mirror of https://github.com/torvalds/linux.git
768 lines
22 KiB
C
768 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* memory buffer pool support. Such pools are mostly used
|
|
* for guaranteed, deadlock-free memory allocations during
|
|
* extreme VM load.
|
|
*
|
|
* started by Ingo Molnar, Copyright (C) 2001
|
|
* debugging by David Rientjes, Copyright (C) 2015
|
|
*/
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/writeback.h>
|
|
#include "slab.h"
|
|
|
|
static DECLARE_FAULT_ATTR(fail_mempool_alloc);
|
|
static DECLARE_FAULT_ATTR(fail_mempool_alloc_bulk);
|
|
|
|
static int __init mempool_faul_inject_init(void)
|
|
{
|
|
int error;
|
|
|
|
error = PTR_ERR_OR_ZERO(fault_create_debugfs_attr("fail_mempool_alloc",
|
|
NULL, &fail_mempool_alloc));
|
|
if (error)
|
|
return error;
|
|
|
|
/* booting will fail on error return here, don't bother to cleanup */
|
|
return PTR_ERR_OR_ZERO(
|
|
fault_create_debugfs_attr("fail_mempool_alloc_bulk", NULL,
|
|
&fail_mempool_alloc_bulk));
|
|
}
|
|
late_initcall(mempool_faul_inject_init);
|
|
|
|
#ifdef CONFIG_SLUB_DEBUG_ON
|
|
static void poison_error(struct mempool *pool, void *element, size_t size,
|
|
size_t byte)
|
|
{
|
|
const int nr = pool->curr_nr;
|
|
const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
|
|
const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
|
|
int i;
|
|
|
|
pr_err("BUG: mempool element poison mismatch\n");
|
|
pr_err("Mempool %p size %zu\n", pool, size);
|
|
pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
|
|
for (i = start; i < end; i++)
|
|
pr_cont("%x ", *(u8 *)(element + i));
|
|
pr_cont("%s\n", end < size ? "..." : "");
|
|
dump_stack();
|
|
}
|
|
|
|
static void __check_element(struct mempool *pool, void *element, size_t size)
|
|
{
|
|
u8 *obj = element;
|
|
size_t i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
|
|
|
|
if (obj[i] != exp) {
|
|
poison_error(pool, element, size, i);
|
|
return;
|
|
}
|
|
}
|
|
memset(obj, POISON_INUSE, size);
|
|
}
|
|
|
|
static void check_element(struct mempool *pool, void *element)
|
|
{
|
|
/* Skip checking: KASAN might save its metadata in the element. */
|
|
if (kasan_enabled())
|
|
return;
|
|
|
|
/* Mempools backed by slab allocator */
|
|
if (pool->free == mempool_kfree) {
|
|
__check_element(pool, element, (size_t)pool->pool_data);
|
|
} else if (pool->free == mempool_free_slab) {
|
|
__check_element(pool, element, kmem_cache_size(pool->pool_data));
|
|
} else if (pool->free == mempool_free_pages) {
|
|
/* Mempools backed by page allocator */
|
|
int order = (int)(long)pool->pool_data;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
for (int i = 0; i < (1 << order); i++) {
|
|
struct page *page = (struct page *)element;
|
|
void *addr = kmap_local_page(page + i);
|
|
|
|
__check_element(pool, addr, PAGE_SIZE);
|
|
kunmap_local(addr);
|
|
}
|
|
#else
|
|
void *addr = page_address((struct page *)element);
|
|
|
|
__check_element(pool, addr, PAGE_SIZE << order);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void __poison_element(void *element, size_t size)
|
|
{
|
|
u8 *obj = element;
|
|
|
|
memset(obj, POISON_FREE, size - 1);
|
|
obj[size - 1] = POISON_END;
|
|
}
|
|
|
|
static void poison_element(struct mempool *pool, void *element)
|
|
{
|
|
/* Skip poisoning: KASAN might save its metadata in the element. */
|
|
if (kasan_enabled())
|
|
return;
|
|
|
|
/* Mempools backed by slab allocator */
|
|
if (pool->alloc == mempool_kmalloc) {
|
|
__poison_element(element, (size_t)pool->pool_data);
|
|
} else if (pool->alloc == mempool_alloc_slab) {
|
|
__poison_element(element, kmem_cache_size(pool->pool_data));
|
|
} else if (pool->alloc == mempool_alloc_pages) {
|
|
/* Mempools backed by page allocator */
|
|
int order = (int)(long)pool->pool_data;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
