mirror of https://github.com/torvalds/linux.git
10951 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
bb523b406c |
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
Turn fault_in_pages_{readable,writeable} into versions that return the
number of bytes not faulted in, similar to copy_to_user, instead of
returning a non-zero value when any of the requested pages couldn't be
faulted in. This supports the existing users that require all pages to
be faulted in as well as new users that are happy if any pages can be
faulted in.
Rename the functions to fault_in_{readable,writeable} to make sure
this change doesn't silently break things.
Neither of these functions is entirely trivial and it doesn't seem
useful to inline them, so move them to mm/gup.c.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
|
|
|
|
3e08773c38 |
block: switch polling to be bio based
Replace the blk_poll interface that requires the caller to keep a queue and cookie from the submissions with polling based on the bio. Polling for the bio itself leads to a few advantages: - the cookie construction can made entirely private in blk-mq.c - the caller does not need to remember the request_queue and cookie separately and thus sidesteps their lifetime issues - keeping the device and the cookie inside the bio allows to trivially support polling BIOs remapping by stacking drivers - a lot of code to propagate the cookie back up the submission path can be removed entirely. Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: Mark Wunderlich <mark.wunderlich@intel.com> Link: https://lore.kernel.org/r/20211012111226.760968-15-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
e41d12f539 |
mm: don't include <linux/blk-cgroup.h> in <linux/backing-dev.h>
There is no need to pull blk-cgroup.h and thus blkdev.h in here, so break the include chain. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20210920123328.1399408-3-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
348332e000 |
mm: don't include <linux/blk-cgroup.h> in <linux/writeback.h>
blk-cgroup.h pulls in blkdev.h and thus pretty much all the block headers. Break this dependency chain by turning wbc_blkcg_css into a macro and dropping the blk-cgroup.h include. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20210920123328.1399408-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
1986c10acc |
for-5.15-rc5-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmFkq/oACgkQxWXV+ddt WDs10g//Qx27foBu0U3ovvsla0t8GgcqgzUyOx3zxed0MbOEQCtK6kqRHQ/I+9ap 1Ec5y4qQqBwfp1NKlYdU/EiKBQIYbJO/nYhVIrFI/EZL/7qJTwyjYjrOjG9zIMvy 2ekxuF/XVnM6p3hyRcuWMCxsossuK4XIkb0bSZrwk/nFA6nt+gbXR1oE94JitM8p 0pwjvSVqpdTmOAIU5+oQldqL/By7un/rv+o6OTD9sJqTdQ1UMlHVDaa9mD8aCsYk XIiCYfkyo9rlbSAB5wmWuiAhske2xh7IXSr4l9mKxGOA0egbQAgmS1Zw3+Km7vFM t+ji/4rTFPFd2yv/sLCEnMinuwvBr3mnEh6pDHR76RNrI4CoK/GHmZSf7XyqzV8W QOftznNA9/nJInTULdhCDvNxbKhKKb+xeSP1L4uytnWc5am+WKOPLNkfczJUh3sq WUORpaUxByDol6BMsdQJqPVJ7CH5YI8lQzuQFoUTXDCgeQUBE2wE1s3q+5Ma+dNZ mamkfQim2R42nPk7RSQlFBeIyDBVBXWfSNvXNovrPFJyRmZqRWzh0nb3PS9VNnUy 6oCOCIT7XlM4Jwh4ZR21OT66RNQQ/2sLUOU/4838TOOdn00UVBrFObHQ+ll8rq74 Va9j0atj6iIn9c8lDQkqTek0pMDcmVGzb2MV6JA4BCbCL/lcGk8= =u3qV -----END PGP SIGNATURE----- Merge tag 'for-5.15-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more error handling fixes, stemming from code inspection, error injection or fuzzing" * tag 'for-5.15-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix abort logic in btrfs_replace_file_extents btrfs: check for error when looking up inode during dir entry replay btrfs: unify lookup return value when dir entry is missing btrfs: deal with errors when adding inode reference during log replay btrfs: deal with errors when replaying dir entry during log replay btrfs: deal with errors when checking if a dir entry exists during log replay btrfs: update refs for any root except tree log roots btrfs: unlock newly allocated extent buffer after error |
|
|
|
4afb912f43 |
btrfs: fix abort logic in btrfs_replace_file_extents
Error injection testing uncovered a case where we'd end up with a corrupt file system with a missing extent in the middle of a file. This occurs because the if statement to decide if we should abort is wrong. The only way we would abort in this case is if we got a ret != -EOPNOTSUPP and we called from the file clone code. However the prealloc code uses this path too. Instead we need to abort if there is an error, and the only error we _don't_ abort on is -EOPNOTSUPP and only if we came from the clone file code. CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cfd312695b |
btrfs: check for error when looking up inode during dir entry replay
At replay_one_name(), we are treating any error from btrfs_lookup_inode() as if the inode does not exists. Fix this by checking for an error and returning it to the caller. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8dcbc26194 |
btrfs: unify lookup return value when dir entry is missing
btrfs_lookup_dir_index_item() and btrfs_lookup_dir_item() lookup for dir entries and both are used during log replay or when updating a log tree during an unlink. However when the dir item does not exists, btrfs_lookup_dir_item() returns NULL while btrfs_lookup_dir_index_item() returns PTR_ERR(-ENOENT), and if the dir item exists but there is no matching entry for a given name or index, both return NULL. This makes the call sites during log replay to be more verbose than necessary and it makes it easy to miss this slight difference. Since we don't need to distinguish between those two cases, make btrfs_lookup_dir_index_item() always return NULL when there is no matching directory entry - either because there isn't any dir entry or because there is one but it does not match the given name and index. Also rename the argument 'objectid' of btrfs_lookup_dir_index_item() to 'index' since it is supposed to match an index number, and the name 'objectid' is not very good because it can easily be confused with an inode number (like the inode number a dir entry points to). CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
52db77791f |
btrfs: deal with errors when adding inode reference during log replay
At __inode_add_ref(), we treating any error returned from btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning that there is no existing directory entry in the fs/subvolume tree. This is not correct since we can get errors such as, for example, -EIO when reading extent buffers while searching the fs/subvolume's btree. So fix that and return the error to the caller when it is not -ENOENT. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e15ac64137 |
btrfs: deal with errors when replaying dir entry during log replay
At replay_one_one(), we are treating any error returned from btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning that there is no existing directory entry in the fs/subvolume tree. This is not correct since we can get errors such as, for example, -EIO when reading extent buffers while searching the fs/subvolume's btree. So fix that and return the error to the caller when it is not -ENOENT. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
77a5b9e3d1 |
btrfs: deal with errors when checking if a dir entry exists during log replay
Currently inode_in_dir() ignores errors returned from btrfs_lookup_dir_index_item() and from btrfs_lookup_dir_item(), treating any errors as if the directory entry does not exists in the fs/subvolume tree, which is obviously not correct, as we can get errors such as -EIO when reading extent buffers while searching the fs/subvolume's tree. Fix that by making inode_in_dir() return the errors and making its only caller, add_inode_ref(), deal with returned errors as well. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d175209be0 |
btrfs: update refs for any root except tree log roots
I hit a stuck relocation on btrfs/061 during my overnight testing. This turned out to be because we had left over extent entries in our extent root for a data reloc inode that no longer existed. This happened because in btrfs_drop_extents() we only update refs if we have SHAREABLE set or we are the tree_root. This regression was introduced by |
|
|
|
19ea40dddf |
btrfs: unlock newly allocated extent buffer after error
[BUG] There is a bug report that injected ENOMEM error could leave a tree block locked while we return to user-space: BTRFS info (device loop0): enabling ssd optimizations FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 0 PID: 7579 Comm: syz-executor Not tainted 5.15.0-rc1 #16 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106 fail_dump lib/fault-inject.c:52 [inline] should_fail+0x13c/0x160 lib/fault-inject.c:146 should_failslab+0x5/0x10 mm/slab_common.c:1328 slab_pre_alloc_hook.constprop.99+0x4e/0xc0 mm/slab.h:494 slab_alloc_node mm/slub.c:3120 [inline] slab_alloc mm/slub.c:3214 [inline] kmem_cache_alloc+0x44/0x280 mm/slub.c:3219 btrfs_alloc_delayed_extent_op fs/btrfs/delayed-ref.h:299 [inline] btrfs_alloc_tree_block+0x38c/0x670 fs/btrfs/extent-tree.c:4833 __btrfs_cow_block+0x16f/0x7d0 fs/btrfs/ctree.c:415 btrfs_cow_block+0x12a/0x300 fs/btrfs/ctree.c:570 btrfs_search_slot+0x6b0/0xee0 fs/btrfs/ctree.c:1768 btrfs_insert_empty_items+0x80/0xf0 fs/btrfs/ctree.c:3905 btrfs_new_inode+0x311/0xa60 fs/btrfs/inode.c:6530 btrfs_create+0x12b/0x270 fs/btrfs/inode.c:6783 lookup_open+0x660/0x780 fs/namei.c:3282 open_last_lookups fs/namei.c:3352 [inline] path_openat+0x465/0xe20 fs/namei.c:3557 do_filp_open+0xe3/0x170 fs/namei.c:3588 do_sys_openat2+0x357/0x4a0 fs/open.c:1200 do_sys_open+0x87/0xd0 fs/open.c:1216 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x34/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x46ae99 Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f46711b9c48 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 RAX: ffffffffffffffda RBX: 000000000078c0a0 RCX: 000000000046ae99 RDX: 0000000000000000 RSI: 00000000000000a1 RDI: 0000000020005800 RBP: 00007f46711b9c80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000017 R13: 0000000000000000 R14: 000000000078c0a0 R15: 00007ffc129da6e0 ================================================ WARNING: lock held when returning to user space! 5.15.0-rc1 #16 Not tainted ------------------------------------------------ syz-executor/7579 is leaving the kernel with locks still held! 1 lock held by syz-executor/7579: #0: ffff888104b73da8 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x2e/0x1a0 fs/btrfs/locking.c:112 [CAUSE] In btrfs_alloc_tree_block(), after btrfs_init_new_buffer(), the new extent buffer @buf is locked, but if later operations like adding delayed tree ref fail, we just free @buf without unlocking it, resulting above warning. [FIX] Unlock @buf in out_free_buf: label. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsZ9O6Zr0KK1yGn=1rQi6Crh1yeCRdTSBxx9R99L4xdn-Q@mail.gmail.com/ CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f9e36107ec |
for-5.15-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmFM79wACgkQxWXV+ddt WDtdZQ/+K7NNEutg4JEH7n2KiXxwj8P23NwVK66a+XwH6/ZBe9xz5TQpnTJQ+D13 +3mhthTJG7Wbcv+FlUVbfTSp5q8m2IH7CKox43o4JCZEEGtFfRPHrBGHLlGKMk3P ap2TZ3rvo0Sb21rx978HCQY824wdJvhv0SmWSScmvWzlTQEKaJHz1OFJgFxhUsMp Cy9y7mtIy+Ei4qJglU88iFNXhNL6YvwqXxDFY5LwN9rlCaV+rLk476aPfIBvvyf8 4f34FHJOe1w9Jlk3KfydIwWefRBbq2dm0zNqNrMHNjl8zXbvfn8+ETOvf54HbjIz GGgKiZlBgNh2Na+p0SLoloEvBUdD5lSUCXis8099oUWZ+MporIwsyy4jAvtAeWR/ QxBkZyxvTNFlXLamSo6oS58K9BNuxFYO7nLGSXQFEoYvb8/fu18rRt/A/rmNS8TU 2vxpYacNKbggoULiGDzB74JY7MHdHRcMcAhmfDeG1bvNESPHfyLnpHfWamBVoUO6 0eQOr78f1UpBlqJAGAGtfBefN1kMDnORyX0npGkGLFrKYiZbMgsxdjkNhiHnsufl 9gsNVJ6baCeB1d5qS2vpZXeOLw0ln5iYZa5Yqz0eh/yc/9Wlj/YCsKRuAbaPMR1i i2ppHo3/na4K6L0EgSi6SU3xaUT+4LLzEEcBlJJuWZEwUTeYwiM= =VJFC -----END PGP SIGNATURE----- Merge tag 'for-5.15-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - regression fix for leak of transaction handle after verity rollback failure - properly reset device last error between mounts - improve one error handling case when checksumming bios - fixup confusing displayed size of space info free space * tag 'for-5.15-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: prevent __btrfs_dump_space_info() to underflow its free space btrfs: fix mount failure due to past and transient device flush error btrfs: fix transaction handle leak after verity rollback failure btrfs: replace BUG_ON() in btrfs_csum_one_bio() with proper error handling |
|
|
|
0619b79014 |
btrfs: prevent __btrfs_dump_space_info() to underflow its free space
It's not uncommon where __btrfs_dump_space_info() gets called under over-commit situations. In that case free space would underflow as total allocated space is not enough to handle all the over-committed space. Such underflow values can sometimes cause confusion for users enabled enospc_debug mount option, and takes some seconds for developers to convert the underflow value to signed result. Just output the free space as s64 to avoid such problem. Reported-by: Eli V <eliventer@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAJtFHUSy4zgyhf-4d9T+KdJp9w=UgzC2A0V=VtmaeEpcGgm1-Q@mail.gmail.com/ CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6b225baaba |
btrfs: fix mount failure due to past and transient device flush error
When we get an error flushing one device, during a super block commit, we record the error in the device structure, in the field 'last_flush_error'. This is used to later check if we should error out the super block commit, depending on whether the number of flush errors is greater than or equals to the maximum tolerated device failures for a raid profile. However if we get a transient device flush error, unmount the filesystem and later try to mount it, we can fail the mount because we treat that past error as critical and consider the device is missing. Even if it's very likely that the error will happen again, as it's probably due to a hardware related problem, there may be cases where the error might not happen again. One example is during testing, and a test case like the new generic/648 from fstests always triggers this. The test cases generic/019 and generic/475 also trigger this scenario, but very sporadically. When this happens we get an error like this: $ mount /dev/sdc /mnt mount: /mnt wrong fs type, bad option, bad superblock on /dev/sdc, missing codepage or helper program, or other error. $ dmesg (...) [12918.886926] BTRFS warning (device sdc): chunk 13631488 missing 1 devices, max tolerance is 0 for writable mount [12918.888293] BTRFS warning (device sdc): writable mount is not allowed due to too many missing devices [12918.890853] BTRFS error (device sdc): open_ctree failed The failure happens because when btrfs_check_rw_degradable() is called at mount time, or at remount from RO to RW time, is sees a non zero value in a device's ->last_flush_error attribute, and therefore considers that the device is 'missing'. Fix this by setting a device's ->last_flush_error to zero when we close a device, making sure the error is not seen on the next mount attempt. We only need to track flush errors during the current mount, so that we never commit a super block if such errors happened. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
acbee9aff8 |
btrfs: fix transaction handle leak after verity rollback failure
During a verity rollback, if we fail to update the inode or delete the orphan, we abort the transaction and return without releasing our transaction handle. Fix that by releasing the handle. Fixes: |
|
|
|
bbc9a6eb5e |
btrfs: replace BUG_ON() in btrfs_csum_one_bio() with proper error handling
There is a BUG_ON() in btrfs_csum_one_bio() to catch code logic error. It has indeed caught several bugs during subpage development. But the BUG_ON() itself will bring down the whole system which is an overkill. Replace it with a WARN() and exit gracefully, so that it won't crash the whole system while we can still catch the code logic error. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8dde20867c |
for-5.15-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmE6BpMACgkQxWXV+ddt
WDvXhA//aaeKQIiVbiCnmMKFVX08wU8/pUXf65TJIaaTd0KE0QMu/aW6ibOpC6QI
auf7wTiErHoJM7A22nL+Eoic7shlPueBktt3YcmdyQ/3ZFR6Wr7Td/cby0FvTOJU
m0bjLMLp3rWSpnbMMUlOt8VSOcA892jnp7MHVtRYGfmfslwE5iTRtnPjmVobinm7
dfKxCXUgMG9NWINIJobn70GQsZCXipa1A+MdbkdIPyjbM+tgR0EXZBrSaEcgMVpV
dWnwTphx0io/tsgt4ZVQzGaCWtesBAe4yhaJJK92eFMTOKlYB/8y5P31N9wBL9Uj
AOn0ke2Uc/weah50W7AhxeU3nCSGUAl9DbGrovKEfP/p0T9NJC/l3P1gwqpeGuld
IbrBNFGVm3Noo2ZSoZU55P17gnTFHBMnXyVsbaoEldcsBv39D8K+tZ9F2vFaAV3e
VayZiUuw/PhEcucYCQKdUCwFqFjJJfNnYpNtMSY3aCHeTOjphrP2sWBxKNAkWChB
n4O5IFBm5e8YjBVNItZrlXE9KtE+JuwGSbNihhQQ/wy/M1sxB76DpaKnCLgjQmF6
peBZktTRr8X7aRs1BGQKrU7Yzq7oR1psYadUhGIrrWp/qS4UCXkvYnkMQ0FInyQH
pYQNHTDE4PSECzEhQAj9syeVE3lnGMGIWylmniamiuDsQcvaydM=
=RQSe
-----END PGP SIGNATURE-----
Merge tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix max_inline mount option limit on 64k page system
- lockdep fixes:
- update bdev time in a safer way
- move bdev put outside of sb write section when removing device
- fix possible deadlock when mounting seed/sprout filesystem
- zoned mode: fix split extent accounting
- minor include fixup
* tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: fix double counting of split ordered extent
btrfs: fix lockdep warning while mounting sprout fs
btrfs: delay blkdev_put until after the device remove
btrfs: update the bdev time directly when closing
btrfs: use correct header for div_u64 in misc.h
btrfs: fix upper limit for max_inline for page size 64K
|
|
|
|
f79645df80 |
btrfs: zoned: fix double counting of split ordered extent
btrfs_add_ordered_extent_*() add num_bytes to fs_info->ordered_bytes.
Then, splitting an ordered extent will call btrfs_add_ordered_extent_*()
again for split extents, leading to double counting of the region of
a split extent. These leaked bytes are finally reported at unmount time
as follow:
BTRFS info (device dm-1): at unmount dio bytes count 364544
Fix the double counting by subtracting split extent's size from
fs_info->ordered_bytes.
Fixes:
|
|
|
|
c124706900 |
btrfs: fix lockdep warning while mounting sprout fs
Following test case reproduces lockdep warning. Test case: $ mkfs.btrfs -f <dev1> $ btrfstune -S 1 <dev1> $ mount <dev1> <mnt> $ btrfs device add <dev2> <mnt> -f $ umount <mnt> $ mount <dev2> <mnt> $ umount <mnt> The warning claims a possible ABBA deadlock between the threads initiated by [#1] btrfs device add and [#0] the mount. [ 540.743122] WARNING: possible circular locking dependency detected [ 540.743129] 5.11.0-rc7+ #5 Not tainted [ 540.743135] ------------------------------------------------------ [ 540.743142] mount/2515 is trying to acquire lock: [ 540.743149] ffffa0c5544c2ce0 (&fs_devs->device_list_mutex){+.+.}-{4:4}, at: clone_fs_devices+0x6d/0x210 [btrfs] [ 540.743458] but task is already holding lock: [ 540.743461] ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.743541] which lock already depends on the new lock. [ 540.743543] the existing dependency chain (in reverse order) is: [ 540.743546] -> #1 (btrfs-chunk-00){++++}-{4:4}: [ 540.743566] down_read_nested+0x48/0x2b0 [ 540.743585] __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.743650] btrfs_read_lock_root_node+0x70/0x200 [btrfs] [ 540.743733] btrfs_search_slot+0x6c6/0xe00 [btrfs] [ 540.743785] btrfs_update_device+0x83/0x260 [btrfs] [ 540.743849] btrfs_finish_chunk_alloc+0x13f/0x660 [btrfs] <--- device_list_mutex [ 540.743911] btrfs_create_pending_block_groups+0x18d/0x3f0 [btrfs] [ 540.743982] btrfs_commit_transaction+0x86/0x1260 [btrfs] [ 540.744037] btrfs_init_new_device+0x1600/0x1dd0 [btrfs] [ 540.744101] btrfs_ioctl+0x1c77/0x24c0 [btrfs] [ 540.744166] __x64_sys_ioctl+0xe4/0x140 [ 540.744170] do_syscall_64+0x4b/0x80 [ 540.744174] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 540.744180] -> #0 (&fs_devs->device_list_mutex){+.+.}-{4:4}: [ 540.744184] __lock_acquire+0x155f/0x2360 [ 540.744188] lock_acquire+0x10b/0x5c0 [ 540.744190] __mutex_lock+0xb1/0xf80 [ 540.744193] mutex_lock_nested+0x27/0x30 [ 540.744196] clone_fs_devices+0x6d/0x210 [btrfs] [ 540.744270] btrfs_read_chunk_tree+0x3c7/0xbb0 [btrfs] [ 540.744336] open_ctree+0xf6e/0x2074 [btrfs] [ 540.744406] btrfs_mount_root.cold.72+0x16/0x127 [btrfs] [ 540.744472] legacy_get_tree+0x38/0x90 [ 540.744475] vfs_get_tree+0x30/0x140 [ 540.744478] fc_mount+0x16/0x60 [ 540.744482] vfs_kern_mount+0x91/0x100 [ 540.744484] btrfs_mount+0x1e6/0x670 [btrfs] [ 540.744536] legacy_get_tree+0x38/0x90 [ 540.744537] vfs_get_tree+0x30/0x140 [ 540.744539] path_mount+0x8d8/0x1070 [ 540.744541] do_mount+0x8d/0xc0 [ 540.744543] __x64_sys_mount+0x125/0x160 [ 540.744545] do_syscall_64+0x4b/0x80 [ 540.744547] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 540.744551] other info that might help us debug this: [ 540.744552] Possible unsafe locking scenario: [ 540.744553] CPU0 CPU1 [ 540.744554] ---- ---- [ 540.744555] lock(btrfs-chunk-00); [ 540.744557] lock(&fs_devs->device_list_mutex); [ 540.744560] lock(btrfs-chunk-00); [ 540.744562] lock(&fs_devs->device_list_mutex); [ 540.744564] *** DEADLOCK *** [ 540.744565] 3 locks held by mount/2515: [ 540.744567] #0: ffffa0c56bf7a0e0 (&type->s_umount_key#42/1){+.+.}-{4:4}, at: alloc_super.isra.16+0xdf/0x450 [ 540.744574] #1: ffffffffc05a9628 (uuid_mutex){+.+.}-{4:4}, at: btrfs_read_chunk_tree+0x63/0xbb0 [btrfs] [ 540.744640] #2: ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.744708] stack backtrace: [ 540.744712] CPU: 2 PID: 2515 Comm: mount Not tainted 5.11.0-rc7+ #5 But the device_list_mutex in clone_fs_devices() is redundant, as explained below. Two threads [1] and [2] (below) could lead to clone_fs_device(). [1] open_ctree <== mount sprout fs btrfs_read_chunk_tree() mutex_lock(&uuid_mutex) <== global lock read_one_dev() open_seed_devices() clone_fs_devices() <== seed fs_devices mutex_lock(&orig->device_list_mutex) <== seed fs_devices [2] btrfs_init_new_device() <== sprouting mutex_lock(&uuid_mutex); <== global lock btrfs_prepare_sprout() lockdep_assert_held(&uuid_mutex) clone_fs_devices(seed_fs_device) <== seed fs_devices Both of these threads hold uuid_mutex which is sufficient to protect getting the seed device(s) freed while we are trying to clone it for sprouting [2] or mounting a sprout [1] (as above). A mounted seed device can not free/write/replace because it is read-only. An unmounted seed device can be freed by btrfs_free_stale_devices(), but it needs uuid_mutex. So this patch removes the unnecessary device_list_mutex in clone_fs_devices(). And adds a lockdep_assert_held(&uuid_mutex) in clone_fs_devices(). Reported-by: Su Yue <l@damenly.su> Tested-by: Su Yue <l@damenly.su> Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3fa421dedb |
btrfs: delay blkdev_put until after the device remove
When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8f96a5bfa1 |
btrfs: update the bdev time directly when closing
We update the ctime/mtime of a block device when we remove it so that blkid knows the device changed. However we do this by re-opening the block device and calling filp_update_time. This is more correct because it'll call the inode->i_op->update_time if it exists, but the block dev inodes do not do this. Instead call generic_update_time() on the bd_inode in order to avoid the blkdev_open path and get rid of the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #406 Not tainted ------------------------------------------------------ losetup/11596 is trying to acquire lock: ffff939640d2f538 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 file_open_name+0xc7/0x170 filp_open+0x2c/0x50 btrfs_scratch_superblocks.part.0+0x10f/0x170 btrfs_rm_device.cold+0xe8/0xed btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11596: #0: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 1 PID: 11596 Comm: losetup Not tainted 5.14.0-rc2+ #406 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cde7417ce4 |
btrfs: use correct header for div_u64 in misc.h
asm/do_div.h is for div_u64, but it is found in math64.h. This change will make compiler job easier and prevent compiler errors in situation where compiler will not find math64.h from another paths. Signed-off-by: Kari Argillander <kari.argillander@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6f93e834fa |
btrfs: fix upper limit for max_inline for page size 64K
The mount option max_inline ranges from 0 to the sectorsize (which is now equal to page size). But we parse the mount options too early and before the actual sectorsize is read from the superblock. So the upper limit of max_inline is unaware of the actual sectorsize and is limited by the temporary sectorsize 4096, even on a system where the default sectorsize is 64K. Fix this by reading the superblock sectorsize before the mount option parse. Reported-by: Alexander Tsvetkov <alexander.tsvetkov@oracle.com> CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
815409a12c |
overlayfs update for 5.15
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCYTDKKAAKCRDh3BK/laaZ PG9PAQCUF0fdBlCKudwSEt5PV5xemycL9OCAlYCd7d4XbBIe9wEA6sVJL9J+OwV2 aF0NomiXtJccE+S9+byjVCyqSzQJGQQ= =6L2Y -----END PGP SIGNATURE----- Merge tag 'ovl-update-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs Pull overlayfs update from Miklos Szeredi: - Copy up immutable/append/sync/noatime attributes (Amir Goldstein) - Improve performance by enabling RCU lookup. - Misc fixes and improvements The reason this touches so many files is that the ->get_acl() method now gets a "bool rcu" argument. The ->get_acl() API was updated based on comments from Al and Linus: Link: https://lore.kernel.org/linux-fsdevel/CAJfpeguQxpd6Wgc0Jd3ks77zcsAv_bn0q17L3VNnnmPKu11t8A@mail.gmail.com/ * tag 'ovl-update-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs: ovl: enable RCU'd ->get_acl() vfs: add rcu argument to ->get_acl() callback ovl: fix BUG_ON() in may_delete() when called from ovl_cleanup() ovl: use kvalloc in xattr copy-up ovl: update ctime when changing fileattr ovl: skip checking lower file's i_writecount on truncate ovl: relax lookup error on mismatch origin ftype ovl: do not set overlay.opaque for new directories ovl: add ovl_allow_offline_changes() helper ovl: disable decoding null uuid with redirect_dir ovl: consistent behavior for immutable/append-only inodes ovl: copy up sync/noatime fileattr flags ovl: pass ovl_fs to ovl_check_setxattr() fs: add generic helper for filling statx attribute flags |
|
|
|
0ee7c3e25d |
New code for 5.15:
- Simplify the bio_end_page usage in the buffered IO code.
- Support reading inline data at nonzero offsets for erofs.
- Fix some typos and bad grammar.
- Convert kmap_atomic usage in the inline data read path.
- Add some extra inline data input checking.
- Fix a memory corruption bug stemming from iomap_swapfile_activate
trying to activate more pages than mm was expecting.
- Pass errnos through the page writeback code so that writeback errors
are reported correctly instead of being munged to EIO.
- Replace iomap_apply with a open-coded iterator loops to reduce the
number of indirect calls by a third to a half.
- Refactor the fsdax code to use iomap iterators instead of the
open-coded iomap_apply code that it had before.
- Format file range iomap tracepoint data in hexadecimal and
standardize the names used in the pretty-print string.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEnwC0ACgkQ+H93GTRK
tOtVOQ//Zu9ul2ZmPARMV8xyAfopnLpmggREOthFbPkDZ3z3ZgRpPxlbAvWEEKnj
VDNLFNj204rDojuxP/YSdxgiawLod7dYfXIwwft8R8oI7MdgVQhpvimUi5bkz/Od
X5pmFDe84INfFvEztOgC+sPk1RI/ToQLgrcIffWMWfF2iyVkNVMCD5MMe6LoH1la
9GbVCfPx6Y2Nffaa8EuAEgaCo7FMPc81bvQG4qpeqXyX8qql/r5n4YENhkn3n4qa
zI4F2lgqwbelFkamZOYNDjtLt13lb7Ze0PoFOpmTZUqlyybqhRxDvJ+OxZn8W6zH
20pxWx/RCXhCp/sS6DRcYyf7WKoIfdGDkxed7aSuhJ+VKKtBtsjMoy7dh5IY5RJa
8L1DMat6xtea8Glx04SF7Vib0n/An9oHOTzLEWxsUlRaPhW68uVpKgXuGLTAf+dc
ztJhlQ9pLX0D2NmgGlkXN8d4F1XEH2BgyIrtF6UNtMbyIlCREHM9HELJs6JzKl6U
a4ivJXyaq8o/hlXr8IMWUOTVubS0i+hgvvQjnVJmcSTJxhH10mPPJLnNsGX6heD9
SlnnXRbD03iqsbMJP/R431VKooryOSKBc86IEECkuMz3RUfw75DGAnLtETnT1rsA
71rSVf5NaCGZ2hV4du6jv53TS7yrPpqkxJHyDWD1WP4xGPbO1XA=
=iVns
-----END PGP SIGNATURE-----
Merge tag 'iomap-5.15-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull iomap updates from Darrick Wong:
"The most notable externally visible change for this cycle is the
addition of support for reads to inline tail fragments of files, which
was requested by the erofs developers; and a correction for a kernel
memory corruption bug if the sysadmin tries to activate a swapfile
with more pages than the swapfile header suggests.
We also now report writeback completion errors to the file mapping
correctly, instead of munging all errors into EIO.
Internally, the bulk of the changes are Christoph's patchset to reduce
the indirect function call count by a third to a half by converting
iomap iteration from a loop pattern to a generator/consumer pattern.
As an added bonus, fsdax no longer open-codes iomap apply loops.
Summary:
- Simplify the bio_end_page usage in the buffered IO code.
- Support reading inline data at nonzero offsets for erofs.
- Fix some typos and bad grammar.
- Convert kmap_atomic usage in the inline data read path.
- Add some extra inline data input checking.
- Fix a memory corruption bug stemming from iomap_swapfile_activate
trying to activate more pages than mm was expecting.
- Pass errnos through the page writeback code so that writeback
errors are reported correctly instead of being munged to EIO.
- Replace iomap_apply with a open-coded iterator loops to reduce the
number of indirect calls by a third to a half.
- Refactor the fsdax code to use iomap iterators instead of the
open-coded iomap_apply code that it had before.
- Format file range iomap tracepoint data in hexadecimal and
standardize the names used in the pretty-print string"
* tag 'iomap-5.15-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (41 commits)
iomap: standardize tracepoint formatting and storage
mm/swap: consider max pages in iomap_swapfile_add_extent
iomap: move loop control code to iter.c
iomap: constify iomap_iter_srcmap
fsdax: switch the fault handlers to use iomap_iter
fsdax: factor out a dax_fault_actor() helper
fsdax: factor out helpers to simplify the dax fault code
iomap: rework unshare flag
iomap: pass an iomap_iter to various buffered I/O helpers
iomap: remove iomap_apply
fsdax: switch dax_iomap_rw to use iomap_iter
iomap: switch iomap_swapfile_activate to use iomap_iter
iomap: switch iomap_seek_data to use iomap_iter
iomap: switch iomap_seek_hole to use iomap_iter
iomap: switch iomap_bmap to use iomap_iter
iomap: switch iomap_fiemap to use iomap_iter
iomap: switch __iomap_dio_rw to use iomap_iter
iomap: switch iomap_page_mkwrite to use iomap_iter
iomap: switch iomap_zero_range to use iomap_iter
iomap: switch iomap_file_unshare to use iomap_iter
...
|
|
|
|
87045e6546 |
for-5.15-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmEs2NIACgkQxWXV+ddt
WDsJMQ/+PJ/yXfI85mAeAzTJLWQ0zD6YO3iBhf3wOeyychWC4on435pj+zW8zR/U
/bix25ygoWF4MvGF6p0uyv4Z5mnvkZXE5lapUcJu6wXG7se1QRPH0broTh05IBXK
SnT93Eb9RexaiNFk7DVma9XkviqZ/ZISPtkJ9wYrfIba7j/U/wa+PtEFS7wk58hP
rFQXgV64xm/pcP28YYHfOkCjdyUMdJrnBUvfKOlX6d94lmYbP5lyiTL+XJEXExzN
wPakD0UsnXPr4TRvf+YRTPeFHPPUgyORII7otVUOKmGywWtcJrELX8rXFoW+6GwB
dzZIcSYXHUxU5UrtMbZgiztVBJ+bQY5juYMIrj13eYOMYkijxAqPP84iDO15+TSV
zNqyAVjUglHCGUGjhSpAxnAmtp+IJTZfVAWcvIKq3VqvJtb8tssQsk9bqFjH1xlH
qNJLE57CYe3tjw05K9y0keMh2iJWRWkXZYkgI/zjwo5nreemobpN+3fO4yneVLh7
ecdBmSl/JVSzAB1NamLOCZNGZLUqiiuTvZlJtI6ZsekrN1+4A6QzVcU/MGjSYL1v
C7W0hK0LF+e3xIBkxTKVq8noolsgbmlWacxJq8fZq9HwZy5IVJOVm9STDlCuLaIo
gPr0V0itkclcsMU0CHTyCjMsfuHYUwJZXwg93wKfJf5UCzS4OWU=
=ALO9
-----END PGP SIGNATURE-----
Merge tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The highlights of this round are integrations with fs-verity and
idmapped mounts, the rest is usual mix of minor improvements, speedups
and cleanups.
