linux/drivers/net/ethernet/intel/ice/ice_base.c

1543 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <net/xdp_sock_drv.h>
#include <linux/net/intel/libie/rx.h>
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
#include "ice_sriov.h"
/**
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
unsigned int offset, i;
mutex_lock(qs_cfg->qs_mutex);
offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
0, qs_cfg->q_count, 0);
if (offset >= qs_cfg->pf_map_size) {
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
for (i = 0; i < qs_cfg->q_count; i++)
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
mutex_unlock(qs_cfg->qs_mutex);
return 0;
}
/**
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
unsigned int i, index = 0;
mutex_lock(qs_cfg->qs_mutex);
for (i = 0; i < qs_cfg->q_count; i++) {
index = find_next_zero_bit(qs_cfg->pf_map,
qs_cfg->pf_map_size, index);
if (index >= qs_cfg->pf_map_size)
goto err_scatter;
set_bit(index, qs_cfg->pf_map);
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
}
mutex_unlock(qs_cfg->qs_mutex);
return 0;
err_scatter:
for (index = 0; index < i; index++) {
clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
}
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
int i;
for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
QRX_CTRL_QENA_STAT_M))
return 0;
usleep_range(20, 40);
}
return -ETIMEDOUT;
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the VSI struct
*
* We allocate one q_vector and set default value for ITR setting associated
* with this q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
int err;
/* allocate q_vector */
q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
q_vector->tx.itr_mode = ITR_DYNAMIC;
q_vector->rx.itr_mode = ITR_DYNAMIC;
q_vector->tx.type = ICE_TX_CONTAINER;
q_vector->rx.type = ICE_RX_CONTAINER;
q_vector->irq.index = -ENOENT;
if (vsi->type == ICE_VSI_VF) {
ice_calc_vf_reg_idx(vsi->vf, q_vector);
goto out;
} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
if (ctrl_vsi) {
if (unlikely(!ctrl_vsi->q_vectors)) {
err = -ENOENT;
goto err_free_q_vector;
}
q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
goto skip_alloc;
}
}
q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
if (q_vector->irq.index < 0) {
err = -ENOMEM;
goto err_free_q_vector;
}
skip_alloc:
q_vector->reg_idx = q_vector->irq.index;
q_vector->vf_reg_idx = q_vector->irq.index;
/* This will not be called in the driver load path because the netdev
* will not be created yet. All other cases with register the NAPI
* handler here (i.e. resume, reset/rebuild, etc.)
*/
if (vsi->netdev)
netif_napi_add_config(vsi->netdev, &q_vector->napi,
ice_napi_poll, v_idx);
out:
/* tie q_vector and VSI together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
err_free_q_vector:
kfree(q_vector);
return err;
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_q_vector *q_vector;
struct ice_pf *pf = vsi->back;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (!vsi->q_vectors[v_idx]) {
dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
return;
}
q_vector = vsi->q_vectors[v_idx];
ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
tx_ring->q_vector = NULL;
ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
rx_ring->q_vector = NULL;
/* only VSI with an associated netdev is set up with NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
/* release MSIX interrupt if q_vector had interrupt allocated */
if (q_vector->irq.index < 0)
goto free_q_vector;
/* only free last VF ctrl vsi interrupt */
if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
ice_get_vf_ctrl_vsi(pf, vsi))
goto free_q_vector;
ice_free_irq(pf, q_vector->irq);
free_q_vector:
kfree(q_vector);
vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
* @hw: board specific structure
*/
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
u32 regval = rd32(hw, GLINT_CTL);
/* no need to update global register if ITR gran is already set */
if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
(FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
return;
regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
wr32(hw, GLINT_CTL, regval);
}
/**
* ice_calc_txq_handle - calculate the queue handle
* @vsi: VSI that ring belongs to
* @ring: ring to get the absolute queue index
* @tc: traffic class number
*/
static u16
ice_calc_txq_handle(const struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
{
WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
if (ring->ch)
return ring->q_index - ring->ch->base_q;
/* Idea here for calculation is that we subtract the number of queue
* count from TC that ring belongs to from its absolute queue index
* and as a result we get the queue's index within TC.