for (int i = 0; i < (1 << order); i++) {
|
|
struct page *page = (struct page *)element;
|
|
void *addr = kmap_local_page(page + i);
|
|
|
|
__poison_element(addr, PAGE_SIZE);
|
|
kunmap_local(addr);
|
|
}
|
|
#else
|
|
void *addr = page_address((struct page *)element);
|
|
|
|
__poison_element(addr, PAGE_SIZE << order);
|
|
#endif
|
|
}
|
|
}
|
|
#else /* CONFIG_SLUB_DEBUG_ON */
|
|
static inline void check_element(struct mempool *pool, void *element)
|
|
{
|
|
}
|
|
static inline void poison_element(struct mempool *pool, void *element)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SLUB_DEBUG_ON */
|
|
|
|
static __always_inline bool kasan_poison_element(struct mempool *pool,
|
|
void *element)
|
|
{
|
|
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
|
|
return kasan_mempool_poison_object(element);
|
|
else if (pool->alloc == mempool_alloc_pages)
|
|
return kasan_mempool_poison_pages(element,
|
|
(unsigned long)pool->pool_data);
|
|
return true;
|
|
}
|
|
|
|
static void kasan_unpoison_element(struct mempool *pool, void *element)
|
|
{
|
|
if (pool->alloc == mempool_kmalloc)
|
|
kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
|
|
else if (pool->alloc == mempool_alloc_slab)
|
|
kasan_mempool_unpoison_object(element,
|
|
kmem_cache_size(pool->pool_data));
|
|
else if (pool->alloc == mempool_alloc_pages)
|
|
kasan_mempool_unpoison_pages(element,
|
|
(unsigned long)pool->pool_data);
|
|
}
|
|
|
|
static __always_inline void add_element(struct mempool *pool, void *element)
|
|
{
|
|
BUG_ON(pool->min_nr != 0 && pool->curr_nr >= pool->min_nr);
|
|
poison_element(pool, element);
|
|
if (kasan_poison_element(pool, element))
|
|
pool->elements[pool->curr_nr++] = element;
|
|
}
|
|
|
|
static void *remove_element(struct mempool *pool)
|
|
{
|
|
void *element = pool->elements[--pool->curr_nr];
|
|
|
|
BUG_ON(pool->curr_nr < 0);
|
|
kasan_unpoison_element(pool, element);
|
|
check_element(pool, element);
|
|
return element;
|
|
}
|
|
|
|
/**
|
|
* mempool_exit - exit a mempool initialized with mempool_init()
|
|
* @pool: pointer to the memory pool which was initialized with
|
|
* mempool_init().
|
|
*
|
|
* Free all reserved elements in @pool and @pool itself. This function
|
|
* only sleeps if the free_fn() function sleeps.
|
|
*
|
|
* May be called on a zeroed but uninitialized mempool (i.e. allocated with
|
|
* kzalloc()).
|
|
*/
|
|
void mempool_exit(struct mempool *pool)
|
|
{
|
|
while (pool->curr_nr) {
|
|
void *element = remove_element(pool);
|
|
pool->free(element, pool->pool_data);
|
|
}
|
|
kfree(pool->elements);
|
|
pool->elements = NULL;
|
|
}
|
|
EXPORT_SYMBOL(mempool_exit);
|
|
|
|
/**
|
|
* mempool_destroy - deallocate a memory pool
|
|
* @pool: pointer to the memory pool which was allocated via
|
|
* mempool_create().
|
|
*
|
|
* Free all reserved elements in @pool and @pool itself. This function
|
|
* only sleeps if the free_fn() function sleeps.
|
|
*/
|
|
void mempool_destroy(struct mempool *pool)
|
|
{
|
|
if (unlikely(!pool))
|
|
return;
|
|
|
|
mempool_exit(pool);
|
|
kfree(pool);
|
|
}
|
|
EXPORT_SYMBOL(mempool_destroy);
|
|
|
|
int mempool_init_node(struct mempool *pool, int min_nr,
|
|
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
|
|
void *pool_data, gfp_t gfp_mask, int node_id)
|
|
{
|
|
spin_lock_init(&pool->lock);
|
|
pool->min_nr = min_nr;
|
|
pool->pool_data = pool_data;
|
|
pool->alloc = alloc_fn;
|
|
pool->free = free_fn;
|
|
init_waitqueue_head(&pool->wait);
|
|
/*
|
|
* max() used here to ensure storage for at least 1 element to support
|
|
* zero minimum pool
|
|
*/
|
|
pool->elements = kmalloc_array_node(max(1, min_nr), sizeof(void *),
|
|
gfp_mask, node_id);
|
|
if (!pool->elements)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* First pre-allocate the guaranteed number of buffers,
|
|
* also pre-allocate 1 element for zero minimum pool.