There are some patches outside of btrfs, namely updating some VFS
interfaces, all straightforward and acked.
Features:
- fs-verity support, using standard ioctls, backward compatible with
read-only limitation on inodes with previously enabled fs-verity
- idmapped mount support
- make mount with rescue=ibadroots more tolerant to partially damaged
trees
- allow raid0 on a single device and raid10 on two devices,
degenerate cases but might be useful as an intermediate step during
conversion to other profiles
- zoned mode block group auto reclaim can be disabled via sysfs knob
Performance improvements:
- continue readahead of node siblings even if target node is in
memory, could speed up full send (on sample test +11%)
- batching of delayed items can speed up creating many files
- fsync/tree-log speedups
- avoid unnecessary work (gains +2% throughput, -2% run time on
sample load)
- reduced lock contention on renames (on dbench +4% throughput,
up to -30% latency)
Fixes:
- various zoned mode fixes
- preemptive flushing threshold tuning, avoid excessive work on
almost full filesystems
Core:
- continued subpage support, preparation for implementing remaining
features like compression and defragmentation; with some
limitations, write is now enabled on 64K page systems with 4K
sectors, still considered experimental
- no readahead on compressed reads
- inline extents disabled
- disabled raid56 profile conversion and mount
- improved flushing logic, fixing early ENOSPC on some workloads
- inode flags have been internally split to read-only and read-write
incompat bit parts, used by fs-verity
- new tree items for fs-verity
- descriptor item
- Merkle tree item
- inode operations extended to be namespace-aware
- cleanups and refactoring
Generic code changes:
- fs: new export filemap_fdatawrite_wbc
- fs: removed sync_inode
- block: bio_trim argument type fixups
- vfs: add namespace-aware lookup"
* tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (114 commits)
btrfs: reset replace target device to allocation state on close
btrfs: zoned: fix ordered extent boundary calculation
btrfs: do not do preemptive flushing if the majority is global rsv
btrfs: reduce the preemptive flushing threshold to 90%
btrfs: tree-log: check btrfs_lookup_data_extent return value
btrfs: avoid unnecessarily logging directories that had no changes
btrfs: allow idmapped mount
btrfs: handle ACLs on idmapped mounts
btrfs: allow idmapped INO_LOOKUP_USER ioctl
btrfs: allow idmapped SUBVOL_SETFLAGS ioctl
btrfs: allow idmapped SET_RECEIVED_SUBVOL ioctls
btrfs: relax restrictions for SNAP_DESTROY_V2 with subvolids
btrfs: allow idmapped SNAP_DESTROY ioctls
btrfs: allow idmapped SNAP_CREATE/SUBVOL_CREATE ioctls
btrfs: check whether fsgid/fsuid are mapped during subvolume creation
btrfs: allow idmapped permission inode op
btrfs: allow idmapped setattr inode op
btrfs: allow idmapped tmpfile inode op
btrfs: allow idmapped symlink inode op
btrfs: allow idmapped mkdir inode op
...
|
|
|
|
9b49ceb854 |
for-5.14-rc7-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmEmQy4ACgkQxWXV+ddt WDuCRRAAmuO+6Zsl5MSq0hBnpec/VBN6lTi9VPt184BjW1IWsqwR1Ax8dVQEKgCm gzkGYEuVq2L5p+/ugWKKftAbmUU85Jf3AIsv81SCJQosRkxVXAdbrZOv00yUZy6/ 5YOdO+9u61otvtO6LcZz9l+0LcpSmrBwEszluyIS+nArgQyZwX2aZTjcScDJvB9+ 1y7Eo6eIbqbcJOf4mLDIJh0bHaiA7HB6jYJkbsnz51wBU2ETATzNzAoyP5ReTPGc 1s0uxrpY37kHcUUTd6q8VLDTM6Ei4vF2zQm0jWcrw0K3hM6yPuH+GiEADoV/xsls 6pbtss1E81rHEQjcK8brf6CxbOak8/WXV0gRia/3avkFteVlax+NJxRdVhksuJln siGlQqASX3vYdNL0nG+U0ml1Y9C1ZXTXu4lGjS6rtT9oeV+YSccG2UjIT9LEtuON W/zE4bUMqCddcZFEPH5jNK+ChGS8mmfs+UFFR+W/JzMIO8Uji5/K44FZDFBo0Oc/ 3JEgk7ZV4D+8SblBPMxJx0fZqbE8ggKM+IN5CAyscINOWOxrmRiaFFRygRX0TLDB 2uts9owItW6zvaTRY6RclVeCvJ6ARQli4pv7YxZmH85hhtCbn515imWvLWw4+tSg QwrtDnPVMSJTdzFHvsmeE9lM6Vaw0ur70Ysyd29k/XJu3WwRdkM= =jN7s -----END PGP SIGNATURE----- Merge tag 'for-5.14-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "One more fix that I think qualifies for a late merge. It's a revert of a one-liner fix that meanwhile got backported to stable kernels and we got reports from users. The broken fix prevents creating compressed inline extents, which could be noticeable on space consumption. Technically it's a regression as the patch was merged in 5.14-rc1 but got propagated to several stable kernels and has higher exposure than a 'typical' development cycle bug" * tag 'for-5.14-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Revert "btrfs: compression: don't try to compress if we don't have enough pages" |
|
|
|
4e9655763b |
Revert "btrfs: compression: don't try to compress if we don't have enough pages"
This reverts commit |
|
|
|
0d977e0eba |
btrfs: reset replace target device to allocation state on close
This crash was observed with a failed assertion on device close:
BTRFS: Transaction aborted (error -28)
WARNING: CPU: 1 PID: 3902 at fs/btrfs/extent-tree.c:2150 btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c crc32c_intel xor zstd_decompress zstd_compress xxhash lzo_compress lzo_decompress raid6_pq loop
CPU: 1 PID: 3902 Comm: kworker/u8:4 Not tainted 5.14.0-rc5-default+ #1532
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
RIP: 0010:btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
RSP: 0018:ffffb7a5452d7d80 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
RBP: ffff97834176a378 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffff97835195d388
R13: 0000000005b08000 R14: ffff978385484000 R15: 000000000000016c
FS: 0000000000000000(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056190d003fe8 CR3: 000000002a81e005 CR4: 0000000000170ea0
Call Trace:
flush_space+0x197/0x2f0 [btrfs]
btrfs_async_reclaim_metadata_space+0x139/0x300 [btrfs]
process_one_work+0x262/0x5e0
worker_thread+0x4c/0x320
? process_one_work+0x5e0/0x5e0
kthread+0x144/0x170
? set_kthread_struct+0x40/0x40
ret_from_fork+0x1f/0x30
irq event stamp: 19334989
hardirqs last enabled at (19334997): [<ffffffffab0e0c87>] console_unlock+0x2b7/0x400
hardirqs last disabled at (19335006): [<ffffffffab0e0d0d>] console_unlock+0x33d/0x400
softirqs last enabled at (19334900): [<ffffffffaba0030d>] __do_softirq+0x30d/0x574
softirqs last disabled at (19334893): [<ffffffffab0721ec>] irq_exit_rcu+0x12c/0x140
---[ end trace 45939e308e0dd3c7 ]---
BTRFS: error (device vdd) in btrfs_run_delayed_refs:2150: errno=-28 No space left
BTRFS info (device vdd): forced readonly
BTRFS warning (device vdd): failed setting block group ro: -30
BTRFS info (device vdd): suspending dev_replace for unmount
assertion failed: !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state), in fs/btrfs/volumes.c:1150
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3431!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 3982 Comm: umount Tainted: G W 5.14.0-rc5-default+ #1532
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
RSP: 0018:ffffb7a5454c7db8 EFLAGS: 00010246
RAX: 0000000000000068 RBX: ffff978364b91c00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
RBP: ffff9783523a4c00 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffff9783523a4d18
R13: 0000000000000000 R14: 0000000000000004 R15: 0000000000000003
FS: 00007f61c8f42800(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056190cffa810 CR3: 0000000030b96002 CR4: 0000000000170ea0
Call Trace:
btrfs_close_one_device.cold+0x11/0x55 [btrfs]
close_fs_devices+0x44/0xb0 [btrfs]
btrfs_close_devices+0x48/0x160 [btrfs]
generic_shutdown_super+0x69/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x2c/0xa0
cleanup_mnt+0x144/0x1b0
task_work_run+0x59/0xa0
exit_to_user_mode_loop+0xe7/0xf0
exit_to_user_mode_prepare+0xaf/0xf0
syscall_exit_to_user_mode+0x19/0x50
do_syscall_64+0x4a/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
This happens when close_ctree is called while a dev_replace hasn't
completed. In close_ctree, we suspend the dev_replace, but keep the
replace target around so that we can resume the dev_replace procedure
when we mount the root again. This is the call trace:
close_ctree():
btrfs_dev_replace_suspend_for_unmount();
btrfs_close_devices():
btrfs_close_fs_devices():
btrfs_close_one_device():
ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
&device->dev_state));
However, since the replace target sticks around, there is a device
with BTRFS_DEV_STATE_REPLACE_TGT set on close, and we fail the
assertion in btrfs_close_one_device.
To fix this, if we come across the replace target device when
closing, we should properly reset it back to allocation state. This
fix also ensures that if a non-target device has a corrupted state and
has the BTRFS_DEV_STATE_REPLACE_TGT bit set, the assertion will still
catch the error.
Reported-by: David Sterba <dsterba@suse.com>
Fixes:
|
|
|
|
939c7feb19 |
btrfs: zoned: fix ordered extent boundary calculation
btrfs_lookup_ordered_extent() is supposed to query the offset in a file
instead of the logical address. Pass the file offset from
submit_extent_page() to calc_bio_boundaries().
Also, calc_bio_boundaries() relies on the bio's operation flag, so move
the call site after setting it.
Fixes:
|
|
|
|
1146239794 |
btrfs: do not do preemptive flushing if the majority is global rsv
A common characteristic of the bug report where preemptive flushing was going full tilt was the fact that the vast majority of the free metadata space was used up by the global reserve. The hard 90% threshold would cover the majority of these cases, but to be even smarter we should take into account how much of the outstanding reservations are covered by the global block reserve. If the global block reserve accounts for the vast majority of outstanding reservations, skip preemptive flushing, as it will likely just cause churn and pain. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212185 Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
93c60b17f2 |
btrfs: reduce the preemptive flushing threshold to 90%
The preemptive flushing code was added in order to avoid needing to
synchronously wait for ENOSPC flushing to recover space. Once we're
almost full however we can essentially flush constantly. We were using
98% as a threshold to determine if we were simply full, however in
practice this is a really high bar to hit. For example reports of
systems running into this problem had around 94% usage and thus
continued to flush. Fix this by lowering the threshold to 90%, which is
a more sane value, especially for smaller file systems.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212185
CC: stable@vger.kernel.org # 5.12+
Fixes:
|
|
|
|
3736127a3a |
btrfs: tree-log: check btrfs_lookup_data_extent return value
Function btrfs_lookup_data_extent calls btrfs_search_slot to verify if the EXTENT_ITEM exists in the extent tree. btrfs_search_slot can return values bellow zero if an error happened. Function replay_one_extent currently checks if the search found something (0 returned) and increments the reference, and if not, it seems to evaluate as 'not found'. Fix the condition by checking if the value was bellow zero and return early. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8be2ba2e0e |
btrfs: avoid unnecessarily logging directories that had no changes
There are several cases where when logging an inode we need to log its parent directories or logging subdirectories when logging a directory. There are cases however where we end up logging a directory even if it was not changed in the current transaction, no dentries added or removed since the last transaction. While this is harmless from a functional point of view, it is a waste time as it brings no advantage. One example where this is triggered is the following: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/A $ mkdir /mnt/B $ mkdir /mnt/C $ touch /mnt/A/foo $ ln /mnt/A/foo /mnt/B/bar $ ln /mnt/A/foo /mnt/C/baz $ sync $ rm -f /mnt/A/foo $ xfs_io -c "fsync" /mnt/B/bar This last fsync ends up logging directories A, B and C, however we only need to log directory A, as B and C were not changed since the last transaction commit. So fix this by changing need_log_inode(), to return false in case the given inode is a directory and has a ->last_trans value smaller than the current transaction's ID. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5b9b26f5d0 |
btrfs: allow idmapped mount
Now that we converted btrfs internally to account for idmapped mounts allow the creation of idmapped mounts on by setting the FS_ALLOW_IDMAP flag. We only need to raise this flag on the btrfs_root_fs_type filesystem since btrfs_mount_root() is ultimately responsible for allocating the superblock and is called into from btrfs_mount() associated with btrfs_fs_type. The conversion of the btrfs inode operations was straightforward. Regarding btrfs specific ioctls that perform checks based on inode permissions only those have been allowed that are not filesystem wide operations and hence can be reasonably charged against a specific mount. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4a8b34afa9 |
btrfs: handle ACLs on idmapped mounts
Make the ACL code idmapped mount aware. The POSIX default and POSIX access ACLs are the only ACLs other than some specific xattrs that take DAC permissions into account. On an idmapped mount they need to be translated according to the mount's userns. The main change is done to __btrfs_set_acl() which is responsible for translating POSIX ACLs to their final on-disk representation. The btrfs_init_acl() helper does not need to take the idmapped mount into account since it is called in the context of file creation operations (mknod, create, mkdir, symlink, tmpfile) and is used for btrfs_init_inode_security() to copy POSIX default and POSIX access permissions from the parent directory. These ACLs need to be inherited unmodified from the parent directory. This is identical to what we do for ext4 and xfs. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6623d9a0b0 |
btrfs: allow idmapped INO_LOOKUP_USER ioctl
The INO_LOOKUP_USER is an unprivileged version of the INO_LOOKUP ioctl and has the following restrictions. The main difference between the two is that INO_LOOKUP is filesystem wide operation wheres INO_LOOKUP_USER is scoped beneath the file descriptor passed with the ioctl. Specifically, INO_LOOKUP_USER must adhere to the following restrictions: - The caller must be privileged over each inode of each path component for the path they are trying to lookup. - The path for the subvolume the caller is trying to lookup must be reachable from the inode associated with the file descriptor passed with the ioctl. The second condition makes it possible to scope the lookup of the path to the mount identified by the file descriptor passed with the ioctl. This allows us to enable this ioctl on idmapped mounts. Specifically, this is possible because all child subvolumes of a parent subvolume are reachable when the parent subvolume is mounted. So if the user had access to open the parent subvolume or has been given the fd then they can lookup the path if they had access to it provided they were privileged over each path component. Note, the INO_LOOKUP_USER ioctl allows a user to learn the path and name of a subvolume even though they would otherwise be restricted from doing so via regular VFS-based lookup. So think about a parent subvolume with multiple child subvolumes. Someone could mount he parent subvolume and restrict access to the child subvolumes by overmounting them with empty directories. At this point the user can't traverse the child subvolumes and they can't open files in the child subvolumes. However, they can still learn the path of child subvolumes as long as they have access to the parent subvolume by using the INO_LOOKUP_USER ioctl. The underlying assumption here is that it's ok that the lookup ioctls can't really take mounts into account other than the original mount the fd belongs to during lookup. Since this assumption is baked into the original INO_LOOKUP_USER ioctl we can extend it to idmapped mounts. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
39e1674ff0 |
btrfs: allow idmapped SUBVOL_SETFLAGS ioctl
Setting flags on subvolumes or snapshots are core features of btrfs. The SUBVOL_SETFLAGS ioctl is especially important as it allows to make subvolumes and snapshots read-only or read-write. Allow setting flags on btrfs subvolumes and snapshots on idmapped mounts. This is a fairly straightforward operation since all the permission checking helpers are already capable of handling idmapped mounts. So we just need to pass down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e4fed17a32 |
btrfs: allow idmapped SET_RECEIVED_SUBVOL ioctls
The SET_RECEIVED_SUBVOL ioctls are used to set information about a received subvolume. Make it possible to set information about a received subvolume on idmapped mounts. This is a fairly straightforward operation since all the permission checking helpers are already capable of handling idmapped mounts. So we just need to pass down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
aabb34e7a3 |
btrfs: relax restrictions for SNAP_DESTROY_V2 with subvolids
So far we prevented the deletion of subvolumes and snapshots using subvolume ids possible with the BTRFS_SUBVOL_SPEC_BY_ID flag. This restriction is necessary on idmapped mounts as this allows filesystem wide subvolume and snapshot deletions and thus can escape the scope of what's exposed under the mount identified by the fd passed with the ioctl. Deletion by subvolume id works by looking for an alias of the parent of the subvolume or snapshot to be deleted. The parent alias can be anywhere in the filesystem. However, as long as the alias of the parent that is found is the same as the one identified by the file descriptor passed through the ioctl we can allow the deletion. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c4ed533bdc |
btrfs: allow idmapped SNAP_DESTROY ioctls
Destroying subvolumes and snapshots are important features of btrfs.
Both operations are available to unprivileged users if the filesystem
has been mounted with the "user_subvol_rm_allowed" mount option. Allow
subvolume and snapshot deletion on idmapped mounts. This is a fairly
straightforward operation since all the permission checking helpers are
already capable of handling idmapped mounts. So we just need to pass
down the mount's userns.
Subvolumes and snapshots can either be deleted by specifying their name
or - if BTRFS_IOC_SNAP_DESTROY_V2 is used - by their subvolume or
snapshot id if the BTRFS_SUBVOL_SPEC_BY_ID is set.
This feature is blocked on idmapped mounts as this allows filesystem
wide subvolume deletions and thus can escape the scope of what's exposed
under the mount identified by the fd passed with the ioctl.
This means that even the root or CAP_SYS_ADMIN capable user can't delete
a subvolume via BTRFS_SUBVOL_SPEC_BY_ID. This is intentional.
The root user is currently already subject to permission checks in
btrfs_may_delete() including whether the inode's i_uid/i_gid of the
directory the subvolume is located in have a mapping in the caller's
idmapping. For this to fail isn't currently possible since a btrfs
filesystem can't be mounted with a non-initial idmapping but it shows
that even the root user would fail to delete a subvolume if the relevant
inode isn't mapped in their idmapping. The idmapped mount case is the
same in principle.
This isn't a huge problem a root user wanting to delete arbitrary
subvolumes can just always create another (even detached) mount without
an idmapping attached.
In addition, we will allow BTRFS_SUBVOL_SPEC_BY_ID for cases where the
subvolume to delete is directly located under inode referenced by the fd
passed for the ioctl() in a follow-up commit.
Here is an example where a btrfs subvolume is deleted through a
subvolume mount that does not expose the subvolume to be delete but it
can still be deleted by using the subvolume id:
/* Compile the following program as "delete_by_spec". */
#define _GNU_SOURCE
#include <fcntl.h>
#include <inttypes.h>
#include <linux/btrfs.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
static int rm_subvolume_by_id(int fd, uint64_t subvolid)
{
struct btrfs_ioctl_vol_args_v2 args = {};
int ret;
args.flags = BTRFS_SUBVOL_SPEC_BY_ID;
args.subvolid = subvolid;
ret = ioctl(fd, BTRFS_IOC_SNAP_DESTROY_V2, &args);
if (ret < 0)
return -1;
return 0;
}
int main(int argc, char *argv[])
{
int subvolid = 0;
if (argc < 3)
exit(1);
fprintf(stderr, "Opening %s\n", argv[1]);
int fd = open(argv[1], O_CLOEXEC | O_DIRECTORY);
if (fd < 0)
exit(2);
subvolid = atoi(argv[2]);
fprintf(stderr, "Deleting subvolume with subvolid %d\n", subvolid);
int ret = rm_subvolume_by_id(fd, subvolid);
if (ret < 0)
exit(3);
exit(0);
}
#include <stdio.h>"
#include <stdlib.h>"
#include <linux/btrfs.h"
truncate -s 10G btrfs.img
mkfs.btrfs btrfs.img
export LOOPDEV=$(sudo losetup -f --show btrfs.img)
mount ${LOOPDEV} /mnt
sudo chown $(id -u):$(id -g) /mnt
btrfs subvolume create /mnt/A
btrfs subvolume create /mnt/B/C
# Get subvolume id via:
sudo btrfs subvolume show /mnt/A
# Save subvolid
SUBVOLID=<nr>
sudo umount /mnt
sudo mount ${LOOPDEV} -o subvol=B/C,user_subvol_rm_allowed /mnt
./delete_by_spec /mnt ${SUBVOLID}
With idmapped mounts this can potentially be used by users to delete
subvolumes/snapshots they would otherwise not have access to as the
idmapping would be applied to an inode that is not exposed in the mount
of the subvolume.
The fact that this is a filesystem wide operation suggests it might be a
good idea to expose this under a separate ioctl that clearly indicates
this. In essence, the file descriptor passed with the ioctl is merely
used to identify the filesystem on which to operate when
BTRFS_SUBVOL_SPEC_BY_ID is used.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
4d4340c912 |
btrfs: allow idmapped SNAP_CREATE/SUBVOL_CREATE ioctls
Creating subvolumes and snapshots is one of the core features of btrfs and is even available to unprivileged users. Make it possible to use subvolume and snapshot creation on idmapped mounts. This is a fairly straightforward operation since all the permission checking helpers are already capable of handling idmapped mounts. So we just need to pass down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5474bf400f |
btrfs: check whether fsgid/fsuid are mapped during subvolume creation
When a new subvolume is created btrfs currently doesn't check whether the fsgid/fsuid of the caller actually have a mapping in the user namespace attached to the filesystem. The VFS always checks this to make sure that the caller's fsgid/fsuid can be represented on-disk. This is most relevant for filesystems that can be mounted inside user namespaces but it is in general a good hardening measure to prevent unrepresentable gid/uid from being written to disk. Since we want to support idmapped mounts for btrfs ioctls to create subvolumes in follow-up patches this becomes important since we want to make sure the fsgid/fsuid of the caller as mapped according to the idmapped mount can be represented on-disk. Simply add the missing fsuidgid_has_mapping() line from the VFS may_create() version to btrfs_may_create(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3bc71ba02c |
btrfs: allow idmapped permission inode op
Enable btrfs_permission() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d4d0946461 |
btrfs: allow idmapped setattr inode op
Enable btrfs_setattr() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
98b6ab5fc0 |
btrfs: allow idmapped tmpfile inode op
Enable btrfs_tmpfile() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5a0521086e |
btrfs: allow idmapped symlink inode op
Enable btrfs_symlink() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b0b3e44d34 |
btrfs: allow idmapped mkdir inode op
Enable btrfs_mkdir() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e93ca491d0 |
btrfs: allow idmapped create inode op
Enable btrfs_create() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
72105277dc |
btrfs: allow idmapped mknod inode op
Enable btrfs_mknod() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c020d2eaf1 |
btrfs: allow idmapped getattr inode op
Enable btrfs_getattr() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ca07274c3d |
btrfs: allow idmapped rename inode op
Enable btrfs_rename() to handle idmapped mounts. This is just a matter of passing down the mount's userns. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b3b6f5b922 |
btrfs: handle idmaps in btrfs_new_inode()
Extend btrfs_new_inode() to take the idmapped mount into account when initializing a new inode. This is just a matter of passing down the mount's userns. The rest is taken care of in inode_init_owner(). This is a preliminary patch to make the individual btrfs inode operations idmapped mount aware. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e7849e33cf |
btrfs: sysfs: document structures and their associated files
Sysfs file has grown big. It takes some time to locate the correct struct attribute to add new files. Create a table and map the struct attribute to its sysfs path. Also, fix the comment about the debug sysfs path. And add the comments to the attributes instead of attribute group, where sysfs file names are defined. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e4571b8c5e |
btrfs: fix NULL pointer dereference when deleting device by invalid id
[BUG] It's easy to trigger NULL pointer dereference, just by removing a non-existing device id: # mkfs.btrfs -f -m single -d single /dev/test/scratch1 \ /dev/test/scratch2 # mount /dev/test/scratch1 /mnt/btrfs # btrfs device remove 3 /mnt/btrfs Then we have the following kernel NULL pointer dereference: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 9 PID: 649 Comm: btrfs Not tainted 5.14.0-rc3-custom+ #35 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:btrfs_rm_device+0x4de/0x6b0 [btrfs] btrfs_ioctl+0x18bb/0x3190 [btrfs] ? lock_is_held_type+0xa5/0x120 ? find_held_lock.constprop.0+0x2b/0x80 ? do_user_addr_fault+0x201/0x6a0 ? lock_release+0xd2/0x2d0 ? __x64_sys_ioctl+0x83/0xb0 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae [CAUSE] Commit |
|
|
|
63fb5879db |
btrfs: zoned: add asserts on splitting extent_map
We call split_zoned_em() on an extent_map on submitting a bio for it. Thus, we can assume the extent_map is PINNED, not LOGGING, and in the modified list. Add ASSERT()s to ensure the extent_maps after the split also has the proper flags set and are in the modified list. Suggested-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0ae79c6fe7 |
btrfs: zoned: fix block group alloc_offset calculation
alloc_offset is offset from the start of a block group and @offset is
actually an address in logical space. Thus, we need to consider
block_group->start when calculating them.
Fixes:
|
|
|
|
ba86dd9fe6 |
btrfs: zoned: suppress reclaim error message on EAGAIN
btrfs_relocate_chunk() can fail with -EAGAIN when e.g. send operations are
running. The message can fail btrfs/187 and it's unnecessary because we
anyway add it back to the reclaim list.
btrfs_reclaim_bgs_work()
`-> btrfs_relocate_chunk()
`-> btrfs_relocate_block_group()
`-> reloc_chunk_start()
`-> if (fs_info->send_in_progress)
`-> return -EAGAIN
CC: stable@vger.kernel.org # 5.13+
Fixes:
|
|
|
|
77233c2d2e |
btrfs: zoned: allow disabling of zone auto reclaim
Automatically reclaiming dirty zones might not always be desired for all workloads, especially as there are currently still some rough edges with the relocation code on zoned filesystems. Allow disabling zone auto reclaim on a per filesystem basis by writing 0 as the threshold value. Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1f29537302 |
btrfs: update comment at log_conflicting_inodes()
A comment at log_conflicting_inodes() mentions that we check the inode's
logged_trans field instead of using btrfs_inode_in_log() because the field
last_log_commit is not updated when we log that an inode exists and the
inode has the full sync flag (BTRFS_INODE_NEEDS_FULL_SYNC) set. The part
about the full sync flag is not true anymore since commit
|
|
|
|
d135a53396 |
btrfs: remove no longer needed full sync flag check at inode_logged()
Now that we are checking if the inode's logged_trans is 0 to detect the possibility of the inode having been evicted and reloaded, the test for the full sync flag (BTRFS_INODE_NEEDS_FULL_SYNC) is no longer needed at tree-log.c:inode_logged(). Its purpose was to detect the possibility of a previous eviction as well, since when an inode is loaded the full sync flag is always set on it (and only cleared after the inode is logged). So just remove the check and update the comment. The check for the inode's logged_trans being 0 was added recently by the patch with the subject "btrfs: eliminate some false positives when checking if inode was logged". Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1c167b87f4 |
btrfs: remove unnecessary NULL check for the new inode during rename exchange
At the very end of btrfs_rename_exchange(), in case an error happened, we
are checking if 'new_inode' is NULL, but that is not needed since during a
rename exchange, unlike regular renames, 'new_inode' can never be NULL,
and if it were, we would have a crashed much earlier when we dereference it
multiple times.
So remove the check because it is not necessary and because it is causing
static checkers to emit a warning. I probably introduced the check by
copy-pasting similar code from btrfs_rename(), where 'new_inode' can be
NULL, in commit
|
|
|
|
dce2815039 |
btrfs: allocate backref_ctx on stack in find_extent_clone
Instead of using kmalloc() to allocate backref_ctx, allocate backref_ctx on stack. The size is reasonably small. sizeof(backref_ctx) = 48 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c853a5783e |
btrfs: allocate btrfs_ioctl_defrag_range_args on stack
Instead of using kmalloc() to allocate btrfs_ioctl_defrag_range_args, allocate btrfs_ioctl_defrag_range_args on stack, the size is reasonably small and ioctls are called in process context. sizeof(btrfs_ioctl_defrag_range_args) = 48 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0afb603afc |
btrfs: allocate btrfs_ioctl_quota_rescan_args on stack
Instead of using kmalloc() to allocate btrfs_ioctl_quota_rescan_args, allocate btrfs_ioctl_quota_rescan_args on stack, the size is reasonably small and ioctls are called in process context. sizeof(btrfs_ioctl_quota_rescan_args) = 64 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
98caf9531e |
btrfs: allocate file_ra_state on stack in readahead_cache
Instead of allocating file_ra_state using kmalloc, allocate on stack. sizeof(struct readahead) = 32 bytes. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0ff40a910f |
btrfs: introduce btrfs_search_backwards function
It's a common practice to start a search using offset (u64)-1, which is the u64 maximum value, meaning that we want the search_slot function to be set in the last item with the same objectid and type. Once we are in this position, it's a matter to start a search backwards by calling btrfs_previous_item, which will check if we'll need to go to a previous leaf and other necessary checks, only to be sure that we are in last offset of the same object and type. The new btrfs_search_backwards function does the all these steps when necessary, and can be used to avoid code duplication. Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ea3dc7d2d1 |
btrfs: print if fsverity support is built in when loading module
As fsverity support depends on a config option, print that at module load time like we do for similar features. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
705242538f |
btrfs: verity metadata orphan items
Writing out the verity data is too large of an operation to do in a single transaction. If we are interrupted before we finish creating fsverity metadata for a file, or fail to clean up already created metadata after a failure, we could leak the verity items that we already committed. To address this issue, we use the orphan mechanism. When we start enabling verity on a file, we also add an orphan item for that inode. When we are finished, we delete the orphan. However, if we are interrupted midway, the orphan will be present at mount and we can cleanup the half-formed verity state. There is a possible race with a normal unlink operation: if unlink and verity run on the same file in parallel, it is possible for verity to succeed and delete the still legitimate orphan added by unlink. Then, if we are interrupted and mount in that state, we will never clean up the inode properly. This is also possible for a file created with O_TMPFILE. Check nlink==0 before deleting to avoid this race. A final thing to note is that this is a resurrection of using orphans to signal an operation besides "delete this inode". The old case was to signal the need to do a truncate. That case still technically applies for mounting very old file systems, so we need to take some care to not clobber it. To that end, we just have to be careful that verity orphan cleanup is a no-op for non-verity files. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
146054090b |
btrfs: initial fsverity support
Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
77eea05e78 |
btrfs: add ro compat flags to inodes
Currently, inode flags are fully backwards incompatible in btrfs. If we introduce a new inode flag, then tree-checker will detect it and fail. This can even cause us to fail to mount entirely. To make it possible to introduce new flags which can be read-only compatible, like VERITY, we add new ro flags to btrfs without treating them quite so harshly in tree-checker. A read-only file system can survive an unexpected flag, and can be mounted. As for the implementation, it unfortunately gets a little complicated. The on-disk representation of the inode, btrfs_inode_item, has an __le64 for flags but the in-memory representation, btrfs_inode, uses a u32. David Sterba had the nice idea that we could reclaim those wasted 32 bits on disk and use them for the new ro_compat flags. It turns out that the tree-checker code which checks for unknown flags is broken, and ignores the upper 32 bits we are hoping to use. The issue is that the flags use the literal 1 rather than 1ULL, so the flags are signed ints, and one of them is specifically (1 << 31). As a result, the mask which ORs the flags is a negative integer on machines where int is 32 bit twos complement. When tree-checker evaluates the expression: btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK) The mask is something like 0x80000abc, which gets promoted to u64 with sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves all the upper bits zeroed, and we can't detect unexpected flags. This suggests that we can't use those bits after all. Luckily, we have good reason to believe that they are zero anyway. Inode flags are metadata, which is always checksummed, so any bit flips that would introduce 1s would cause a checksum failure anyway (excluding the improbable case of the checksum getting corrupted exactly badly). Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit inode flag should preserve its value and not add leading zeroes (at least for twos complement). The only place that flag (BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in the root item, and indeed for that inode we see 0xffffffff80000000 as the flags on disk. However, that inode is never seen by tree checker, nor is it used in a context where verity might be meaningful. Theoretically, a future ro flag might cause trouble on that inode, so we should proactively clean up that mess before it does. With the introduction of the new ro flags, keep two separate unsigned masks and check them against the appropriate u32. Since we no longer run afoul of sign extension, this also stops writing out 0xffffffff80000000 in root_item inodes going forward. Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
efc222f8d7 |
btrfs: simplify return values in btrfs_check_raid_min_devices
Function btrfs_check_raid_min_devices() returns error code from the enum btrfs_err_code and it starts from 1. So there is no need to check if ret is > 0. So drop this check and also drop the local variable ret. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7361b4ae03 |
btrfs: remove the dead comment in writepage_delalloc()
When btrfs_run_delalloc_range() failed, we will error out.
But there is a strange comment mentioning that
btrfs_run_delalloc_range() could have returned value >0 to indicate the
IO has already started.
Commit
|
|
|
|
b2f78e8805 |
btrfs: allow degenerate raid0/raid10
The data on raid0 and raid10 are supposed to be spread over multiple
devices, so the minimum constraints are set to 2 and 4 respectively.
