ret = prepare_klistns(&klns, &kreq, ns_ids, nr_ns_ids);
if (ret)
return ret;
if (kreq.user_ns_id)
return do_listns_userns(&klns);
return do_listns(&klns);
}