*/
return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
}
/**
* ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
* @ring: The Tx ring to configure
*
* This enables/disables XPS for a given Tx descriptor ring
* based on the TCs enabled for the VSI that ring belongs to.
*/
static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
{
if (!ring->q_vector || !ring->netdev)
return;
/* We only initialize XPS once, so as not to overwrite user settings */
if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
return;
netif_set_xps_queue(ring->netdev,
&ring->q_vector->napi.config->affinity_mask,
ring->q_index);
}
/**
* ice_set_txq_ctx_vmvf - set queue context VM/VF type and number by VSI type
* @ring: the Tx ring to configure
* @vmvf_type: VM/VF type
* @vmvf_num: VM/VF number
*
* Return: 0 on success and a negative value on error.
*/
static int
ice_set_txq_ctx_vmvf(struct ice_tx_ring *ring, u8 *vmvf_type, u16 *vmvf_num)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw;
hw = &vsi->back->hw;
/* queue belongs to a specific VSI type
* VF / VM index should be programmed per vmvf_type setting:
* for vmvf_type = VF, it is VF number between 0-256
* for vmvf_type = VM, it is VM number between 0-767
* for PF or EMP this field should be set to zero
*/
switch (vsi->type) {
case ICE_VSI_LB:
case ICE_VSI_CTRL:
case ICE_VSI_PF:
if (ring->ch)
*vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
else
*vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
case ICE_VSI_VF:
/* Firmware expects vmvf_num to be absolute VF ID */
*vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
*vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
break;
case ICE_VSI_SF:
*vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
break;
default:
dev_info(ice_pf_to_dev(vsi->back),
"Unable to set VMVF type for VSI type %d\n",
vsi->type);
return -EINVAL;
}
return 0;
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: the Tx ring to configure
* @tlan_ctx: pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*
* Return: 0 on success and a negative value on error.
*/
static int
ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw;
int err;
hw = &vsi->back->hw;
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
tlan_ctx->port_num = vsi->port_info->lport;
/* Transmit Queue Length */
tlan_ctx->qlen = ring->count;
ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
/* PF number */
tlan_ctx->pf_num = hw->pf_id;
err = ice_set_txq_ctx_vmvf(ring, &tlan_ctx->vmvf_type,
&tlan_ctx->vmvf_num);
if (err)
return err;
/* make sure the context is associated with the right VSI */
if (ring->ch)
tlan_ctx->src_vsi = ring->ch->vsi_num;
else
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
/* Restrict Tx timestamps to the PF VSI */
switch (vsi->type) {
case ICE_VSI_PF:
tlan_ctx->tsyn_ena = 1;
break;
default:
break;
}
tlan_ctx->quanta_prof_idx = ring->quanta_prof_id;
tlan_ctx->tso_ena = ICE_TX_LEGACY;
tlan_ctx->tso_qnum = pf_q;
/* Legacy or Advanced Host Interface:
* 0: Advanced Host Interface
* 1: Legacy Host Interface
*/
tlan_ctx->legacy_int = ICE_TX_LEGACY;
return 0;
}
/**
* ice_setup_txtime_ctx - setup a struct ice_txtime_ctx instance
* @ring: the tstamp ring to configure
* @txtime_ctx: pointer to the Tx time queue context structure to be initialized
*
* Return: 0 on success and a negative value on error.