This is an artificial limit and there's some interest to remove it.
Change this to allow raid0 on one device and raid10 on two devices. This
works as expected eg. when converting or removing devices.
The only difference is when raid0 on two devices gets one device
removed. Unpatched would silently create a single profile, while newly
it would be raid0.
The motivation is to allow to preserve the profile type as long as it
possible for some intermediate state (device removal, conversion), or
when there are disks of different size, with raid0 the otherwise
unusable space of the last device will be used too. Similarly for
raid10, though the two largest devices would need to be the same.
Unpatched kernel will mount and use the degenerate profiles just fine
but won't allow any operation that would not satisfy the stricter device
number constraints, eg. not allowing to go from 3 to 2 devices for
raid10 or various profile conversions.
Example output:
# btrfs fi us -T .
Overall:
Device size: 10.00GiB
Device allocated: 1.01GiB
Device unallocated: 8.99GiB
Device missing: 0.00B
Used: 200.61MiB
Free (estimated): 9.79GiB (min: 9.79GiB)
Free (statfs, df): 9.79GiB
Data ratio: 1.00
Metadata ratio: 1.00
Global reserve: 3.25MiB (used: 0.00B)
Multiple profiles: no
Data Metadata System
Id Path RAID0 single single Unallocated
-- ---------- --------- --------- -------- -----------
1 /dev/sda10 1.00GiB 8.00MiB 1.00MiB 8.99GiB
-- ---------- --------- --------- -------- -----------
Total 1.00GiB 8.00MiB 1.00MiB 8.99GiB
Used 200.25MiB 352.00KiB 16.00KiB
# btrfs dev us .
/dev/sda10, ID: 1
Device size: 10.00GiB
Device slack: 0.00B
Data,RAID0/1: 1.00GiB
Metadata,single: 8.00MiB
System,single: 1.00MiB
Unallocated: 8.99GiB
Note "Data,RAID0/1", with btrfs-progs 5.13+ the number of devices per
profile is printed.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
bd54f381a1 |
btrfs: do not pin logs too early during renames
During renames we pin the logs of the roots a bit too early, before the calls to btrfs_insert_inode_ref(). We can pin the logs after those calls, since those will not change anything in a log tree. In a scenario where we have multiple and diverse filesystem operations running in parallel, those calls can take a significant amount of time, due to lock contention on extent buffers, and delay log commits from other tasks for longer than necessary. So just pin logs after calls to btrfs_insert_inode_ref() and right before the first operation that can update a log tree. The following script that uses dbench was used for testing: $ cat dbench-test.sh #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/nvme0n1 MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-m single -d single" echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $DEV &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 120 16 umount $MNT The tests were run on a machine with 12 cores, 64G of RAN, a NVMe device and using a non-debug kernel config (Debian's default config). The results compare a branch without this patch and without the previous patch in the series, that has the subject: "btrfs: eliminate some false positives when checking if inode was logged" Versus the same branch with these two patches applied. dbench with 8 clients, results before: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 4391359 0.009 249.745 Close 3225882 0.001 3.243 Rename 185953 0.065 240.643 Unlink 886669 0.049 249.906 Deltree 112 2.455 217.433 Mkdir 56 0.002 0.004 Qpathinfo 3980281 0.004 3.109 Qfileinfo 697579 0.001 0.187 Qfsinfo 729780 0.002 2.424 Sfileinfo 357764 0.004 1.415 Find 1538861 0.016 4.863 WriteX |
|
|
|
6e8e777deb |
btrfs: eliminate some false positives when checking if inode was logged
When checking if an inode was previously logged in the current transaction through the helper inode_logged(), we can return some false positives that can be easily eliminated. These correspond to the cases where an inode has a ->logged_trans value that is not zero and its value is smaller then the ID of the current transaction. This means we know exactly that the inode was never logged before in the current transaction, so we can return false and avoid the callers to do extra work: 1) Having btrfs_del_dir_entries_in_log() and btrfs_del_inode_ref_in_log() unnecessarily join a log transaction and do deletion searches in a log tree that will not find anything. This just adds unnecessary contention on extent buffer locks; 2) Having btrfs_log_new_name() unnecessarily log an inode when it is not needed. If the inode was not logged before, we don't need to log it in LOG_INODE_EXISTS mode. So just make sure that any false positive only happens when ->logged_trans has a value of 0. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
42b5d73b5d |
btrfs: drop unnecessary ASSERT from btrfs_submit_direct()
When on SINGLE block group, btrfs_get_io_geometry() will return "the size of the block group - the offset of the logical address within the block group" as geom.len. Since we allow up to 8 GiB zone size on zoned filesystem, we can have up to 8 GiB block group, so can have up to 8 GiB geom.len as well. With this setup, we easily hit the "ASSERT(geom.len <= INT_MAX);". The ASSERT looks like to guard btrfs_bio_clone_partial() and bio_trim() which both take "int" (now u64 due to the previous patch). So to be precise the ASSERT should check if clone_len <= UINT_MAX. But actually, clone_len is already capped by bio.bi_iter.bi_size which is unsigned int. So the ASSERT is not necessary. Drop the ASSERT and properly compare submit_len and geom.len in u64. Then, let the implicit casting to convert it to u64. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
21dda654d4 |
btrfs: fix argument type of btrfs_bio_clone_partial()
The offset and can never be negative use unsigned int instead of int type for them. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b377630527 |
btrfs: use the filemap_fdatawrite_wbc helper for delalloc shrinking
sync_inode() has some holes that can cause problems if we're under heavy ENOSPC pressure. If there's writeback running on a separate thread sync_inode() will skip writing the inode altogether. What we really want is to make sure writeback has been started on all the pages to make sure we can see the ordered extents and wait on them if appropriate. Switch to this new helper which will allow us to accomplish this and avoid ENOSPC'ing early. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e16460707e |
btrfs: wait on async extents when flushing delalloc
I've been debugging an early ENOSPC problem in production and finally root caused it to this problem. When we switched to the per-inode in |
|
|
|
03fe78cc29 |
btrfs: use delalloc_bytes to determine flush amount for shrink_delalloc
We have been hitting some early ENOSPC issues in production with more recent kernels, and I tracked it down to us simply not flushing delalloc as aggressively as we should be. With tracing I was seeing us failing all tickets with all of the block rsvs at or around 0, with very little pinned space, but still around 120MiB of outstanding bytes_may_used. Upon further investigation I saw that we were flushing around 14 pages per shrink call for delalloc, despite having around 2GiB of delalloc outstanding. Consider the example of a 8 way machine, all CPUs trying to create a file in parallel, which at the time of this commit requires 5 items to do. Assuming a 16k leaf size, we have 10MiB of total metadata reclaim size waiting on reservations. Now assume we have 128MiB of delalloc outstanding. With our current math we would set items to 20, and then set to_reclaim to 20 * 256k, or 5MiB. Assuming that we went through this loop all 3 times, for both FLUSH_DELALLOC and FLUSH_DELALLOC_WAIT, and then did the full loop twice, we'd only flush 60MiB of the 128MiB delalloc space. This could leave a fair bit of delalloc reservations still hanging around by the time we go to ENOSPC out all the remaining tickets. Fix this two ways. First, change the calculations to be a fraction of the total delalloc bytes on the system. Prior to this change we were calculating based on dirty inodes so our math made more sense, now it's just completely unrelated to what we're actually doing. Second add a FLUSH_DELALLOC_FULL state, that we hold off until we've gone through the flush states at least once. This will empty the system of all delalloc so we're sure to be truly out of space when we start failing tickets. I'm tagging stable 5.10 and forward, because this is where we started using the page stuff heavily again. This affects earlier kernel versions as well, but would be a pain to backport to them as the flushing mechanisms aren't the same. CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fcdef39c03 |
btrfs: enable a tracepoint when we fail tickets
When debugging early enospc problems it was useful to have a tracepoint where we failed all tickets so I could check the state of the enospc counters at failure time to validate my fixes. This adds the tracpoint so you can easily get that information. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ac98141d14 |
btrfs: wake up async_delalloc_pages waiters after submit
We use the async_delalloc_pages mechanism to make sure that we've completed our async work before trying to continue our delalloc flushing. The reason for this is we need to see any ordered extents that were created by our delalloc flushing. However we're waking up before we do the submit work, which is before we create the ordered extents. This is a pretty wide race window where we could potentially think there are no ordered extents and thus exit shrink_delalloc prematurely. Fix this by waking us up after we've done the work to create ordered extents. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
963e4db83e |
btrfs: unify regular and subpage error paths in __extent_writepage()
[BUG] When running btrfs/160 in a loop for subpage with experimental compression support, it has a high chance to crash (~20%): BTRFS critical (device dm-7): panic in __btrfs_add_ordered_extent:238: inconsistency in ordered tree at offset 0 (errno=-17 Object already exists) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:238! Internal error: Oops - BUG: 0 [#1] SMP pc : __btrfs_add_ordered_extent+0x550/0x670 [btrfs] lr : __btrfs_add_ordered_extent+0x550/0x670 [btrfs] Call trace: __btrfs_add_ordered_extent+0x550/0x670 [btrfs] btrfs_add_ordered_extent+0x2c/0x50 [btrfs] run_delalloc_nocow+0x81c/0x8fc [btrfs] btrfs_run_delalloc_range+0xa4/0x390 [btrfs] writepage_delalloc+0xc0/0x1ac [btrfs] __extent_writepage+0xf4/0x370 [btrfs] extent_write_cache_pages+0x288/0x4f4 [btrfs] extent_writepages+0x58/0xe0 [btrfs] btrfs_writepages+0x1c/0x30 [btrfs] do_writepages+0x60/0x110 __filemap_fdatawrite_range+0x108/0x170 filemap_fdatawrite_range+0x20/0x30 btrfs_fdatawrite_range+0x34/0x4dc [btrfs] __btrfs_write_out_cache+0x34c/0x480 [btrfs] btrfs_write_out_cache+0x144/0x220 [btrfs] btrfs_start_dirty_block_groups+0x3ac/0x6b0 [btrfs] btrfs_commit_transaction+0xd0/0xbb4 [btrfs] btrfs_sync_fs+0x64/0x1cc [btrfs] sync_fs_one_sb+0x3c/0x50 iterate_supers+0xcc/0x1d4 ksys_sync+0x6c/0xd0 __arm64_sys_sync+0x1c/0x30 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0x4c/0xd4 do_el0_svc+0x30/0x9c el0_svc+0x2c/0x54 el0_sync_handler+0x1a8/0x1b0 el0_sync+0x198/0x1c0 ---[ end trace 336f67369ae6e0af ]--- [CAUSE] For subpage case, we can have multiple sectors inside a page, this makes it possible for __extent_writepage() to have part of its page submitted before returning. In btrfs/160, we are using dm-dust to emulate write error, this means for certain pages, we could have everything running fine, but at the end of __extent_writepage(), one of the submitted bios fails due to dm-dust. Then the page is marked Error, and we change @ret from 0 to -EIO. This makes the caller extent_write_cache_pages() to error out, without submitting the remaining pages. Furthermore, since we're erroring out for free space cache, it doesn't really care about the error and will update the inode and retry the writeback. Then we re-run the delalloc range, and will try to insert the same delalloc range while previous delalloc range is still hanging there, triggering the above error. [FIX] The proper fix is to handle errors from __extent_writepage() properly, by ending the remaining ordered extent. But that fix needs the following changes: - Know at exactly which sector the error happened Currently __extent_writepage_io() works for the full page, can't return at which sector we hit the error. - Grab the ordered extent covering the failed sector As a hotfix for subpage case, here we unify the error paths in __extent_writepage(). In fact, the "if (PageError(page))" branch never get executed if @ret is still 0 for non-subpage cases. As for non-subpage case, we never submit current page in __extent_writepage(), but only add current page into bio. The bio can only get submitted in next page. Thus we never get PageError() set due to IO failure, thus when we hit the branch, @ret is never 0. By simply removing that @ret assignment, we let subpage case ignore the IO failure, thus only error out for fatal errors just like regular sectorsize. So that IO error won't be treated as fatal error not trigger the hanging OE problem. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
95ea0486b2 |
btrfs: allow read-write for 4K sectorsize on 64K page size systems
Since now we support data and metadata read-write for subpage, remove the RO requirement for subpage mount. There are some extra limitations though: - For now, subpage RW mount is still considered experimental Thus that mount warning will still be there. - No compression support There are still quite some PAGE_SIZE hard coded and quite some call sites use extent_clear_unlock_delalloc() to unlock locked_page. This will screw up subpage helpers. Now for subpage RW mount, no matter what mount option or inode attr is set, all writes will not be compressed. Although reading compressed data has no problem. - No defrag for subpage case The defrag support for subpage case will come in later patches, which will also rework the defrag workflow. - No inline extent will be created This is mostly due to the fact that filemap_fdatawrite_range() will trigger more write than the range specified. In fallocate calls, this behavior can make us to writeback which can be inlined, before we enlarge the i_size. This is a very special corner case, and even current btrfs check won't report error on such inline extent + regular extent. But considering how much effort has been put to prevent such inline + regular, I'd prefer to cut off inline extent completely until we have a good solution. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9d9ea1e68a |
btrfs: subpage: fix relocation potentially overwriting last page data
[BUG]
When using the following script, btrfs will report data corruption after
one data balance with subpage support:
mkfs.btrfs -f -s 4k $dev
mount $dev -o nospace_cache $mnt
$fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress
sync
btrfs balance start -d $mnt
btrfs scrub start -B $mnt
Similar problem can be easily observed in btrfs/028 test case, there
will be tons of balance failure with -EIO.
[CAUSE]
Above fsstress will result the following data extents layout in extent
tree:
item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82
refs 2 gen 7 flags DATA
extent data backref root FS_TREE objectid 259 offset 1339392 count 1
extent data backref root FS_TREE objectid 259 offset 647168 count 1
item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24
block group used 102400 chunk_objectid 256 flags DATA
item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53
refs 1 gen 7 flags DATA
extent data backref root FS_TREE objectid 259 offset 729088 count 1
Then when creating the data reloc inode, the data reloc inode will look
like this:
0 32K 64K 96K 100K 104K
|<------ Extent A ----->| |<- Ext B ->|
Then when we first try to relocate extent A, we setup the data reloc
inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K).
For page 64K, since the i_size is just 96K, we fill range [96K, 128K)
with 0 and set it uptodate.
Then when we come to extent B, we update i_size to 104K, then try to read
page [64K, 128K).
Then we find the page is already uptodate, so we skip the read.
But range [96K, 128K) is filled with 0, not the real data.
Then we writeback the data reloc inode to disk, with 0 filling range
[96K, 128K), corrupting the content of extent B.
The behavior is caused by the fact that we still do full page read for
subpage case.
The bug won't really happen for regular sectorsize, as one page only
contains one sector.
[FIX]
This patch will fix the problem by invalidating range [i_size, PAGE_END]
in prealloc_file_extent_cluster().
So that if above example happens, when we preallocate the file extent
for extent B, we will clear the uptodate bits for range [96K, 128K),
allowing later relocate_one_page() to re-read the needed range.
There is a special note for the invalidating part.
Since we're not calling real btrfs_invalidatepage(), but just clearing
the subpage and page uptodate bits, we can leave a page half dirty and
half out of date.
Reading such page can cause a deadlock, as we normally expect a dirty
page to be fully uptodate.
Thus here we flush and wait the data reloc inode before doing the hacked
invalidating. This won't cause extra overhead, as we're going to
writeback the data later anyway.
Reported-by: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
e3c62324e4 |
btrfs: subpage: fix false alert when relocating partial preallocated data extents
[BUG] When relocating partial preallocated data extents (part of the preallocated extent is written) for subpage, it can cause the following false alert and make the relocation to fail: BTRFS info (device dm-3): balance: start -d BTRFS info (device dm-3): relocating block group 13631488 flags data BTRFS warning (device dm-3): csum failed root -9 ino 257 off 4096 csum 0x98757625 expected csum 0x00000000 mirror 1 BTRFS error (device dm-3): bdev /dev/mapper/arm_nvme-test errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 BTRFS warning (device dm-3): csum failed root -9 ino 257 off 4096 csum 0x98757625 expected csum 0x00000000 mirror 1 BTRFS error (device dm-3): bdev /dev/mapper/arm_nvme-test errs: wr 0, rd 0, flush 0, corrupt 2, gen 0 BTRFS info (device dm-3): balance: ended with status: -5 The minimal script to reproduce looks like this: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt xfs_io -f -c "falloc 0 8k" $mnt/file xfs_io -f -c "pwrite 0 4k" $mnt/file btrfs balance start -d $mnt [CAUSE] Function btrfs_verify_data_csum() checks if the full range has EXTENT_NODATASUM bit for data reloc inode, if *all* bytes of the range have EXTENT_NODATASUM bit, then it skip the range. This works pretty well for regular sectorsize, as in that case btrfs_verify_data_csum() is called for each sector, thus no problem at all. But for subpage case, btrfs_verify_data_csum() is called on each bvec, which can contain several sectors, and since it checks *all* bytes for EXTENT_NODATASUM bit, if we have some range with csum, then we will continue checking all the sectors. For the preallocated sectors, it doesn't have any csum, thus obviously the csum won't match and cause the false alert. [FIX] Move the EXTENT_NODATASUM check into the main loop, so that we can check each sector for EXTENT_NODATASUM bit for subpage case. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7c11d0ae43 |
btrfs: subpage: fix a potential use-after-free in writeback helper
[BUG] There is a possible use-after-free bug when running generic/095. BUG: Unable to handle kernel data access on write at 0x6b6b6b6b6b6b725b Faulting instruction address: 0xc000000000283654 c000000000283078 do_raw_spin_unlock+0x88/0x230 c0000000012b1e14 _raw_spin_unlock_irqrestore+0x44/0x90 c000000000a918dc btrfs_subpage_clear_writeback+0xac/0xe0 c0000000009e0458 end_bio_extent_writepage+0x158/0x270 c000000000b6fd14 bio_endio+0x254/0x270 c0000000009fc0f0 btrfs_end_bio+0x1a0/0x200 c000000000b6fd14 bio_endio+0x254/0x270 c000000000b781fc blk_update_request+0x46c/0x670 c000000000b8b394 blk_mq_end_request+0x34/0x1d0 c000000000d82d1c lo_complete_rq+0x11c/0x140 c000000000b880a4 blk_complete_reqs+0x84/0xb0 c0000000012b2ca4 __do_softirq+0x334/0x680 c0000000001dd878 irq_exit+0x148/0x1d0 c000000000016f4c do_IRQ+0x20c/0x240 c000000000009240 hardware_interrupt_common_virt+0x1b0/0x1c0 [CAUSE] There is very small race window like the following in generic/095. Thread 1 | Thread 2 --------------------------------+------------------------------------ end_bio_extent_writepage() | btrfs_releasepage() |- spin_lock_irqsave() | | |- end_page_writeback() | | | | |- if (PageWriteback() ||...) | | |- clear_page_extent_mapped() | | |- kfree(subpage); |- spin_unlock_irqrestore(). The race can also happen between writeback and btrfs_invalidatepage(), although that would be much harder as btrfs_invalidatepage() has much more work to do before the clear_page_extent_mapped() call. [FIX] Here we "wait" for the subapge spinlock to be released before we detach subpage structure. So this patch will introduce a new function, wait_subpage_spinlock(), to do the "wait" by acquiring the spinlock and release it. Since the caller has ensured the page is not dirty nor writeback, and page is already locked, the only way to hold the subpage spinlock is from endio function. Thus we only need to acquire the spinlock to wait for any existing holder. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e046786619 |
btrfs: subpage: fix race between prepare_pages() and btrfs_releasepage()
[BUG] When running generic/095, there is a high chance to crash with subpage data RW support: assertion failed: PagePrivate(page) && page->private ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3403! Internal error: Oops - BUG: 0 [#1] SMP CPU: 1 PID: 3567 Comm: fio Tainted: 5.12.0-rc7-custom+ #17 Hardware name: Khadas VIM3 (DT) Call trace: assertfail.constprop.0+0x28/0x2c [btrfs] btrfs_subpage_assert+0x80/0xa0 [btrfs] btrfs_subpage_set_uptodate+0x34/0xec [btrfs] btrfs_page_clamp_set_uptodate+0x74/0xa4 [btrfs] btrfs_dirty_pages+0x160/0x270 [btrfs] btrfs_buffered_write+0x444/0x630 [btrfs] btrfs_direct_write+0x1cc/0x2d0 [btrfs] btrfs_file_write_iter+0xc0/0x160 [btrfs] new_sync_write+0xe8/0x180 vfs_write+0x1b4/0x210 ksys_pwrite64+0x7c/0xc0 __arm64_sys_pwrite64+0x24/0x30 el0_svc_common.constprop.0+0x70/0x140 do_el0_svc+0x28/0x90 el0_svc+0x2c/0x54 el0_sync_handler+0x1a8/0x1ac el0_sync+0x170/0x180 Code: f0000160 913be042 913c4000 955444bc (d4210000) ---[ end trace 3fdd39f4cccedd68 ]--- [CAUSE] Although prepare_pages() calls find_or_create_page(), which returns the page locked, but in later prepare_uptodate_page() calls, we may call btrfs_readpage() which will unlock the page before it returns. This leaves a window where btrfs_releasepage() can sneak in and release the page, clearing page->private and causing above ASSERT(). [FIX] In prepare_uptodate_page(), we should not only check page->mapping, but also PagePrivate() to ensure we are still holding the correct page which has proper fs context setup. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c8050b3b7f |
btrfs: subpage: reject raid56 filesystem and profile conversion
RAID56 is not only unsafe due to its write-hole problem, but also has tons of hardcoded PAGE_SIZE. Disable it for subpage support for now. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e0eefe07f8 |
btrfs: subpage: allow submit_extent_page() to do bio split
Current submit_extent_page() just checks if the current page range can
be fitted into current bio, and if not, submit then re-add.
But this behavior can't handle subpage case at all.
For subpage case, the problem is in the page size, 64K, which is also
the same size as stripe size.
This means, if we can't fit a full 64K into a bio, due to stripe limit,
then it won't fit into next bio without crossing stripe either.
The proper way to handle it is:
- Check how many bytes we can be put into current bio
- Put as many bytes as possible into current bio first
- Submit current bio
- Create a new bio
- Add the remaining bytes into the new bio
Refactor submit_extent_page() so that it does the above iteration.
The main loop inside submit_extent_page() will look like this:
cur = pg_offset;
while (cur < pg_offset + size) {
u32 offset = cur - pg_offset;
int added;
if (!bio_ctrl->bio) {
/* Allocate new bio if needed */
}
/* Add as many bytes into the bio */
added = btrfs_bio_add_page();
if (added < size - offset) {
/* The current bio is full, submit it */
}
cur += added;
}
Also, since we're doing new bio allocation deep inside the main loop,
extract that code into a new helper, alloc_new_bio().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
7367253a35 |
btrfs: subpage: disable inline extent creation
[BUG]
When running the following fsx command (extracted from generic/127) on
subpage filesystem, it can create inline extent with regular extents:
fsx -q -l 262144 -o 65536 -S 191110531 -N 9057 -R -W $mnt/file > /tmp/fsx
The offending extent would look like:
item 9 key (257 INODE_REF 256) itemoff 15703 itemsize 14
index 2 namelen 4 name: file
item 10 key (257 EXTENT_DATA 0) itemoff 14975 itemsize 728
generation 7 type 0 (inline)
inline extent data size 707 ram_bytes 707 compression 0 (none)
item 11 key (257 EXTENT_DATA 4096) itemoff 14922 itemsize 53
generation 7 type 2 (prealloc)
prealloc data disk byte 102346752 nr 4096
prealloc data offset 0 nr 4096
[CAUSE]
For subpage filesystem, the writeback is triggered in page units, which
means, even if we just want to writeback range [16K, 20K) for 64K page
system, we will still try to writeback any dirty sector of range [0, 64K).
This is never a problem if sectorsize == PAGE_SIZE, but for subpage,
this can cause unexpected problems.
For above test case, the last several operations from fsx are:
9055 trunc from 0x40000 to 0x2c3
9057 falloc from 0x164c to 0x19d2 (0x386 bytes)
In operation 9055, we dirtied sector [0, 4096), then in falloc, we call
btrfs_wait_ordered_range(inode, start=4096, len=4096), only expecting to
writeback any dirty data in [4096, 8192), but nothing else.
Unfortunately, in subpage case, above btrfs_wait_ordered_range() will
trigger writeback of the range [0, 64K), which includes the data at
[0, 4096).
And since at the call site, we haven't yet increased i_size, which is
still 707, this means cow_file_range() can insert an inline extent.
Resulting above inline + regular extent.
[WORKAROUND]
I don't really have any good short-term solution yet, as this means all
operations that would trigger writeback need to be reviewed for any
i_size change.
So here I choose to disable inline extent creation for subpage case as a
workaround. We have done tons of work just to avoid such extent, so I
don't to create an exception just for subpage.
This only affects inline extent creation, subpage has no problem reading
existing inline extents at all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
cc1d0d93d5 |
btrfs: subpage: fix writeback which does not have ordered extent
[BUG] When running fsstress with subpage RW support, there are random BUG_ON()s triggered with the following trace: kernel BUG at fs/btrfs/file-item.c:667! Internal error: Oops - BUG: 0 [#1] SMP CPU: 1 PID: 3486 Comm: kworker/u13:2 5.11.0-rc4-custom+ #43 Hardware name: Radxa ROCK Pi 4B (DT) Workqueue: btrfs-worker-high btrfs_work_helper [btrfs] pstate: 60000005 (nZCv daif -PAN -UAO -TCO BTYPE=--) pc : btrfs_csum_one_bio+0x420/0x4e0 [btrfs] lr : btrfs_csum_one_bio+0x400/0x4e0 [btrfs] Call trace: btrfs_csum_one_bio+0x420/0x4e0 [btrfs] btrfs_submit_bio_start+0x20/0x30 [btrfs] run_one_async_start+0x28/0x44 [btrfs] btrfs_work_helper+0x128/0x1b4 [btrfs] process_one_work+0x22c/0x430 worker_thread+0x70/0x3a0 kthread+0x13c/0x140 ret_from_fork+0x10/0x30 [CAUSE] Above BUG_ON() means there is some bio range which doesn't have ordered extent, which indeed is worth a BUG_ON(). Unlike regular sectorsize == PAGE_SIZE case, in subpage we have extra subpage dirty bitmap to record which range is dirty and should be written back. This means, if we submit bio for a subpage range, we do not only need to clear page dirty, but also need to clear subpage dirty bits. In __extent_writepage_io(), we will call btrfs_page_clear_dirty() for any range we submit a bio. But there is loophole, if we hit a range which is beyond i_size, we just call btrfs_writepage_endio_finish_ordered() to finish the ordered io, then break out, without clearing the subpage dirty. This means, if we hit above branch, the subpage dirty bits are still there, if other range of the page get dirtied and we need to writeback that page again, we will submit bio for the old range, leaving a wild bio range which doesn't have ordered extent. [FIX] Fix it by always calling btrfs_page_clear_dirty() in __extent_writepage_io(). Also to avoid such problem from happening again, add a new assert, btrfs_page_assert_not_dirty(), to make sure both page dirty and subpage dirty bits are cleared before exiting __extent_writepage_io(). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c283289812 |
btrfs: make relocate_one_page() handle subpage case
For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f47960f49e |
btrfs: reloc: factor out relocation page read and dirty part
In function relocate_file_extent_cluster(), we have a big loop for marking all involved page delalloc. That part is long enough to be contained in one function, so this patch will move that code chunk into a new function, relocate_one_page(). This also provides enough space for later subpage work. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a6e66e6f8c |
btrfs: rework lzo_decompress_bio() to make it subpage compatible
For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1c3dc1731e |
btrfs: rework btrfs_decompress_buf2page()
There are several bugs inside the function btrfs_decompress_buf2page() - @start_byte doesn't take bvec.bv_offset into consideration Thus it can't handle case where the target range is not page aligned. - Too many helper variables There are tons of helper variables, @buf_offset, @current_buf_start, @start_byte, @prev_start_byte, @working_bytes, @bytes. This hurts anyone who wants to read the function. - No obvious main cursor for the iteartion A new problem caused by previous problem. - Comments for parameter list makes no sense Like @buf_start is the offset to @buf, or offset inside the full decompressed extent? (Spoiler alert, the later case) And @total_out acts more like @buf_start + @size_of_buf. The worst is @disk_start. The real meaning of it is the file offset of the full decompressed extent. This patch will rework the whole function by: - Add a proper comment with ASCII art to explain the parameter list - Rework parameter list The old @buf_start is renamed to @decompressed, to show how many bytes are already decompressed inside the full decompressed extent. The old @total_out is replaced by @buf_len, which is the decompressed data size. For old @disk_start and @bio, just pass @compressed_bio in. - Use single main cursor The main cursor will be @cur_file_offset, to show what's the current file offset. Other helper variables will be declared inside the main loop, and only minimal amount of helper variables: * offset_inside_decompressed_buf: The only real helper * copy_start_file_offset: File offset we start memcpy * bvec_file_offset: File offset of current bvec Even with all these extensive comments, the final function is still smaller than the original function, which is definitely a win. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
557023ea9f |
btrfs: grab correct extent map for subpage compressed extent read
[BUG]
When subpage compressed read write support is enabled, btrfs/038 always
fails with EIO.
A simplified script can easily trigger the problem:
mkfs.btrfs -f -s 4k $dev
mount $dev $mnt -o compress=lzo
xfs_io -f -c "truncate 118811" $mnt/foo
xfs_io -c "pwrite -S 0x0d -b 39987 92267 39987" $mnt/foo > /dev/null
sync
btrfs subvolume snapshot -r $mnt $mnt/mysnap1
xfs_io -c "pwrite -S 0x3e -b 80000 200000 80000" $mnt/foo > /dev/null
sync
xfs_io -c "pwrite -S 0xdc -b 10000 250000 10000" $mnt/foo > /dev/null
xfs_io -c "pwrite -S 0xff -b 10000 300000 10000" $mnt/foo > /dev/null
sync
btrfs subvolume snapshot -r $mnt $mnt/mysnap2
cat $mnt/mysnap2/foo
# Above cat will fail due to EIO
[CAUSE]
The problem is in btrfs_submit_compressed_read().
When it tries to grab the extent map of the read range, it uses the
following call:
em = lookup_extent_mapping(em_tree,
page_offset(bio_first_page_all(bio)),
fs_info->sectorsize);
The problem is in the page_offset(bio_first_page_all(bio)) part.
The offending inode has the following file extent layout
item 10 key (257 EXTENT_DATA 131072) itemoff 15639 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 13680640 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
item 11 key (257 EXTENT_DATA 135168) itemoff 15586 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 0 nr 0
item 12 key (257 EXTENT_DATA 196608) itemoff 15533 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 13676544 nr 4096
extent data offset 0 nr 53248 ram 86016
extent compression 2 (lzo)
And the bio passed in has the following parameters:
page_offset(bio_first_page_all(bio)) = 131072
bio_first_bvec_all(bio)->bv_offset = 65536
If we use page_offset(bio_first_page_all(bio) without adding bv_offset,
we will get an extent map for file offset 131072, not 196608.
This means we read uncompressed data from disk, and later decompression
will definitely fail.
[FIX]
Take bv_offset into consideration when trying to grab an extent map.
And add an ASSERT() to ensure we're really getting a compressed extent.
