linux/arch/riscv/kernel/traps_misaligned.c

649 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Western Digital Corporation or its affiliates.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/perf_event.h>
#include <linux/irq.h>
#include <linux/stringify.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/csr.h>
#include <asm/entry-common.h>
#include <asm/hwprobe.h>
#include <asm/cpufeature.h>
#include <asm/sbi.h>
#include <asm/vector.h>
#include <asm/insn.h>
#ifdef CONFIG_FPU
#define FP_GET_RD(insn) (insn >> 7 & 0x1F)
extern void put_f32_reg(unsigned long fp_reg, unsigned long value);
static int set_f32_rd(unsigned long insn, struct pt_regs *regs,
unsigned long val)
{
unsigned long fp_reg = FP_GET_RD(insn);
put_f32_reg(fp_reg, val);
regs->status |= SR_FS_DIRTY;
return 0;
}
extern void put_f64_reg(unsigned long fp_reg, unsigned long value);
static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val)
{
unsigned long fp_reg = FP_GET_RD(insn);
unsigned long value;
#if __riscv_xlen == 32
value = (unsigned long) &val;
#else
value = val;
#endif
put_f64_reg(fp_reg, value);
regs->status |= SR_FS_DIRTY;
return 0;
}
#if __riscv_xlen == 32
extern void get_f64_reg(unsigned long fp_reg, u64 *value);
static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
u64 val;
get_f64_reg(fp_reg, &val);
regs->status |= SR_FS_DIRTY;
return val;
}
#else
extern unsigned long get_f64_reg(unsigned long fp_reg);
static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
unsigned long val;
val = get_f64_reg(fp_reg);
regs->status |= SR_FS_DIRTY;
return val;
}
#endif
extern unsigned long get_f32_reg(unsigned long fp_reg);
static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
unsigned long val;
val = get_f32_reg(fp_reg);
regs->status |= SR_FS_DIRTY;
return val;
}
#else /* CONFIG_FPU */
static void set_f32_rd(unsigned long insn, struct pt_regs *regs,
unsigned long val) {}
static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {}
static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
return 0;
}
static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
return 0;
}
#endif
#define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs))
#define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs))
#define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs))
#define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs))
#define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs))
#define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs))
#define __read_insn(regs, insn, insn_addr, type) \
({ \
int __ret; \
\
if (user_mode(regs)) { \
__ret = get_user(insn, (type __user *) insn_addr); \
} else { \
insn = *(type *)insn_addr; \
__ret = 0; \
} \
\
__ret; \
})
static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn)
{
ulong insn = 0;
if (epc & 0x2) {
ulong tmp = 0;
if (__read_insn(regs, insn, epc, u16))
return -EFAULT;
/* __get_user() uses regular "lw" which sign extend the loaded
* value make sure to clear higher order bits in case we "or" it
* below with the upper 16 bits half.
*/
insn &= GENMASK(15, 0);
if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) {
*r_insn = insn;
return 0;
}
epc += sizeof(u16);
if (__read_insn(regs, tmp, epc, u16))
return -EFAULT;
*r_insn = (tmp << 16) | insn;
return 0;
} else {
if (__read_insn(regs, insn, epc, u32))
return -EFAULT;
if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) {
*r_insn = insn;
return 0;
}
insn &= GENMASK(15, 0);
*r_insn = insn;
return 0;
}
}
union reg_data {
u8 data_bytes[8];
ulong data_ulong;
u64 data_u64;
};
/* sysctl hooks */
int unaligned_enabled __read_mostly = 1; /* Enabled by default */
#ifdef CONFIG_RISCV_VECTOR_MISALIGNED
static int handle_vector_misaligned_load(struct pt_regs *regs)
{
unsigned long epc = regs->epc;
unsigned long insn;
if (get_insn(regs, epc, &insn))
return -1;
/* Only return 0 when in check_vector_unaligned_access_emulated */
if (*this_cpu_ptr(&vector_misaligned_access) == RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN) {
*this_cpu_ptr(&vector_misaligned_access) = RISCV_HWPROBE_MISALIGNED_VECTOR_UNSUPPORTED;
regs->epc = epc + INSN_LEN(insn);
return 0;
}
/* If vector instruction we don't emulate it yet */
regs->epc = epc;
return -1;
}
#else
static int handle_vector_misaligned_load(struct pt_regs *regs)
{
return -1;
}
#endif
static int handle_scalar_misaligned_load(struct pt_regs *regs)
{
union reg_data val;
unsigned long epc = regs->epc;
unsigned long insn;
unsigned long addr = regs->badaddr;
int fp = 0, shift = 0, len = 0;
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