*/
static int
ice_setup_txtime_ctx(const struct ice_tstamp_ring *ring,
struct ice_txtime_ctx *txtime_ctx)
{
struct ice_tx_ring *tx_ring = ring->tx_ring;
struct ice_vsi *vsi = tx_ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
int err;
txtime_ctx->base = ring->dma >> ICE_TXTIME_CTX_BASE_S;
/* Tx time Queue Length */
txtime_ctx->qlen = ring->count;
txtime_ctx->txtime_ena_q = 1;
/* PF number */
txtime_ctx->pf_num = hw->pf_id;
err = ice_set_txq_ctx_vmvf(tx_ring, &txtime_ctx->vmvf_type,
&txtime_ctx->vmvf_num);
if (err)
return err;
/* make sure the context is associated with the right VSI */
if (tx_ring->ch)
txtime_ctx->src_vsi = tx_ring->ch->vsi_num;
else
txtime_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
txtime_ctx->ts_res = ICE_TXTIME_CTX_RESOLUTION_128NS;
txtime_ctx->drbell_mode_32 = ICE_TXTIME_CTX_DRBELL_MODE_32;
txtime_ctx->ts_fetch_prof_id = ICE_TXTIME_CTX_FETCH_PROF_ID_0;
return 0;
}
/**
* ice_calc_ts_ring_count - calculate the number of Tx time stamp descriptors
* @tx_ring: Tx ring to calculate the count for
*
* Return: the number of Tx time stamp descriptors.
*/
u16 ice_calc_ts_ring_count(struct ice_tx_ring *tx_ring)
{
u16 prof = ICE_TXTIME_CTX_FETCH_PROF_ID_0;
struct ice_vsi *vsi = tx_ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
u16 max_fetch_desc = 0, fetch, i;
u32 reg;
for (i = 0; i < ICE_TXTIME_FETCH_PROFILE_CNT; i++) {
reg = rd32(hw, E830_GLTXTIME_FETCH_PROFILE(prof, 0));
fetch = FIELD_GET(E830_GLTXTIME_FETCH_PROFILE_FETCH_TS_DESC_M,
reg);
max_fetch_desc = max(fetch, max_fetch_desc);
}
if (!max_fetch_desc)
max_fetch_desc = ICE_TXTIME_FETCH_TS_DESC_DFLT;
max_fetch_desc = ALIGN(max_fetch_desc, ICE_REQ_DESC_MULTIPLE);
return tx_ring->count + max_fetch_desc;
}
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
{
struct ice_vsi *vsi = ring->vsi;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
struct ice_hw *hw;
u16 pf_q;
int err;
hw = &vsi->back->hw;
/* what is Rx queue number in global space of 2K Rx queues */
pf_q = vsi->rxq_map[ring->q_index];
/* clear the context structure first */
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
/* Receive Queue Base Address.
* Indicates the starting address of the descriptor queue defined in
* 128 Byte units.
*/
rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
rlan_ctx.qlen = ring->count;
/* Receive Packet Data Buffer Size.
* The Packet Data Buffer Size is defined in 128 byte units.
*/
rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
BIT_ULL(ICE_RLAN_CTX_DBUF_S));
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to host
* memory.
*/
rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
* and it needs to remain 1 for non-DVM capable configurations to not
* break backward compatibility for VF drivers. Setting this field to 0
* will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
* field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
* be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
* check for the tag
*/
if (ice_is_dvm_ena(hw))
if (vsi->type == ICE_VSI_VF &&
ice_vf_is_port_vlan_ena(vsi->vf))
rlan_ctx.l2tsel = 1;
else
rlan_ctx.l2tsel = 0;
else
rlan_ctx.l2tsel = 1;
if (ring->hdr_pp) {
rlan_ctx.hbuf = ring->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
rlan_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
/*
* If the frame is TCP/UDP/SCTP, it will be split by the
* payload.
* If not, but it's an IPv4/IPv6 frame, it will be split by
* the IP header.
* If not IP, it will be split by the Ethernet header.
*
* In any case, the header buffer will never be left empty.
