linux/rust/kernel/pwm.rs

736 lines
27 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2025 Samsung Electronics Co., Ltd.
// Author: Michal Wilczynski <m.wilczynski@samsung.com>
//! PWM subsystem abstractions.
//!
//! C header: [`include/linux/pwm.h`](srctree/include/linux/pwm.h).
use crate::{
bindings,
container_of,
device::{self, Bound},
devres,
error::{self, to_result},
prelude::*,
types::{ARef, AlwaysRefCounted, Opaque}, //
};
use core::{marker::PhantomData, ptr::NonNull};
/// Represents a PWM waveform configuration.
/// Mirrors struct [`struct pwm_waveform`](srctree/include/linux/pwm.h).
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct Waveform {
/// Total duration of one complete PWM cycle, in nanoseconds.
pub period_length_ns: u64,
/// Duty-cycle active time, in nanoseconds.
///
/// For a typical normal polarity configuration (active-high) this is the
/// high time of the signal.
pub duty_length_ns: u64,
/// Duty-cycle start offset, in nanoseconds.
///
/// Delay from the beginning of the period to the first active edge.
/// In most simple PWM setups this is `0`, so the duty cycle starts
/// immediately at each periods start.
pub duty_offset_ns: u64,
}
impl From<bindings::pwm_waveform> for Waveform {
fn from(wf: bindings::pwm_waveform) -> Self {
Waveform {
period_length_ns: wf.period_length_ns,
duty_length_ns: wf.duty_length_ns,
duty_offset_ns: wf.duty_offset_ns,
}
}
}
impl From<Waveform> for bindings::pwm_waveform {
fn from(wf: Waveform) -> Self {
bindings::pwm_waveform {
period_length_ns: wf.period_length_ns,
duty_length_ns: wf.duty_length_ns,
duty_offset_ns: wf.duty_offset_ns,
}
}
}
/// Describes the outcome of a `round_waveform` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RoundingOutcome {
/// The requested waveform was achievable exactly or by rounding values down.
ExactOrRoundedDown,
/// The requested waveform could only be achieved by rounding up.
RoundedUp,
}
/// Wrapper for a PWM device [`struct pwm_device`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct Device(Opaque<bindings::pwm_device>);
impl Device {
/// Creates a reference to a [`Device`] from a valid C pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Device`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_device) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Device` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_device`.
fn as_raw(&self) -> *mut bindings::pwm_device {
self.0.get()
}
/// Gets the hardware PWM index for this device within its chip.
pub fn hwpwm(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).hwpwm }
}
/// Gets a reference to the parent `Chip` that this device belongs to.
pub fn chip<T: PwmOps>(&self) -> &Chip<T> {
// SAFETY: `self.as_raw()` provides a valid pointer. (*self.as_raw()).chip
// is assumed to be a valid pointer to `pwm_chip` managed by the kernel.
// Chip::from_raw's safety conditions must be met.
unsafe { Chip::<T>::from_raw((*self.as_raw()).chip) }
}
/// Gets the label for this PWM device, if any.
pub fn label(&self) -> Option<&CStr> {
// SAFETY: self.as_raw() provides a valid pointer.
let label_ptr = unsafe { (*self.as_raw()).label };
if label_ptr.is_null() {
return None;
}
// SAFETY: label_ptr is non-null and points to a C string
// managed by the kernel, valid for the lifetime of the PWM device.
Some(unsafe { CStr::from_char_ptr(label_ptr) })
}
/// Sets the PWM waveform configuration and enables the PWM signal.
pub fn set_waveform(&self, wf: &Waveform, exact: bool) -> Result {
let c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&c_wf` is a valid pointer to a `pwm_waveform` struct. The C function
// handles all necessary internal locking.
let ret = unsafe { bindings::pwm_set_waveform_might_sleep(self.as_raw(), &c_wf, exact) };
to_result(ret)
}
/// Queries the hardware for the configuration it would apply for a given
/// request.
pub fn round_waveform(&self, wf: &mut Waveform) -> Result<RoundingOutcome> {
let mut c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&mut c_wf` is a valid pointer to a mutable `pwm_waveform` struct that
// the C function will update.