Thankfully this won't affect anything but subpage, thus we only need to
ensure this patch get merged before we enabled basic subpage support.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
ca62e85ded |
btrfs: disable compressed readahead for subpage
For current subpage support, we only support 64K page size with 4K sector size. This makes compressed readahead less effective, as maximum compressed extent size is only 128K, 2x the page size. On the other hand, the function add_ra_bio_pages() is still assuming sectorsize == PAGE_SIZE, and code change may affect 4K page size systems. So for now, let's disable subpage compressed readahead for now. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3670e6451b |
btrfs: subpage: check if there are compressed extents inside one page
[BUG] When testing experimental subpage compressed write support, it hits a NULL pointer dereference inside read path: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 pc : __pi_memcmp+0x28/0x1ec lr : check_data_csum+0xd0/0x274 [btrfs] Call trace: __pi_memcmp+0x28/0x1ec btrfs_verify_data_csum+0xf4/0x244 [btrfs] end_bio_extent_readpage+0x1d0/0x6b0 [btrfs] bio_endio+0x15c/0x1dc end_workqueue_fn+0x44/0x64 [btrfs] btrfs_work_helper+0x74/0x250 [btrfs] process_one_work+0x1d4/0x47c worker_thread+0x180/0x400 kthread+0x11c/0x120 ret_from_fork+0x10/0x30 Code: 54000261 d100044c d343fd8c f8408403 (f8408424) ---[ end trace 9e2c59f33ea40866 ]--- [CAUSE] When reading two compressed extents inside the same page, like the following layout, we trigger above crash: 0 32K 64K |-------|\\\\\\\| | \- Compressed extent (A) \--------- Compressed extent (B) For compressed read, we don't need to populate its io_bio->csum, as we rely on compressed_bio->csum to verify the compressed data, and then copy the decompressed to inode pages. Normally btrfs_verify_data_csum() skip such page by checking and clearing its PageChecked flag But since that flag is still for the full page, when endio for inode page range [0, 32K) gets executed, it clears PageChecked flag for the full page. Then when endio for inode page range [32K, 64K) gets executed, since the page no longer has PageChecked flag, it just continues checking, even though io_bio->csum is NULL. [FIX] Thankfully there are only two users of PageChecked bit: - Cow fixup Since subpage has its own way to trace page dirty (dirty_bitmap) and ordered bit (ordered_bitmap), it should never trigger cow fixup. - Compressed read We can distinguish such read by just checking io_bio->csum. So just check io_bio->csum before doing the verification to avoid such NULL pointer dereference. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4c37a79384 |
btrfs: reset this_bio_flag to avoid inheriting old flags
In btrfs_do_readpage(), we never reset @this_bio_flag after we hit a compressed extent. This is fine, as for PAGE_SIZE == sectorsize case, we can only have one sector for one page, thus @this_bio_flag will only be set at most once. But for subpage case, after hitting a compressed extent, @this_bio_flag will always have EXTENT_BIO_COMPRESSED bit, even we're reading a regular extent. This will lead to various read errors, and causing new ASSERT() in incoming subpage patches, which adds more strict check in btrfs_submit_compressed_read(). Fix it by declaring @this_bio_flag inside the main loop and reset its value for each iteration. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
214cc18432 |
btrfs: constify and cleanup variables in comparators
Comparators just read the data and thus get const parameters. This should be also preserved by the local variables, update all comparators passed to sort or bsearch. Cleanups: - unnecessary casts are dropped - btrfs_cmp_device_free_bytes is cleaned up to follow the common pattern and 'inline' is dropped as the function address is taken Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d58ede8d1d |
btrfs: simplify data stripe calculation helpers
There are two helpers doing the same calculations based on nparity and ncopies. calc_data_stripes can be simplified into one expression, so far we don't have profile with both copies and parity, so there's no effective change. calc_stripe_length should reuse the helper and not repeat the same calculation. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fe4f46d40c |
btrfs: merge alloc_device helpers
The device allocation is split to two functions, but one just calls the other and they're very far in the file. Merge them together. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
500a44c9b3 |
btrfs: uninline btrfs_bg_flags_to_raid_index
The helper does a simple translation from block group flags to index to the btrfs_raid_array table. There's no apparent reason to inline the function, the translation happens usually once per function and is not called in a loop. Making it a proper function saves quite some binary code (x86_64, release config): text data bss dec hex filename 1164011 19253 14912 1198176 124860 pre/btrfs.ko 1161559 19253 14912 1195724 123ecc post/btrfs.ko DELTA: -2451 Also add the const attribute as there are no side effects, this could help compiler to optimize a few things without the function body. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6c154ba41b |
btrfs: tree-checker: add missing stripe checks for raid1c3/4 profiles
The stripe checks for raid1c3/raid1c4 are missing in the sequence in btrfs_check_chunk_valid. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0ac6e06b6c |
btrfs: tree-checker: use table values for stripe checks
There are hardcoded values in several checks regarding chunks and stripe constraints. We have that defined in the raid table and ought to use it. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
809d6902b3 |
btrfs: make btrfs_next_leaf static inline
btrfs_next_leaf is a simple wrapper for btrfs_next_old_leaf so move it to header to avoid the function call overhead. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f41b6ba93d |
btrfs: remove uptodate parameter from btrfs_dec_test_first_ordered_pending
In commit
|
|
|
|
25c1252a02 |
btrfs: switch uptodate to bool in btrfs_writepage_endio_finish_ordered
The uptodate parameter should be bool, change the type. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a129ffb816 |
btrfs: remove unused start and end parameters from btrfs_run_delalloc_range()
Since commit
|
|
|
|
a7d1c5dc86 |
btrfs: introduce btrfs_lookup_match_dir
btrfs_search_slot is called in multiple places in dir-item.c to search for a dir entry, and then calling btrfs_match_dir_name to return a btrfs_dir_item. In order to reduce the number of callers of btrfs_search_slot, create a common function that looks for the dir key, and if found call btrfs_match_dir_item_name. Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f8ee80de7b |
btrfs: remove unneeded return variable in btrfs_lookup_file_extent
We can return from btrfs_search_slot directly which also shows that it follows the same return value convention. Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ad9a937850 |
btrfs: use btrfs_next_leaf instead of btrfs_next_item when slots > nritems
After calling btrfs_search_slot is a common practice to check if the
slot found isn't bigger than number of slots in the current leaf, and if
so, search for the same key in the next leaf by calling btrfs_next_leaf,
which calls btrfs_next_old_leaf to do the job.
Calling btrfs_next_item in the same situation would end up in the same
code flow, since
* btrfs_next_item
* btrfs_next_old_item
* if slot >= nritems(curr_leaf)
btrfs_next_old_leaf
Change btrfs_verify_dev_extents and calculate_emulated_zone_size
functions to use btrfs_next_leaf in the same situation.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
c7bcbb2120 |
btrfs: remove ignore_offset argument from btrfs_find_all_roots()
Currently all the callers of btrfs_find_all_roots() pass a value of false for its ignore_offset argument. This makes the argument pointless and we can remove it and make btrfs_find_all_roots() always pass false as the ignore_offset argument for btrfs_find_all_roots_safe(). So just do that. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2ac691d8b3 |
btrfs: avoid unnecessary lock and leaf splits when updating inode in the log
During a fast fsync, if we have already fsynced the file before and in the
current transaction, we can make the inode item update more efficient and
avoid acquiring a write lock on the leaf's parent.
To update the inode item we are always using btrfs_insert_empty_item() to
get a path pointing to the inode item, which calls btrfs_search_slot()
with an "ins_len" argument of 'sizeof(struct btrfs_inode_item) +
sizeof(struct btrfs_item)', and that always results in the search taking
a write lock on the level 1 node that is the parent of the leaf that
contains the inode item. This adds unnecessary lock contention on log
trees when we have multiple fsyncs in parallel against inodes in the same
subvolume, which has a very significant impact due to the fact that log
trees are short lived and their height very rarely goes beyond level 2.
Also, by using btrfs_insert_empty_item() when we need to update the inode
item, we also end up splitting the leaf of the existing inode item when
the leaf has an amount of free space smaller than the size of an inode
item.
Improve this by using btrfs_seach_slot(), with a 0 "ins_len" argument,
when we know the inode item already exists in the log. This avoids these
two inefficiencies.
The following script, using fio, was used to perform the tests:
$ cat fio-test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 4 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
BLOCK_SIZE=$4
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=$BLOCK_SIZE
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
echo
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
echo "mount options: $MOUNT_OPTIONS"
echo
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The tests were done on a physical machine, with 12 cores, 64G of RAM,
using a NVMEe device and using a non-debug kernel config (the default one
from Debian). The summary line from fio is provided below for each test
run.
With 8 jobs, file size 256M, fsync frequency of 4 and a block size of 4K:
Before: WRITE: bw=28.3MiB/s (29.7MB/s), 28.3MiB/s-28.3MiB/s (29.7MB/s-29.7MB/s), io=2048MiB (2147MB), run=72297-72297msec
After: WRITE: bw=28.7MiB/s (30.1MB/s), 28.7MiB/s-28.7MiB/s (30.1MB/s-30.1MB/s), io=2048MiB (2147MB), run=71411-71411msec
+1.4% throughput, -1.2% runtime
With 16 jobs, file size 256M, fsync frequency of 4 and a block size of 4K:
Before: WRITE: bw=40.0MiB/s (42.0MB/s), 40.0MiB/s-40.0MiB/s (42.0MB/s-42.0MB/s), io=4096MiB (4295MB), run=99980-99980msec
After: WRITE: bw=40.9MiB/s (42.9MB/s), 40.9MiB/s-40.9MiB/s (42.9MB/s-42.9MB/s), io=4096MiB (4295MB), run=97933-97933msec
+2.2% throughput, -2.1% runtime
The changes are small but it's possible to be better on faster hardware as
in the test machine used disk utilization was pretty much 100% during the
whole time the tests were running (observed with 'iostat -xz 1').
The tests also included the previous patch with the subject of:
"btrfs: avoid unnecessary log mutex contention when syncing log".
So they compared a branch without that patch and without this patch versus
a branch with these two patches applied.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
e68107e51f |
btrfs: remove unnecessary list head initialization when syncing log
One of the last steps of syncing the log is to remove all log contexts from the root's list of contexts, done at btrfs_remove_all_log_ctxs(). There we iterate over all the contexts in the list and delete each one from the list, and after that we call INIT_LIST_HEAD() on the list. That is unnecessary since at that point the list is empty. So just remove the INIT_LIST_HEAD() call. It's not needed, increases code size (bloat-o-meter reported a delta of -122 for btrfs_sync_log() after this change) and increases two critical sections delimited by log mutexes. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e1a6d26483 |
btrfs: avoid unnecessary log mutex contention when syncing log
When syncing the log we acquire the root's log mutex just to update the root's last_log_commit. This is unnecessary because: 1) At this point there can only be one task updating this value, which is the task committing the current log transaction. Any task that enters btrfs_sync_log() has to wait for the previous log transaction to commit and wait for the current log transaction to commit if someone else already started it (in this case it never reaches to the point of updating last_log_commit, as that is done by the committing task); 2) All readers of the root's last_log_commit don't acquire the root's log mutex. This is to avoid blocking the readers, potentially for too long and because getting a stale value of last_log_commit does not cause any functional problem, in the worst case getting a stale value results in logging an inode unnecessarily. Plus it's actually very rare to get a stale value that results in unnecessarily logging the inode. So in order to avoid unnecessary contention on the root's log mutex, which is used for several different purposes, like starting/joining a log transaction and starting writeback of a log transaction, stop acquiring the log mutex for updating the root's last_log_commit. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cceaa89f02 |
btrfs: remove racy and unnecessary inode transaction update when using no-holes
When using the NO_HOLES feature and expanding the size of an inode, we
update the inode's last_trans, last_sub_trans and last_log_commit fields
at maybe_insert_hole() so that a fsync does know that the inode needs to
be logged (by making sure that btrfs_inode_in_log() returns false). This
happens for expanding truncate operations, buffered writes, direct IO
writes and when cloning extents to an offset greater than the inode's
i_size.
However the way we do it is racy, because in between setting the inode's
last_sub_trans and last_log_commit fields, the log transaction ID that was
assigned to last_sub_trans might be committed before we read the root's
last_log_commit and assign that value to last_log_commit. If that happens
it would make a future call to btrfs_inode_in_log() return true. This is
a race that should be extremely unlikely to be hit in practice, and it is
the same that was described by commit
|
|
|
|
5a656c3628 |
btrfs: stop doing GFP_KERNEL memory allocations in the ref verify tool
In commit
|
|
|
|
506650dcb3 |
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
2b29726c47 |
btrfs: rescue: allow ibadroots to skip bad extent tree when reading block group items
When extent tree gets corrupted, normally it's not extent tree root, but one toasted tree leaf/node. In that case, rescue=ibadroots mount option won't help as it can only handle the extent tree root corruption. This patch will enhance the behavior by: - Allow fill_dummy_bgs() to ignore -EEXIST error This means we may have some block group items read from disk, but then hit some error halfway. - Fallback to fill_dummy_bgs() if any error gets hit in btrfs_read_block_groups() Of course, this still needs rescue=ibadroots mount option. With that, rescue=ibadroots can handle extent tree corruption more gracefully and allow a better recover chance. Reported-by: Zhenyu Wu <wuzy001@gmail.com> Link: https://www.spinics.net/lists/linux-btrfs/msg114424.html Reviewed-by: Su Yue <l@damenly.su> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6534c0c99d |
btrfs: pass NULL as trans to btrfs_search_slot if we only want to search
Using a transaction in btrfs_search_slot is only useful when we are searching to add or modify the tree. When the function is used for searching, insert length and mod arguments are 0, there is no need to use a transaction. No functional changes, changing for consistency. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
069a2e3778 |
btrfs: continue readahead of siblings even if target node is in memory
At reada_for_search(), when attempting to readahead a node or leaf's
siblings, we skip the readahead of the siblings if the node/leaf is
already in memory. That is probably fine for the READA_FORWARD and
READA_BACK readahead types, as they are used on contexts where we
end up reading some consecutive leaves, but usually not the whole btree.
However for a READA_FORWARD_ALWAYS mode, currently only used for full
send operations, it does not make sense to skip the readahead if the
target node or leaf is already loaded in memory, since we know the caller
is visiting every node and leaf of the btree in ascending order.
So change the behaviour to not skip the readahead when the target node is
already in memory and the readahead mode is READA_FORWARD_ALWAYS.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk, with 32GiB of RAM and
using a non-debug kernel config (Debian's default config).
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
file_count=2000000
add_files $file_count 0 4
echo
echo "Creating snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
The duration of the full send operations, in seconds, were the following:
Before this change: 85 seconds
After this change: 76 seconds (-11.2%)
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
5da3847992 |
btrfs: check-integrity: drop kmap/kunmap for block pages
The pages in block_ctx have never been allocated from highmem (in btrfsic_read_block) so the mapping is pointless and can be removed. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4c2bf276b5 |
btrfs: compression: drop kmap/kunmap from generic helpers
The pages in compressed_pages are not from highmem anymore so we can drop the mapping for checksum calculation and inline extent. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bbaf9715f3 |
btrfs: compression: drop kmap/kunmap from zstd
As we don't use highmem pages anymore, drop the kmap/kunmap. The kmap is simply page_address and kunmap is a no-op. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
696ab562e6 |
btrfs: compression: drop kmap/kunmap from zlib
As we don't use highmem pages anymore, drop the kmap/kunmap. The kmap is simply page_address and kunmap is a no-op. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8c945d32e6 |
btrfs: compression: drop kmap/kunmap from lzo
As we don't use highmem pages anymore, drop the kmap/kunmap. The kmap is simply page_address and kunmap is a no-op. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b0ee5e1ec4 |
btrfs: drop from __GFP_HIGHMEM all allocations
The highmem flag is used for allocating pages for compression and for raid56 pages. The high memory makes sense on 32bit systems but is not without problems. On 64bit system's it's just another layer of wrappers. The time the pages are allocated for compression or raid56 is relatively short (about a transaction commit), so the pages are not blocked indefinitely. As the number of pages depends on the amount of data being written/read, there's a theoretical problem. A fast device on a 32bit system could use most of the low memory pool, while with the highmem allocation that would not happen. This was possibly the original idea long time ago, but nowadays we optimize for 64bit systems. This patch removes all usage of the __GFP_HIGHMEM flag for page allocation, the kmap/kunmap are still in place and will be removed in followup patches. Remaining is masking out the bit in alloc_extent_state and __lookup_free_space_inode, that can safely stay. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
23608d51a3 |
btrfs: cleanup fs_devices pointer usage in btrfs_trim_fs
Drop variable 'devices' (used only once) and add new variable for the fs_devices, so it is used at two locations within btrfs_trim_fs() function and also helps to access fs_devices->devices. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
67d5e289a1 |
btrfs: remove max argument from generic_bin_search
Both callers use btrfs_header_nritems to feed the max argument. Remove the argument and let generic_bin_search call it itself. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2eadb9e75e |
btrfs: make btrfs_finish_chunk_alloc private to block-group.c
One of the final things that must be done to add a new chunk is inserting its device extent items in the device tree. They describe the portion of allocated device physical space during phase 1 of chunk allocation. This is currently done in btrfs_finish_chunk_alloc whose name isn't very informative. What's more, this function is only used in block-group.c but is defined as public. There isn't anything special about it that would warrant it being defined in volumes.c. Just move btrfs_finish_chunk_alloc and alloc_chunk_dev_extent to block-group.c, make the former static and rename both functions to insert_dev_extents and insert_dev_extent respectively. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4a9531cf89 |
btrfs: check-integrity: drop unnecessary function prototypes
The function prototypes below aren't necessary as the functions are first defined before called. Remove them. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b3b7e1d0b4 |
btrfs: add special case to setget helpers for 64k pages
On 64K pages the size of the extent_buffer::pages array is 1 and compilation with -Warray-bounds warns due to kaddr = page_address(eb->pages[idx + 1]); when reading byte range crossing page boundary. This does never actually overflow the array because on 64K because all the data fit in one page and bounds are checked by check_setget_bounds. To fix the reported overflows and warnings add a compile-time condition that will allow compiler to eliminate the dead code that reads from the idx + 1 page. Link: https://lore.kernel.org/lkml/20210623083901.1d49d19d@canb.auug.org.au/ CC: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5a80d1c6a2 |
btrfs: zoned: remove max_zone_append_size logic
There used to be a patch in the original series for zoned support which limited the extent size to max_zone_append_size, but this patch has been dropped somewhere around v9. We've decided to go the opposite direction, instead of limiting extents in the first place we split them before submission to comply with the device's limits. Remove the related code, btrfs_fs_info::max_zone_append_size and btrfs_zoned_device_info::max_zone_append_size. This also removes the workaround for dm-crypt introduced in |
|
|
|
0cad624662 |
vfs: add rcu argument to ->get_acl() callback
Add a rcu argument to the ->get_acl() callback to allow get_cached_acl_rcu() to call the ->get_acl() method in the next patch. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> |
|
|
|
d6d09a6942 |
for-5.14-rc6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmEdNDEACgkQxWXV+ddt WDvfDw//cDnR8HZEtrHwHX9qHitcYs6pubdwwGAsFlSZ/wh0iX05TxUjho4gGYMZ Kp9PXipMOEdxNLJ8oaPkI+i8vIXxTWWqAm5ZePkV0cjg+vTgqqKf9NLcMtS34kP4 /GeQJgul9oreTMbXCx219J0B6lKpl6Iv0sCaSFyN09GIPNI8F6nyDbJTA3JKTRWb ElP8mGvdUFFcOKsG6Wh6BU/WVU/My7d+HumApsRXB2lDwmMambAkX0iGpRElGrbD ub+5ya0WeO8DB6KsVa4W8cMO5sWV9L9FcXMtGlwLbIkOxFdHvP7CT1pvH3TZe9Wy mr8oAL01IktuNjZgQ5sUn+yISf+LuHnWjhpu+QBRuylZiwfpMwSPb0geLcrXcYGj i8ERlmJvwbm6dAQlQDbA3yZKH6+FzePyTR99std2LK9JtbqBaFeSS6WM05SpRUDJ FNHCLOzsswzBUE54nkqsb+A8tBXpcxnvQkrU+nJeDNUYM9w6S5mbCGeZjxe/n+ov TGprz1ar2Ppm9YMH0zj6wOM690nJZYNrAvtUmeCl1xlLERYIoV2jXS1SzkaMdcQu u3UVVsOCghPN5krEac4jgiGBdVHvjVnJb/qGBNTpj3aDX29PADHUJr7TmzGJBa8F ePWqDngDYi+cVrm9JMls9UJhaCVmhzLAXtN5X3+fKfe5bNQE4gU= =aR16 -----END PGP SIGNATURE----- Merge tag 'for-5.14-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "One more fix for cross-rename, adding a missing check for directory and subvolume, this could lead to a crash" * tag 'for-5.14-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: prevent rename2 from exchanging a subvol with a directory from different parents |
|
|
|
a6d3d49587 |
iomap: switch __iomap_dio_rw to use iomap_iter
Switch __iomap_dio_rw to use iomap_iter. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
|
|
|
3f79f6f624 |
btrfs: prevent rename2 from exchanging a subvol with a directory from different parents
Cross-rename lacks a check when that would prevent exchanging a
directory and subvolume from different parent subvolume. This causes
data inconsistencies and is caught before commit by tree-checker,
turning the filesystem to read-only.
Calling the renameat2 with RENAME_EXCHANGE flags like
renameat2(AT_FDCWD, namesrc, AT_FDCWD, namedest, (1 << 1))
on two paths:
namesrc = dir1/subvol1/dir2
namedest = subvol2/subvol3
will cause key order problem with following write time tree-checker
report:
[1194842.307890] BTRFS critical (device loop1): corrupt leaf: root=5 block=27574272 slot=10 ino=258, invalid previous key objectid, have 257 expect 258
[1194842.322221] BTRFS info (device loop1): leaf 27574272 gen 8 total ptrs 11 free space 15444 owner 5
[1194842.331562] BTRFS info (device loop1): refs 2 lock_owner 0 current 26561
[1194842.338772] item 0 key (256 1 0) itemoff 16123 itemsize 160
[1194842.338793] inode generation 3 size 16 mode 40755
[1194842.338801] item 1 key (256 12 256) itemoff 16111 itemsize 12
[1194842.338809] item 2 key (256 84 2248503653) itemoff 16077 itemsize 34
[1194842.338817] dir oid 258 type 2
[1194842.338823] item 3 key (256 84 2363071922) itemoff 16043 itemsize 34
[1194842.338830] dir oid 257 type 2
[1194842.338836] item 4 key (256 96 2) itemoff 16009 itemsize 34
[1194842.338843] item 5 key (256 96 3) itemoff 15975 itemsize 34
[1194842.338852] item 6 key (257 1 0) itemoff 15815 itemsize 160
[1194842.338863] inode generation 6 size 8 mode 40755
[1194842.338869] item 7 key (257 12 256) itemoff 15801 itemsize 14
[1194842.338876] item 8 key (257 84 2505409169) itemoff 15767 itemsize 34
[1194842.338883] dir oid 256 type 2
[1194842.338888] item 9 key (257 96 2) itemoff 15733 itemsize 34
[1194842.338895] item 10 key (258 12 256) itemoff 15719 itemsize 14
[1194842.339163] BTRFS error (device loop1): block=27574272 write time tree block corruption detected
[1194842.339245] ------------[ cut here ]------------
[1194842.443422] WARNING: CPU: 6 PID: 26561 at fs/btrfs/disk-io.c:449 csum_one_extent_buffer+0xed/0x100 [btrfs]
[1194842.511863] CPU: 6 PID: 26561 Comm: kworker/u17:2 Not tainted 5.14.0-rc3-git+ #793
[1194842.511870] Hardware name: empty empty/S3993, BIOS PAQEX0-3 02/24/2008
[1194842.511876] Workqueue: btrfs-worker-high btrfs_work_helper [btrfs]
[1194842.511976] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
[1194842.512068] RSP: 0018:ffffa2c284d77da0 EFLAGS: 00010282
[1194842.512074] RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffff928867bd9978
[1194842.512078] RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff928867bd9970
[1194842.512081] RBP: ffff92876b958000 R08: 0000000000000001 R09: 00000000000c0003
[1194842.512085] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
[1194842.512088] R13: ffff92875f989f98 R14: 0000000000000000 R15: 0000000000000000
[1194842.512092] FS: 0000000000000000(0000) GS:ffff928867a00000(0000) knlGS:0000000000000000
[1194842.512095] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1194842.512099] CR2: 000055f5384da1f0 CR3: 0000000102fe4000 CR4: 00000000000006e0
[1194842.512103] Call Trace:
[1194842.512128] ? run_one_async_free+0x10/0x10 [btrfs]
[1194842.631729] btree_csum_one_bio+0x1ac/0x1d0 [btrfs]
[1194842.631837] run_one_async_start+0x18/0x30 [btrfs]
[1194842.631938] btrfs_work_helper+0xd5/0x1d0 [btrfs]
[1194842.647482] process_one_work+0x262/0x5e0
[1194842.647520] worker_thread+0x4c/0x320
[1194842.655935] ? process_one_work+0x5e0/0x5e0
[1194842.655946] kthread+0x135/0x160
[1194842.655953] ? set_kthread_struct+0x40/0x40
[1194842.655965] ret_from_fork+0x1f/0x30
[1194842.672465] irq event stamp: 1729
[1194842.672469] hardirqs last enabled at (1735): [<ffffffffbd1104f5>] console_trylock_spinning+0x185/0x1a0
[1194842.672477] hardirqs last disabled at (1740): [<ffffffffbd1104cc>] console_trylock_spinning+0x15c/0x1a0
[1194842.672482] softirqs last enabled at (1666): [<ffffffffbdc002e1>] __do_softirq+0x2e1/0x50a
[1194842.672491] softirqs last disabled at (1651): [<ffffffffbd08aab7>] __irq_exit_rcu+0xa7/0xd0
The corrupted data will not be written, and filesystem can be unmounted
and mounted again (all changes since the last commit will be lost).
Add the missing check for new_ino so that all non-subvolumes must reside
under the same parent subvolume. There's an exception allowing to
exchange two subvolumes from any parents as the directory representing a
subvolume is only a logical link and does not have any other structures
related to the parent subvolume, unlike files, directories etc, that
are always in the inode namespace of the parent subvolume.
Fixes:
|
|
|
|
051df241e4 |
for-5.14-rc3-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmEEDKIACgkQxWXV+ddt WDtW+BAAnUD7h3ollIQo4C6hE9WaTG49Tp12Z00Og2m8hn4XyhI2QIaDz6a2CU7n MLQv16vZUQk5Z/VMtczM+5ZF5Rf0ywlMXnS4Sq5yKWT0YHpnH7q2nMAvg4gql/tJ Ldov92hnTrFAZX6vvkLVM5lZriY7fop3Lv2vHeAKu4CymAoisAv+SLa5xYkBR6Ig 3S16+lh/rIRgssI7KuDnjp9iTXvnB1J2MbfAOLNfqjXGWUDumu1k7HWQSNYZnHJX L390/QS3F3K6Trxkf5MSUXOxQROqcGKQVKyAR5ZvyULKly84nDpiINze80yCopq/ 7//32pO43xDPb78c7saxSWtjdgX4XsBOdzIoiJZHnc5CTTbCcneLes8zz4fD6AGq vjZKDLTgiO/sRlkQHZQk1y+7CawrqbKkAG+O7MqF7KGOtQ1WLRGfAkFP732TBFXM TyoZ7ENh3TiFDdeRmkOonpQ2k3DctW+7z2BmdlsuSXgD8fFbEArfxnO1SnRHrmcr C8FNeSkks8MTL7uePNUxwlnB8uHuGWCgSuS++q4OkCnzA3AmO6cRlDoMT3RMwVB/ wQxvqF/U6JJx16YOVqwA6ZjuUWVwyBj/WBKlaxgfghz8CUmDC0D4Xb2/S1UVcZi6 bFRph0UKeE5LaduoNZYaAqMOinCXFmetjudPmWO4sWfPrLb1mOY= =J0Pw -----END PGP SIGNATURE----- Merge tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix -Warray-bounds warning, to help external patchset to make it default treewide - fix writeable device accounting (syzbot report) - fix fsync and log replay after a rename and inode eviction - fix potentially lost error code when submitting multiple bios for compressed range * tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: calculate number of eb pages properly in csum_tree_block btrfs: fix rw device counting in __btrfs_free_extra_devids btrfs: fix lost inode on log replay after mix of fsync, rename and inode eviction btrfs: mark compressed range uptodate only if all bio succeed |
|
|
|
7280305eb5 |
btrfs: calculate number of eb pages properly in csum_tree_block
Building with -Warray-bounds on systems with 64K pages there's a
warning:
fs/btrfs/disk-io.c: In function ‘csum_tree_block’:
fs/btrfs/disk-io.c:226:34: warning: array subscript 1 is above array bounds of ‘struct page *[1]’ [-Warray-bounds]
226 | kaddr = page_address(buf->pages[i]);
| ~~~~~~~~~~^~~
./include/linux/mm.h:1630:48: note: in definition of macro ‘page_address’
1630 | #define page_address(page) lowmem_page_address(page)
| ^~~~
In file included from fs/btrfs/ctree.h:32,
from fs/btrfs/disk-io.c:23:
fs/btrfs/extent_io.h:98:15: note: while referencing ‘pages’
98 | struct page *pages[1];
| ^~~~~
The compiler has no way to know that in that case the nodesize is exactly
PAGE_SIZE, so the resulting number of pages will be correct (1).
Let's use num_extent_pages that makes the case nodesize == PAGE_SIZE
explicitly 1.