*/
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2 |
ICE_RLAN_RX_HSPLIT_0_SPLIT_IP |
ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP |
ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
} else {
rlan_ctx.hbuf = 0;
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
}
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* This controls whether VLAN is stripped from inner headers
* The VLAN in the inner L2 header is stripped to the receive
* descriptor if enabled by this flag.
*/
rlan_ctx.showiv = 0;
/* Max packet size for this queue - must not be set to a larger value
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
/* Enable descriptor prefetch */
rlan_ctx.prefena = 1;
/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
* metadata and flags to allow redirecting to PR netdev
*/
if (ice_is_eswitch_mode_switchdev(vsi->back)) {
ring->flags |= ICE_RX_FLAGS_MULTIDEV;
rxdid = ICE_RXDID_FLEX_NIC_2;
}
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
* increasing context priority to pick up profile ID; default is 0x01;
* setting to 0x03 to ensure profile is programming if prev context is
* of same priority
*/
if (vsi->type != ICE_VSI_VF)
ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
/* Absolute queue number out of 2K needs to be passed */
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (err) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
pf_q, err);
return -EIO;
}
if (vsi->type == ICE_VSI_VF)
return 0;
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
return 0;
}
static int ice_rxq_pp_create(struct ice_rx_ring *rq)
{
struct libeth_fq fq = {
.count = rq->count,
.nid = NUMA_NO_NODE,
.hsplit = rq->vsi->hsplit,
.xdp = ice_is_xdp_ena_vsi(rq->vsi),
.buf_len = LIBIE_MAX_RX_BUF_LEN,
};
int err;
err = libeth_rx_fq_create(&fq, &rq->q_vector->napi);
if (err)
return err;
rq->pp = fq.pp;
rq->rx_fqes = fq.fqes;
rq->truesize = fq.truesize;
rq->rx_buf_len = fq.buf_len;
if (!fq.hsplit)
return 0;
fq = (struct libeth_fq){
.count = rq->count,
.type = LIBETH_FQE_HDR,
.nid = NUMA_NO_NODE,
.xdp = ice_is_xdp_ena_vsi(rq->vsi),
};
err = libeth_rx_fq_create(&fq, &rq->q_vector->napi);
if (err)
goto destroy;
rq->hdr_pp = fq.pp;
rq->hdr_fqes = fq.fqes;
rq->hdr_truesize = fq.truesize;
rq->rx_hdr_len = fq.buf_len;
return 0;
destroy:
ice_rxq_pp_destroy(rq);
return err;
}
/**
* ice_vsi_cfg_rxq - Configure an Rx queue
* @ring: the ring being configured
*
* Return 0 on success and a negative value on error.
*/
static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
{
struct device *dev = ice_pf_to_dev(ring->vsi->back);
u32 num_bufs = ICE_DESC_UNUSED(ring);
u32 rx_buf_len;
int err;
if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
return err;
}
ice_rx_xsk_pool(ring);
err = ice_realloc_rx_xdp_bufs(ring, ring->xsk_pool);
if (err)
return err;
if (ring->xsk_pool) {
xdp_rxq_info_unreg(&ring->xdp_rxq);
rx_buf_len =
xsk_pool_get_rx_frame_size(ring->xsk_pool);
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index,
ring->q_vector->napi.napi_id,
rx_buf_len);
if (err)
return err;
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_XSK_BUFF_POOL,
NULL);
if (err)
return err;
xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
ring->q_index);
} else {
err = ice_rxq_pp_create(ring);
if (err)
return err;
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index,
ring->q_vector->napi.napi_id,
ring->rx_buf_len);
if (err)
goto err_destroy_fq;
}
xdp_rxq_info_attach_page_pool(&ring->xdp_rxq,
ring->pp);
}
}
ring->xdp.data = NULL;
err = ice_setup_rx_ctx(ring);
if (err) {
dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
ring->q_index, err);
goto err_destroy_fq;
}
if (ring->xsk_pool) {
bool ok;
if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
num_bufs, ring->q_index);
dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
return 0;
}
ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
if (!ok) {
u16 pf_q = ring->vsi->rxq_map[ring->q_index];
dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
ring->q_index, pf_q);
}
return 0;
}
if (ring->vsi->type == ICE_VSI_CTRL)
ice_init_ctrl_rx_descs(ring, num_bufs);
else
err = ice_alloc_rx_bufs(ring, num_bufs);
if (err)
goto err_destroy_fq;
return 0;
err_destroy_fq:
ice_rxq_pp_destroy(ring);
return err;
}
int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
{
if (q_idx >= vsi->num_rxq)
return -EINVAL;
return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
}
/**
* ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
* @vsi: VSI
* @ring: Rx ring to configure
*
* Determine the maximum frame size and Rx buffer length to use for a PF VSI.