let ret = unsafe { bindings::pwm_round_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
*wf = Waveform::from(c_wf);
if ret == 1 {
Ok(RoundingOutcome::RoundedUp)
} else {
Ok(RoundingOutcome::ExactOrRoundedDown)
}
}
/// Reads the current waveform configuration directly from the hardware.
pub fn get_waveform(&self) -> Result<Waveform> {
let mut c_wf = bindings::pwm_waveform::default();
// SAFETY: `self.as_raw()` is a valid pointer. We provide a valid pointer
// to a stack-allocated `pwm_waveform` struct for the kernel to fill.
let ret = unsafe { bindings::pwm_get_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
Ok(Waveform::from(c_wf))
}
}
/// The result of a `round_waveform_tohw` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct RoundedWaveform<WfHw> {
/// A status code, 0 for success or 1 if values were rounded up.
pub status: c_int,
/// The driver-specific hardware representation of the waveform.
pub hardware_waveform: WfHw,
}
/// Trait defining the operations for a PWM driver.
pub trait PwmOps: 'static + Sized {
/// The driver-specific hardware representation of a waveform.
///
/// This type must be [`Copy`], [`Default`], and fit within `PWM_WFHWSIZE`.
type WfHw: Copy + Default;
/// Optional hook for when a PWM device is requested.
fn request(_chip: &Chip<Self>, _pwm: &Device, _parent_dev: &device::Device<Bound>) -> Result {
Ok(())
}
/// Optional hook for capturing a PWM signal.
fn capture(
_chip: &Chip<Self>,
_pwm: &Device,
_result: &mut bindings::pwm_capture,
_timeout: usize,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
/// Convert a generic waveform to the hardware-specific representation.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_tohw(
_chip: &Chip<Self>,
_pwm: &Device,
_wf: &Waveform,
) -> Result<RoundedWaveform<Self::WfHw>> {
Err(ENOTSUPP)
}
/// Convert a hardware-specific representation back to a generic waveform.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_fromhw(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_wf: &mut Waveform,
) -> Result {
Err(ENOTSUPP)
}
/// Read the current hardware configuration into the hardware-specific representation.
fn read_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_parent_dev: &device::Device<Bound>,
) -> Result<Self::WfHw> {
Err(ENOTSUPP)
}
/// Write a hardware-specific waveform configuration to the hardware.
fn write_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
}
/// Bridges Rust `PwmOps` to the C `pwm_ops` vtable.
struct Adapter<T: PwmOps> {
_p: PhantomData<T>,
}
impl<T: PwmOps> Adapter<T> {
const VTABLE: PwmOpsVTable = create_pwm_ops::<T>();
/// # Safety
///
/// `wfhw_ptr` must be valid for writes of `size_of::<T::WfHw>()` bytes.
unsafe fn serialize_wfhw(wfhw: &T::WfHw, wfhw_ptr: *mut c_void) -> Result {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
core::ptr::from_ref::<T::WfHw>(wfhw).cast::<u8>(),
wfhw_ptr.cast::<u8>(),
size,
);
}
Ok(())
}
/// # Safety
///
/// `wfhw_ptr` must be valid for reads of `size_of::<T::WfHw>()` bytes.
unsafe fn deserialize_wfhw(wfhw_ptr: *const c_void) -> Result<T::WfHw> {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
let mut wfhw = T::WfHw::default();
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
wfhw_ptr.cast::<u8>(),
core::ptr::from_mut::<T::WfHw>(&mut wfhw).cast::<u8>(),
size,
);
}
Ok(wfhw)
}
/// # Safety
///
/// `dev` must be a valid pointer to a `bindings::device` embedded within a
/// `bindings::pwm_chip`. This function is called by the device core when the
/// last reference to the device is dropped.
unsafe extern "C" fn release_callback(dev: *mut bindings::device) {
// SAFETY: The function's contract guarantees that `dev` points to a `device`
// field embedded within a valid `pwm_chip`. `container_of!` can therefore
// safely calculate the address of the containing struct.
let c_chip_ptr = unsafe { container_of!(dev, bindings::pwm_chip, dev) };
// SAFETY: `c_chip_ptr` is a valid pointer to a `pwm_chip` as established
// above. Calling this FFI function is safe.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: The driver data was initialized in `new`. We run its destructor here.
unsafe { core::ptr::drop_in_place(drvdata_ptr.cast::<T>()) };
// Now, call the original release function to free the `pwm_chip` itself.