Reported-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
b2a6166768 |
btrfs: fix rw device counting in __btrfs_free_extra_devids
When removing a writeable device in __btrfs_free_extra_devids, the rw device count should be decremented. This error was caught by Syzbot which reported a warning in close_fs_devices: WARNING: CPU: 1 PID: 9355 at fs/btrfs/volumes.c:1168 close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168 Modules linked in: CPU: 0 PID: 9355 Comm: syz-executor552 Not tainted 5.13.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168 RSP: 0018:ffffc9000333f2f0 EFLAGS: 00010293 RAX: ffffffff8365f5c3 RBX: 0000000000000001 RCX: ffff888029afd4c0 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff88802846f508 R08: ffffffff8365f525 R09: ffffed100337d128 R10: ffffed100337d128 R11: 0000000000000000 R12: dffffc0000000000 R13: ffff888019be8868 R14: 1ffff1100337d10d R15: 1ffff1100337d10a FS: 00007f6f53828700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000047c410 CR3: 00000000302a6000 CR4: 00000000001506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_close_devices+0xc9/0x450 fs/btrfs/volumes.c:1180 open_ctree+0x8e1/0x3968 fs/btrfs/disk-io.c:3693 btrfs_fill_super fs/btrfs/super.c:1382 [inline] btrfs_mount_root+0xac5/0xc60 fs/btrfs/super.c:1749 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1498 fc_mount fs/namespace.c:993 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1023 btrfs_mount+0x3d3/0xb50 fs/btrfs/super.c:1809 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1498 do_new_mount fs/namespace.c:2905 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3235 do_mount fs/namespace.c:3248 [inline] __do_sys_mount fs/namespace.c:3456 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433 do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae Because fs_devices->rw_devices was not 0 after closing all devices. Here is the call trace that was observed: btrfs_mount_root(): btrfs_scan_one_device(): device_list_add(); <---------------- device added btrfs_open_devices(): open_fs_devices(): btrfs_open_one_device(); <-------- writable device opened, rw device count ++ btrfs_fill_super(): open_ctree(): btrfs_free_extra_devids(): __btrfs_free_extra_devids(); <--- writable device removed, rw device count not decremented fail_tree_roots: btrfs_close_devices(): close_fs_devices(); <------- rw device count off by 1 As a note, prior to commit |
|
|
|
ecc64fab7d |
btrfs: fix lost inode on log replay after mix of fsync, rename and inode eviction
When checking if we need to log the new name of a renamed inode, we are checking if the inode and its parent inode have been logged before, and if not we don't log the new name. The check however is buggy, as it directly compares the logged_trans field of the inodes versus the ID of the current transaction. The problem is that logged_trans is a transient field, only stored in memory and never persisted in the inode item, so if an inode was logged before, evicted and reloaded, its logged_trans field is set to a value of 0, meaning the check will return false and the new name of the renamed inode is not logged. If the old parent directory was previously fsynced and we deleted the logged directory entries corresponding to the old name, we end up with a log that when replayed will delete the renamed inode. The following example triggers the problem: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/A $ mkdir /mnt/B $ echo -n "hello world" > /mnt/A/foo $ sync # Add some new file to A and fsync directory A. $ touch /mnt/A/bar $ xfs_io -c "fsync" /mnt/A # Now trigger inode eviction. We are only interested in triggering # eviction for the inode of directory A. $ echo 2 > /proc/sys/vm/drop_caches # Move foo from directory A to directory B. # This deletes the directory entries for foo in A from the log, and # does not add the new name for foo in directory B to the log, because # logged_trans of A is 0, which is less than the current transaction ID. $ mv /mnt/A/foo /mnt/B/foo # Now make an fsync to anything except A, B or any file inside them, # like for example create a file at the root directory and fsync this # new file. This syncs the log that contains all the changes done by # previous rename operation. $ touch /mnt/baz $ xfs_io -c "fsync" /mnt/baz <power fail> # Mount the filesystem and replay the log. $ mount /dev/sdc /mnt # Check the filesystem content. $ ls -1R /mnt /mnt/: A B baz /mnt/A: bar /mnt/B: $ # File foo is gone, it's neither in A/ nor in B/. Fix this by using the inode_logged() helper at btrfs_log_new_name(), which safely checks if an inode was logged before in the current transaction. A test case for fstests will follow soon. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
240246f6b9 |
btrfs: mark compressed range uptodate only if all bio succeed
In compression write endio sequence, the range which the compressed_bio writes is marked as uptodate if the last bio of the compressed (sub)bios is completed successfully. There could be previous bio which may have failed which is recorded in cb->errors. Set the writeback range as uptodate only if cb->errors is zero, as opposed to checking only the last bio's status. Backporting notes: in all versions up to 4.4 the last argument is always replaced by "!cb->errors". CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f0fddcec6b |
for-5.14-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmD7GZUACgkQxWXV+ddt WDs+BA/+OHDY2ROYEnysAqF1qaDENVVnUavnDYYa+Uk61KVvx0pm/mHY9SllsuH4 WCIwCwH7LZs11cRYp3vD80t4OdVGBKaDvEfX+znMCQYuoBm6G5eT3n5jhsVFr1jJ EqUVzUY+S44IWAEhzkVnSAD4xnMsan8b+YnngIFSMEqJlH+on6w8FhyP0QXwInxk 1kfjl8tDMiryKFaekfGX5WaeflEeWGoHNf2xYokzPD/Oq6TCaoLycar1YXH+80FM 05Jl0+jfEWbaHouMNd8bW9nHnSxh30i7gorY17Q6KLOFDCThNiKZuypZsQcCi/df TbjQDNTZjSsReFvrFeFlEdGv3dFHBGxz1Ns7RFPfVeNgmN0WnOLmzS+4rmfGyi8L +3TQ6MGqgG0DppPwfB9caDvxYsbN23uA1v5J1B+Dsbo47lFWWIoBQBtDvErAiHEy KF7B4jIOWrx3ZYwv3pkE3D+D19sKkB9+wLnlwVSF77npKO1up8W0h4mPdMLZaznW TGBXxwqI4105MSX5UatBpX+HYATpEWG5tmeZz5ERGFNC/piILmY4iVz/c5Vguh9/ iUQwjSudIDWgGxcL7VClqrdF7sucsml6Svb+ZrxckmK7pa97TG2bIlzJDg0eFcle NBcw8RBcBMUay/Y04cKHLJAj6OOjBiXnxKjjHrhvtaBmOV2SHpc= =kj2e -----END PGP SIGNATURE----- Merge tag 'for-5.14-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few fixes and one patch to help some block layer API cleanups: - skip missing device when running fstrim - fix unpersisted i_size on fsync after expanding truncate - fix lock inversion problem when doing qgroup extent tracing - replace bdgrab/bdput usage, replace gendisk by block_device" * tag 'for-5.14-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: store a block_device in struct btrfs_ordered_extent btrfs: fix lock inversion problem when doing qgroup extent tracing btrfs: check for missing device in btrfs_trim_fs btrfs: fix unpersisted i_size on fsync after expanding truncate |
|
|
|
c7c3a6dcb1 |
btrfs: store a block_device in struct btrfs_ordered_extent
Store the block device instead of the gendisk in the btrfs_ordered_extent structure instead of acquiring a reference to it later. Note: this is from series removing bdgrab/bdput, btrfs is one of the last users. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8949b9a114 |
btrfs: fix lock inversion problem when doing qgroup extent tracing
At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a NULL value as the transaction handle argument, which makes that function take the commit_root_sem semaphore, which is necessary when we don't hold a transaction handle or any other mechanism to prevent a transaction commit from wiping out commit roots. However btrfs_qgroup_trace_extent_post() can be called in a context where we are holding a write lock on an extent buffer from a subvolume tree, namely from btrfs_truncate_inode_items(), called either during truncate or unlink operations. In this case we end up with a lock inversion problem because the commit_root_sem is a higher level lock, always supposed to be acquired before locking any extent buffer. Lockdep detects this lock inversion problem since we switched the extent buffer locks from custom locks to semaphores, and when running btrfs/158 from fstests, it reported the following trace: [ 9057.626435] ====================================================== [ 9057.627541] WARNING: possible circular locking dependency detected [ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted [ 9057.628961] ------------------------------------------------------ [ 9057.629867] kworker/u16:4/30781 is trying to acquire lock: [ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.632542] but task is already holding lock: [ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.635255] which lock already depends on the new lock. [ 9057.636292] the existing dependency chain (in reverse order) is: [ 9057.637240] -> #1 (&fs_info->commit_root_sem){++++}-{3:3}: [ 9057.638138] down_read+0x46/0x140 [ 9057.638648] btrfs_find_all_roots+0x41/0x80 [btrfs] [ 9057.639398] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] [ 9057.640283] btrfs_add_delayed_data_ref+0x418/0x490 [btrfs] [ 9057.641114] btrfs_free_extent+0x35/0xb0 [btrfs] [ 9057.641819] btrfs_truncate_inode_items+0x424/0xf70 [btrfs] [ 9057.642643] btrfs_evict_inode+0x454/0x4f0 [btrfs] [ 9057.643418] evict+0xcf/0x1d0 [ 9057.643895] do_unlinkat+0x1e9/0x300 [ 9057.644525] do_syscall_64+0x3b/0xc0 [ 9057.645110] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 9057.645835] -> #0 (btrfs-tree-00){++++}-{3:3}: [ 9057.646600] __lock_acquire+0x130e/0x2210 [ 9057.647248] lock_acquire+0xd7/0x310 [ 9057.647773] down_read_nested+0x4b/0x140 [ 9057.648350] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.649175] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.650010] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.650849] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.651733] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.652501] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.653264] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.654295] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.655111] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.655831] process_one_work+0x247/0x5a0 [ 9057.656425] worker_thread+0x55/0x3c0 [ 9057.656993] kthread+0x155/0x180 [ 9057.657494] ret_from_fork+0x22/0x30 [ 9057.658030] other info that might help us debug this: [ 9057.659064] Possible unsafe locking scenario: [ 9057.659824] CPU0 CPU1 [ 9057.660402] ---- ---- [ 9057.660988] lock(&fs_info->commit_root_sem); [ 9057.661581] lock(btrfs-tree-00); [ 9057.662348] lock(&fs_info->commit_root_sem); [ 9057.663254] lock(btrfs-tree-00); [ 9057.663690] *** DEADLOCK *** [ 9057.664437] 4 locks held by kworker/u16:4/30781: [ 9057.665023] #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.666260] #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.667639] #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs] [ 9057.669017] #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.670408] stack backtrace: [ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1 [ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [ 9057.674258] Call Trace: [ 9057.674588] dump_stack_lvl+0x57/0x72 [ 9057.675083] check_noncircular+0xf3/0x110 [ 9057.675611] __lock_acquire+0x130e/0x2210 [ 9057.676132] lock_acquire+0xd7/0x310 [ 9057.676605] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.677313] ? lock_is_held_type+0xe8/0x140 [ 9057.677849] down_read_nested+0x4b/0x140 [ 9057.678349] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679068] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679760] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.680458] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.681083] ? _raw_spin_unlock+0x29/0x40 [ 9057.681594] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.682336] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.683058] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.683834] ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs] [ 9057.684632] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.685316] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.685977] ? ___ratelimit+0xa4/0x110 [ 9057.686460] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.687316] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.688021] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.688649] ? lock_is_held_type+0xe8/0x140 [ 9057.689180] process_one_work+0x247/0x5a0 [ 9057.689696] worker_thread+0x55/0x3c0 [ 9057.690175] ? process_one_work+0x5a0/0x5a0 [ 9057.690731] kthread+0x155/0x180 [ 9057.691158] ? set_kthread_struct+0x40/0x40 [ 9057.691697] ret_from_fork+0x22/0x30 Fix this by making btrfs_find_all_roots() never attempt to lock the commit_root_sem when it is called from btrfs_qgroup_trace_extent_post(). We can't just pass a non-NULL transaction handle to btrfs_find_all_roots() from btrfs_qgroup_trace_extent_post(), because that would make backref lookup not use commit roots and acquire read locks on extent buffers, and therefore could deadlock when btrfs_qgroup_trace_extent_post() is called from the btrfs_truncate_inode_items() code path which has acquired a write lock on an extent buffer of the subvolume btree. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
16a200f66e |
btrfs: check for missing device in btrfs_trim_fs
A fstrim on a degraded raid1 can trigger the following null pointer dereference: BTRFS info (device loop0): allowing degraded mounts BTRFS info (device loop0): disk space caching is enabled BTRFS info (device loop0): has skinny extents BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing BTRFS info (device loop0): enabling ssd optimizations BUG: kernel NULL pointer dereference, address: 0000000000000620 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 4574 Comm: fstrim Not tainted 5.13.0-rc7+ #31 Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 RIP: 0010:btrfs_trim_fs+0x199/0x4a0 [btrfs] RSP: 0018:ffff959541797d28 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff946f84eca508 RCX: a7a67937adff8608 RDX: ffff946e8122d000 RSI: 0000000000000000 RDI: ffffffffc02fdbf0 RBP: ffff946ea4615000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: ffff946e8122d960 R12: 0000000000000000 R13: ffff959541797db8 R14: ffff946e8122d000 R15: ffff959541797db8 FS: 00007f55917a5080(0000) GS:ffff946f9bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000620 CR3: 000000002d2c8001 CR4: 00000000000706f0 Call Trace: btrfs_ioctl_fitrim+0x167/0x260 [btrfs] btrfs_ioctl+0x1c00/0x2fe0 [btrfs] ? selinux_file_ioctl+0x140/0x240 ? syscall_trace_enter.constprop.0+0x188/0x240 ? __x64_sys_ioctl+0x83/0xb0 __x64_sys_ioctl+0x83/0xb0 Reproducer: $ mkfs.btrfs -fq -d raid1 -m raid1 /dev/loop0 /dev/loop1 $ mount /dev/loop0 /btrfs $ umount /btrfs $ btrfs dev scan --forget $ mount -o degraded /dev/loop0 /btrfs $ fstrim /btrfs The reason is we call btrfs_trim_free_extents() for the missing device, which uses device->bdev (NULL for missing device) to find if the device supports discard. Fix is to check if the device is missing before calling btrfs_trim_free_extents(). CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9acc8103ab |
btrfs: fix unpersisted i_size on fsync after expanding truncate
If we have an inode that does not have the full sync flag set, was changed in the current transaction, then it is logged while logging some other inode (like its parent directory for example), its i_size is increased by a truncate operation, the log is synced through an fsync of some other inode and then finally we explicitly call fsync on our inode, the new i_size is not persisted. The following example shows how to trigger it, with comments explaining how and why the issue happens: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ touch /mnt/foo $ xfs_io -f -c "pwrite -S 0xab 0 1M" /mnt/bar $ sync # Fsync bar, this will be a noop since the file has not yet been # modified in the current transaction. The goal here is to clear # BTRFS_INODE_NEEDS_FULL_SYNC from the inode's runtime flags. $ xfs_io -c "fsync" /mnt/bar # Now rename both files, without changing their parent directory. $ mv /mnt/bar /mnt/bar2 $ mv /mnt/foo /mnt/foo2 # Increase the size of bar2 with a truncate operation. $ xfs_io -c "truncate 2M" /mnt/bar2 # Now fsync foo2, this results in logging its parent inode (the root # directory), and logging the parent results in logging the inode of # file bar2 (its inode item and the new name). The inode of file bar2 # is logged with an i_size of 0 bytes since it's logged in # LOG_INODE_EXISTS mode, meaning we are only logging its names (and # xattrs if it had any) and the i_size of the inode will not be changed # when the log is replayed. $ xfs_io -c "fsync" /mnt/foo2 # Now explicitly fsync bar2. This resulted in doing nothing, not # logging the inode with the new i_size of 2M and the hole from file # offset 1M to 2M. Because the inode did not have the flag # BTRFS_INODE_NEEDS_FULL_SYNC set, when it was logged through the # fsync of file foo2, its last_log_commit field was updated, # resulting in this explicit of file bar2 not doing anything. $ xfs_io -c "fsync" /mnt/bar2 # File bar2 content and size before a power failure. $ od -A d -t x1 /mnt/bar2 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 1048576 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 2097152 <power failure> # Mount the filesystem to replay the log. $ mount /dev/sdc /mnt # Read the file again, should have the same content and size as before # the power failure happened, but it doesn't, i_size is still at 1M. $ od -A d -t x1 /mnt/bar2 0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * 1048576 This started to happen after commit |
|
|
|
f02bf8578b |
for-5.14-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmDsjSEACgkQxWXV+ddt WDtnZRAAieSXta8GaJYNF4cKs7xHttIkNl0ljJHsJsKoN5kCxW22RWsf8gAyToT3 XERkJfRksgMH0Th3StJqTxg0fQTSiSi1bcz+wJjMVvQev2gX8dw7O05GLZT5GTzx zquI57+OGDEpQdEM6YzrUl+tYnO0roibI2LQeMWUXYXJTy6F75zWjBqKcTGcnfGc d8bOi6ijN4F148zIxvr6ahHrQN9WGwD5OWA1I5RqHBadgwCDWsQIdE6/N1Kdavf5 uW785lJ8a4VqOWyM7Y0kp4madnF9rwZ/CFyoQFJ51oG/NrUf469+bCBFM8VOEwSa c3ZaqvF8CF3sndSAYiI4MEBFbM2O4hIVl/B9NkjDXDu3VlkRwwHDxZfadvc4BzsG kfisaw/GbOvOv8ojxBq4ux2nbRIVul096HpZH4UWHs/MCQ5Ct40OP5sG77YZKQgf o+D65V3NMn1gnp+B8wqyNnraY4hAoBePoK9f3IH+WXF5hlk6gWkbWxmXxCIPvJM4 XTJUcNCXDZtKA9KRgOmcP9fZSu4gyD3hbDRgU5nKkLLSGE+mE4BRmtnq91VnT7FA 5Nxlrjw9Na9LoyXYaoHcCksj207KU6WVgIjK4OFJarLMWlSDYBwAQCX0+voG+ZBq qa6BuLpq2aJhB6Q4M3MdAQSbhfR6tcI+HENCQlFHa6Je7oY9NVQ= =v00S -----END PGP SIGNATURE----- Merge tag 'for-5.14-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs zoned mode fixes from David Sterba: - fix deadlock when allocating system chunk - fix wrong mutex unlock on an error path - fix extent map splitting for append operation - update and fix message reporting unusable chunk space - don't block when background zone reclaim runs with balance in parallel * tag 'for-5.14-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: fix wrong mutex unlock on failure to allocate log root tree btrfs: don't block if we can't acquire the reclaim lock btrfs: properly split extent_map for REQ_OP_ZONE_APPEND btrfs: rework chunk allocation to avoid exhaustion of the system chunk array btrfs: fix deadlock with concurrent chunk allocations involving system chunks btrfs: zoned: print unusable percentage when reclaiming block groups btrfs: zoned: fix types for u64 division in btrfs_reclaim_bgs_work |
|
|
|
ea32af47f0 |
btrfs: zoned: fix wrong mutex unlock on failure to allocate log root tree
When syncing the log, if we fail to allocate the root node for the log
root tree:
1) We are unlocking fs_info->tree_log_mutex, but at this point we have
not yet locked this mutex;
2) We have locked fs_info->tree_root->log_mutex, but we end up not
unlocking it;
So fix this by unlocking fs_info->tree_root->log_mutex instead of
fs_info->tree_log_mutex.
Fixes:
|
|
|
|
9cc0b837e1 |
btrfs: don't block if we can't acquire the reclaim lock
If we can't acquire the reclaim_bgs_lock on block group reclaim, we block until it is free. This can potentially stall for a long time. While reclaim of block groups is necessary for a good user experience on a zoned file system, there still is no need to block as it is best effort only, just like when we're deleting unused block groups. CC: stable@vger.kernel.org # 5.13 Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
abb99cfdaf |
btrfs: properly split extent_map for REQ_OP_ZONE_APPEND
Damien reported a test failure with btrfs/209. The test itself ran fine,
but the fsck ran afterwards reported a corrupted filesystem.
The filesystem corruption happens because we're splitting an extent and
then writing the extent twice. We have to split the extent though, because
we're creating too large extents for a REQ_OP_ZONE_APPEND operation.
When dumping the extent tree, we can see two EXTENT_ITEMs at the same
start address but different lengths.
$ btrfs inspect dump-tree /dev/nullb1 -t extent
...
item 19 key (269484032 EXTENT_ITEM 126976) itemoff 15470 itemsize 53
refs 1 gen 7 flags DATA
extent data backref root FS_TREE objectid 257 offset 786432 count 1
item 20 key (269484032 EXTENT_ITEM 262144) itemoff 15417 itemsize 53
refs 1 gen 7 flags DATA
extent data backref root FS_TREE objectid 257 offset 786432 count 1
The duplicated EXTENT_ITEMs originally come from wrongly split extent_map in
extract_ordered_extent(). Since extract_ordered_extent() uses
create_io_em() to split an existing extent_map, we will have
split->orig_start != split->start. Then, it will be logged with non-zero
"extent data offset". Finally, the logged entries are replayed into
a duplicated EXTENT_ITEM.
Introduce and use proper splitting function for extent_map. The function is
intended to be simple and specific usage for extract_ordered_extent() e.g.
not supporting compression case (we do not allow splitting compressed
extent_map anyway).
There was a question raised by Qu, in summary why we want to split the
extent map (and not the bio):
The problem is not the limit on the zone end, which as you mention is
the same as the block group end. The problem is that data write use zone
append (ZA) operations. ZA BIOs cannot be split so a large extent may
need to be processed with multiple ZA BIOs, While that is also true for
regular writes, the major difference is that ZA are "nameless" write
operation giving back the written sectors on completion. And ZA
operations may be reordered by the block layer (not intentionally
though). Combine both of these characteristics and you can see that the
data for a large extent may end up being shuffled when written resulting
in data corruption and the impossibility to map the extent to some start
sector.
To avoid this problem, zoned btrfs uses the principle "one data extent
== one ZA BIO". So large extents need to be split. This is unfortunate,
but we can revisit this later and optimize, e.g. merge back together the
fragments of an extent once written if they actually were written
sequentially in the zone.
Reported-by: Damien Le Moal <damien.lemoal@wdc.com>
Fixes:
|
|
|
|
79bd37120b |
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array
Commit
|
|
|
|
1cb3db1cf3 |
btrfs: fix deadlock with concurrent chunk allocations involving system chunks
When a task attempting to allocate a new chunk verifies that there is not currently enough free space in the system space_info and there is another task that allocated a new system chunk but it did not finish yet the creation of the respective block group, it waits for that other task to finish creating the block group. This is to avoid exhaustion of the system chunk array in the superblock, which is limited, when we have a thundering herd of tasks allocating new chunks. This problem was described and fixed by commit |
|
|
|
5f93e776c6 |
btrfs: zoned: print unusable percentage when reclaiming block groups
When we're automatically reclaiming a zone, because its zone_unusable value is above the reclaim threshold, we're only logging how much percent of the zone's capacity are used, but not how much of the capacity is unusable. Also print the percentage of the unusable space in the block group before we're reclaiming it. Example: BTRFS info (device sdg): reclaiming chunk 230686720 with 13% used 86% unusable CC: stable@vger.kernel.org # 5.13 Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
54afaae34e |
btrfs: zoned: fix types for u64 division in btrfs_reclaim_bgs_work
The types in calculation of the used percentage in the reclaiming
messages are both u64, though bg->length is either 1GiB (non-zoned) or
the zone size in the zoned mode. The upper limit on zone size is 8GiB so
this could theoretically overflow in the future, right now the values
fit.
Fixes:
|
|
|
|
d3acb15a3a |
Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"iov_iter cleanups and fixes.
There are followups, but this is what had sat in -next this cycle. IMO
the macro forest in there became much thinner and easier to follow..."
* 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
csum_and_copy_to_pipe_iter(): leave handling of csum_state to caller
clean up copy_mc_pipe_to_iter()
pipe_zero(): we don't need no stinkin' kmap_atomic()...
iov_iter: clean csum_and_copy_...() primitives up a bit
copy_page_from_iter(): don't need kmap_atomic() for kvec/bvec cases
copy_page_to_iter(): don't bother with kmap_atomic() for bvec/kvec cases
iterate_xarray(): only of the first iteration we might get offset != 0
pull handling of ->iov_offset into iterate_{iovec,bvec,xarray}
iov_iter: make iterator callbacks use base and len instead of iovec
iov_iter: make the amount already copied available to iterator callbacks
iov_iter: get rid of separate bvec and xarray callbacks
iov_iter: teach iterate_{bvec,xarray}() about possible short copies
iterate_bvec(): expand bvec.h macro forest, massage a bit
iov_iter: unify iterate_iovec and iterate_kvec
iov_iter: massage iterate_iovec and iterate_kvec to logics similar to iterate_bvec
iterate_and_advance(): get rid of magic in case when n is 0
csum_and_copy_to_iter(): massage into form closer to csum_and_copy_from_iter()
iov_iter: replace iov_iter_copy_from_user_atomic() with iterator-advancing variant
[xarray] iov_iter_npages(): just use DIV_ROUND_UP()
iov_iter_npages(): don't bother with iterate_all_kinds()
...
|
|
|
|
df668a5fe4 |
for-5.14/block-2021-06-29
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmDbXAwQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpr0HEADDJaSgjpnWQwH1RVLNagJa9KnktxZYsEs+ as3QmDdpKRG3rEC9bdE7FLe/xq3WBaO5j1hTQ9P6IguqLyS1Df72DtTlKyaCrZoe zv9eIlY4lZUfksE2nzWmlN9uG0FBVXeEQpHCLSNbUZeK1zvV6+NNhQqw2kc0sEqu hReUFeMUbsMcu/w5T3XMVJNsTMCql9wta2H0q5hONQyJQSrIwa1D+sUdE5I8fO4j bnoYX9yxHX26EztX1UJiGRgoq5Trz7LY7hAfljKSkewpFwiHE2vBdq2L0C2RKsIV tTs2DjMCMQyPNeA7WAG8HlR4aPG+7+/fuBP1KJHkykjWXglWN7OqISuBv6rrBgQs gNRnZ4qmb1CzD6aLEBk59nHt6po6eMxXIW856YktKy8rKcrgK29qP44Z+oomkPKo ZjQ0wqN5CvpObM/dIKxl9bAJ4zQDHBt49d5nTTQLfWl/mgevu6ZNWD/hONyCQmFy zKKqQ/wkxWHutOsjC5/MKNb3ZRNH9tt9X+HfULO2DU6IqqifYw/ex4z4MVsBopJC 7pPfd81kgC73TgXe1AaCwHqNWsrqYCuTK0ew1CtGudlS3lucMwtap4GBiCgg5gbu M8pEgwO4OcCLHyRUc8zdfqI7HumbprbFmojPkwGSEe0ofVD74lMhzbUj5jvTYY2B t8D2XcgyOA== =lhon -----END PGP SIGNATURE----- Merge tag 'for-5.14/block-2021-06-29' of git://git.kernel.dk/linux-block Pull core block updates from Jens Axboe: - disk events cleanup (Christoph) - gendisk and request queue allocation simplifications (Christoph) - bdev_disk_changed cleanups (Christoph) - IO priority improvements (Bart) - Chained bio completion trace fix (Edward) - blk-wbt fixes (Jan) - blk-wbt enable/disable fix (Zhang) - Scheduler dispatch improvements (Jan, Ming) - Shared tagset scheduler improvements (John) - BFQ updates (Paolo, Luca, Pietro) - BFQ lock inversion fix (Jan) - Documentation improvements (Kir) - CLONE_IO block cgroup fix (Tejun) - Remove of ancient and deprecated block dump feature (zhangyi) - Discard merge fix (Ming) - Misc fixes or followup fixes (Colin, Damien, Dan, Long, Max, Thomas, Yang) * tag 'for-5.14/block-2021-06-29' of git://git.kernel.dk/linux-block: (129 commits) block: fix discard request merge block/mq-deadline: Remove a WARN_ON_ONCE() call blk-mq: update hctx->dispatch_busy in case of real scheduler blk: Fix lock inversion between ioc lock and bfqd lock bfq: Remove merged request already in bfq_requests_merged() block: pass a gendisk to bdev_disk_changed block: move bdev_disk_changed block: add the events* attributes to disk_attrs block: move the disk events code to a separate file block: fix trace completion for chained bio block/partitions/msdos: Fix typo inidicator -> indicator block, bfq: reset waker pointer with shared queues block, bfq: check waker only for queues with no in-flight I/O block, bfq: avoid delayed merge of async queues block, bfq: boost throughput by extending queue-merging times block, bfq: consider also creation time in delayed stable merge block, bfq: fix delayed stable merge check block, bfq: let also stably merged queues enjoy weight raising blk-wbt: make sure throttle is enabled properly blk-wbt: introduce a new disable state to prevent false positive by rwb_enabled() ... |
|
|
|
629e33a168 |
btrfs: remove unused btrfs_fs_info::total_pinned
This got added 14 years ago in |
|
|
|
138a12d865 |
btrfs: rip out btrfs_space_info::total_bytes_pinned
We used this in may_commit_transaction() in order to determine if we needed to commit the transaction. However we no longer have that logic and thus have no use of this counter anymore, so delete it. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3ffad6961d |
btrfs: rip the first_ticket_bytes logic from fail_all_tickets
This was a trick implemented to handle the case where we had a giant reservation in front of a bunch of little reservations in the ticket queue. If the giant reservation was too large for the transaction commit to make a difference we'd ENOSPC everybody out instead of committing the transaction. This logic was put in to force us to go back and re-try the transaction commit logic to see if we could make progress. Instead now we know we've committed the transaction, so any space that would have been recovered is now available, and would be caught by the btrfs_try_granting_tickets() in this loop, so we no longer need this code and can simply delete it. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0480855392 |
btrfs: remove FLUSH_DELAYED_REFS from data ENOSPC flushing
Since we unconditionally commit the transaction now we no longer need to run the delayed refs to make sure our total_bytes_pinned value is uptodate, we can simply commit the transaction. Remove this stage from the data flushing list. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c416a30cdd |
btrfs: rip out may_commit_transaction
may_commit_transaction was introduced before the ticketing infrastructure existed. There was a problem where we'd legitimately be out of space, but every reservation would trigger a transaction commit and then fail. Thus if you had 1000 things trying to make a reservation, they'd all do the flushing loop and thus commit the transaction 1000 times before they'd get their ENOSPC. This helper was introduced to short circuit this, if there wasn't space that could be reclaimed by committing the transaction then simply ENOSPC out. This made true ENOSPC tests much faster as we didn't waste a bunch of time. However many of our bugs over the years have been from cases where we didn't account for some space that would be reclaimed by committing a transaction. The delayed refs rsv space, delayed rsv, many pinned bytes miscalculations, etc. And in the meantime the original problem has been solved with ticketing. We no longer will commit the transaction 1000 times. Instead we'll get 1000 waiters, we will go through the flushing mechanisms, and if there's no progress after 2 loops we ENOSPC everybody out. The ticketing infrastructure gives us a deterministic way to see if we're making progress or not, thus we avoid a lot of extra work. So simplify this step by simply unconditionally committing the transaction. This removes what is arguably our most common source of early ENOSPC bugs and will allow us to drastically simplify many of the things we track because we simply won't need them with this stuff gone. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
35b22c19af |
btrfs: send: fix crash when memory allocations trigger reclaim
When doing a send we don't expect the task to ever start a transaction after the initial check that verifies if commit roots match the regular roots. This is because after that we set current->journal_info with a stub (special value) that signals we are in send context, so that we take a read lock on an extent buffer when reading it from disk and verifying it is valid (its generation matches the generation stored in the parent). This stub was introduced in 2014 by commit |
|
|
|
1cea5cf0e6 |
btrfs: ensure relocation never runs while we have send operations running
Relocation and send do not play well together because while send is running a block group can be relocated, a transaction committed and the respective disk extents get re-allocated and written to or discarded while send is about to do something with the extents. This was explained in commit |
|
|
|
cbeaae4f6f |
btrfs: shorten integrity checker extent data mount option
Subjectively, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA is quite long and calling it CHECK_INTEGRITY_DATA still keeps the meaning and matches the mount option name. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ccd9395b52 |
btrfs: switch mount option bits to enums and use wider type
Switch defines of BTRFS_MOUNT_* to an enum (the symbolic names are recorded in the debugging information for convenience). There are two more things done but separating them would not make much sense as it's touching the same lines: - Renumber shifts 18..31 to 17..30 to get rid of the hole in the sequence. - Use 1UL as the value that gets shifted because we're approaching the 32bit limit and due to integer promotions the value of (1 << 31) becomes 0xffffffff80000000 when cast to unsigned long (eg. the option manipulating helpers). This is not causing any problems yet as the operations are in-memory and masking the 31st bit works, we don't have more than 31 bits so the ill effects of not masking higher bits don't happen. But once we have more, the problems will emerge. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5548c8c6f5 |
btrfs: props: change how empty value is interpreted
Based on user feedback and actual problems with compression property, there's no support to unset any compression options, or to force no compression flag. Note: This has changed recently in e2fsprogs 1.46.2, 'chattr +m' (setting NOCOMPRESS). In btrfs properties, the empty value should really mean reset to defaults, for all properties in general. Right now there's only the compression one, so this change should not cause too many problems. Old behaviour: $ lsattr file ---------------------- file # the NOCOMPRESS bit is set $ btrfs prop set file compression '' $ lsattr file ---------------------m file This is equivalent to 'btrfs prop set file compression no' in current btrfs-progs as the 'no' or 'none' values are translated to an empty string. This is where the new behaviour is different: empty string drops the compression flag (-c) and nocompress (-m): $ lsattr file ---------------------- file # No change $ btrfs prop set file compression '' $ lsattr file ---------------------- file $ btrfs prop set file compression lzo $ lsattr file --------c------------- file $ btrfs prop get file compression compression=lzo $ btrfs prop set file compression '' # Reset to the initial state $ lsattr file ---------------------- file # Set NOCOMPRESS bit $ btrfs prop set file compression no $ lsattr file ---------------------m file This obviously brings problems with backward compatibility, so this patch should not be backported without making sure the updated btrfs-progs are also used and that scripts have been updated to use the new semantics. Summary: - old kernel: no, none, "" - set NOCOMPRESS bit - new kernel: no, none - set NOCOMPRESS bit "" - drop all compression flags, ie. COMPRESS and NOCOMPRESS Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f216562731 |
btrfs: compression: don't try to compress if we don't have enough pages
The early check if we should attempt compression does not take into account the number of input pages. It can happen that there's only one page, eg. a tail page after some ranges of the BTRFS_MAX_UNCOMPRESSED have been processed, or an isolated page that won't be converted to an inline extent. The single page would be compressed but a later check would drop it again because the result size must be at least one block shorter than the input. That can never work with just one page. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
44365827cc |
btrfs: fix unbalanced unlock in qgroup_account_snapshot()
qgroup_account_snapshot() is trying to unlock the not taken
tree_log_mutex in a error path. Since ret != 0 in this case, we can
just return from here.
Fixes:
|
|
|
|
da658b5708 |
btrfs: sysfs: export dev stats in devinfo directory
The device stats can be read by ioctl, wrapped by command 'btrfs device stats'. Provide another source where to read the information in /sys/fs/btrfs/FSID/devinfo/DEVID/error_stats . The format is a list of 'key value' pairs one per line, which is common in other stat files. The names are the same as used in other device stat outputs. The stats are all in one file as it's the snapshot of all available stats. The 'one value per file' format is not very suitable here. The stats should be valid right after the stats item is read from disk, shortly after initializing the device. In case the stats are not yet valid, print just 'invalid' as the file contents. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1a9fd4172d |
btrfs: fix typos in comments
Fix typos that have snuck in since the last round. Found by codespell. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c86bdc9b7c |
btrfs: remove a stale comment for btrfs_decompress_bio()
Since commit
|
|
|
|
bb930007c0 |
btrfs: send: use list_move_tail instead of list_del/list_add_tail
Use list_move_tail() instead of list_del() + list_add_tail() as it's doing the same thing and allows further cleanups. Open code name_cache_used() as there is only one user. Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Baokun Li <libaokun1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b05fbcc36b |
btrfs: disable build on platforms having page size 256K
With a config having PAGE_SIZE set to 256K, BTRFS build fails with the following message include/linux/compiler_types.h:326:38: error: call to '__compiletime_assert_791' declared with attribute error: BUILD_BUG_ON failed: (BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0 BTRFS_MAX_COMPRESSED being 128K, BTRFS cannot support platforms with 256K pages at the time being. There are two platforms that can select 256K pages: - hexagon - powerpc Disable BTRFS when 256K page size is selected. Supporting this would require changes to the subpage mode that's currently being developed. Given that 256K is many times larger than page sizes commonly used and for what the algorithms and structures have been tuned, it's out of scope and disabling build is a reasonable option. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d8ac76cdd1 |
btrfs: send: fix invalid path for unlink operations after parent orphanization
During an incremental send operation, when processing the new references
for the current inode, we might send an unlink operation for another inode
that has a conflicting path and has more than one hard link. However this
path was computed and cached before we processed previous new references
for the current inode. We may have orphanized a directory of that path
while processing a previous new reference, in which case the path will
be invalid and cause the receiver process to fail.
The following reproducer triggers the problem and explains how/why it
happens in its comments:
$ cat test-send-unlink.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
# Create our test files and directory. Inode 259 (file3) has two hard
# links.
touch $MNT/file1
touch $MNT/file2
touch $MNT/file3
mkdir $MNT/A
ln $MNT/file3 $MNT/A/hard_link
# Filesystem looks like:
#
# . (ino 256)
# |----- file1 (ino 257)
# |----- file2 (ino 258)
# |----- file3 (ino 259)
# |----- A/ (ino 260)
# |---- hard_link (ino 259)
#
# Now create the base snapshot, which is going to be the parent snapshot
# for a later incremental send.
btrfs subvolume snapshot -r $MNT $MNT/snap1
btrfs send -f /tmp/snap1.send $MNT/snap1
# Move inode 257 into directory inode 260. This results in computing the
# path for inode 260 as "/A" and caching it.
mv $MNT/file1 $MNT/A/file1
# Move inode 258 (file2) into directory inode 260, with a name of
# "hard_link", moving first inode 259 away since it currently has that
# location and name.
mv $MNT/A/hard_link $MNT/tmp
mv $MNT/file2 $MNT/A/hard_link
# Now rename inode 260 to something else (B for example) and then create
# a hard link for inode 258 that has the old name and location of inode
# 260 ("/A").
mv $MNT/A $MNT/B
ln $MNT/B/hard_link $MNT/A
# Filesystem now looks like:
#
# . (ino 256)
# |----- tmp (ino 259)
# |----- file3 (ino 259)
# |----- B/ (ino 260)
# | |---- file1 (ino 257)
# | |---- hard_link (ino 258)
# |
# |----- A (ino 258)
# Create another snapshot of our subvolume and use it for an incremental
# send.
btrfs subvolume snapshot -r $MNT $MNT/snap2
btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2
# Now unmount the filesystem, create a new one, mount it and try to
# apply both send streams to recreate both snapshots.
umount $DEV
mkfs.btrfs -f $DEV >/dev/null
mount $DEV $MNT
# First add the first snapshot to the new filesystem by applying the
# first send stream.
btrfs receive -f /tmp/snap1.send $MNT
# The incremental receive operation below used to fail with the
# following error:
#
# ERROR: unlink A/hard_link failed: No such file or directory
#
# This is because when send is processing inode 257, it generates the
# path for inode 260 as "/A", since that inode is its parent in the send
# snapshot, and caches that path.
#
# Later when processing inode 258, it first processes its new reference
# that has the path of "/A", which results in orphanizing inode 260
# because there is a a path collision. This results in issuing a rename
# operation from "/A" to "/o260-6-0".
#
# Finally when processing the new reference "B/hard_link" for inode 258,
# it notices that it collides with inode 259 (not yet processed, because
# it has a higher inode number), since that inode has the name
# "hard_link" under the directory inode 260. It also checks that inode
# 259 has two hardlinks, so it decides to issue a unlink operation for
# the name "hard_link" for inode 259. However the path passed to the
# unlink operation is "/A/hard_link", which is incorrect since currently
# "/A" does not exists, due to the orphanization of inode 260 mentioned
# before. The path is incorrect because it was computed and cached
# before the orphanization. This results in the receiver to fail with
# the above error.
btrfs receive -f /tmp/snap2.send $MNT
umount $MNT
When running the test, it fails like this:
$ ./test-send-unlink.sh
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
At subvol /mnt/sdi/snap1
Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
At subvol /mnt/sdi/snap2
At subvol snap1
At snapshot snap2
ERROR: unlink A/hard_link failed: No such file or directory
Fix this by recomputing a path before issuing an unlink operation when
processing the new references for the current inode if we previously
have orphanized a directory.