* Set these in the associated Rx ring structure.
*/
static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring)
{
if (!vsi->netdev) {
vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
} else {
vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
}
}
/**
* ice_vsi_cfg_rxqs - Configure the VSI for Rx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Rx VSI for operation.
*/
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
u16 i;
/* set up individual rings */
ice_for_each_rxq(vsi, i) {
struct ice_rx_ring *ring = vsi->rx_rings[i];
int err;
if (vsi->type != ICE_VSI_VF)
ice_vsi_cfg_frame_size(vsi, ring);
err = ice_vsi_cfg_rxq(ring);
if (err)
return err;
}
return 0;
}
/**
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* This function first tries to find contiguous space. If it is not successful,
* it tries with the scatter approach.
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
int ret = 0;
ret = __ice_vsi_get_qs_contig(qs_cfg);
if (ret) {
/* contig failed, so try with scatter approach */
qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
qs_cfg->scatter_count);
ret = __ice_vsi_get_qs_sc(qs_cfg);
}
return ret;
}
/**
* ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
* @vsi: the VSI being configured
* @ena: start or stop the Rx ring
* @rxq_idx: 0-based Rx queue index for the VSI passed in
* @wait: wait or don't wait for configuration to finish in hardware
*
* Return 0 on success and negative on error.
*/
int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
{
int pf_q = vsi->rxq_map[rxq_idx];
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 rx_reg;
rx_reg = rd32(hw, QRX_CTRL(pf_q));
/* Skip if the queue is already in the requested state */
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
return 0;
/* turn on/off the queue */
if (ena)
rx_reg |= QRX_CTRL_QENA_REQ_M;
else
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), rx_reg);
if (!wait)
return 0;
ice_flush(hw);
return ice_pf_rxq_wait(pf, pf_q, ena);
}
/**
* ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
* @vsi: the VSI being configured
* @ena: true/false to verify Rx ring has been enabled/disabled respectively
* @rxq_idx: 0-based Rx queue index for the VSI passed in
*
* This routine will wait for the given Rx queue of the VSI to reach the
* enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
* the requested state after multiple retries; else will return 0 in case of
* success.