*this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED;
if (!unaligned_enabled)
return -1;
if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
return -1;
if (get_insn(regs, epc, &insn))
return -1;
regs->epc = 0;
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
len = 4;
#endif
} else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) {
fp = 1;
len = 8;
} else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) {
fp = 1;
len = 4;
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
len = 2;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
len = 2;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
#endif
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) {
fp = 1;
len = 8;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) {
fp = 1;
len = 8;
#if defined(CONFIG_32BIT)
} else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) {
fp = 1;
len = 4;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) {
fp = 1;
len = 4;
#endif
} else if ((insn & INSN_MASK_C_LHU) == INSN_MATCH_C_LHU) {
len = 2;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LH) == INSN_MATCH_C_LH) {
len = 2;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else {
regs->epc = epc;
return -1;
}
if (!IS_ENABLED(CONFIG_FPU) && fp)
return -EOPNOTSUPP;
val.data_u64 = 0;
if (user_mode(regs)) {
if (copy_from_user(&val, (u8 __user *)addr, len))
return -1;
} else {
memcpy(&val, (u8 *)addr, len);
}
if (!fp)
SET_RD(insn, regs, (long)(val.data_ulong << shift) >> shift);
else if (len == 8)
set_f64_rd(insn, regs, val.data_u64);
else
set_f32_rd(insn, regs, val.data_ulong);
regs->epc = epc + INSN_LEN(insn);
return 0;
}
static int handle_scalar_misaligned_store(struct pt_regs *regs)
{
union reg_data val;
unsigned long epc = regs->epc;
unsigned long insn;
unsigned long addr = regs->badaddr;
int len = 0, fp = 0;
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
if (!unaligned_enabled)
return -1;
if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
return -1;
if (get_insn(regs, epc, &insn))
return -1;
regs->epc = 0;
val.data_ulong = GET_RS2(insn, regs);
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
len = 4;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
len = 8;
#endif
} else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2(insn, regs);
} else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2(insn, regs);
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
len = 2;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
len = 8;
val.data_ulong = GET_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) {
len = 8;
val.data_ulong = GET_RS2C(insn, regs);
#endif
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
len = 4;
val.data_ulong = GET_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) {
len = 4;
val.data_ulong = GET_RS2C(insn, regs);
} else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2C(insn, regs);
#if !defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2C(insn, regs);
#endif
} else if ((insn & INSN_MASK_C_SH) == INSN_MATCH_C_SH) {
len = 2;
val.data_ulong = GET_RS2S(insn, regs);
} else {
regs->epc = epc;
return -1;
}
if (!IS_ENABLED(CONFIG_FPU) && fp)
return -EOPNOTSUPP;
if (user_mode(regs)) {
if (copy_to_user((u8 __user *)addr, &val, len))
return -1;
} else {
memcpy((u8 *)addr, &val, len);
}
regs->epc = epc + INSN_LEN(insn);
return 0;
}
int handle_misaligned_load(struct pt_regs *regs)
{
unsigned long epc = regs->epc;
unsigned long insn;
if (IS_ENABLED(CONFIG_RISCV_VECTOR_MISALIGNED)) {
if (get_insn(regs, epc, &insn))
return -1;
if (insn_is_vector(insn))
return handle_vector_misaligned_load(regs);
}
if (IS_ENABLED(CONFIG_RISCV_SCALAR_MISALIGNED))
return handle_scalar_misaligned_load(regs);
return -1;
}
int handle_misaligned_store(struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_RISCV_SCALAR_MISALIGNED))
return handle_scalar_misaligned_store(regs);
return -1;
}
#ifdef CONFIG_RISCV_VECTOR_MISALIGNED
void check_vector_unaligned_access_emulated(struct work_struct *work __always_unused)
{
long *mas_ptr = this_cpu_ptr(&vector_misaligned_access);
unsigned long tmp_var;
*mas_ptr = RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN;
kernel_vector_begin();
/*
* In pre-13.0.0 versions of GCC, vector registers cannot appear in
* the clobber list. This inline asm clobbers v0, but since we do not
* currently build the kernel with V enabled, the v0 clobber arg is not
* needed (as the compiler will not emit vector code itself). If the kernel
* is changed to build with V enabled, the clobber arg will need to be
* added here.
