linux/lib/crypto/polyval.c

308 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* POLYVAL library functions
*
* Copyright 2025 Google LLC
*/
#include <crypto/polyval.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/unaligned.h>
/*
* POLYVAL is an almost-XOR-universal hash function. Similar to GHASH, POLYVAL
* interprets the message as the coefficients of a polynomial in GF(2^128) and
* evaluates that polynomial at a secret point. POLYVAL has a simple
* mathematical relationship with GHASH, but it uses a better field convention
* which makes it easier and faster to implement.
*
* POLYVAL is not a cryptographic hash function, and it should be used only by
* algorithms that are specifically designed to use it.
*
* POLYVAL is specified by "AES-GCM-SIV: Nonce Misuse-Resistant Authenticated
* Encryption" (https://datatracker.ietf.org/doc/html/rfc8452)
*
* POLYVAL is also used by HCTR2. See "Length-preserving encryption with HCTR2"
* (https://eprint.iacr.org/2021/1441.pdf).
*
* This file provides a library API for POLYVAL. This API can delegate to
* either a generic implementation or an architecture-optimized implementation.
*
* For the generic implementation, we don't use the traditional table approach
* to GF(2^128) multiplication. That approach is not constant-time and requires
* a lot of memory. Instead, we use a different approach which emulates
* carryless multiplication using standard multiplications by spreading the data
* bits apart using "holes". This allows the carries to spill harmlessly. This
* approach is borrowed from BoringSSL, which in turn credits BearSSL's
* documentation (https://bearssl.org/constanttime.html#ghash-for-gcm) for the
* "holes" trick and a presentation by Shay Gueron
* (https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf) for the
* 256-bit => 128-bit reduction algorithm.
*/
#ifdef CONFIG_ARCH_SUPPORTS_INT128
/* Do a 64 x 64 => 128 bit carryless multiplication. */
static void clmul64(u64 a, u64 b, u64 *out_lo, u64 *out_hi)
{
/*
* With 64-bit multiplicands and one term every 4 bits, there would be
* up to 64 / 4 = 16 one bits per column when each multiplication is
* written out as a series of additions in the schoolbook manner.
* Unfortunately, that doesn't work since the value 16 is 1 too large to
* fit in 4 bits. Carries would sometimes overflow into the next term.
*
* Using one term every 5 bits would work. However, that would cost
* 5 x 5 = 25 multiplications instead of 4 x 4 = 16.
*
* Instead, mask off 4 bits from one multiplicand, giving a max of 15
* one bits per column. Then handle those 4 bits separately.
*/
u64 a0 = a & 0x1111111111111110;
u64 a1 = a & 0x2222222222222220;
u64 a2 = a & 0x4444444444444440;
u64 a3 = a & 0x8888888888888880;
u64 b0 = b & 0x1111111111111111;
u64 b1 = b & 0x2222222222222222;
u64 b2 = b & 0x4444444444444444;
u64 b3 = b & 0x8888888888888888;
/* Multiply the high 60 bits of @a by @b. */
u128 c0 = (a0 * (u128)b0) ^ (a1 * (u128)b3) ^
(a2 * (u128)b2) ^ (a3 * (u128)b1);
u128 c1 = (a0 * (u128)b1) ^ (a1 * (u128)b0) ^
(a2 * (u128)b3) ^ (a3 * (u128)b2);
u128 c2 = (a0 * (u128)b2) ^ (a1 * (u128)b1) ^
(a2 * (u128)b0) ^ (a3 * (u128)b3);
u128 c3 = (a0 * (u128)b3) ^ (a1 * (u128)b2) ^
(a2 * (u128)b1) ^ (a3 * (u128)b0);
/* Multiply the low 4 bits of @a by @b. */
u64 e0 = -(a & 1) & b;
u64 e1 = -((a >> 1) & 1) & b;
u64 e2 = -((a >> 2) & 1) & b;
u64 e3 = -((a >> 3) & 1) & b;
u64 extra_lo = e0 ^ (e1 << 1) ^ (e2 << 2) ^ (e3 << 3);
u64 extra_hi = (e1 >> 63) ^ (e2 >> 62) ^ (e3 >> 61);
/* Add all the intermediate products together. */
*out_lo = (((u64)c0) & 0x1111111111111111) ^
(((u64)c1) & 0x2222222222222222) ^
(((u64)c2) & 0x4444444444444444) ^
(((u64)c3) & 0x8888888888888888) ^ extra_lo;
*out_hi = (((u64)(c0 >> 64)) & 0x1111111111111111) ^
(((u64)(c1 >> 64)) & 0x2222222222222222) ^
(((u64)(c2 >> 64)) & 0x4444444444444444) ^
(((u64)(c3 >> 64)) & 0x8888888888888888) ^ extra_hi;
}
#else /* CONFIG_ARCH_SUPPORTS_INT128 */
/* Do a 32 x 32 => 64 bit carryless multiplication. */
static u64 clmul32(u32 a, u32 b)
{
/*
* With 32-bit multiplicands and one term every 4 bits, there are up to
* 32 / 4 = 8 one bits per column when each multiplication is written
* out as a series of additions in the schoolbook manner. The value 8
* fits in 4 bits, so the carries don't overflow into the next term.