*/
int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
{
int pf_q = vsi->rxq_map[rxq_idx];
struct ice_pf *pf = vsi->back;
return ice_pf_rxq_wait(pf, pf_q, ena);
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
u16 v_idx;
int err;
if (vsi->q_vectors[0]) {
dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
return -EEXIST;
}
for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
err = ice_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
dev_info(dev, "Failed to allocate %d q_vectors for VSI %d, new value %d",
vsi->num_q_vectors, vsi->vsi_num, v_idx);
vsi->num_q_vectors = v_idx;
return v_idx ? 0 : err;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
int q_vectors = vsi->num_q_vectors;
u16 tx_rings_rem, rx_rings_rem;
int v_id;
/* initially assigning remaining rings count to VSIs num queue value */
tx_rings_rem = vsi->num_txq;
rx_rings_rem = vsi->num_rxq;
for (v_id = 0; v_id < q_vectors; v_id++) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
u8 tx_rings_per_v, rx_rings_per_v;
u16 q_id, q_base;
/* Tx rings mapping to vector */
tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
q_vectors - v_id);
q_vector->num_ring_tx = tx_rings_per_v;
q_vector->tx.tx_ring = NULL;
q_vector->tx.itr_idx = ICE_TX_ITR;
q_base = vsi->num_txq - tx_rings_rem;
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.tx_ring;
q_vector->tx.tx_ring = tx_ring;
}
tx_rings_rem -= tx_rings_per_v;
/* Rx rings mapping to vector */
rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
q_vectors - v_id);
q_vector->num_ring_rx = rx_rings_per_v;
q_vector->rx.rx_ring = NULL;
q_vector->rx.itr_idx = ICE_RX_ITR;
q_base = vsi->num_rxq - rx_rings_rem;
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.rx_ring;
q_vector->rx.rx_ring = rx_ring;
}
rx_rings_rem -= rx_rings_per_v;
}
if (ice_is_xdp_ena_vsi(vsi))
ice_map_xdp_rings(vsi);
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
int v_idx;
ice_for_each_q_vector(vsi, v_idx)
ice_free_q_vector(vsi, v_idx);
vsi->num_q_vectors = 0;
}
/**
* ice_cfg_tstamp - Configure Tx time stamp queue
* @tx_ring: Tx ring to be configured with timestamping
*
* Return: 0 on success and a negative value on error.
*/
static int
ice_cfg_tstamp(struct ice_tx_ring *tx_ring)
{
DEFINE_RAW_FLEX(struct ice_aqc_set_txtime_qgrp, txtime_qg_buf,
txtimeqs, 1);
u8 txtime_buf_len = struct_size(txtime_qg_buf, txtimeqs, 1);
struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring;
struct ice_txtime_ctx txtime_ctx = {};
struct ice_vsi *vsi = tx_ring->vsi;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u16 pf_q = tx_ring->reg_idx;
int err;
err = ice_setup_txtime_ctx(tstamp_ring, &txtime_ctx);
if (err) {
dev_err(ice_pf_to_dev(pf), "Failed to setup Tx time queue context for queue %d, error: %d\n",
pf_q, err);
return err;
}
ice_pack_txtime_ctx(&txtime_ctx,
&txtime_qg_buf->txtimeqs[0].txtime_ctx);
tstamp_ring->tail = hw->hw_addr + E830_GLQTX_TXTIME_DBELL_LSB(pf_q);
return ice_aq_set_txtimeq(hw, pf_q, 1, txtime_qg_buf,
txtime_buf_len, NULL);
}
/**
* ice_vsi_cfg_txq - Configure single Tx queue
* @vsi: the VSI that queue belongs to
* @ring: Tx ring to be configured
* @qg_buf: queue group buffer
*
* Return: 0 on success and a negative value on error.
*/
static int
ice_vsi_cfg_txq(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
struct ice_aqc_add_tx_qgrp *qg_buf)
{
u8 buf_len = struct_size(qg_buf, txqs, 1);
struct ice_tlan_ctx tlan_ctx = { 0 };
struct ice_aqc_add_txqs_perq *txq;
struct ice_channel *ch = ring->ch;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 pf_q, vsi_idx;
int status;
u8 tc;
/* Configure XPS */
ice_cfg_xps_tx_ring(ring);
pf_q = ring->reg_idx;
status = ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
if (status) {
dev_err(ice_pf_to_dev(pf), "Failed to setup Tx context for queue %d, error: %d\n",
pf_q, status);
return status;
}
/* copy context contents into the qg_buf */
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx);
/* init queue specific tail reg. It is referred as
* transmit comm scheduler queue doorbell.