A test case for fstests will follow soon.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
ae5d29d4e7 |
btrfs: inline wait_current_trans_commit_start in its caller
Function wait_current_trans_commit_start is now fairly trivial so it can be inlined in its only caller. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
32cc4f8759 |
btrfs: sink wait_for_unblock parameter to async commit
There's only one caller left btrfs_ioctl_start_sync that passes 0, so we
can remove the switch in btrfs_commit_transaction_async.
A cleanup
|
|
|
|
bfaa324e9a |
btrfs: remove total_data_size variable in btrfs_batch_insert_items()
clang warns:
fs/btrfs/delayed-inode.c:684:6: warning: variable 'total_data_size' set
but not used [-Wunused-but-set-variable]
int total_data_size = 0, total_size = 0;
^
1 warning generated.
This variable's value has been unused since commit
|
|
|
|
77d255348b |
btrfs: eliminate insert label in add_falloc_range
By way of inverting the list_empty conditional the insert label can be eliminated, making the function's flow entirely linear. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3d078efae6 |
btrfs: subpage: fix a rare race between metadata endio and eb freeing
[BUG]
There is a very rare ASSERT() triggering during full fstests run for
subpage rw support.
No other reproducer so far.
The ASSERT() gets triggered for metadata read in
btrfs_page_set_uptodate() inside end_page_read().
[CAUSE]
There is still a small race window for metadata only, the race could
happen like this:
T1 | T2
------------------------------------+-----------------------------
end_bio_extent_readpage() |
|- btrfs_validate_metadata_buffer() |
| |- free_extent_buffer() |
| Still have 2 refs |
|- end_page_read() |
|- if (unlikely(PagePrivate()) |
| The page still has Private |
| | free_extent_buffer()
| | | Only one ref 1, will be
| | | released
| | |- detach_extent_buffer_page()
| | |- btrfs_detach_subpage()
|- btrfs_set_page_uptodate() |
The page no longer has Private|
>>> ASSERT() triggered <<< |
This race window is super small, thus pretty hard to hit, even with so
many runs of fstests.
But the race window is still there, we have to go another way to solve
it other than relying on random PagePrivate() check.
Data path is not affected, as it will lock the page before reading,
while unlocking the page after the last read has finished, thus no race
window.
[FIX]
This patch will fix the bug by repurposing btrfs_subpage::readers.
Now btrfs_subpage::readers will be a member shared by both metadata and
data.
For metadata path, we don't do the page unlock as metadata only relies
on extent locking.
At the same time, teach page_range_has_eb() to take
btrfs_subpage::readers into consideration.
So that even if the last eb of a page gets freed, page::private won't be
detached as long as there still are pending end_page_read() calls.
By this we eliminate the race window, this will slight increase the
metadata memory usage, as the page may not be released as frequently as
usual. But it should not be a big deal.
The code got introduced in ("btrfs: submit read time repair only for
each corrupted sector"), but the fix is in a separate patch to keep the
problem description and the crash is rare so it should not hurt
bisectability.
Signed-off-by: Qu Wegruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
bcd77455d5 |
btrfs: don't clear page extent mapped if we're not invalidating the full page
[BUG] With current btrfs subpage rw support, the following script can lead to fs hang: $ mkfs.btrfs -f -s 4k $dev $ mount $dev -o nospace_cache $mnt $ fsstress -w -n 100 -p 1 -s 1608140256 -v -d $mnt The fs will hang at btrfs_start_ordered_extent(). [CAUSE] In above test case, btrfs_invalidate() will be called with the following parameters: offset = 0 length = 53248 page dirty = 1 subpage dirty bitmap = 0x2000 Since @offset is 0, btrfs_invalidate() will try to invalidate the full page, and finally call clear_page_extent_mapped() which will detach subpage structure from the page. And since the page no longer has subpage structure, the subpage dirty bitmap will be cleared, preventing the dirty range from being written back, thus no way to wake up the ordered extent. [FIX] Just follow other filesystems, only to invalidate the page if the range covers the full page. There are cases like truncate_setsize() which can call btrfs_invalidatepage() with offset == 0 and length != 0 for the last page of an inode. Although the old code will still try to invalidate the full page, we are still safe to just wait for ordered extent to finish. So it shouldn't cause extra problems. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0528476b6a |
btrfs: fix the filemap_range_has_page() call in btrfs_punch_hole_lock_range()
[BUG] With current subpage RW support, the following script can hang the fs with 64K page size. # mkfs.btrfs -f -s 4k $dev # mount $dev -o nospace_cache $mnt # fsstress -w -n 50 -p 1 -s 1607749395 -d $mnt The kernel will do an infinite loop in btrfs_punch_hole_lock_range(). [CAUSE] In btrfs_punch_hole_lock_range() we: - Truncate page cache range - Lock extent io tree - Wait any ordered extents in the range. We exit the loop until we meet all the following conditions: - No ordered extent in the lock range - No page is in the lock range The latter condition has a pitfall, it only works for sector size == PAGE_SIZE case. While can't handle the following subpage case: 0 32K 64K 96K 128K | |///////||//////| || lockstart=32K lockend=96K - 1 In this case, although the range crosses 2 pages, truncate_pagecache_range() will invalidate no page at all, but only zero the [32K, 96K) range of the two pages. Thus filemap_range_has_page(32K, 96K-1) will always return true, thus we will never meet the loop exit condition. [FIX] Fix the problem by doing page alignment for the lock range. Function filemap_range_has_page() has already handled lend < lstart case, we only need to round up @lockstart, and round_down @lockend for truncate_pagecache_range(). This modification should not change any thing for sector size == PAGE_SIZE case, as in that case our range is already page aligned. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3115deb381 |
btrfs: reflink: make copy_inline_to_page() to be subpage compatible
The modifications are: - Page copy destination For subpage case, one page can contain multiple sectors, thus we can no longer expect the memcpy_to_page()/btrfs_decompress() to copy data into page offset 0. The correct offset is offset_in_page(file_offset) now, which should handle both regular sectorsize and subpage cases well. - Page status update Now we need to use subpage helper to handle the page status update. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2d8ec40ee4 |
btrfs: make btrfs_page_mkwrite() to be subpage compatible
Only set_page_dirty() and SetPageUptodate() is not subpage compatible. Convert them to subpage helpers, so that __extent_writepage_io() can submit page content correctly. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6c9ac8be45 |
btrfs: make btrfs_truncate_block() to be subpage compatible
btrfs_truncate_block() itself is already mostly subpage compatible, the only missing part is the page dirtying code. Currently if we have a sector that needs to be truncated, we set the sector aligned range delalloc, then set the full page dirty. The problem is, current subpage code requires subpage dirty bit to be set, or __extent_writepage_io() won't submit bio, thus leads to ordered extent never to finish. So this patch will make btrfs_truncate_block() to call btrfs_page_set_dirty() helper to replace set_page_dirty() to fix the problem. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c5ef5c6c73 |
btrfs: make __extent_writepage_io() only submit dirty range for subpage
__extent_writepage_io() function originally just iterates through all the extent maps of a page, and submits any regular extents. This is fine for sectorsize == PAGE_SIZE case, as if a page is dirty, we need to submit the only sector contained in the page. But for subpage case, one dirty page can contain several clean sectors with at least one dirty sector. If __extent_writepage_io() still submit all regular extent maps, it can submit data which is already written to disk. And since such already written data won't have corresponding ordered extents, it will trigger a BUG_ON() in btrfs_csum_one_bio(). Change the behavior of __extent_writepage_io() by finding the first dirty byte in the page, and only submit the dirty range other than the full extent. Since we're also here, also modify the following calls to be subpage compatible: - SetPageError() - end_page_writeback() Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d2a9106448 |
btrfs: make btrfs_set_range_writeback() subpage compatible
Function btrfs_set_range_writeback() currently just sets the page writeback unconditionally. Change it to call the subpage helper so that we can handle both cases well. Since the subpage helpers needs btrfs_fs_info, also change the parameter to accept btrfs_inode. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4750af3bbe |
btrfs: prevent extent_clear_unlock_delalloc() to unlock page not locked by __process_pages_contig()
In cow_file_range(), after we have succeeded creating an inline extent, we unlock the page with extent_clear_unlock_delalloc() by passing locked_page == NULL. For sectorsize == PAGE_SIZE case, this is just making the page lock and unlock harder to grab. But for incoming subpage case, it can be a big problem. For incoming subpage case, page locking have two entry points: - __process_pages_contig() In that case, we know exactly the range we want to lock (which only requires sector alignment). To handle the subpage requirement, we introduce btrfs_subpage::writers to page::private, and will update it in __process_pages_contig(). - Other directly lock/unlock_page() call sites Those won't touch btrfs_subpage::writers at all. This means, page locked by __process_pages_contig() can only be unlocked by __process_pages_contig(). Thankfully we already have the existing infrastructure in the form of @locked_page in various call sites. Unfortunately, extent_clear_unlock_delalloc() in cow_file_range() after creating an inline extent is the exception. It intentionally call extent_clear_unlock_delalloc() with locked_page == NULL, to also unlock current page (and clear its dirty/writeback bits). To co-operate with incoming subpage modifications, and make the page lock/unlock pair easier to understand, this patch will still call extent_clear_unlock_delalloc() with locked_page, and only unlock the page in __extent_writepage(). Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a33a8e9afc |
btrfs: update locked page dirty/writeback/error bits in __process_pages_contig
When __process_pages_contig() gets called for extent_clear_unlock_delalloc(), if we hit the locked page, only Private2 bit is updated, but dirty/writeback/error bits are all skipped. There are several call sites that call extent_clear_unlock_delalloc() with locked_page and PAGE_CLEAR_DIRTY/PAGE_SET_WRITEBACK/PAGE_END_WRITEBACK - cow_file_range() - run_delalloc_nocow() - cow_file_range_async() All for their error handling branches. For those call sites, since we skip the locked page for dirty/error/writeback bit update, the locked page will still have its subpage dirty bit remaining. Normally it's the call sites which locked the page to handle the locked page, but it won't hurt if we also do the update. Especially there are already other call sites doing the same thing by manually passing NULL as locked_page. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b945a4637e |
btrfs: make page Ordered bit to be subpage compatible
This involves the following modification: - Ordered extent creation This is done in process_one_page(), now PAGE_SET_ORDERED will call subpage helper to do the work. - endio functions This is done in btrfs_mark_ordered_io_finished(). - btrfs_invalidatepage() - btrfs_cleanup_ordered_extents() Use the subpage page helper, and add an extra branch to exit if the locked page have covered the full range. Now the usage of page Ordered flag for ordered extent accounting is fully subpage compatible. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6f17400bd9 |
btrfs: introduce helpers for subpage ordered status
This patch introduces the following functions to handle btrfs subpage ordered (Private2) status: - btrfs_subpage_set_ordered() - btrfs_subpage_clear_ordered() - btrfs_subpage_test_ordered() These helpers can only be called when the range is ensured to be inside the page. - btrfs_page_set_ordered() - btrfs_page_clear_ordered() - btrfs_page_test_ordered() These helpers can handle both regular sector size and subpage without problem. These functions are here to coordinate btrfs_invalidatepage() with btrfs_writepage_endio_finish_ordered(), to make sure only one of those functions can finish the ordered extent. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1e1de38792 |
btrfs: make process_one_page() to handle subpage locking
Introduce a new data inodes specific subpage member, writers, to record how many sectors are under page lock for delalloc writing. This member acts pretty much the same as readers, except it's only for delalloc writes. This is important for delalloc code to trace which page can really be freed, as we have cases like run_delalloc_nocow() where we may exit processing nocow range inside a page, but need to exit to do cow half way. In that case, we need a way to determine if we can really unlock a full page. With the new btrfs_subpage::writers, there is a new requirement: - Page locked by process_one_page() must be unlocked by process_one_page() There are still tons of call sites manually lock and unlock a page, without updating btrfs_subpage::writers. So if we lock a page through process_one_page() then it must be unlocked by process_one_page() to keep btrfs_subpage::writers consistent. This will be handled in next patch. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9047e3170a |
btrfs: make end_bio_extent_writepage() to be subpage compatible
Now in end_bio_extent_writepage(), the only subpage incompatible code is the end_page_writeback(). Just call the subpage helpers. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e38992be1f |
btrfs: make __process_pages_contig() to handle subpage dirty/error/writeback status
For __process_pages_contig() and process_one_page(), to handle subpage we only need to pass bytenr in and call subpage helpers to handle dirty/error/writeback status. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f02a85d2d5 |
btrfs: make btrfs_dirty_pages() to be subpage compatible
Since the extent io tree operations in btrfs_dirty_pages() are already subpage compatible, we only need to make the page status update to use subpage helpers. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
321a02db32 |
btrfs: only require sector size alignment for end_bio_extent_writepage()
Just like read page, for subpage support we only require sector size alignment. So change the error message condition to only require sector alignment. This should not affect existing code, as for regular sectorsize == PAGE_SIZE case, we are still requiring page alignment. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
60e2d25500 |
btrfs: provide btrfs_page_clamp_*() helpers
In the coming subpage RW supports, there are a lot of page status update calls which need to be converted to subpage compatible version, which needs @start and @len. Some call sites already have such @start/@len and are already in page range, like various endio functions. But there are also call sites which need to clamp the range for subpage case, like btrfs_dirty_pagse() and __process_contig_pages(). Here we introduce new helpers, btrfs_page_clamp_*(), to do and only do the clamp for subpage version. Although in theory all existing btrfs_page_*() calls can be converted to use btrfs_page_clamp_*() directly, but that would make us to do unnecessary clamp operations. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ed8f13bf4a |
btrfs: refactor page status update into process_one_page()
In __process_pages_contig() we update page status according to page_ops. That update process is a bunch of 'if' branches, which lie inside two loops, this makes it pretty hard to expand for later subpage operations. So this patch will extract these operations into its own function, process_one_pages(). Also since we're refactoring __process_pages_contig(), also move the new helper and __process_pages_contig() before the first caller of them, to remove the forward declaration. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
98af9ab12b |
btrfs: pass bytenr directly to __process_pages_contig()
As a preparation for incoming subpage support, we need bytenr passed to __process_pages_contig() directly, not the current page index. So change the parameter and all callers to pass bytenr in. With the modification, here we need to replace the old @index_ret with @processed_end for __process_pages_contig(), but this brings a small problem. Normally we follow the inclusive return value, meaning @processed_end should be the last byte we processed. If parameter @start is 0, and we failed to lock any page, then we would return @processed_end as -1, causing more problems for __unlock_for_delalloc(). So here for @processed_end, we use two different return value patterns. If we have locked any page, @processed_end will be the last byte of locked page. Or it will be @start otherwise. This change will impact lock_delalloc_pages(), so it needs to check @processed_end to only unlock the range if we have locked any. Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64] Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64] Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
968f2566ad |
btrfs: fix hang when run_delalloc_range() failed
[BUG]
When running subpage preparation patches on x86, btrfs/125 will hang
forever with one ordered extent never finished.
[CAUSE]
The test case btrfs/125 itself will always fail as the fix is never merged.
When the test fails at balance, btrfs needs to cleanup the ordered
extent in btrfs_cleanup_ordered_extents() for data reloc inode.
The problem is in the sequence how we cleanup the page Order bit.
Currently it works like:
btrfs_cleanup_ordered_extents()
|- find_get_page();
|- btrfs_page_clear_ordered(page);
| Now the page doesn't have Ordered bit anymore.
| !!! This also includes the first (locked) page !!!
|
|- offset += PAGE_SIZE
| This is to skip the first page
|- __endio_write_update_ordered()
|- btrfs_mark_ordered_io_finished(NULL)
Except the first page, all ordered extents are finished.
Then the locked page is cleaned up in __extent_writepage():
__extent_writepage()
|- If (PageError(page))
|- end_extent_writepage()
|- btrfs_mark_ordered_io_finished(page)
|- if (btrfs_test_page_ordered(page))
|- !!! The page gets skipped !!!
The ordered extent is not decreased as the page doesn't
have ordered bit anymore.
This leaves the ordered extent with bytes_left == sectorsize, thus never
finish.
[FIX]
The fix is to ensure we never clear page Ordered bit without running the
ordered extent accounting.
Here we choose to skip the locked page in
btrfs_cleanup_ordered_extents() so that later end_extent_writepage() can
properly finish the ordered extent.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
f57ad93735 |
btrfs: rename PagePrivate2 to PageOrdered inside btrfs
Inside btrfs we use Private2 page status to indicate we have an ordered extent with pending IO for the sector. But the page status name, Private2, tells us nothing about the bit itself, so this patch will rename it to Ordered. And with extra comment about the bit added, so reader who is still uncertain about the page Ordered status, will find the comment pretty easily. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3b8358407a |
btrfs: refactor btrfs_invalidatepage() for subpage support
This patch will refactor btrfs_invalidatepage() for the incoming subpage
support.
The involved modifications are:
- Use while() loop instead of "goto again;"
- Use single variable to determine whether to delete extent states
Each branch will also have comments why we can or cannot delete the
extent states
- Do qgroup free and extent states deletion per-loop
Current code can only work for PAGE_SIZE == sectorsize case.
This refactor also makes it clear what we do for different sectors:
- Sectors without ordered extent
We're completely safe to remove all extent states for the sector(s)
- Sectors with ordered extent, but no Private2 bit
This means the endio has already been executed, we can't remove all
extent states for the sector(s).
- Sectors with ordere extent, still has Private2 bit
This means we need to decrease the ordered extent accounting.
And then it comes to two different variants:
* We have finished and removed the ordered extent
Then it's the same as "sectors without ordered extent"
* We didn't finished the ordered extent
We can remove some extent states, but not all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
c095f3333f |
btrfs: introduce btrfs_lookup_first_ordered_range()
Although we already have btrfs_lookup_first_ordered_extent() and btrfs_lookup_ordered_extent(), they all have their own limitations: - btrfs_lookup_ordered_extent() can't do extra range check It's only designed to lookup any ordered extent before certain bytenr. - btrfs_lookup_first_ordered_extent() may not return the first ordered extent in the range It doesn't ensure the first ordered extent is returned. The existing callers are only interested in exhausting all ordered extents in a range, the order is not important. For incoming btrfs_invalidatepage() refactoring, we need a way to properly iterate all ordered extents in their bytenr order of a range. So this patch will introduce a new function, btrfs_lookup_first_ordered_range(), to do ordered extent with bytenr order awareness and extra range check. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
266a258678 |
btrfs: update comments in btrfs_invalidatepage()
The existing comments in btrfs_invalidatepage() don't really get to the point, especially for what Private2 is really representing and how the race avoidance is done. The truth is, there are only three entrances to do ordered extent accounting: - btrfs_writepage_endio_finish_ordered() - __endio_write_update_ordered() Those two entrance are just endio functions for dio and buffered write. - btrfs_invalidatepage() But there is a pitfall, in endio functions there is no check on whether the ordered extent is already accounted. They just blindly clear the Private2 bit and do the accounting. So it's all btrfs_invalidatepage()'s responsibility to make sure we won't do double account for the same sector. That's why in btrfs_invalidatepage() we have to wait for page writeback, this will ensure all submitted bios have finished, thus their endio functions have finished the accounting on the ordered extent. Then we also check page Private2 to ensure that, we only run ordered extent accounting on pages who has no bio submitted. This patch will rework related comments to make it more clear on the race and how we use wait_on_page_writeback() and Private2 to prevent double accounting on ordered extent. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e65f152e43 |
btrfs: refactor how we finish ordered extent io for endio functions
Btrfs has two endio functions to mark certain io range finished for ordered extents: - __endio_write_update_ordered() This is for direct IO - btrfs_writepage_endio_finish_ordered() This for buffered IO. However they go different routines to handle ordered extent io: - Whether to iterate through all ordered extents __endio_write_update_ordered() will but btrfs_writepage_endio_finish_ordered() will not. In fact, iterating through all ordered extents will benefit later subpage support, while for current PAGE_SIZE == sectorsize requirement this behavior makes no difference. - Whether to update page Private2 flag __endio_write_update_ordered() will not update page Private2 flag as for iomap direct IO, the page can not be even mapped. While btrfs_writepage_endio_finish_ordered() will clear Private2 to prevent double accounting against btrfs_invalidatepage(). Those differences are pretty subtle, and the ordered extent iterations code in callers makes code much harder to read. So this patch will introduce a new function, btrfs_mark_ordered_io_finished(), to do the heavy lifting: - Iterate through all ordered extents in the range - Do the ordered extent accounting - Queue the work for finished ordered extent This function has two new feature: - Proper underflow detection and recovery The old underflow detection will only detect the problem, then continue. No proper info like root/inode/ordered extent info, nor noisy enough to be caught by fstests. Furthermore when underflow happens, the ordered extent will never finish. New error detection will reset the bytes_left to 0, do proper kernel warning, and output extra info including root, ino, ordered extent range, the underflow value. - Prevent double accounting based on Private2 flag Now if we find a range without Private2 flag, we will skip to next range. As that means someone else has already finished the accounting of ordered extent. This makes no difference for current code, but will be a critical part for incoming subpage support, as we can call btrfs_mark_ordered_io_finished() for multiple sectors if they are beyond inode size. Thus such double accounting prevention is a key feature for subpage. Now both endio functions only need to call that new function. And since the only caller of btrfs_dec_test_first_ordered_pending() is removed, also remove btrfs_dec_test_first_ordered_pending() completely. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
87b4d86baa |
btrfs: make Private2 lifespan more consistent
Currently we use page Private2 bit to indicate that we have ordered
extent for the page range.
But the lifespan of it is not consistent, during regular writeback path,
there are two locations to clear the same PagePrivate2:
T ----- Page marked Dirty
|
+ ----- Page marked Private2, through btrfs_run_dealloc_range()
|
+ ----- Page cleared Private2, through btrfs_writepage_cow_fixup()
| in __extent_writepage_io()
| ^^^ Private2 cleared for the first time
|
+ ----- Page marked Writeback, through btrfs_set_range_writeback()
| in __extent_writepage_io().
|
+ ----- Page cleared Private2, through
| btrfs_writepage_endio_finish_ordered()
| ^^^ Private2 cleared for the second time.
|
+ ----- Page cleared Writeback, through
btrfs_writepage_endio_finish_ordered()
Currently PagePrivate2 is mostly to prevent ordered extent accounting
being executed for both endio and invalidatepage.
Thus only the one who cleared page Private2 is responsible for ordered
extent accounting.
But the fact is, in btrfs_writepage_endio_finish_ordered(), page
Private2 is cleared and ordered extent accounting is executed
unconditionally.
The race prevention only happens through btrfs_invalidatepage(), where
we wait for the page writeback first, before checking the Private2 bit.
This means, Private2 is also protected by Writeback bit, and there is no
need for btrfs_writepage_cow_fixup() to clear Priavte2.
This patch will change btrfs_writepage_cow_fixup() to just check
PagePrivate2, not to clear it.
The clearing will happen in either btrfs_invalidatepage() or
btrfs_writepage_endio_finish_ordered().
This makes the Private2 bit easier to understand, just meaning the page
has unfinished ordered extent attached to it.
And this patch is a hard requirement for the incoming refactoring for
how we finished ordered IO for endio context, as the coming patch will
check Private2 to determine if we need to do the ordered extent
accounting. Thus this patch is definitely needed or we will hang due to
unfinished ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
38a39ac77e |
btrfs: pass btrfs_inode to btrfs_writepage_endio_finish_ordered()
There is a pretty bad abuse of btrfs_writepage_endio_finish_ordered() in end_compressed_bio_write(). It passes compressed pages to btrfs_writepage_endio_finish_ordered(), which is only supposed to accept inode pages. Thankfully the important info here is the inode, so let's pass btrfs_inode directly into btrfs_writepage_endio_finish_ordered(), and make @page parameter optional. By this, end_compressed_bio_write() can happily pass page=NULL while still getting everything done properly. Also, to cooperate with such modification, replace @page parameter for trace_btrfs_writepage_end_io_hook() with btrfs_inode. Although this removes page_index info, the existing start/len should be enough for most usage. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fa04c16574 |
btrfs: make subpage metadata write path call its own endio functions
For subpage metadata, we're reusing two functions for subpage metadata write: - end_bio_extent_buffer_writepage() - write_one_eb() But the truth is, for subpage we just call end_bio_subpage_eb_writepage() without using any bit in end_bio_extent_buffer_writepage(). For write_one_eb(), it's pretty similar, but with a small part of code reused. There is really no need to pollute the existing code path if we're not really using most of them. So this patch will do the following change to separate the subpage metadata write path from regular write path by: - Use end_bio_subpage_eb_writepage() directly as endio in write_one_subpage_eb() - Directly call write_one_subpage_eb() in submit_eb_subpage() Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
390ed29b81 |
btrfs: refactor submit_extent_page() to make bio and its flag tracing easier
There is a lot of code inside extent_io.c needs both "struct bio **bio_ret" and "unsigned long prev_bio_flags", along with some parameters like "unsigned long bio_flags". Such strange parameters are here for bio assembly. For example, we have such inode page layout: 0 4K 8K 12K |<-- Extent A-->|<- EB->| Then what we do is: - Page [0, 4K) *bio_ret = NULL So we allocate a new bio to bio_ret, Add page [0, 4K) to *bio_ret. - Page [4K, 8K) *bio_ret != NULL We found this page is continuous to *bio_ret, and if we're not at stripe boundary, we add page [4K, 8K) to *bio_ret. - Page [8K, 12K) *bio_ret != NULL But we found this page is not continuous, so we submit *bio_ret, then allocate a new bio, and add page [8K, 12K) to the new bio. This means we need to record both the bio and its bio_flag, but we record them manually using those strange parameter list, other than encapsulating them into their own structure. So this patch will introduce a new structure, btrfs_bio_ctrl, to record both the bio, and its bio_flags. Also, in above case, for all pages added to the bio, we need to check if the new page crosses stripe boundary. This check itself can be time consuming, and we don't really need to do that for each page. This patch also integrates the stripe boundary check into btrfs_bio_ctrl. When a new bio is allocated, the stripe and ordered extent boundary is also calculated, so no matter how large the bio will be, we only calculate the boundaries once, to save some CPU time. The following functions/structures are affected: - struct extent_page_data Replace its bio pointer with structure btrfs_bio_ctrl (embedded structure, not pointer) - end_write_bio() - flush_write_bio() Just change how bio is fetched - btrfs_bio_add_page() Use pre-calculated boundaries instead of re-calculating them. And use @bio_ctrl to replace @bio and @prev_bio_flags. - calc_bio_boundaries() New function - submit_extent_page() callers - btrfs_do_readpage() callers - contiguous_readpages() callers To Use @bio_ctrl to replace @bio and @prev_bio_flags, and how to grab bio. - btrfs_bio_fits_in_ordered_extent() Removed, as now the ordered extent size limit is done at bio allocation time, no need to check for each page range. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1a0b5c4d64 |
btrfs: allow btrfs_bio_fits_in_stripe() to accept bio without any page
Function btrfs_bio_fits_in_stripe() now requires a bio with at least one page added. Or btrfs_get_chunk_map() will fail with -ENOENT. But in fact this requirement is not needed at all, as we can just pass sectorsize for btrfs_get_chunk_map(). This tiny behavior change is important for later subpage refactoring on submit_extent_page(). As for 64K page size, we can have a page range with pgoff=0 and size=64K. If the logical bytenr is just 16K before the stripe boundary, we have to split the page range into two bios. This means, we must check page range against stripe boundary, even adding the range to an empty bio. This tiny refactoring is for the incoming changes, but on its own, regular sectorsize == PAGE_SIZE is not affected anyway. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
43c0d1a5e1 |
btrfs: remove the unused parameter @len for btrfs_bio_fits_in_stripe()
The parameter @len is not really used in btrfs_bio_fits_in_stripe(),
just remove it.
It got removed in
|
|
|
|
0044ae11e8 |
btrfs: make free space cache size consistent across different PAGE_SIZE
Currently free space cache inode size is determined by two factors: - block group size - PAGE_SIZE This means, for the same sized block groups, with different PAGE_SIZE, it will result in different inode sizes. This will not be a good thing for subpage support, so change the requirement for PAGE_SIZE to sectorsize. Now for the same 4K sectorsize btrfs, it should result the same inode size no matter what the PAGE_SIZE is. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8df507cbb5 |
btrfs: scrub: fix subpage repair error caused by hard coded PAGE_SIZE
[BUG] For the following file layout, scrub will not be able to repair all these two repairable error, but in fact make one corruption even unrepairable: inode offset 0 4k 8K Mirror 1 |XXXXXX| | Mirror 2 | |XXXXXX| [CAUSE] The root cause is the hard coded PAGE_SIZE, which makes scrub repair to go crazy for subpage. For above case, when reading the first sector, we use PAGE_SIZE other than sectorsize to read, which makes us to read the full range [0, 64K). In fact, after 8K there may be no data at all, we can just get some garbage. Then when doing the repair, we also writeback a full page from mirror 2, this means, we will also writeback the corrupted data in mirror 2 back to mirror 1, leaving the range [4K, 8K) unrepairable. [FIX] This patch will modify the following PAGE_SIZE use with sectorsize: - scrub_print_warning_inode() Remove the min() and replace PAGE_SIZE with sectorsize. The min() makes no sense, as csum is done for the full sector with padding. This fixes a bug that subpage report extra length like: checksum error at logical 298844160 on dev /dev/mapper/arm_nvme-test, physical 575668224, root 5, inode 257, offset 0, length 12288, links 1 (path: file) Where the error is only 1 sector. - scrub_handle_errored_block() Comments with PAGE|page involved, all changed to sector. - scrub_setup_recheck_block() - scrub_repair_page_from_good_copy() - scrub_add_page_to_wr_bio() - scrub_wr_submit() - scrub_add_page_to_rd_bio() - scrub_block_complete() Replace PAGE_SIZE with sectorsize. This solves several problems where we read/write extra range for subpage case. RAID56 code is excluded intentionally, as RAID56 has extra PAGE_SIZE usage, and is not really safe enough. Thus we will reject RAID56 for subpage in later commit. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ec87b42f70 |
btrfs: use list_last_entry in add_falloc_range
Instead of calling list_entry with head->prev simply call list_last_entry which makes it obvious which member of the list is being referred. This allows to remove the extra 'prev' pointer. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4183abf6cb |
btrfs: fix comment about max_out in btrfs_compress_pages
Commit
|
|
|
|
65b5355f77 |
btrfs: optimize variables size in btrfs_submit_compressed_write
Patch "btrfs: reduce compressed_bio member's types" reduced some member's size. Function arguments @len, @compressed_len and @nr_pages can be declared as unsigned int. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
356b4a2dc1 |
btrfs: optimize variables size in btrfs_submit_compressed_read
Patch "btrfs: reduce compressed_bio member's types" reduced some member's size. Declare the variables @compressed_len, @nr_pages and @pg_index size as an unsigned int in the function btrfs_submit_compressed_read. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1d08ce5840 |
btrfs: reduce the variable size to fit nr_pages
Patch "btrfs: reduce compressed_bio member's types" reduced the @nr_pages size to unsigned int, its cascading effects are updated here. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b590b83972 |
btrfs: avoid unnecessary logging of xattrs during fast fsyncs
When logging an inode we always log all its xattrs, so that we are able
to figure out which ones should be deleted during log replay. However this
is unnecessary when we are doing a fast fsync and no xattrs were added,
changed or deleted since the last time we logged the inode in the current
transaction.
So skip the logging of xattrs when the inode was previously logged in the
current transaction and no xattrs were added, changed or deleted. If any
changes to xattrs happened, than the inode has BTRFS_INODE_COPY_EVERYTHING
set in its runtime flags and the xattrs get logged. This saves time on
scanning for xattrs, allocating memory, COWing log tree extent buffers and
adding more lock contention on the extent buffers when there are multiple
tasks logging in parallel.
The use of xattrs is common when using ACLs, some applications, or when
using security modules like SELinux where every inode gets a security
xattr added to it.
The following test script, using fio, was used on a box with 12 cores, 64G
of RAM, a NVMe device and the default non-debug kernel config from Debian.
It uses 8 concurrent jobs each writing in blocks of 64K to its own 4G file,
each file with a single xattr of 50 bytes (about the same size for an ACL
or SELinux xattr), doing random buffered writes with an fsync after each
write.