// SAFETY: `dev` is the valid pointer passed into this callback, which is
// the expected argument for `pwmchip_release`.
unsafe {
bindings::pwmchip_release(dev);
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn request_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
) -> c_int {
// SAFETY: PWM core guarentees `chip_ptr` and `pwm_ptr` are valid pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::request(chip, pwm, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn capture_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
res: *mut bindings::pwm_capture,
timeout: usize,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, result) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
&mut *res,
)
};
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::capture(chip, pwm, result, timeout, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_tohw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wf_ptr: *const bindings::pwm_waveform,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, wf) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
Waveform::from(*wf_ptr),
)
};
match T::round_waveform_tohw(chip, pwm, &wf) {
Ok(rounded) => {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
if unsafe { Self::serialize_wfhw(&rounded.hardware_waveform, wfhw_ptr) }.is_err() {
return EINVAL.to_errno();
}
rounded.status
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_fromhw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
wf_ptr: *mut bindings::pwm_waveform,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: `deserialize_wfhw`'s safety contract is met by this function's contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
let mut rust_wf = Waveform::default();
match T::round_waveform_fromhw(chip, pwm, &wfhw, &mut rust_wf) {
Ok(()) => {
// SAFETY: `wf_ptr` is guaranteed valid by the C caller.
unsafe {
*wf_ptr = rust_wf.into();
};
0
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn read_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::read_waveform(chip, pwm, bound_parent) {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
Ok(wfhw) => match unsafe { Self::serialize_wfhw(&wfhw, wfhw_ptr) } {
Ok(()) => 0,
Err(e) => e.to_errno(),
},
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn write_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
match T::write_waveform(chip, pwm, &wfhw, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
}
/// VTable structure wrapper for PWM operations.
/// Mirrors [`struct pwm_ops`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct PwmOpsVTable(bindings::pwm_ops);
// SAFETY: PwmOpsVTable is Send. The vtable contains only function pointers
// and a size, which are simple data types that can be safely moved across
// threads. The thread-safety of calling these functions is handled by the
// kernel's locking mechanisms.
unsafe impl Send for PwmOpsVTable {}
// SAFETY: PwmOpsVTable is Sync. The vtable is immutable after it is created,
// so it can be safely referenced and accessed concurrently by multiple threads
// e.g. to read the function pointers.
unsafe impl Sync for PwmOpsVTable {}
impl PwmOpsVTable {
/// Returns a raw pointer to the underlying `pwm_ops` struct.
pub(crate) fn as_raw(&self) -> *const bindings::pwm_ops {
&self.0
}
}
/// Creates a PWM operations vtable for a type `T` that implements `PwmOps`.
///
/// This is used to bridge Rust trait implementations to the C `struct pwm_ops`
/// expected by the kernel.
pub const fn create_pwm_ops<T: PwmOps>() -> PwmOpsVTable {
// SAFETY: `core::mem::zeroed()` is unsafe. For `pwm_ops`, all fields are
// `Option<extern "C" fn(...)>` or data, so a zeroed pattern (None/0) is valid initially.
let mut ops: bindings::pwm_ops = unsafe { core::mem::zeroed() };
ops.request = Some(Adapter::<T>::request_callback);
ops.capture = Some(Adapter::<T>::capture_callback);
ops.round_waveform_tohw = Some(Adapter::<T>::round_waveform_tohw_callback);
ops.round_waveform_fromhw = Some(Adapter::<T>::round_waveform_fromhw_callback);
ops.read_waveform = Some(Adapter::<T>::read_waveform_callback);
ops.write_waveform = Some(Adapter::<T>::write_waveform_callback);
ops.sizeof_wfhw = core::mem::size_of::<T::WfHw>();
PwmOpsVTable(ops)
}
/// Wrapper for a PWM chip/controller ([`struct pwm_chip`](srctree/include/linux/pwm.h)).