|
|
*/
|
|
while (pool->curr_nr < max(1, pool->min_nr)) {
|
|
void *element;
|
|
|
|
element = pool->alloc(gfp_mask, pool->pool_data);
|
|
if (unlikely(!element)) {
|
|
mempool_exit(pool);
|
|
return -ENOMEM;
|
|
}
|
|
add_element(pool, element);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mempool_init_node);
|
|
|
|
/**
|
|
* mempool_init - initialize a memory pool
|
|
* @pool: pointer to the memory pool that should be initialized
|
|
* @min_nr: the minimum number of elements guaranteed to be
|
|
* allocated for this pool.
|
|
* @alloc_fn: user-defined element-allocation function.
|
|
* @free_fn: user-defined element-freeing function.
|
|
* @pool_data: optional private data available to the user-defined functions.
|
|
*
|
|
* Like mempool_create(), but initializes the pool in (i.e. embedded in another
|
|
* structure).
|
|
*
|
|
* Return: %0 on success, negative error code otherwise.
|
|
*/
|
|
int mempool_init_noprof(struct mempool *pool, int min_nr,
|
|
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
|
|
void *pool_data)
|
|
{
|
|
return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
|
|
pool_data, GFP_KERNEL, NUMA_NO_NODE);
|
|
|
|
}
|
|
EXPORT_SYMBOL(mempool_init_noprof);
|
|
|
|
/**
|
|
* mempool_create_node - create a memory pool
|
|
* @min_nr: the minimum number of elements guaranteed to be
|
|
* allocated for this pool.
|
|
* @alloc_fn: user-defined element-allocation function.
|
|
* @free_fn: user-defined element-freeing function.
|
|
* @pool_data: optional private data available to the user-defined functions.
|
|
* @gfp_mask: memory allocation flags
|
|
* @node_id: numa node to allocate on
|
|
*
|
|
* this function creates and allocates a guaranteed size, preallocated
|
|
* memory pool. The pool can be used from the mempool_alloc() and mempool_free()
|
|
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
|
|
* functions might sleep - as long as the mempool_alloc() function is not called
|
|
* from IRQ contexts.
|
|
*
|
|
* Return: pointer to the created memory pool object or %NULL on error.
|
|
*/
|
|
struct mempool *mempool_create_node_noprof(int min_nr,
|
|
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
|
|
void *pool_data, gfp_t gfp_mask, int node_id)
|
|
{
|
|
struct mempool *pool;
|
|
|
|
pool = kmalloc_node_noprof(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id);
|
|
if (!pool)
|
|
return NULL;
|
|
|
|
if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
|
|
gfp_mask, node_id)) {
|
|
kfree(pool);
|
|
return NULL;
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(mempool_create_node_noprof);
|
|
|
|
/**
|
|
* mempool_resize - resize an existing memory pool
|
|
* @pool: pointer to the memory pool which was allocated via
|
|
* mempool_create().
|
|
* @new_min_nr: the new minimum number of elements guaranteed to be
|
|
* allocated for this pool.
|
|
*
|
|
* This function shrinks/grows the pool. In the case of growing,
|
|
* it cannot be guaranteed that the pool will be grown to the new
|
|
* size immediately, but new mempool_free() calls will refill it.
|
|
* This function may sleep.
|
|
*
|
|
* Note, the caller must guarantee that no mempool_destroy is called
|
|
* while this function is running. mempool_alloc() & mempool_free()
|
|
* might be called (eg. from IRQ contexts) while this function executes.
|
|
*
|
|
* Return: %0 on success, negative error code otherwise.