*/
u32 a0 = a & 0x11111111;
u32 a1 = a & 0x22222222;
u32 a2 = a & 0x44444444;
u32 a3 = a & 0x88888888;
u32 b0 = b & 0x11111111;
u32 b1 = b & 0x22222222;
u32 b2 = b & 0x44444444;
u32 b3 = b & 0x88888888;
u64 c0 = (a0 * (u64)b0) ^ (a1 * (u64)b3) ^
(a2 * (u64)b2) ^ (a3 * (u64)b1);
u64 c1 = (a0 * (u64)b1) ^ (a1 * (u64)b0) ^
(a2 * (u64)b3) ^ (a3 * (u64)b2);
u64 c2 = (a0 * (u64)b2) ^ (a1 * (u64)b1) ^
(a2 * (u64)b0) ^ (a3 * (u64)b3);
u64 c3 = (a0 * (u64)b3) ^ (a1 * (u64)b2) ^
(a2 * (u64)b1) ^ (a3 * (u64)b0);
/* Add all the intermediate products together. */
return (c0 & 0x1111111111111111) ^
(c1 & 0x2222222222222222) ^
(c2 & 0x4444444444444444) ^
(c3 & 0x8888888888888888);
}
/* Do a 64 x 64 => 128 bit carryless multiplication. */
static void clmul64(u64 a, u64 b, u64 *out_lo, u64 *out_hi)
{
u32 a_lo = (u32)a;
u32 a_hi = a >> 32;
u32 b_lo = (u32)b;
u32 b_hi = b >> 32;
/* Karatsuba multiplication */
u64 lo = clmul32(a_lo, b_lo);
u64 hi = clmul32(a_hi, b_hi);
u64 mi = clmul32(a_lo ^ a_hi, b_lo ^ b_hi) ^ lo ^ hi;
*out_lo = lo ^ (mi << 32);
*out_hi = hi ^ (mi >> 32);
}
#endif /* !CONFIG_ARCH_SUPPORTS_INT128 */
/* Compute @a = @a * @b * x^-128 in the POLYVAL field. */
static void __maybe_unused
polyval_mul_generic(struct polyval_elem *a, const struct polyval_elem *b)
{
u64 c0, c1, c2, c3, mi0, mi1;
/*
* Carryless-multiply @a by @b using Karatsuba multiplication. Store
* the 256-bit product in @c0 (low) through @c3 (high).
*/
clmul64(le64_to_cpu(a->lo), le64_to_cpu(b->lo), &c0, &c1);
clmul64(le64_to_cpu(a->hi), le64_to_cpu(b->hi), &c2, &c3);
clmul64(le64_to_cpu(a->lo ^ a->hi), le64_to_cpu(b->lo ^ b->hi),
&mi0, &mi1);
mi0 ^= c0 ^ c2;
mi1 ^= c1 ^ c3;
c1 ^= mi0;
c2 ^= mi1;
/*
* Cancel out the low 128 bits of the product by adding multiples of
* G(x) = x^128 + x^127 + x^126 + x^121 + 1. Do this in two steps, each
* of which cancels out 64 bits. Note that we break G(x) into three
* parts: 1, x^64 * (x^63 + x^62 + x^57), and x^128 * 1.