*/
__asm__ __volatile__ (
".balign 4\n\t"
".option push\n\t"
".option arch, +zve32x\n\t"
" vsetivli zero, 1, e16, m1, ta, ma\n\t" // Vectors of 16b
" vle16.v v0, (%[ptr])\n\t" // Load bytes
".option pop\n\t"
: : [ptr] "r" ((u8 *)&tmp_var + 1));
kernel_vector_end();
}
bool __init check_vector_unaligned_access_emulated_all_cpus(void)
{
int cpu;
/*
* While being documented as very slow, schedule_on_each_cpu() is used since
* kernel_vector_begin() expects irqs to be enabled or it will panic()
*/
schedule_on_each_cpu(check_vector_unaligned_access_emulated);
for_each_online_cpu(cpu)
if (per_cpu(vector_misaligned_access, cpu)
== RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN)
return false;
return true;
}
#else
bool __init check_vector_unaligned_access_emulated_all_cpus(void)
{
return false;
}
#endif
static bool all_cpus_unaligned_scalar_access_emulated(void)
{
int cpu;
for_each_online_cpu(cpu)
if (per_cpu(misaligned_access_speed, cpu) !=
RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED)
return false;
return true;
}
#ifdef CONFIG_RISCV_SCALAR_MISALIGNED
static bool unaligned_ctl __read_mostly;
static void check_unaligned_access_emulated(void *arg __always_unused)
{
int cpu = smp_processor_id();
long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
unsigned long tmp_var, tmp_val;
*mas_ptr = RISCV_HWPROBE_MISALIGNED_SCALAR_UNKNOWN;
__asm__ __volatile__ (
" "REG_L" %[tmp], 1(%[ptr])\n"
: [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory");
}
static int cpu_online_check_unaligned_access_emulated(unsigned int cpu)
{
long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
check_unaligned_access_emulated(NULL);
/*
* If unaligned_ctl is already set, this means that we detected that all
* CPUS uses emulated misaligned access at boot time. If that changed
* when hotplugging the new cpu, this is something we don't handle.
*/
if (unlikely(unaligned_ctl && (*mas_ptr != RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED))) {
pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n");
return -EINVAL;
}
return 0;
}
bool __init check_unaligned_access_emulated_all_cpus(void)
{
/*
* We can only support PR_UNALIGN controls if all CPUs have misaligned
* accesses emulated since tasks requesting such control can run on any
* CPU.
*/
on_each_cpu(check_unaligned_access_emulated, NULL, 1);
if (!all_cpus_unaligned_scalar_access_emulated())
return false;
unaligned_ctl = true;
return true;
}
bool unaligned_ctl_available(void)
{
return unaligned_ctl;
}
#else
bool __init check_unaligned_access_emulated_all_cpus(void)
{
return false;
}
static int cpu_online_check_unaligned_access_emulated(unsigned int cpu)
{
return 0;
}
#endif
static bool misaligned_traps_delegated;
#ifdef CONFIG_RISCV_SBI
static int cpu_online_sbi_unaligned_setup(unsigned int cpu)
{
if (sbi_fwft_set(SBI_FWFT_MISALIGNED_EXC_DELEG, 1, 0) &&
misaligned_traps_delegated) {
pr_crit("Misaligned trap delegation non homogeneous (expected delegated)");
return -EINVAL;
}
return 0;
}
void __init unaligned_access_init(void)
{
int ret;
ret = sbi_fwft_set_online_cpus(SBI_FWFT_MISALIGNED_EXC_DELEG, 1, 0);
if (ret)
return;
misaligned_traps_delegated = true;
pr_info("SBI misaligned access exception delegation ok\n");
/*
* Note that we don't have to take any specific action here, if
* the delegation is successful, then
* check_unaligned_access_emulated() will verify that indeed the
* platform traps on misaligned accesses.
*/
}
#else
void __init unaligned_access_init(void) {}
static int cpu_online_sbi_unaligned_setup(unsigned int cpu __always_unused)
{
return 0;
}
#endif
int cpu_online_unaligned_access_init(unsigned int cpu)
{
int ret;
ret = cpu_online_sbi_unaligned_setup(cpu);
if (ret)
return ret;
return cpu_online_check_unaligned_access_emulated(cpu);
}
bool misaligned_traps_can_delegate(void)
{
/*
* Either we successfully requested misaligned traps delegation for all
* CPUs, or the SBI does not implement the FWFT extension but delegated
* the exception by default.
*/
return misaligned_traps_delegated ||
all_cpus_unaligned_scalar_access_emulated();
}
EXPORT_SYMBOL_GPL(misaligned_traps_can_delegate);