|
|
*/
|
|
int mempool_resize(struct mempool *pool, int new_min_nr)
|
|
{
|
|
void *element;
|
|
void **new_elements;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(new_min_nr <= 0);
|
|
might_sleep();
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (new_min_nr <= pool->min_nr) {
|
|
while (new_min_nr < pool->curr_nr) {
|
|
element = remove_element(pool);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
pool->free(element, pool->pool_data);
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
}
|
|
pool->min_nr = new_min_nr;
|
|
goto out_unlock;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
/* Grow the pool */
|
|
new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
|
|
GFP_KERNEL);
|
|
if (!new_elements)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (unlikely(new_min_nr <= pool->min_nr)) {
|
|
/* Raced, other resize will do our work */
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
kfree(new_elements);
|
|
goto out;
|
|
}
|
|
memcpy(new_elements, pool->elements,
|
|
pool->curr_nr * sizeof(*new_elements));
|
|
kfree(pool->elements);
|
|
pool->elements = new_elements;
|
|
pool->min_nr = new_min_nr;
|
|
|
|
while (pool->curr_nr < pool->min_nr) {
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
element = pool->alloc(GFP_KERNEL, pool->pool_data);
|
|
if (!element)
|
|
goto out;
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (pool->curr_nr < pool->min_nr) {
|
|
add_element(pool, element);
|
|
} else {
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
pool->free(element, pool->pool_data); /* Raced */
|
|
goto out;
|
|
}
|
|
}
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
out:
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mempool_resize);
|
|
|
|
static unsigned int mempool_alloc_from_pool(struct mempool *pool, void **elems,
|
|
unsigned int count, unsigned int allocated,
|
|
gfp_t gfp_mask)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (unlikely(pool->curr_nr < count - allocated))
|
|
goto fail;
|
|
for (i = 0; i < count; i++) {
|
|
if (!elems[i]) {
|
|
elems[i] = remove_element(pool);
|
|
allocated++;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
/* Paired with rmb in mempool_free(), read comment there. */
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Update the allocation stack trace as this is more useful for
|
|
* debugging.
|
|
*/
|
|
for (i = 0; i < count; i++)
|
|
kmemleak_update_trace(elems[i]);
|
|
return allocated;
|
|
|
|
fail:
|
|
if (gfp_mask & __GFP_DIRECT_RECLAIM) {
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
/*
|
|
* Wait for someone else to return an element to @pool, but wake
|
|
* up occasionally as memory pressure might have reduced even
|
|
* and the normal allocation in alloc_fn could succeed even if
|
|
* no element was returned.
|
|
*/
|
|
io_schedule_timeout(5 * HZ);
|
|
finish_wait(&pool->wait, &wait);
|
|
} else {
|
|
/* We must not sleep if __GFP_DIRECT_RECLAIM is not set. */
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
|
|
return allocated;
|
|
}
|
|
|
|
/*
|
|
* Adjust the gfp flags for mempool allocations, as we never want to dip into
|
|
* the global emergency reserves or retry in the page allocator.
|
|
*
|
|
* The first pass also doesn't want to go reclaim, but the next passes do, so
|
|
* return a separate subset for that first iteration.
|
|
*/
|
|
static inline gfp_t mempool_adjust_gfp(gfp_t *gfp_mask)
|
|
{
|
|
*gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
|
|
return *gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
|
|
}
|
|
|
|
/**
|
|
* mempool_alloc_bulk - allocate multiple elements from a memory pool
|
|
* @pool: pointer to the memory pool
|
|
* @elems: partially or fully populated elements array
|
|
* @count: number of entries in @elem that need to be allocated
|
|
* @allocated: number of entries in @elem already allocated
|
|
*
|
|
* Allocate elements for each slot in @elem that is non-%NULL. This is done by
|
|
* first calling into the alloc_fn supplied at pool initialization time, and
|
|
* dipping into the reserved pool when alloc_fn fails to allocate an element.
|
|
*
|
|
* On return all @count elements in @elems will be populated.
|
|
*
|
|
* Return: Always 0. If it wasn't for %$#^$ alloc tags, it would return void.
|
|
*/
|
|
int mempool_alloc_bulk_noprof(struct mempool *pool, void **elems,
|
|
unsigned int count, unsigned int allocated)
|
|
{
|
|
gfp_t gfp_mask = GFP_KERNEL;
|
|
gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask);
|
|
unsigned int i = 0;
|
|
|
|
VM_WARN_ON_ONCE(count > pool->min_nr);
|
|
might_alloc(gfp_mask);
|
|
|
|
/*
|
|
* If an error is injected, fail all elements in a bulk allocation so
|
|
* that we stress the multiple elements missing path.
|
|
*/
|
|
if (should_fail_ex(&fail_mempool_alloc_bulk, 1, FAULT_NOWARN)) {
|
|
pr_info("forcing mempool usage for %pS\n",
|
|
(void *)_RET_IP_);
|
|
goto use_pool;
|
|
}
|
|
|
|
repeat_alloc:
|
|
/*
|
|
* Try to allocate the elements using the allocation callback first as
|
|
* that might succeed even when the caller's bulk allocation did not.