#[repr(transparent)]
pub struct Chip<T: PwmOps>(Opaque<bindings::pwm_chip>, PhantomData<T>);
impl<T: PwmOps> Chip<T> {
/// Creates a reference to a [`Chip`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Chip`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_chip) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Chip` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_chip`.
pub(crate) fn as_raw(&self) -> *mut bindings::pwm_chip {
self.0.get()
}
/// Gets the number of PWM channels (hardware PWMs) on this chip.
pub fn num_channels(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).npwm }
}
/// Returns `true` if the chip supports atomic operations for configuration.
pub fn is_atomic(&self) -> bool {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).atomic }
}
/// Returns a reference to the embedded `struct device` abstraction.
pub fn device(&self) -> &device::Device {
// SAFETY:
// - `self.as_raw()` provides a valid pointer to `bindings::pwm_chip`.
// - The `dev` field is an instance of `bindings::device` embedded
// within `pwm_chip`.
// - Taking a pointer to this embedded field is valid.
// - `device::Device` is `#[repr(transparent)]`.
// - The lifetime of the returned reference is tied to `self`.
unsafe { device::Device::from_raw(&raw mut (*self.as_raw()).dev) }
}
/// Gets the typed driver specific data associated with this chip's embedded device.
pub fn drvdata(&self) -> &T {
// SAFETY: `pwmchip_get_drvdata` returns the pointer to the private data area,
// which we know holds our `T`. The pointer is valid for the lifetime of `self`.
unsafe { &*bindings::pwmchip_get_drvdata(self.as_raw()).cast::<T>() }
}
/// Returns a reference to the parent device of this PWM chip's device.
///
/// # Safety
///
/// The caller must guarantee that the parent device exists and is bound.
/// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe fn bound_parent_device(&self) -> &device::Device<Bound> {
// SAFETY: Per the function's safety contract, the parent device exists.
let parent = unsafe { self.device().parent().unwrap_unchecked() };
// SAFETY: Per the function's safety contract, the parent device is bound.
// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe { parent.as_bound() }
}
/// Allocates and wraps a PWM chip using `bindings::pwmchip_alloc`.
///
/// Returns an [`ARef<Chip>`] managing the chip's lifetime via refcounting
/// on its embedded `struct device`.
pub fn new(
parent_dev: &device::Device,
num_channels: u32,
data: impl pin_init::PinInit<T, Error>,
) -> Result<ARef<Self>> {
let sizeof_priv = core::mem::size_of::<T>();
// SAFETY: `pwmchip_alloc` allocates memory for the C struct and our private data.
let c_chip_ptr_raw =
unsafe { bindings::pwmchip_alloc(parent_dev.as_raw(), num_channels, sizeof_priv) };
let c_chip_ptr: *mut bindings::pwm_chip = error::from_err_ptr(c_chip_ptr_raw)?;
// SAFETY: The `drvdata` pointer is the start of the private area, which is where
// we will construct our `T` object.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: We construct the `T` object in-place in the allocated private memory.
unsafe { data.__pinned_init(drvdata_ptr.cast())? };
// SAFETY: `c_chip_ptr` points to a valid chip.
unsafe {
(*c_chip_ptr).dev.release = Some(Adapter::<T>::release_callback);
}
// SAFETY: `c_chip_ptr` points to a valid chip.
// The `Adapter`'s `VTABLE` has a 'static lifetime, so the pointer
// returned by `as_raw()` is always valid.
unsafe {
(*c_chip_ptr).ops = Adapter::<T>::VTABLE.as_raw();
}
// Cast the `*mut bindings::pwm_chip` to `*mut Chip`. This is valid because
// `Chip` is `repr(transparent)` over `Opaque<bindings::pwm_chip>`, and
// `Opaque<T>` is `repr(transparent)` over `T`.
let chip_ptr_as_self = c_chip_ptr.cast::<Self>();
// SAFETY: `chip_ptr_as_self` points to a valid `Chip` (layout-compatible with
// `bindings::pwm_chip`) whose embedded device has refcount 1.
// `ARef::from_raw` takes this pointer and manages it via `AlwaysRefCounted`.