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/test
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
NUM_JOBS=8
FILE_SIZE=4G
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=1
fallocate=none
group_reporting=1
direct=0
bs=64K
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo "Creating files before fio runs, each with 1 xattr of 50 bytes"
for ((i = 0; i < $NUM_JOBS; i++)); do
path="$MNT/writers.$i.0"
truncate -s $FILE_SIZE $path
setfattr -n user.xa1 -v $(printf '%0.sX' $(seq 50)) $path
done
fio /tmp/fio-job.ini
umount $MNT
fio output before this change:
WRITE: bw=120MiB/s (126MB/s), 120MiB/s-120MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=272145-272145msec
fio output after this change:
WRITE: bw=142MiB/s (149MB/s), 142MiB/s-142MiB/s (149MB/s-149MB/s), io=32.0GiB (34.4GB), run=230408-230408msec
+16.8% throughput, -16.6% runtime
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
67ae34b69c |
btrfs: add device delete cancel
Accept device name "cancel" as a request to cancel running device deletion operation. The string is literal, in case there's a real device named "cancel", pass it as full absolute path or as "./cancel" This works for v1 and v2 ioctls when the device is specified by name. Moving chunks from the device uses relocation, use the conditional exclusive operation start and cancellation helpers Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bb059a37c9 |
btrfs: add cancellation to resize
Accept literal string "cancel" as resize operation and interpret that as a request to cancel the running operation. If it's running, wait until it finishes current work and return ECANCELED. Shrinking resize uses relocation to move the chunks away, use the conditional exclusive operation start and cancellation helpers. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
17aaa434ed |
btrfs: add wrapper for conditional start of exclusive operation
To support optional cancellation of some operations, add helper that will wrap all the combinations. In normal mode it's same as btrfs_exclop_start, in cancellation mode it checks if it's already running and request cancellation and waits until completion. The error codes can be returned to to user space and semantics is not changed, adding ECANCELED. This should be evaluated as an error and that the operation has not completed and the operation should be restarted or the filesystem status reviewed. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
578bda9e17 |
btrfs: introduce try-lock semantics for exclusive op start
Add try-lock for exclusive operation start to allow callers to do more checks. The same operation must already be running. The try-lock and unlock must pair and are a substitute for btrfs_exclop_start, thus it must also pair with btrfs_exclop_finish to release the exclop context. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
907d2710d7 |
btrfs: add cancellable chunk relocation support
Add support code that will allow canceling relocation on the chunk granularity. This is different and independent of balance, that also uses relocation but is a higher level operation and manages it's own state and pause/cancellation requests. Relocation is used for resize (shrink) and device deletion so this will be a common point to implement cancellation for both. The context is entirely in btrfs_relocate_block_group and btrfs_recover_relocation, enclosing one chunk relocation. The status bit is set and unset between the chunks. As relocation can take long, the effects may not be immediate and the request and actual action can slightly race. The fs_info::reloc_cancel_req is only supposed to be increased and does not pair with decrement like fs_info::balance_cancel_req. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0d7ed32c1e |
btrfs: protect exclusive_operation by super_lock
The exclusive operation is now atomically checked and set using bit operations. Switch it to protection by spinlock. The super block lock is not frequently used and adding a new lock seems like an overkill so it should be safe to reuse it. The reason to use spinlock is to enhance the locking context so more checks can be done, eg. allowing the same exclusive operation enter the exclop section and cancel the running one. This will be used for resize and device delete. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
24880be59c |
btrfs: clean up header members offsets in write helpers
Move header offsetof() to the expression that calculates the address so it's part of get_eb_offset_in_page where the 2nd parameter is the member offset. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
dfd29eed4a |
btrfs: simplify eb checksum verification in btrfs_validate_metadata_buffer
The verification copies the calculated checksum bytes to a temporary buffer but this is not necessary. We can map the eb header on the first page and use the checksum bytes directly. This saves at least one function call and boundary checks so it could lead to a minor performance improvement. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ff14aa7987 |
btrfs: remove extra sb::s_id from message in btrfs_validate_metadata_buffer
The s_id is already printed by message helpers. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
282ab3ff16 |
btrfs: reduce compressed_bio members' types
Several members of compressed_bio are of type that's unnecessarily big
for the values that they'd hold:
- the size of the uncompressed and compressed data is 128K now, we can
keep is as int
- same for number of pages
- the compress type fits to a byte
- the errors is 0/1
The size of the unpatched structure is 80 bytes with several holes.
Reordering nr_pages next to the pages the hole after pending_bios is
filled and the resulting size is 56 bytes. This keeps the csums array
aligned to 8 bytes, which is nice. Further size optimizations may be
possible but right now it looks good to me:
struct compressed_bio {
refcount_t pending_bios; /* 0 4 */
unsigned int nr_pages; /* 4 4 */
struct page * * compressed_pages; /* 8 8 */
struct inode * inode; /* 16 8 */
u64 start; /* 24 8 */
unsigned int len; /* 32 4 */
unsigned int compressed_len; /* 36 4 */
u8 compress_type; /* 40 1 */
u8 errors; /* 41 1 */
/* XXX 2 bytes hole, try to pack */
int mirror_num; /* 44 4 */
struct bio * orig_bio; /* 48 8 */
u8 sums[]; /* 56 0 */
/* size: 56, cachelines: 1, members: 12 */
/* sum members: 54, holes: 1, sum holes: 2 */
/* last cacheline: 56 bytes */
};
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
49547068f6 |
btrfs: document byte swap optimization of root_item::flags accessors
Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7735cd755b |
btrfs: scrub: factor out common scrub_stripe constraints
There are common values set for the stripe constraints, some of them are already factored out. Do that for increment and mirror_num as well. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1aeb6b563a |
btrfs: clear log tree recovering status if starting transaction fails
When a log recovery is in progress, lots of operations have to take that into account, so we keep this status per tree during the operation. Long time ago error handling revamp patch |
|
|
|
6819703f5a |
btrfs: clear defrag status of a root if starting transaction fails
The defrag loop processes leaves in batches and starting transaction for each. The whole defragmentation on a given root is protected by a bit but in case the transaction fails, the bit is not cleared In case the transaction fails the bit would prevent starting defragmentation again, so make sure it's cleared. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8c5ec99561 |
btrfs: sysfs: fix format string for some discard stats
The type of discard_bitmap_bytes and discard_extent_bytes is u64 so the format should be %llu, though the actual values would hardly ever overflow to negative values. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5963ffcaf3 |
btrfs: always abort the transaction if we abort a trans handle
While stress testing our error handling I noticed that sometimes we would still commit the transaction even though we had aborted the transaction. Currently we track if a trans handle has dirtied any metadata, and if it hasn't we mark the filesystem as having an error (so no new transactions can be started), but we will allow the current transaction to complete as we do not mark the transaction itself as having been aborted. This sounds good in theory, but we were not properly tracking IO errors in btrfs_finish_ordered_io, and thus committing the transaction with bogus free space data. This isn't necessarily a problem per-se with the free space cache, as the other guards in place would have kept us from accepting the free space cache as valid, but highlights a real world case where we had a bug and could have corrupted the filesystem because of it. This "skip abort on empty trans handle" is nice in theory, but assumes we have perfect error handling everywhere, which we clearly do not. Also we do not allow further transactions to be started, so all this does is save the last transaction that was happening, which doesn't necessarily gain us anything other than the potential for real corruption. Remove this particular bit of code, if we decide we need to abort the transaction then abort the current one and keep us from doing real harm to the file system, regardless of whether this specific trans handle dirtied anything or not. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0d7d316597 |
btrfs: don't set the full sync flag when truncation does not touch extents
At btrfs_truncate() where we truncate the inode either to the same size or to a smaller size, we always set the full sync flag on the inode. This is needed in case the truncation drops or trims any file extent items that start beyond or cross the new inode size, so that the next fsync drops all inode items from the log and scans again the fs/subvolume tree to find all items that must be logged. However if the truncation does not drop or trims any file extent items, we do not need to set the full sync flag and force the next fsync to use the slow code path. So do not set the full sync flag in such cases. One use case where it is frequent to do truncations that do not change the inode size and do not drop any extents (no prealloc extents beyond i_size) is when running Microsoft's SQL Server inside a Docker container. One example workload is the one Philipp Fent reported recently, in the thread with a link below. In this workload a large number of fsyncs are preceded by such truncate operations. After this change I constantly get the runtime for that workload from Philipp to be reduced by about -12%, for example from 184 seconds down to 162 seconds. Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/ Tested-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4f7e67378e |
btrfs: fix misleading and incomplete comment of btrfs_truncate()
The comment at the top of btrfs_truncate() mentions that csum items are dropped or truncated to the new i_size, but this is wrong and non sense, as they are unrelated to the i_size and are located in the csums tree and not on a tree with inode items (fs/subvolume tree or a log tree). Instead that claim applies to file extent items, so fix the comment to refer to them instead. While at it make the whole comment for the function more descriptive and follow the kernel doc style. Tested-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
04587ad9be |
btrfs: abort transaction if we fail to update the delayed inode
If we fail to update the delayed inode we need to abort the transaction, because we could leave an inode with the improper counts or some other such corruption behind. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bb385bedde |
btrfs: fix error handling in __btrfs_update_delayed_inode
If we get an error while looking up the inode item we'll simply bail without cleaning up the delayed node. This results in this style of warning happening on commit: WARNING: CPU: 0 PID: 76403 at fs/btrfs/delayed-inode.c:1365 btrfs_assert_delayed_root_empty+0x5b/0x90 CPU: 0 PID: 76403 Comm: fsstress Tainted: G W 5.13.0-rc1+ #373 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:btrfs_assert_delayed_root_empty+0x5b/0x90 RSP: 0018:ffffb8bb815a7e50 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff95d6d07e1888 RCX: ffff95d6c0fa3000 RDX: 0000000000000002 RSI: 000000000029e91c RDI: ffff95d6c0fc8060 RBP: ffff95d6c0fc8060 R08: 00008d6d701a2c1d R09: 0000000000000000 R10: ffff95d6d1760ea0 R11: 0000000000000001 R12: ffff95d6c15a4d00 R13: ffff95d6c0fa3000 R14: 0000000000000000 R15: ffffb8bb815a7e90 FS: 00007f490e8dbb80(0000) GS:ffff95d73bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6e75555cb0 CR3: 00000001101ce001 CR4: 0000000000370ef0 Call Trace: btrfs_commit_transaction+0x43c/0xb00 ? finish_wait+0x80/0x80 ? vfs_fsync_range+0x90/0x90 iterate_supers+0x8c/0x100 ksys_sync+0x50/0x90 __do_sys_sync+0xa/0x10 do_syscall_64+0x3d/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Because the iref isn't dropped and this leaves an elevated node->count, so any release just re-queues it onto the delayed inodes list. Fix this by going to the out label to handle the proper cleanup of the delayed node. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a4cb90dc01 |
btrfs: make btrfs_release_delayed_iref handle the !iref case
Right now we only cleanup the delayed iref if we have BTRFS_DELAYED_NODE_DEL_IREF set on the node. However we have some error conditions that need to cleanup the iref if it still exists, so to make this code cleaner move the test_bit into btrfs_release_delayed_iref itself and unconditionally call it in each of the cases instead. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
eb3b505366 |
btrfs: scrub: per-device bandwidth control
Add sysfs interface to limit io during scrub. We relied on the ionice interface to do that, eg. the idle class let the system usable while scrub was running. This has changed when mq-deadline got widespread and did not implement the scheduling classes. That was a CFQ thing that got deleted. We've got numerous complaints from users about degraded performance. Currently only BFQ supports that but it's not a common scheduler and we can't ask everybody to switch to it. Alternatively the cgroup io limiting can be used but that also a non-trivial setup (v2 required, the controller must be enabled on the system). This can still be used if desired. Other ideas that have been explored: piggy-back on ionice (that is set per-process and is accessible) and interpret the class and classdata as bandwidth limits, but this does not have enough flexibility as there are only 8 allowed and we'd have to map fixed limits to each value. Also adjusting the value would need to lookup the process that currently runs scrub on the given device, and the value is not sticky so would have to be adjusted each time scrub runs. Running out of options, sysfs does not look that bad: - it's accessible from scripts, or udev rules - the name is similar to what MD-RAID has (/proc/sys/dev/raid/speed_limit_max or /sys/block/mdX/md/sync_speed_max) - the value is sticky at least for filesystem mount time - adjusting the value has immediate effect - sysfs is available in constrained environments (eg. system rescue) - the limit also applies to device replace Sysfs: - raw value is in bytes - values written to the file accept suffixes like K, M - file is in the per-device directory /sys/fs/btrfs/FSID/devinfo/DEVID/scrub_speed_max - 0 means use default priority of IO The scheduler is a simple deadline one and the accuracy is up to nearest 128K. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e7ff9e6b8e |
btrfs: zoned: factor out zoned device lookup
To be able to construct a zone append bio we need to look up the btrfs_device. The code doing the chunk map lookup to get the device is present in btrfs_submit_compressed_write and submit_extent_page. Factor out the lookup calls into a helper and use it in the submission paths. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
50535db8fb |
btrfs: return EAGAIN if defrag is canceled
When inode defrag is canceled, the error is set to EAGAIN but then overwritten by number of defragmented bytes. As this would hide the error, rather return EAGAIN. This does not harm 'btrfs fi defrag', it will print the error and continue to next file (as it does in for any other error). Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1245835d24 |
btrfs: remove io_failure_record::in_validation
The io_failure_record::in_validation was introduced to handle failed bio which cross several sectors. In such case, we still need to verify which sectors are corrupted. But since we've changed the way how we handle corrupted sectors, by only submitting repair for each corrupted sector, there is no need for extra validation any more. This patch will cleanup all io_failure_record::in_validation related code. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
150e4b0597 |
btrfs: submit read time repair only for each corrupted sector
Currently btrfs_submit_read_repair() has some extra check on whether the
failed bio needs extra validation for repair. But we can avoid all
these extra mechanisms if we submit the repair for each sector.
By this, each read repair can be easily handled without the need to
verify which sector is corrupted.
This will also benefit subpage, as one subpage bvec can contain several
sectors, making the extra verification more complex.
So this patch will:
- Introduce repair_one_sector()
The main code submitting repair, which is more or less the same as old
btrfs_submit_read_repair().
But this time, it only repairs one sector.
- Make btrfs_submit_read_repair() to handle sectors differently
There are 3 different cases:
* Good sector
We need to release the page and extent, set the range uptodate.
* Bad sector and failed to submit repair bio
We need to release the page and extent, but not set the range
uptodate.
* Bad sector but repair bio submitted
The page and extent release will be handled by the submitted repair
bio. Nothing needs to be done.
Since btrfs_submit_read_repair() will handle the page and extent
release now, we need to skip to next bvec even we hit some error.
- Change the lifespan of @uptodate in end_bio_extent_readpage()
Since now btrfs_submit_read_repair() will handle the full bvec
which contains any corruption, we don't need to bother updating
@uptodate bit anymore.
Just let @uptodate to be local variable inside the main loop,
so that any error from one bvec won't affect later bvec.
- Only export btrfs_repair_one_sector(), unexport
btrfs_submit_read_repair()
The only outside caller for read repair is DIO, which already submits
its repair for just one sector.
Only export btrfs_repair_one_sector() for DIO.
This patch will focus on the change on the repair path, the extra
validation code is still kept as is, and will be cleaned up later.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
08508fea07 |
btrfs: make btrfs_verify_data_csum() to return a bitmap
This will provide the basis for later per-sector repair for subpage, while still keeping the existing code happy. As if all csums match, the return value will be 0, same as now. Only when csum mismatches, the return value is different. The new return value will be a bitmap, for 4K sectorsize and 4K page size, it will be either 1, instead of the -EIO (which is not used directly by the callers, no effective change). But for 4K sectorsize and 64K page size, aka subpage case, since the bvec can contain multiple sectors, knowing which sectors are corrupted will allow us to submit repair only for corrupted sectors. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f4dcfb3045 |
btrfs: rename check_async_write and let it return bool
The 'check_async_write' function is a helper used in 'btrfs_submit_metadata_bio' and it checks if asynchronous writing can be used for metadata. Make the function return bool and get rid of the local variable async in btrfs_submit_metadata_bio storing the result of check_async_write's tests. As this is touching all function call sites, also rename it to should_async_write as this is more in line with the naming we use. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
06e1e7f422 |
btrfs: zoned: bail out if we can't read a reliable write pointer
If we can't read a reliable write pointer from a sequential zone fail creating the block group with an I/O error. Also if the read write pointer is beyond the end of the respective zone, fail the creation of the block group on this zone with an I/O error. While this could also happen in real world scenarios with misbehaving drives, this issue addresses a problem uncovered by fstests' test case generic/475. CC: stable@vger.kernel.org # 5.12+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
47cdfb5e1d |
btrfs: zoned: print message when zone sanity check type fails
This extends patch |
|
|
|
385f421f18 |
btrfs: handle preemptive delalloc flushing slightly differently
If we decide to flush delalloc from the preemptive flusher, we really do not want to wait on ordered extents, as it gains us nothing. However there was logic to go ahead and wait on ordered extents if there was more ordered bytes than delalloc bytes. We do not want this behavior, so pass through whether this flushing is for preemption, and do not wait for ordered extents if that's the case. Also break out of the shrink loop after the first flushing, as we just want to one shot shrink delalloc. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3e10156997 |
btrfs: only ignore delalloc if delalloc is much smaller than ordered
While testing heavy delalloc workloads I noticed that sometimes we'd just stop preemptively flushing when we had loads of delalloc available to flush. This is because we skip preemptive flushing if delalloc <= ordered. However if we start with say 4gib of delalloc, and we flush 2gib of that, we'll stop flushing there, when we still have 2gib of delalloc to flush. Instead adjust the ordered bytes down by half, this way if 2/3 of our outstanding delalloc reservations are tied up by ordered extents we don't bother preemptive flushing, as we're getting close to the state where we need to wait on ordered extents. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
30acce4eb0 |
btrfs: don't include the global rsv size in the preemptive used amount
When deciding if we should preemptively flush space, we will add in the amount of space used by all block rsvs. However this also includes the global block rsv, which isn't flushable so shouldn't be accounted for in this calculation. If we decide to use ->bytes_may_use in our used calculation we need to subtract the global rsv size from this amount so it most closely matches the flushable space. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1239e2da16 |
btrfs: use the global rsv size in the preemptive thresh calculation
We calculate the amount of "free" space available for normal reservations by taking the total space and subtracting out the hard used space, which is readonly, used, and reserved space. However we weren't taking into account the global block rsv, which is essentially hard used space. Handle this by subtracting it from the available free space, so that our threshold more closely mirrors reality. We need to do the check because it's possible that the global_rsv_size + used is > total_bytes, sometimes the global reserve can end up being calculated as larger than the available size (think small filesystems where we only have the original 8MiB chunk of metadata). It doesn't usually happen, but that can get us into trouble so this is safer. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
610a6ef44e |
btrfs: take into account global rsv in need_preemptive_reclaim
Global rsv can't be used for normal allocations, and for very full file systems we can decide to try and async flush constantly even though there's really not a lot of space to reclaim. Deal with this by including the global block rsv size in the "total used" calculation. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0aae4ca9e9 |
btrfs: only clamp the first time we have to start flushing
We were clamping the threshold for preemptive reclaim any time we added a ticket to wait on, which if we have a lot of threads means we'd essentially max out the clamp the first time we start to flush. Instead of doing this, simply do it every time we have to start flushing, this will make us ramp up gradually instead of going to max clamping as soon as we start needing to do flushing. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ed738ba7f9 |
btrfs: check worker before need_preemptive_reclaim
need_preemptive_reclaim() does some calculations, which aren't heavy, but if we're already running preemptive reclaim there's no reason to do them at all, so re-order the checks so that we don't do the calculation if we're already doing reclaim. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
94358c35d8 |
btrfs: remove stale comment for argument seed of btrfs_find_device
Commit
|
|
|
|
dc56219fe2 |
btrfs: correct try_lock_extent() usage in read_extent_buffer_subpage()
try_lock_extent() returns 1 on success or 0 for failure and not an error code. If try_lock_extent() fails, read_extent_buffer_subpage() returns zero indicating subpage extent read success. Return EAGAIN/EWOULDBLOCK if try_lock_extent() fails in locking the extent. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6fab154a33 |
for-5.13-rc6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmDNEFMACgkQxWXV+ddt WDuZQg/7BpGG3IDhxydM7fUrNT0xmW2/0VG8blXAgNTiaUO1zOrlrlDKm38+dtW6 yEv3ruf68tggrPNRCkyh51n45+ExqNwc7WwrxaKIRKmvYhYDsxnt8JLiNkv64isi R/CQVETX1cKsMuRhBuqmUq3Sy6VJZoi6coUHIC7ddBcLqnz8c9p7oGqzxBT8J9u3 1CkDSeLM4HKlISlVKhmT4lRG28cQTuy3mSABUt7N5ljJvrrpQAvEN1HCOE9XUQFQ wHH2DjNnBMvfB7mrGCBL7XGf8DF6ucgcyfofuOj6CQLFJ8bOnVKsk8dk/8XUQod+ rQoNIrVwW91LjmEO/I767JmjrRMtHbXvl3DEw3BvaD/O4efw78SN2VN+DRi4j7Xx aMtAWWfakfIyyJNZu9IEDa736iCdp+yl4bnq+hZpqmOYRqTq8n/zWuCMWZ5ohNay JyjxCm+xgo3vH9VEgzje6GDUki3I4Bwe7VlsaMr9F6F5GKzFp/4fb9lCewBrH6le +Y4gWxRT09plThsC2N3qmBQ9uVIJUyzmvcsYiMJ95tb24srdcPUTCG0C9zBvuMCC nm+1n5d3ENSEBaRNKQsC3MYcjKIh8VDEaKnntJrHAzHP41hrD+makrw3LVs6wLzu amGYz40XNq8zK2Xxv/N8O/U/PwQWKGj4bxq/2c1Wi9p9HACWfgk= =JbJO -----END PGP SIGNATURE----- Merge tag 'for-5.13-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "One more fix, for a space accounting bug in zoned mode. It happens when a block group is switched back rw->ro and unusable bytes (due to zoned constraints) are subtracted twice. It has user visible effects so I consider it important enough for late -rc inclusion and backport to stable" * tag 'for-5.13-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: fix negative space_info->bytes_readonly |
|
|
|
f9f28e5bd0 |
btrfs: zoned: fix negative space_info->bytes_readonly
Consider we have a using block group on zoned btrfs.
|<- ZU ->|<- used ->|<---free--->|
`- Alloc offset
ZU: Zone unusable
Marking the block group read-only will migrate the zone unusable bytes
to the read-only bytes. So, we will have this.
|<- RO ->|<- used ->|<--- RO --->|
RO: Read only
When marking it back to read-write, btrfs_dec_block_group_ro()
subtracts the above "RO" bytes from the
space_info->bytes_readonly. And, it moves the zone unusable bytes back
and again subtracts those bytes from the space_info->bytes_readonly,
leading to negative bytes_readonly.
This can be observed in the output as eg.:
Data, single: total=512.00MiB, used=165.21MiB, zone_unusable=16.00EiB
Data, single: total=536870912, used=173256704, zone_unusable=18446744073603186688
This commit fixes the issue by reordering the operations.
Link: https://github.com/naota/linux/issues/37
Reported-by: David Sterba <dsterba@suse.com>
Fixes:
|
|
|
|
f0b65f39ac |
iov_iter: replace iov_iter_copy_from_user_atomic() with iterator-advancing variant
Replacement is called copy_page_from_iter_atomic(); unlike the old primitive the callers do *not* need to do iov_iter_advance() after it. In case when they end up consuming less than they'd been given they need to do iov_iter_revert() on everything they had not consumed. That, however, needs to be done only on slow paths. All in-tree callers converted. And that kills the last user of iterate_all_kinds() Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
|
|
|
cc6cf827dd |
for-5.13-rc5-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmDAtXUACgkQxWXV+ddt WDtbdA//ccQ8JL5yC/x/j0ZXLJ2INqXpxIUPjadwwEjtTgOllvx+f1nU0QazeYfM XvvzDDvpemWajC2Ii54s2HCQbG+dAzO1YBl1XCyve91T0GeNGhzytZwM0pVxZePQ A+aOyVH7IcfFcmBy9T0yctqiGgtD3lre208kU9kolidsIyomLHxBckBhMYDXvJCK BOdrjq3f6H5J0zqOqAnWdc/Wc5z5pw3CHxlIuoA3Tp0Gv9TIx366Z/IvmFfCyvCt kYv2qnUaw10OlFLiqhetlZyv49ibW4waj0RbyY/rZx+69sE/PM4961NYAjLoFJc2 6OoZZO4OHWrNZpBJfbyyX9KVLspix075FID7qVhE/AVW4CYZGOFu5wJyXQiYlysH 1qqkihK3gbKEsB2429UeLZktupmx79LBIgg346+DSQYiMXMTGR8iZY1onbBM2wlf bep65hsiHhxoC6Z/KhxrTGZM2jyYW2nICw3o0xikhWv7MZPWKfKHrH9NJQ9Lpuhy gxut0ef9HbPXWP9PgRmY0Z8PsUi8RT1bv0bHVw7EnhLbi62neJLyxY3Q++W+7vBG LYeaxKWLTTJu73wpBQHLI0pD0UifXLrTkiCI+4gN8zVfzxUl+90mGz2AdSRRFI+U kNdX/haEHi00WBqYxWt33ae/FuSHjPuYXjiPQA7Kiy/C3n9GAB0= =mGAq -----END PGP SIGNATURE----- Merge tag 'for-5.13-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes that people hit during testing. Zoned mode fix: - fix 32bit value wrapping when calculating superblock offsets Error handling fixes: - properly check filesystema and device uuids - properly return errors when marking extents as written - do not write supers if we have an fs error" * tag 'for-5.13-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: promote debugging asserts to full-fledged checks in validate_super btrfs: return value from btrfs_mark_extent_written() in case of error btrfs: zoned: fix zone number to sector/physical calculation btrfs: do not write supers if we have an fs error |
|
|
|
aefd7f7065 |
btrfs: promote debugging asserts to full-fledged checks in validate_super
Syzbot managed to trigger this assert while performing its fuzzing. Turns out it's better to have those asserts turned into full-fledged checks so that in case buggy btrfs images are mounted the users gets an error and mounting is stopped. Alternatively with CONFIG_BTRFS_ASSERT disabled such image would have been erroneously allowed to be mounted. Reported-by: syzbot+a6bf271c02e4fe66b4e4@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add uuids to the messages ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e7b2ec3d3d |
btrfs: return value from btrfs_mark_extent_written() in case of error
We always return 0 even in case of an error in btrfs_mark_extent_written(). Fix it to return proper error value in case of a failure. All callers handle it. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5b434df877 |
btrfs: zoned: fix zone number to sector/physical calculation
In btrfs_get_dev_zone_info(), we have "u32 sb_zone" and calculate "sector_t
sector" by shifting it. But, this "sector" is calculated in 32bit, leading
it to be 0 for the 2nd superblock copy.
Since zone number is u32, shifting it to sector (sector_t) or physical
address (u64) can easily trigger a missing cast bug like this.
This commit introduces helpers to convert zone number to sector/LBA, so we
won't fall into the same pitfall again.
Reported-by: Dmitry Fomichev <Dmitry.Fomichev@wdc.com>
Fixes:
|
|
|
|
165ea85f14 |
btrfs: do not write supers if we have an fs error
Error injection testing uncovered a pretty severe problem where we could end up committing a super that pointed to the wrong tree roots, resulting in transid mismatch errors. The way we commit the transaction is we update the super copy with the current generations and bytenrs of the important roots, and then copy that into our super_for_commit. Then we allow transactions to continue again, we write out the dirty pages for the transaction, and then we write the super. If the write out fails we'll bail and skip writing the supers. However since we've allowed a new transaction to start, we can have a log attempting to sync at this point, which would be blocked on fs_info->tree_log_mutex. Once the commit fails we're allowed to do the log tree commit, which uses super_for_commit, which now points at fs tree's that were not written out. Fix this by checking BTRFS_FS_STATE_ERROR once we acquire the tree_log_mutex. This way if the transaction commit fails we're sure to see this bit set and we can skip writing the super out. This patch fixes this specific transid mismatch error I was seeing with this particular error path. CC: stable@vger.kernel.org # 5.12+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fd2ff2774e |
for-5.13-rc4-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmC435cACgkQxWXV+ddt
WDuh5w/+IGfsUFfKikJZpZUP7q/2gC0t0dzZemxeZMutJbT/KCZCDd4CjLf6YH6r
oV9uYIgOWGd3aem9fe0R60ErJ4htgszIgeydCw3s2EuTms6WvAVA6Wp+wK/3UNx3
vQgYsqYkhMzIYKm/D4q8G+bqA2nPbBTDRNsXDIDrZYONxwSb+dNbQCGVknBRzRPa
hiCqYhUSyXA7E6UZdlma7MvpDOquZN+iW3RRVx1AULLqVs01PCnG/CEN+0oQm2JE
r9IyRxOZUvSeW6opT80yzZFCoboNSduMjPENTfzLY6Q1xzS/EtP4kM86fB/7AoJv
UI0c3Sr84SC9vOsBsbGJaBHpxP3OpzxohKU///jVQgEDpGv4STPlkVfxk23BHcux
Fdfg7wodkXeLU1Ff4dlJhvCqNYqc5V8lT5Kl52ai9Scct6D4yZBAq4KJp2LmYFC0
cHv6xFxBUv5zFZP1j6NMOmiLlCdDEkOruku2mMweQOBWYW/lHYNU469V5RCvfbLl
HlbDrtZdnQ3m2IhpQrXiTnT47Ib4DPYWkhRVfWbyVJHA+CbcOV62RQfl+r95Bc7j
FB1gM5vwUTJV7wgzErrq7+BD8quxG6/NuLDFjHYRcIj1kSIMK4/I1fOWruzuK+CL
6n7LLvBOojYfFo+ruQMSp2imDn3JJucBuh0/ssOlUWl2zsy6lDA=
=8066
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Error handling improvements, caught by error injection:
- handle errors during checksum deletion
- set error on mapping when ordered extent io cannot be finished
- inode link count fixup in tree-log
- missing return value checks for inode updates in tree-log
- abort transaction in rename exchange if adding second reference
fails
Fixes:
- fix fsync failure after writes to prealloc extents
- fix deadlock when cloning inline extents and low on available space
- fix compressed writes that cross stripe boundary"
* tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
MAINTAINERS: add btrfs IRC link
btrfs: fix deadlock when cloning inline extents and low on available space
btrfs: fix fsync failure and transaction abort after writes to prealloc extents
btrfs: abort in rename_exchange if we fail to insert the second ref
btrfs: check error value from btrfs_update_inode in tree log
btrfs: fixup error handling in fixup_inode_link_counts
btrfs: mark ordered extent and inode with error if we fail to finish
btrfs: return errors from btrfs_del_csums in cleanup_ref_head
btrfs: fix error handling in btrfs_del_csums
btrfs: fix compressed writes that cross stripe boundary
|
|
|
|
a8698707a1 |
block: move bd_mutex to struct gendisk
Replace the per-block device bd_mutex with a per-gendisk open_mutex, thus simplifying locking wherever we deal with partitions. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ming Lei <ming.lei@redhat.com> Acked-by: Roger Pau Monné <roger.pau@citrix.com> Link: https://lore.kernel.org/r/20210525061301.2242282-4-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
76a6d5cd74 |
btrfs: fix deadlock when cloning inline extents and low on available space
There are a few cases where cloning an inline extent requires copying data
into a page of the destination inode. For these cases we are allocating
the required data and metadata space while holding a leaf locked. This can
result in a deadlock when we are low on available space because allocating
the space may flush delalloc and two deadlock scenarios can happen:
1) When starting writeback for an inode with a very small dirty range that
fits in an inline extent, we deadlock during the writeback when trying
to insert the inline extent, at cow_file_range_inline(), if the extent
is going to be located in the leaf for which we are already holding a
read lock;
2) After successfully starting writeback, for non-inline extent cases,
the async reclaim thread will hang waiting for an ordered extent to
complete if the ordered extent completion needs to modify the leaf
for which the clone task is holding a read lock (for adding or
replacing file extent items). So the cloning task will wait forever
on the async reclaim thread to make progress, which in turn is
waiting for the ordered extent completion which in turn is waiting
to acquire a write lock on the same leaf.
So fix this by making sure we release the path (and therefore the leaf)
every time we need to copy the inline extent's data into a page of the
destination inode, as by that time we do not need to have the leaf locked.
Fixes:
|
|
|
|
ea7036de0d |
btrfs: fix fsync failure and transaction abort after writes to prealloc extents
When doing a series of partial writes to different ranges of preallocated
extents with transaction commits and fsyncs in between, we can end up with
a checksum items in a log tree. This causes an fsync to fail with -EIO and
abort the transaction, turning the filesystem to RO mode, when syncing the
log.
For this to happen, we need to have a full fsync of a file following one
or more fast fsyncs.