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
if (elems[i])
|
|
continue;
|
|
elems[i] = pool->alloc(gfp_temp, pool->pool_data);
|
|
if (unlikely(!elems[i]))
|
|
goto use_pool;
|
|
allocated++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
use_pool:
|
|
allocated = mempool_alloc_from_pool(pool, elems, count, allocated,
|
|
gfp_temp);
|
|
gfp_temp = gfp_mask;
|
|
goto repeat_alloc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mempool_alloc_bulk_noprof);
|
|
|
|
/**
|
|
* mempool_alloc - allocate an element from a memory pool
|
|
* @pool: pointer to the memory pool
|
|
* @gfp_mask: GFP_* flags. %__GFP_ZERO is not supported.
|
|
*
|
|
* Allocate an element from @pool. This is done by first calling into the
|
|
* alloc_fn supplied at pool initialization time, and dipping into the reserved
|
|
* pool when alloc_fn fails to allocate an element.
|
|
*
|
|
* This function only sleeps if the alloc_fn callback sleeps, or when waiting
|
|
* for elements to become available in the pool.
|
|
*
|
|
* Return: pointer to the allocated element or %NULL when failing to allocate
|
|
* an element. Allocation failure can only happen when @gfp_mask does not
|
|
* include %__GFP_DIRECT_RECLAIM.
|
|
*/
|
|
void *mempool_alloc_noprof(struct mempool *pool, gfp_t gfp_mask)
|
|
{
|
|
gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask);
|
|
void *element;
|
|
|
|
VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
|
|
might_alloc(gfp_mask);
|
|
|
|
repeat_alloc:
|
|
if (should_fail_ex(&fail_mempool_alloc, 1, FAULT_NOWARN)) {
|
|
pr_info("forcing mempool usage for %pS\n",
|
|
(void *)_RET_IP_);
|
|
element = NULL;
|
|
} else {
|
|
element = pool->alloc(gfp_temp, pool->pool_data);
|
|
}
|
|
|
|
if (unlikely(!element)) {
|
|
/*
|
|
* Try to allocate an element from the pool.
|
|
*
|
|
* The first pass won't have __GFP_DIRECT_RECLAIM and won't
|
|
* sleep in mempool_alloc_from_pool. Retry the allocation
|
|
* with all flags set in that case.
|
|
*/
|
|
if (!mempool_alloc_from_pool(pool, &element, 1, 0, gfp_temp)) {
|
|
if (gfp_temp != gfp_mask) {
|
|
gfp_temp = gfp_mask;
|
|
goto repeat_alloc;
|
|
}
|
|
if (gfp_mask & __GFP_DIRECT_RECLAIM) {
|
|
goto repeat_alloc;
|
|
}
|
|
}
|
|
}
|
|
|
|
return element;
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc_noprof);
|
|
|
|
/**
|
|
* mempool_alloc_preallocated - allocate an element from preallocated elements
|
|
* belonging to a memory pool
|
|
* @pool: pointer to the memory pool
|
|
*
|
|
* This function is similar to mempool_alloc(), but it only attempts allocating
|
|
* an element from the preallocated elements. It only takes a single spinlock_t
|
|
* and immediately returns if no preallocated elements are available.
|
|
*
|
|
* Return: pointer to the allocated element or %NULL if no elements are
|
|
* available.
|
|
*/
|
|
void *mempool_alloc_preallocated(struct mempool *pool)
|
|
{
|
|
void *element = NULL;
|
|
|
|
mempool_alloc_from_pool(pool, &element, 1, 0, GFP_NOWAIT);
|
|
return element;
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc_preallocated);
|
|
|
|
/**
|
|
* mempool_free_bulk - return elements to a mempool
|
|
* @pool: pointer to the memory pool
|
|
* @elems: elements to return
|
|
* @count: number of elements to return
|
|
*
|
|
* Returns a number of elements from the start of @elem to @pool if @pool needs
|
|
* replenishing and sets their slots in @elem to NULL. Other elements are left
|
|
* in @elem.
|
|
*
|
|
* Return: number of elements transferred to @pool. Elements are always
|
|
* transferred from the beginning of @elem, so the return value can be used as
|
|
* an offset into @elem for the freeing the remaining elements in the caller.
|
|
*/
|
|
unsigned int mempool_free_bulk(struct mempool *pool, void **elems,
|
|
unsigned int count)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int freed = 0;
|
|
bool added = false;
|
|
|
|
/*
|
|
* Paired with the wmb in mempool_alloc(). The preceding read is
|
|
* for @element and the following @pool->curr_nr. This ensures
|
|
* that the visible value of @pool->curr_nr is from after the
|
|
* allocation of @element. This is necessary for fringe cases
|
|
* where @element was passed to this task without going through
|
|
* barriers.