*/
/*
* First, add G(x) times c0 as follows:
*
* (c0, c1, c2) = (0,
* c1 + (c0 * (x^63 + x^62 + x^57) mod x^64),
* c2 + c0 + floor((c0 * (x^63 + x^62 + x^57)) / x^64))
*/
c1 ^= (c0 << 63) ^ (c0 << 62) ^ (c0 << 57);
c2 ^= c0 ^ (c0 >> 1) ^ (c0 >> 2) ^ (c0 >> 7);
/*
* Second, add G(x) times the new c1:
*
* (c1, c2, c3) = (0,
* c2 + (c1 * (x^63 + x^62 + x^57) mod x^64),
* c3 + c1 + floor((c1 * (x^63 + x^62 + x^57)) / x^64))
*/
c2 ^= (c1 << 63) ^ (c1 << 62) ^ (c1 << 57);
c3 ^= c1 ^ (c1 >> 1) ^ (c1 >> 2) ^ (c1 >> 7);
/* Return (c2, c3). This implicitly multiplies by x^-128. */
a->lo = cpu_to_le64(c2);
a->hi = cpu_to_le64(c3);
}
static void __maybe_unused
polyval_blocks_generic(struct polyval_elem *acc, const struct polyval_elem *key,
const u8 *data, size_t nblocks)
{
do {
acc->lo ^= get_unaligned((__le64 *)data);
acc->hi ^= get_unaligned((__le64 *)(data + 8));
polyval_mul_generic(acc, key);
data += POLYVAL_BLOCK_SIZE;
} while (--nblocks);
}
/* Include the arch-optimized implementation of POLYVAL, if one is available. */
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
#include "polyval.h" /* $(SRCARCH)/polyval.h */
void polyval_preparekey(struct polyval_key *key,
const u8 raw_key[POLYVAL_BLOCK_SIZE])
{
polyval_preparekey_arch(key, raw_key);
}
EXPORT_SYMBOL_GPL(polyval_preparekey);
#endif /* Else, polyval_preparekey() is an inline function. */
/*
* polyval_mul_generic() and polyval_blocks_generic() take the key as a
* polyval_elem rather than a polyval_key, so that arch-optimized
* implementations with a different key format can use it as a fallback (if they
* have H^1 stored somewhere in their struct). Thus, the following dispatch
* code is needed to pass the appropriate key argument.
*/
static void polyval_mul(struct polyval_ctx *ctx)
{
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
polyval_mul_arch(&ctx->acc, ctx->key);
#else
polyval_mul_generic(&ctx->acc, &ctx->key->h);
#endif
}
static void polyval_blocks(struct polyval_ctx *ctx,
const u8 *data, size_t nblocks)
{
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
polyval_blocks_arch(&ctx->acc, ctx->key, data, nblocks);
#else
polyval_blocks_generic(&ctx->acc, &ctx->key->h, data, nblocks);
#endif
}
void polyval_update(struct polyval_ctx *ctx, const u8 *data, size_t len)
{
if (unlikely(ctx->partial)) {
size_t n = min(len, POLYVAL_BLOCK_SIZE - ctx->partial);
len -= n;
while (n--)
ctx->acc.bytes[ctx->partial++] ^= *data++;
if (ctx->partial < POLYVAL_BLOCK_SIZE)
return;
polyval_mul(ctx);
}
if (len >= POLYVAL_BLOCK_SIZE) {
size_t nblocks = len / POLYVAL_BLOCK_SIZE;
polyval_blocks(ctx, data, nblocks);
data += len & ~(POLYVAL_BLOCK_SIZE - 1);
len &= POLYVAL_BLOCK_SIZE - 1;
}
for (size_t i = 0; i < len; i++)
ctx->acc.bytes[i] ^= data[i];
ctx->partial = len;
}
EXPORT_SYMBOL_GPL(polyval_update);
void polyval_final(struct polyval_ctx *ctx, u8 out[POLYVAL_BLOCK_SIZE])
{
if (unlikely(ctx->partial))
polyval_mul(ctx);
memcpy(out, &ctx->acc, POLYVAL_BLOCK_SIZE);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(polyval_final);
#ifdef polyval_mod_init_arch
static int __init polyval_mod_init(void)
{
polyval_mod_init_arch();
return 0;
}
subsys_initcall(polyval_mod_init);
static void __exit polyval_mod_exit(void)
{
}
module_exit(polyval_mod_exit);
#endif
MODULE_DESCRIPTION("POLYVAL almost-XOR-universal hash function");
MODULE_LICENSE("GPL");