*/
ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
if (IS_ENABLED(CONFIG_DCB))
tc = ring->dcb_tc;
else
tc = 0;
/* Add unique software queue handle of the Tx queue per
* TC into the VSI Tx ring
*/
ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
if (ch) {
tc = 0;
vsi_idx = ch->ch_vsi->idx;
} else {
vsi_idx = vsi->idx;
}
status = ice_ena_vsi_txq(vsi->port_info, vsi_idx, tc, ring->q_handle,
1, qg_buf, buf_len, NULL);
if (status) {
dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
status);
return status;
}
/* Add Tx Queue TEID into the VSI Tx ring from the
* response. This will complete configuring and
* enabling the queue.
*/
txq = &qg_buf->txqs[0];
if (pf_q == le16_to_cpu(txq->txq_id))
ring->txq_teid = le32_to_cpu(txq->q_teid);
if (ice_is_txtime_ena(ring)) {
status = ice_alloc_setup_tstamp_ring(ring);
if (status) {
dev_err(ice_pf_to_dev(pf),
"Failed to allocate Tx timestamp ring, error: %d\n",
status);
goto err_setup_tstamp;
}
status = ice_cfg_tstamp(ring);
if (status) {
dev_err(ice_pf_to_dev(pf), "Failed to set Tx Time queue context, error: %d\n",
status);
goto err_cfg_tstamp;
}
}
return 0;
err_cfg_tstamp:
ice_free_tx_tstamp_ring(ring);
err_setup_tstamp:
ice_dis_vsi_txq(vsi->port_info, vsi_idx, tc, 1, &ring->q_handle,
&ring->reg_idx, &ring->txq_teid, ICE_NO_RESET,
tlan_ctx.vmvf_num, NULL);
return status;
}
int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
u16 q_idx)
{
DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
return -EINVAL;
qg_buf->num_txqs = 1;
return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
}
/**
* ice_vsi_cfg_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
* @rings: Tx ring array to be configured
* @count: number of Tx ring array elements
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
{
DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
int err = 0;
u16 q_idx;
qg_buf->num_txqs = 1;
for (q_idx = 0; q_idx < count; q_idx++) {
err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
if (err)
break;
}
return err;
}
/**
* ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
{
return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
}
/**
* ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx queues dedicated for XDP in given VSI for operation.
*/
int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
{
int ret;
int i;
ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
if (ret)
return ret;
ice_for_each_rxq(vsi, i)
ice_tx_xsk_pool(vsi, i);
return 0;
}
/**
* ice_cfg_itr - configure the initial interrupt throttle values
* @hw: pointer to the HW structure
* @q_vector: interrupt vector that's being configured
*
* Configure interrupt throttling values for the ring containers that are
* associated with the interrupt vector passed in.
*/
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
ice_cfg_itr_gran(hw);
if (q_vector->num_ring_rx)
ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
if (q_vector->num_ring_tx)
ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
ice_write_intrl(q_vector, q_vector->intrl);
}
/**
* ice_cfg_txq_interrupt - configure interrupt on Tx queue
* @vsi: the VSI being configured
* @txq: Tx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
if (ice_is_xdp_ena_vsi(vsi)) {
u32 xdp_txq = txq + vsi->num_xdp_txq;
wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
val);
}
ice_flush(hw);
}
/**
* ice_cfg_rxq_interrupt - configure interrupt on Rx queue
* @vsi: the VSI being configured
* @rxq: Rx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
ice_flush(hw);
}
/**
* ice_trigger_sw_intr - trigger a software interrupt
* @hw: pointer to the HW structure
* @q_vector: interrupt vector to trigger the software interrupt for
*/
void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
{
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
GLINT_DYN_CTL_SWINT_TRIG_M |
GLINT_DYN_CTL_INTENA_M);
}
/**
* ice_vsi_stop_tx_ring - Disable single Tx ring
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @ring: Tx ring to be stopped
* @txq_meta: Meta data of Tx ring to be stopped
*/
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_tx_ring *ring,
struct ice_txq_meta *txq_meta)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
struct ice_hw *hw = &pf->hw;
int status;
u32 val;
/* clear cause_ena bit for disabled queues */
val = rd32(hw, QINT_TQCTL(ring->reg_idx));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(ring->reg_idx), val);
/* software is expected to wait for 100 ns */
ndelay(100);
/* trigger a software interrupt for the vector
* associated to the queue to schedule NAPI handler
*/
q_vector = ring->q_vector;
if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
ice_trigger_sw_intr(hw, q_vector);
status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
txq_meta->tc, 1, &txq_meta->q_handle,
&txq_meta->q_id, &txq_meta->q_teid, rst_src,
rel_vmvf_num, NULL);
/* if the disable queue command was exercised during an
* active reset flow, -EBUSY is returned.