|
|
*
|
|
* For example, assume @p is %NULL at the beginning and one task
|
|
* performs "p = mempool_alloc(...);" while another task is doing
|
|
* "while (!p) cpu_relax(); mempool_free(p, ...);". This function
|
|
* may end up using curr_nr value which is from before allocation
|
|
* of @p without the following rmb.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/*
|
|
* For correctness, we need a test which is guaranteed to trigger
|
|
* if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
|
|
* without locking achieves that and refilling as soon as possible
|
|
* is desirable.
|
|
*
|
|
* Because curr_nr visible here is always a value after the
|
|
* allocation of @element, any task which decremented curr_nr below
|
|
* min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
|
|
* incremented to min_nr afterwards. If curr_nr gets incremented
|
|
* to min_nr after the allocation of @element, the elements
|
|
* allocated after that are subject to the same guarantee.
|
|
*
|
|
* Waiters happen iff curr_nr is 0 and the above guarantee also
|
|
* ensures that there will be frees which return elements to the
|
|
* pool waking up the waiters.
|
|
*
|
|
* For zero-minimum pools, curr_nr < min_nr (0 < 0) never succeeds,
|
|
* so waiters sleeping on pool->wait would never be woken by the
|
|
* wake-up path of previous test. This explicit check ensures the
|
|
* allocation of element when both min_nr and curr_nr are 0, and
|
|
* any active waiters are properly awakened.
|
|
*/
|
|
if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
while (pool->curr_nr < pool->min_nr && freed < count) {
|
|
add_element(pool, elems[freed++]);
|
|
added = true;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
} else if (unlikely(pool->min_nr == 0 &&
|
|
READ_ONCE(pool->curr_nr) == 0)) {
|
|
/* Handle the min_nr = 0 edge case: */
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (likely(pool->curr_nr == 0)) {
|
|
add_element(pool, elems[freed++]);
|
|
added = true;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
|
|
if (unlikely(added) && wq_has_sleeper(&pool->wait))
|
|
wake_up(&pool->wait);
|
|
|
|
return freed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mempool_free_bulk);
|
|
|
|
/**
|
|
* mempool_free - return an element to the pool.
|
|
* @element: element to return
|
|
* @pool: pointer to the memory pool
|
|
*
|
|
* Returns @element to @pool if it needs replenishing, else frees it using
|
|
* the free_fn callback in @pool.
|
|
*
|
|
* This function only sleeps if the free_fn callback sleeps.
|
|
*/
|
|
void mempool_free(void *element, struct mempool *pool)
|
|
{
|
|
if (likely(element) && !mempool_free_bulk(pool, &element, 1))
|
|
pool->free(element, pool->pool_data);
|
|
}
|
|
EXPORT_SYMBOL(mempool_free);
|
|
|
|
/*
|
|
* A commonly used alloc and free fn.
|
|
*/
|
|
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
struct kmem_cache *mem = pool_data;
|
|
VM_BUG_ON(mem->ctor);
|
|
return kmem_cache_alloc_noprof(mem, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc_slab);
|
|
|
|
void mempool_free_slab(void *element, void *pool_data)
|
|
{
|
|
struct kmem_cache *mem = pool_data;
|
|
kmem_cache_free(mem, element);
|
|
}
|
|
EXPORT_SYMBOL(mempool_free_slab);
|
|
|
|
/*
|
|
* A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
|
|
* specified by pool_data
|
|
*/
|
|
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
size_t size = (size_t)pool_data;
|
|
return kmalloc_noprof(size, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(mempool_kmalloc);
|
|
|
|
void mempool_kfree(void *element, void *pool_data)
|
|
{
|
|
kfree(element);
|
|
}
|
|
EXPORT_SYMBOL(mempool_kfree);
|
|
|
|
/*
|
|
* A simple mempool-backed page allocator that allocates pages
|
|
* of the order specified by pool_data.
|
|
*/
|
|
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
int order = (int)(long)pool_data;
|
|
return alloc_pages_noprof(gfp_mask, order);
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc_pages);
|
|
|
|
void mempool_free_pages(void *element, void *pool_data)
|
|
{
|
|
int order = (int)(long)pool_data;
|
|
__free_pages(element, order);
|
|
}
|
|
EXPORT_SYMBOL(mempool_free_pages);
|