Ok(unsafe { ARef::from_raw(NonNull::new_unchecked(chip_ptr_as_self)) })
}
}
// SAFETY: Implements refcounting for `Chip` using the embedded `struct device`.
unsafe impl<T: PwmOps> AlwaysRefCounted for Chip<T> {
#[inline]
fn inc_ref(&self) {
// SAFETY: `self.0.get()` points to a valid `pwm_chip` because `self` exists.
// The embedded `dev` is valid. `get_device` increments its refcount.
unsafe {
bindings::get_device(&raw mut (*self.0.get()).dev);
}
}
#[inline]
unsafe fn dec_ref(obj: NonNull<Chip<T>>) {
let c_chip_ptr = obj.cast::<bindings::pwm_chip>().as_ptr();
// SAFETY: `obj` is a valid pointer to a `Chip` (and thus `bindings::pwm_chip`)
// with a non-zero refcount. `put_device` handles decrement and final release.
unsafe {
bindings::put_device(&raw mut (*c_chip_ptr).dev);
}
}
}
// SAFETY: `Chip` is a wrapper around `*mut bindings::pwm_chip`. The underlying C
// structure's state is managed and synchronized by the kernel's device model
// and PWM core locking mechanisms. Therefore, it is safe to move the `Chip`
// wrapper (and the pointer it contains) across threads.
unsafe impl<T: PwmOps + Send> Send for Chip<T> {}
// SAFETY: It is safe for multiple threads to have shared access (`&Chip`) because
// the `Chip` data is immutable from the Rust side without holding the appropriate
// kernel locks, which the C core is responsible for. Any interior mutability is
// handled and synchronized by the C kernel code.
unsafe impl<T: PwmOps + Sync> Sync for Chip<T> {}
/// A resource guard that ensures `pwmchip_remove` is called on drop.
///
/// This struct is intended to be managed by the `devres` framework by transferring its ownership
/// via [`devres::register`]. This ties the lifetime of the PWM chip registration
/// to the lifetime of the underlying device.
pub struct Registration<T: PwmOps> {
chip: ARef<Chip<T>>,
}
impl<T: 'static + PwmOps + Send + Sync> Registration<T> {
/// Registers a PWM chip with the PWM subsystem.
///
/// Transfers its ownership to the `devres` framework, which ties its lifetime
/// to the parent device.
/// On unbind of the parent device, the `devres` entry will be dropped, automatically
/// calling `pwmchip_remove`. This function should be called from the driver's `probe`.
pub fn register(dev: &device::Device<Bound>, chip: ARef<Chip<T>>) -> Result {
let chip_parent = chip.device().parent().ok_or(EINVAL)?;
if dev.as_raw() != chip_parent.as_raw() {
return Err(EINVAL);
}
let c_chip_ptr = chip.as_raw();
// SAFETY: `c_chip_ptr` points to a valid chip with its ops initialized.
// `__pwmchip_add` is the C function to register the chip with the PWM core.
unsafe {
to_result(bindings::__pwmchip_add(c_chip_ptr, core::ptr::null_mut()))?;
}
let registration = Registration { chip };
devres::register(dev, registration, GFP_KERNEL)
}
}
impl<T: PwmOps> Drop for Registration<T> {
fn drop(&mut self) {
let chip_raw = self.chip.as_raw();
// SAFETY: `chip_raw` points to a chip that was successfully registered.
// `bindings::pwmchip_remove` is the correct C function to unregister it.
// This `drop` implementation is called automatically by `devres` on driver unbind.
unsafe {
bindings::pwmchip_remove(chip_raw);
}
}
}
/// Declares a kernel module that exposes a single PWM driver.
///
/// # Examples
///
///```ignore
/// kernel::module_pwm_platform_driver! {
/// type: MyDriver,
/// name: "Module name",
/// authors: ["Author name"],
/// description: "Description",
/// license: "GPL v2",
/// }
///```
#[macro_export]
macro_rules! module_pwm_platform_driver {
($($user_args:tt)*) => {
$crate::module_platform_driver! {
$($user_args)*
imports_ns: ["PWM"],
}
};
}