* This is not an error as the reset operation disables
* queues at the hardware level anyway.
*/
if (status == -EBUSY) {
dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
} else if (status == -ENOENT) {
dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
} else if (status) {
dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
status);
return status;
}
return 0;
}
/**
* ice_fill_txq_meta - Prepare the Tx queue's meta data
* @vsi: VSI that ring belongs to
* @ring: ring that txq_meta will be based on
* @txq_meta: a helper struct that wraps Tx queue's information
*
* Set up a helper struct that will contain all the necessary fields that
* are needed for stopping Tx queue
*/
void
ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
struct ice_txq_meta *txq_meta)
{
struct ice_channel *ch = ring->ch;
u8 tc;
if (IS_ENABLED(CONFIG_DCB))
tc = ring->dcb_tc;
else
tc = 0;
txq_meta->q_id = ring->reg_idx;
txq_meta->q_teid = ring->txq_teid;
txq_meta->q_handle = ring->q_handle;
if (ch) {
txq_meta->vsi_idx = ch->ch_vsi->idx;
txq_meta->tc = 0;
} else {
txq_meta->vsi_idx = vsi->idx;
txq_meta->tc = tc;
}
}
/**
* ice_qp_reset_stats - Resets all stats for rings of given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_vsi_stats *vsi_stat;
struct ice_pf *pf;
pf = vsi->back;
if (!pf->vsi_stats)
return;
vsi_stat = pf->vsi_stats[vsi->idx];
if (!vsi_stat)
return;
memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
if (vsi->xdp_rings)
memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
}
/**
* ice_qp_clean_rings - Cleans all the rings of a given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
{
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
if (vsi->xdp_rings)
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
}
/**
* ice_qp_dis - Disables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_txq_meta txq_meta = { };
struct ice_q_vector *q_vector;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
int fail = 0;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
synchronize_net();
netif_carrier_off(vsi->netdev);
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
ice_qvec_toggle_napi(vsi, q_vector, false);
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
if (!fail)
fail = err;
if (vsi->xdp_rings) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(&txq_meta, 0, sizeof(txq_meta));
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
&txq_meta);
if (!fail)
fail = err;
}
ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
ice_qp_clean_rings(vsi, q_idx);
ice_qp_reset_stats(vsi, q_idx);
return fail;
}
/**
* ice_qp_ena - Enables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_q_vector *q_vector;
int fail = 0;
bool link_up;
int err;
err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
if (!fail)
fail = err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
if (!fail)
fail = err;
ice_set_ring_xdp(xdp_ring);
ice_tx_xsk_pool(vsi, q_idx);
}
err = ice_vsi_cfg_single_rxq(vsi, q_idx);
if (!fail)
fail = err;
q_vector = vsi->rx_rings[q_idx]->q_vector;
ice_qvec_cfg_msix(vsi, q_vector, q_idx);
err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
if (!fail)
fail = err;
ice_qvec_toggle_napi(vsi, q_vector, true);
ice_qvec_ena_irq(vsi, q_vector);
/* make sure NAPI sees updated ice_{t,x}_ring::xsk_pool */
synchronize_net();
ice_get_link_status(vsi->port_info, &link_up);
if (link_up) {
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
netif_carrier_on(vsi->netdev);
}
return fail;
}