The following example reproduces the problem and explains how it happens:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
# Create our test file with 2 preallocated extents. Leave a 1M hole
# between them to ensure that we get two file extent items that will
# never be merged into a single one. The extents are contiguous on disk,
# which will later result in the checksums for their data to be merged
# into a single checksum item in the csums btree.
#
$ xfs_io -f \
-c "falloc 0 1M" \
-c "falloc 3M 3M" \
/mnt/foobar
# Now write to the second extent and leave only 1M of it as unwritten,
# which corresponds to the file range [4M, 5M[.
#
# Then fsync the file to flush delalloc and to clear full sync flag from
# the inode, so that a future fsync will use the fast code path.
#
# After the writeback triggered by the fsync we have 3 file extent items
# that point to the second extent we previously allocated:
#
# 1) One file extent item of type BTRFS_FILE_EXTENT_REG that covers the
# file range [3M, 4M[
#
# 2) One file extent item of type BTRFS_FILE_EXTENT_PREALLOC that covers
# the file range [4M, 5M[
#
# 3) One file extent item of type BTRFS_FILE_EXTENT_REG that covers the
# file range [5M, 6M[
#
# All these file extent items have a generation of 6, which is the ID of
# the transaction where they were created. The split of the original file
# extent item is done at btrfs_mark_extent_written() when ordered extents
# complete for the file ranges [3M, 4M[ and [5M, 6M[.
#
$ xfs_io -c "pwrite -S 0xab 3M 1M" \
-c "pwrite -S 0xef 5M 1M" \
-c "fsync" \
/mnt/foobar
# Commit the current transaction. This wipes out the log tree created by
# the previous fsync.
sync
# Now write to the unwritten range of the second extent we allocated,
# corresponding to the file range [4M, 5M[, and fsync the file, which
# triggers the fast fsync code path.
#
# The fast fsync code path sees that there is a new extent map covering
# the file range [4M, 5M[ and therefore it will log a checksum item
# covering the range [1M, 2M[ of the second extent we allocated.
#
# Also, after the fsync finishes we no longer have the 3 file extent
# items that pointed to 3 sections of the second extent we allocated.
# Instead we end up with a single file extent item pointing to the whole
# extent, with a type of BTRFS_FILE_EXTENT_REG and a generation of 7 (the
# current transaction ID). This is due to the file extent item merging we
# do when completing ordered extents into ranges that point to unwritten
# (preallocated) extents. This merging is done at
# btrfs_mark_extent_written().
#
$ xfs_io -c "pwrite -S 0xcd 4M 1M" \
-c "fsync" \
/mnt/foobar
# Now do some write to our file outside the range of the second extent
# that we allocated with fallocate() and truncate the file size from 6M
# down to 5M.
#
# The truncate operation sets the full sync runtime flag on the inode,
# forcing the next fsync to use the slow code path. It also changes the
# length of the second file extent item so that it represents the file
# range [3M, 5M[ and not the range [3M, 6M[ anymore.
#
# Finally fsync the file. Since this is a fsync that triggers the slow
# code path, it will remove all items associated to the inode from the
# log tree and then it will scan for file extent items in the
# fs/subvolume tree that have a generation matching the current
# transaction ID, which is 7. This means it will log 2 file extent
# items:
#
# 1) One for the first extent we allocated, covering the file range
# [0, 1M[
#
# 2) Another for the first 2M of the second extent we allocated,
# covering the file range [3M, 5M[
#
# When logging the first file extent item we log a single checksum item
# that has all the checksums for the entire extent.
#
# When logging the second file extent item, we also lookup for the
# checksums that are associated with the range [0, 2M[ of the second
# extent we allocated (file range [3M, 5M[), and then we log them with
# btrfs_csum_file_blocks(). However that results in ending up with a log
# that has two checksum items with ranges that overlap:
#
# 1) One for the range [1M, 2M[ of the second extent we allocated,
# corresponding to the file range [4M, 5M[, which we logged in the
# previous fsync that used the fast code path;
#
# 2) One for the ranges [0, 1M[ and [0, 2M[ of the first and second
# extents, respectively, corresponding to the files ranges [0, 1M[
# and [3M, 5M[. This one was added during this last fsync that uses
# the slow code path and overlaps with the previous one logged by
# the previous fast fsync.
#
# This happens because when logging the checksums for the second
# extent, we notice they start at an offset that matches the end of the
# checksums item that we logged for the first extent, and because both
# extents are contiguous on disk, btrfs_csum_file_blocks() decides to
# extend that existing checksums item and append the checksums for the
# second extent to this item. The end result is we end up with two
# checksum items in the log tree that have overlapping ranges, as
# listed before, resulting in the fsync to fail with -EIO and aborting
# the transaction, turning the filesystem into RO mode.
#
$ xfs_io -c "pwrite -S 0xff 0 1M" \
-c "truncate 5M" \
-c "fsync" \
/mnt/foobar
fsync: Input/output error
After running the example, dmesg/syslog shows the tree checker complained
about the checksum items with overlapping ranges and we aborted the
transaction:
$ dmesg
(...)
[756289.557487] BTRFS critical (device sdc): corrupt leaf: root=18446744073709551610 block=30720000 slot=5, csum end range (16777216) goes beyond the start range (15728640) of the next csum item
[756289.560583] BTRFS info (device sdc): leaf 30720000 gen 7 total ptrs 7 free space 11677 owner 18446744073709551610
[756289.562435] BTRFS info (device sdc): refs 2 lock_owner 0 current 2303929
[756289.563654] item 0 key (257 1 0) itemoff 16123 itemsize 160
[756289.564649] inode generation 6 size 5242880 mode 100600
[756289.565636] item 1 key (257 12 256) itemoff 16107 itemsize 16
[756289.566694] item 2 key (257 108 0) itemoff 16054 itemsize 53
[756289.567725] extent data disk bytenr 13631488 nr 1048576
[756289.568697] extent data offset 0 nr 1048576 ram 1048576
[756289.569689] item 3 key (257 108 1048576) itemoff 16001 itemsize 53
[756289.570682] extent data disk bytenr 0 nr 0
[756289.571363] extent data offset 0 nr 2097152 ram 2097152
[756289.572213] item 4 key (257 108 3145728) itemoff 15948 itemsize 53
[756289.573246] extent data disk bytenr 14680064 nr 3145728
[756289.574121] extent data offset 0 nr 2097152 ram 3145728
[756289.574993] item 5 key (18446744073709551606 128 13631488) itemoff 12876 itemsize 3072
[756289.576113] item 6 key (18446744073709551606 128 15728640) itemoff 11852 itemsize 1024
[756289.577286] BTRFS error (device sdc): block=30720000 write time tree block corruption detected
[756289.578644] ------------[ cut here ]------------
[756289.579376] WARNING: CPU: 0 PID: 2303929 at fs/btrfs/disk-io.c:465 csum_one_extent_buffer+0xed/0x100 [btrfs]
[756289.580857] Modules linked in: btrfs dm_zero dm_dust loop dm_snapshot (...)
[756289.591534] CPU: 0 PID: 2303929 Comm: xfs_io Tainted: G W 5.12.0-rc8-btrfs-next-87 #1
[756289.592580] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[756289.594161] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
[756289.595122] Code: 5d c3 e8 76 60 (...)
[756289.597509] RSP: 0018:ffffb51b416cb898 EFLAGS: 00010282
[756289.598142] RAX: 0000000000000000 RBX: fffff02b8a365bc0 RCX: 0000000000000000
[756289.598970] RDX: 0000000000000000 RSI: ffffffffa9112421 RDI: 00000000ffffffff
[756289.599798] RBP: ffffa06500880000 R08: 0000000000000000 R09: 0000000000000000
[756289.600619] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
[756289.601456] R13: ffffa0652b1d8980 R14: ffffa06500880000 R15: 0000000000000000
[756289.602278] FS: 00007f08b23c9800(0000) GS:ffffa0682be00000(0000) knlGS:0000000000000000
[756289.603217] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[756289.603892] CR2: 00005652f32d0138 CR3: 000000025d616003 CR4: 0000000000370ef0
[756289.604725] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[756289.605563] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[756289.606400] Call Trace:
[756289.606704] btree_csum_one_bio+0x244/0x2b0 [btrfs]
[756289.607313] btrfs_submit_metadata_bio+0xb7/0x100 [btrfs]
[756289.608040] submit_one_bio+0x61/0x70 [btrfs]
[756289.608587] btree_write_cache_pages+0x587/0x610 [btrfs]
[756289.609258] ? free_debug_processing+0x1d5/0x240
[756289.609812] ? __module_address+0x28/0xf0
[756289.610298] ? lock_acquire+0x1a0/0x3e0
[756289.610754] ? lock_acquired+0x19f/0x430
[756289.611220] ? lock_acquire+0x1a0/0x3e0
[756289.611675] do_writepages+0x43/0xf0
[756289.612101] ? __filemap_fdatawrite_range+0xa4/0x100
[756289.612800] __filemap_fdatawrite_range+0xc5/0x100
[756289.613393] btrfs_write_marked_extents+0x68/0x160 [btrfs]
[756289.614085] btrfs_sync_log+0x21c/0xf20 [btrfs]
[756289.614661] ? finish_wait+0x90/0x90
[756289.615096] ? __mutex_unlock_slowpath+0x45/0x2a0
[756289.615661] ? btrfs_log_inode_parent+0x3c9/0xdc0 [btrfs]
[756289.616338] ? lock_acquire+0x1a0/0x3e0
[756289.616801] ? lock_acquired+0x19f/0x430
[756289.617284] ? lock_acquire+0x1a0/0x3e0
[756289.617750] ? lock_release+0x214/0x470
[756289.618221] ? lock_acquired+0x19f/0x430
[756289.618704] ? dput+0x20/0x4a0
[756289.619079] ? dput+0x20/0x4a0
[756289.619452] ? lockref_put_or_lock+0x9/0x30
[756289.619969] ? lock_release+0x214/0x470
[756289.620445] ? lock_release+0x214/0x470
[756289.620924] ? lock_release+0x214/0x470
[756289.621415] btrfs_sync_file+0x46a/0x5b0 [btrfs]
[756289.621982] do_fsync+0x38/0x70
[756289.622395] __x64_sys_fsync+0x10/0x20
[756289.622907] do_syscall_64+0x33/0x80
[756289.623438] entry_SYSCALL_64_after_hwframe+0x44/0xae
[756289.624063] RIP: 0033:0x7f08b27fbb7b
[756289.624588] Code: 0f 05 48 3d 00 (...)
[756289.626760] RSP: 002b:00007ffe2583f940 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
[756289.627639] RAX: ffffffffffffffda RBX: 00005652f32cd0f0 RCX: 00007f08b27fbb7b
[756289.628464] RDX: 00005652f32cbca0 RSI: 00005652f32cd110 RDI: 0000000000000003
[756289.629323] RBP: 00005652f32cd110 R08: 0000000000000000 R09: 00007f08b28c4be0
[756289.630172] R10: fffffffffffff39a R11: 0000000000000293 R12: 0000000000000001
[756289.631007] R13: 00005652f32cd0f0 R14: 0000000000000001 R15: 00005652f32cc480
[756289.631819] irq event stamp: 0
[756289.632188] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[756289.632911] hardirqs last disabled at (0): [<ffffffffa7e97c29>] copy_process+0x879/0x1cc0
[756289.633893] softirqs last enabled at (0): [<ffffffffa7e97c29>] copy_process+0x879/0x1cc0
[756289.634871] softirqs last disabled at (0): [<0000000000000000>] 0x0
[756289.635606] ---[ end trace 0a039fdc16ff3fef ]---
[756289.636179] BTRFS: error (device sdc) in btrfs_sync_log:3136: errno=-5 IO failure
[756289.637082] BTRFS info (device sdc): forced readonly
Having checksum items covering ranges that overlap is dangerous as in some
cases it can lead to having extent ranges for which we miss checksums
after log replay or getting the wrong checksum item. There were some fixes
in the past for bugs that resulted in this problem, and were explained and
fixed by the following commits:
|
|
|
|
dc09ef3562 |
btrfs: abort in rename_exchange if we fail to insert the second ref
Error injection stress uncovered a problem where we'd leave a dangling inode ref if we failed during a rename_exchange. This happens because we insert the inode ref for one side of the rename, and then for the other side. If this second inode ref insert fails we'll leave the first one dangling and leave a corrupt file system behind. Fix this by aborting if we did the insert for the first inode ref. CC: stable@vger.kernel.org # 4.9+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f96d44743a |
btrfs: check error value from btrfs_update_inode in tree log
Error injection testing uncovered a case where we ended up with invalid link counts on an inode. This happened because we failed to notice an error when updating the inode while replaying the tree log, and committed the transaction with an invalid file system. Fix this by checking the return value of btrfs_update_inode. This resolved the link count errors I was seeing, and we already properly handle passing up the error values in these paths. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
011b28acf9 |
btrfs: fixup error handling in fixup_inode_link_counts
This function has the following pattern
while (1) {
ret = whatever();
if (ret)
goto out;
}
ret = 0
out:
return ret;
However several places in this while loop we simply break; when there's
a problem, thus clearing the return value, and in one case we do a
return -EIO, and leak the memory for the path.
Fix this by re-arranging the loop to deal with ret == 1 coming from
btrfs_search_slot, and then simply delete the
ret = 0;
out:
bit so everybody can break if there is an error, which will allow for
proper error handling to occur.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
d61bec08b9 |
btrfs: mark ordered extent and inode with error if we fail to finish
While doing error injection testing I saw that sometimes we'd get an abort that wouldn't stop the current transaction commit from completing. This abort was coming from finish ordered IO, but at this point in the transaction commit we should have gotten an error and stopped. It turns out the abort came from finish ordered io while trying to write out the free space cache. It occurred to me that any failure inside of finish_ordered_io isn't actually raised to the person doing the writing, so we could have any number of failures in this path and think the ordered extent completed successfully and the inode was fine. Fix this by marking the ordered extent with BTRFS_ORDERED_IOERR, and marking the mapping of the inode with mapping_set_error, so any callers that simply call fdatawait will also get the error. With this we're seeing the IO error on the free space inode when we fail to do the finish_ordered_io. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
856bd270dc |
btrfs: return errors from btrfs_del_csums in cleanup_ref_head
We are unconditionally returning 0 in cleanup_ref_head, despite the fact that btrfs_del_csums could fail. We need to return the error so the transaction gets aborted properly, fix this by returning ret from btrfs_del_csums in cleanup_ref_head. Reviewed-by: Qu Wenruo <wqu@suse.com> CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b86652be7c |
btrfs: fix error handling in btrfs_del_csums
Error injection stress would sometimes fail with checksums on disk that
did not have a corresponding extent. This occurred because the pattern
in btrfs_del_csums was
while (1) {
ret = btrfs_search_slot();
if (ret < 0)
break;
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
If we got an error from btrfs_search_slot we'd clear the error because
we were breaking instead of goto out. Instead of using goto out, simply
handle the cases where we may leave a random value in ret, and get rid
of the
ret = 0;
out:
pattern and simply allow break to have the proper error reporting. With
this fix we properly abort the transaction and do not commit thinking we
successfully deleted the csum.
Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
4c80a97d7b |
btrfs: fix compressed writes that cross stripe boundary
[BUG] When running btrfs/027 with "-o compress" mount option, it always crashes with the following call trace: BTRFS critical (device dm-4): mapping failed logical 298901504 bio len 12288 len 8192 ------------[ cut here ]------------ kernel BUG at fs/btrfs/volumes.c:6651! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 31089 Comm: kworker/u24:10 Tainted: G OE 5.13.0-rc2-custom+ #26 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-delalloc btrfs_work_helper [btrfs] RIP: 0010:btrfs_map_bio.cold+0x58/0x5a [btrfs] Call Trace: btrfs_submit_compressed_write+0x2d7/0x470 [btrfs] submit_compressed_extents+0x3b0/0x470 [btrfs] ? mark_held_locks+0x49/0x70 btrfs_work_helper+0x131/0x3e0 [btrfs] process_one_work+0x28f/0x5d0 worker_thread+0x55/0x3c0 ? process_one_work+0x5d0/0x5d0 kthread+0x141/0x160 ? __kthread_bind_mask+0x60/0x60 ret_from_fork+0x22/0x30 ---[ end trace 63113a3a91f34e68 ]--- [CAUSE] The critical message before the crash means we have a bio at logical bytenr 298901504 length 12288, but only 8192 bytes can fit into one stripe, the remaining 4096 bytes go to another stripe. In btrfs, all bios are properly split to avoid cross stripe boundary, but commit |
|
|
|
45af60e7ce |
for-5.13-rc2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCoEQkACgkQxWXV+ddt WDsn6Q//XXQVextL6g6Wjx0SR9b5C1ndSV841jNY+KQ0drBPSOBs+0SXI+nIWAK1 iTpmj3s2qrRElZZ6DT4fKP28KnbUJed9+CcirNnN3IMOeauI760CLobXZLsw1wGH o0HKKgcPhw/v9o9jqX22rSfzDZ2Rx2KhZ8iEb1ZXIG5iJNFcnXCCoFOqk4I+UEvH /5734KU8RI3sCRhziSf/vDCF50p+BIWr8VilQkmZUzi0oa6Y1wXm0qd9j0unhICR NxcBk1NYdOosAvVRhSqync1BNLhXSctg4rwhLlSI5SDvt/Ivz5tguNr9HcizOvmW zyb0g1c3Pq0p2wQJLybbs1zn67d0+7Q23UPWx1C+IKU3nmX5mGWzToxjVOQASYaZ 8UbzYAjUHtJpLDB4dp6+k5Pv/yfVGyhxXI+qLMWow77qRPPf7/vw5nEwTXmjcPRH 9st0TopZVXI4IEpZP+HeNFdNONuPL3CqV0t1+MnC73WMhmUfXR5E8Yq5H3MscuFl smkrWUq/g+cmkiOw5r4MyadFuN1MsXGw4rOdbYjY4JqVht6gPkOp3P73Hme5rD3H Txw/1WKEl+w3I6wS0Dl/NFcMGOyl8gEv4rATDyRWkxfmCue2mcTGS/3jjjWWguu4 +Q7e6p1390PLAvMV/rEDoYmFCoPSYp6trvupW+5fkZdOyei1SZM= =98LW -----END PGP SIGNATURE----- Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes: - fix unaligned compressed writes in zoned mode - fix false positive lockdep warning when cloning inline extent - remove wrong BUG_ON in tree-log error handling" * tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: fix parallel compressed writes btrfs: zoned: pass start block to btrfs_use_zone_append btrfs: do not BUG_ON in link_to_fixup_dir btrfs: release path before starting transaction when cloning inline extent |
|
|
|
764c7c9a46 |
btrfs: zoned: fix parallel compressed writes
When multiple processes write data to the same block group on a
compressed zoned filesystem, the underlying device could report I/O
errors and data corruption is possible.
This happens because on a zoned file system, compressed data writes
where sent to the device via a REQ_OP_WRITE instead of a
REQ_OP_ZONE_APPEND operation. But with REQ_OP_WRITE and parallel
submission it cannot be guaranteed that the data is always submitted
aligned to the underlying zone's write pointer.
The change to using REQ_OP_ZONE_APPEND instead of REQ_OP_WRITE on a
zoned filesystem is non intrusive on a regular file system or when
submitting to a conventional zone on a zoned filesystem, as it is
guarded by btrfs_use_zone_append.
Reported-by: David Sterba <dsterba@suse.com>
Fixes:
|
|
|
|
e380adfc21 |
btrfs: zoned: pass start block to btrfs_use_zone_append
btrfs_use_zone_append only needs the passed in extent_map's block_start member, so there's no need to pass in the full extent map. This also enables the use of btrfs_use_zone_append in places where we only have a start byte but no extent_map. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8ac91e6c60 |
for-5.13-rc2-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCibywACgkQxWXV+ddt
WDs8QhAAlJ1INZGF01lP2mUhzesVIctIAPGBf/77Zsxmcu0rA6E66RVVsYMgGU54
+FWd+LwuFCtC1364OnDa2DnmYtvHfgR4If7EGowpk3qzZFeZQSLqayOFa5tZLYPG
tJStjY32QTerfZRoxPJ1QPcoWjxNMxYqYw/s68G3tTTSHEYtlH9zNHbLm9ny507x
uPHpxqKXdv3/LYHLt6XUypFqsZkMoDW98oOKvo0MZE/fjcqiDcrvAoYe+y8raFC3
FztlfA2TBmmp/PouDXLCspXAksLpVo9mgTQ0kW4K7152cC0X/zWXYNH01uQ+qTAS
OFNKt2DSRIq5TR56ZmReYvRgq0FNMotYpRpxoePSF/rwL+wnsTl7QI3r/d/h/uxQ
IzBeBv1Wd+1ZJcqnmEGx8Mws3nGswKyl4W65x8yin41djVoHgM4tYu3nGqielu+w
ifEBmU5tUGo05z2HA5kpLjDzc6MwWaCIduQvjH/I4Vgo9fhDo6pQO2dyPC50Nkk5
DQ5jfxiXJ/ZSh5NbWtIkB/OQuwkVL1nDy2jtj3qnK06HDKstK1zui5nccFKFNOiX
wtYjnGqd3+vIGIZniMuu9rbPLtG4CCerq44v1gyS6LSEycNW9/r2cOXRaiQk5pej
CoYMdnmAqzwidtn4FZPRNQ7JgyckKCXQQSGCazN2vvLCXisCUrw=
=ue6o
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes:
- fix fiemap to print extents that could get misreported due to
internal extent splitting and logical merging for fiemap output
- fix RCU stalls during delayed iputs
- fix removed dentries still existing after log is synced"
* tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix removed dentries still existing after log is synced
btrfs: return whole extents in fiemap
btrfs: avoid RCU stalls while running delayed iputs
btrfs: return 0 for dev_extent_hole_check_zoned hole_start in case of error
|
|
|
|
91df99a6eb |
btrfs: do not BUG_ON in link_to_fixup_dir
While doing error injection testing I got the following panic kernel BUG at fs/btrfs/tree-log.c:1862! invalid opcode: 0000 [#1] SMP NOPTI CPU: 1 PID: 7836 Comm: mount Not tainted 5.13.0-rc1+ #305 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:link_to_fixup_dir+0xd5/0xe0 RSP: 0018:ffffb5800180fa30 EFLAGS: 00010216 RAX: fffffffffffffffb RBX: 00000000fffffffb RCX: ffff8f595287faf0 RDX: ffffb5800180fa37 RSI: ffff8f5954978800 RDI: 0000000000000000 RBP: ffff8f5953af9450 R08: 0000000000000019 R09: 0000000000000001 R10: 000151f408682970 R11: 0000000120021001 R12: ffff8f5954978800 R13: ffff8f595287faf0 R14: ffff8f5953c77dd0 R15: 0000000000000065 FS: 00007fc5284c8c40(0000) GS:ffff8f59bbd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc5287f47c0 CR3: 000000011275e002 CR4: 0000000000370ee0 Call Trace: replay_one_buffer+0x409/0x470 ? btree_read_extent_buffer_pages+0xd0/0x110 walk_up_log_tree+0x157/0x1e0 walk_log_tree+0xa6/0x1d0 btrfs_recover_log_trees+0x1da/0x360 ? replay_one_extent+0x7b0/0x7b0 open_ctree+0x1486/0x1720 btrfs_mount_root.cold+0x12/0xea ? __kmalloc_track_caller+0x12f/0x240 legacy_get_tree+0x24/0x40 vfs_get_tree+0x22/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 ? vfs_parse_fs_string+0x4d/0x90 legacy_get_tree+0x24/0x40 vfs_get_tree+0x22/0xb0 path_mount+0x433/0xa10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x3d/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae We can get -EIO or any number of legitimate errors from btrfs_search_slot(), panicing here is not the appropriate response. The error path for this code handles errors properly, simply return the error. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6416954ca7 |
btrfs: release path before starting transaction when cloning inline extent
When cloning an inline extent there are a few cases, such as when we have an implicit hole at file offset 0, where we start a transaction while holding a read lock on a leaf. Starting the transaction results in a call to sb_start_intwrite(), which results in doing a read lock on a percpu semaphore. Lockdep doesn't like this and complains about it: [46.580704] ====================================================== [46.580752] WARNING: possible circular locking dependency detected [46.580799] 5.13.0-rc1 #28 Not tainted [46.580832] ------------------------------------------------------ [46.580877] cloner/3835 is trying to acquire lock: [46.580918] c00000001301d638 (sb_internal#2){.+.+}-{0:0}, at: clone_copy_inline_extent+0xe4/0x5a0 [46.581167] [46.581167] but task is already holding lock: [46.581217] c000000007fa2550 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x70/0x1d0 [46.581293] [46.581293] which lock already depends on the new lock. [46.581293] [46.581351] [46.581351] the existing dependency chain (in reverse order) is: [46.581410] [46.581410] -> #1 (btrfs-tree-00){++++}-{3:3}: [46.581464] down_read_nested+0x68/0x200 [46.581536] __btrfs_tree_read_lock+0x70/0x1d0 [46.581577] btrfs_read_lock_root_node+0x88/0x200 [46.581623] btrfs_search_slot+0x298/0xb70 [46.581665] btrfs_set_inode_index+0xfc/0x260 [46.581708] btrfs_new_inode+0x26c/0x950 [46.581749] btrfs_create+0xf4/0x2b0 [46.581782] lookup_open.isra.57+0x55c/0x6a0 [46.581855] path_openat+0x418/0xd20 [46.581888] do_filp_open+0x9c/0x130 [46.581920] do_sys_openat2+0x2ec/0x430 [46.581961] do_sys_open+0x90/0xc0 [46.581993] system_call_exception+0x3d4/0x410 [46.582037] system_call_common+0xec/0x278 [46.582078] [46.582078] -> #0 (sb_internal#2){.+.+}-{0:0}: [46.582135] __lock_acquire+0x1e90/0x2c50 [46.582176] lock_acquire+0x2b4/0x5b0 [46.582263] start_transaction+0x3cc/0x950 [46.582308] clone_copy_inline_extent+0xe4/0x5a0 [46.582353] btrfs_clone+0x5fc/0x880 [46.582388] btrfs_clone_files+0xd8/0x1c0 [46.582434] btrfs_remap_file_range+0x3d8/0x590 [46.582481] do_clone_file_range+0x10c/0x270 [46.582558] vfs_clone_file_range+0x1b0/0x310 [46.582605] ioctl_file_clone+0x90/0x130 [46.582651] do_vfs_ioctl+0x874/0x1ac0 [46.582697] sys_ioctl+0x6c/0x120 [46.582733] system_call_exception+0x3d4/0x410 [46.582777] system_call_common+0xec/0x278 [46.582822] [46.582822] other info that might help us debug this: [46.582822] [46.582888] Possible unsafe locking scenario: [46.582888] [46.582942] CPU0 CPU1 [46.582984] ---- ---- [46.583028] lock(btrfs-tree-00); [46.583062] lock(sb_internal#2); [46.583119] lock(btrfs-tree-00); [46.583174] lock(sb_internal#2); [46.583212] [46.583212] *** DEADLOCK *** [46.583212] [46.583266] 6 locks held by cloner/3835: [46.583299] #0: c00000001301d448 (sb_writers#12){.+.+}-{0:0}, at: ioctl_file_clone+0x90/0x130 [46.583382] #1: c00000000f6d3768 (&sb->s_type->i_mutex_key#15){+.+.}-{3:3}, at: lock_two_nondirectories+0x58/0xc0 [46.583477] #2: c00000000f6d72a8 (&sb->s_type->i_mutex_key#15/4){+.+.}-{3:3}, at: lock_two_nondirectories+0x9c/0xc0 [46.583574] #3: c00000000f6d7138 (&ei->i_mmap_lock){+.+.}-{3:3}, at: btrfs_remap_file_range+0xd0/0x590 [46.583657] #4: c00000000f6d35f8 (&ei->i_mmap_lock/1){+.+.}-{3:3}, at: btrfs_remap_file_range+0xe0/0x590 [46.583743] #5: c000000007fa2550 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x70/0x1d0 [46.583828] [46.583828] stack backtrace: [46.583872] CPU: 1 PID: 3835 Comm: cloner Not tainted 5.13.0-rc1 #28 [46.583931] Call Trace: [46.583955] [c0000000167c7200] [c000000000c1ee78] dump_stack+0xec/0x144 (unreliable) [46.584052] [c0000000167c7240] [c000000000274058] print_circular_bug.isra.32+0x3a8/0x400 [46.584123] [c0000000167c72e0] [c0000000002741f4] check_noncircular+0x144/0x190 [46.584191] [c0000000167c73b0] [c000000000278fc0] __lock_acquire+0x1e90/0x2c50 [46.584259] [c0000000167c74f0] [c00000000027aa94] lock_acquire+0x2b4/0x5b0 [46.584317] [c0000000167c75e0] [c000000000a0d6cc] start_transaction+0x3cc/0x950 [46.584388] [c0000000167c7690] [c000000000af47a4] clone_copy_inline_extent+0xe4/0x5a0 [46.584457] [c0000000167c77c0] [c000000000af525c] btrfs_clone+0x5fc/0x880 [46.584514] [c0000000167c7990] [c000000000af5698] btrfs_clone_files+0xd8/0x1c0 [46.584583] [c0000000167c7a00] [c000000000af5b58] btrfs_remap_file_range+0x3d8/0x590 [46.584652] [c0000000167c7ae0] [c0000000005d81dc] do_clone_file_range+0x10c/0x270 [46.584722] [c0000000167c7b40] [c0000000005d84f0] vfs_clone_file_range+0x1b0/0x310 [46.584793] [c0000000167c7bb0] [c00000000058bf80] ioctl_file_clone+0x90/0x130 [46.584861] [c0000000167c7c10] [c00000000058c894] do_vfs_ioctl+0x874/0x1ac0 [46.584922] [c0000000167c7d10] [c00000000058db4c] sys_ioctl+0x6c/0x120 [46.584978] [c0000000167c7d60] [c0000000000364a4] system_call_exception+0x3d4/0x410 [46.585046] [c0000000167c7e10] [c00000000000d45c] system_call_common+0xec/0x278 [46.585114] --- interrupt: c00 at 0x7ffff7e22990 [46.585160] NIP: 00007ffff7e22990 LR: 00000001000010ec CTR: 0000000000000000 [46.585224] REGS: c0000000167c7e80 TRAP: 0c00 Not tainted (5.13.0-rc1) [46.585280] MSR: 800000000280f033 <SF,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 28000244 XER: 00000000 [46.585374] IRQMASK: 0 [46.585374] GPR00: 0000000000000036 00007fffffffdec0 00007ffff7f17100 0000000000000004 [46.585374] GPR04: 000000008020940d 00007fffffffdf40 0000000000000000 0000000000000000 [46.585374] GPR08: 0000000000000004 0000000000000000 0000000000000000 0000000000000000 [46.585374] GPR12: 0000000000000000 00007ffff7ffa940 0000000000000000 0000000000000000 [46.585374] GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 [46.585374] GPR20: 0000000000000000 000000009123683e 00007fffffffdf40 0000000000000000 [46.585374] GPR24: 0000000000000000 0000000000000000 0000000000000000 0000000000000004 [46.585374] GPR28: 0000000100030260 0000000100030280 0000000000000003 000000000000005f [46.585919] NIP [00007ffff7e22990] 0x7ffff7e22990 [46.585964] LR [00000001000010ec] 0x1000010ec [46.586010] --- interrupt: c00 This should be a false positive, as both locks are acquired in read mode. Nevertheless, we don't need to hold a leaf locked when we start the transaction, so just release the leaf (path) before starting it. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Link: https://lore.kernel.org/linux-btrfs/20210513214404.xks77p566fglzgum@riteshh-domain/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
54a40fc3a1 |
btrfs: fix removed dentries still existing after log is synced
When we move one inode from one directory to another and both the inode
and its previous parent directory were logged before, we are not supposed
to have the dentry for the old parent if we have a power failure after the
log is synced. Only the new dentry is supposed to exist.
Generally this works correctly, however there is a scenario where this is
not currently working, because the old parent of the file/directory that
was moved is not authoritative for a range that includes the dir index and
dir item keys of the old dentry. This case is better explained with the
following example and reproducer:
# The test requires a very specific layout of keys and items in the
# fs/subvolume btree to trigger the bug. So we want to make sure that
# on whatever platform we are, we have the same leaf/node size.
#
# Currently in btrfs the node/leaf size can not be smaller than the page
# size (but it can be greater than the page size). So use the largest
# supported node/leaf size (64K).
$ mkfs.btrfs -f -n 65536 /dev/sdc
$ mount /dev/sdc /mnt
# "testdir" is inode 257.
$ mkdir /mnt/testdir
$ chmod 755 /mnt/testdir
# Create several empty files to have the directory "testdir" with its
# items spread over several leaves (7 in this case).
$ for ((i = 1; i <= 1200; i++)); do
echo -n > /mnt/testdir/file$i
done
# Create our test directory "dira", inode number 1458, which gets all
# its items in leaf 7.
#
# The BTRFS_DIR_ITEM_KEY item for inode 257 ("testdir") that points to
# the entry named "dira" is in leaf 2, while the BTRFS_DIR_INDEX_KEY
# item that points to that entry is in leaf 3.
#
# For this particular filesystem node size (64K), file count and file
# names, we endup with the directory entry items from inode 257 in
# leaves 2 and 3, as previously mentioned - what matters for triggering
# the bug exercised by this test case is that those items are not placed
# in leaf 1, they must be placed in a leaf different from the one
# containing the inode item for inode 257.
#
# The corresponding BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY items for
# the parent inode (257) are the following:
#
# item 460 key (257 DIR_ITEM 3724298081) itemoff 48344 itemsize 34
# location key (1458 INODE_ITEM 0) type DIR
# transid 6 data_len 0 name_len 4
# name: dira
#
# and:
#
# item 771 key (257 DIR_INDEX 1202) itemoff 36673 itemsize 34
# location key (1458 INODE_ITEM 0) type DIR
# transid 6 data_len 0 name_len 4
# name: dira
$ mkdir /mnt/testdir/dira
# Make sure everything done so far is durably persisted.
$ sync
# Now do a change to inode 257 ("testdir") that does not result in
# COWing leaves 2 and 3 - the leaves that contain the directory items
# pointing to inode 1458 (directory "dira").
#
# Changing permissions, the owner/group, updating or adding a xattr,
# etc, will not change (COW) leaves 2 and 3. So for the sake of
# simplicity change the permissions of inode 257, which results in
# updating its inode item and therefore change (COW) only leaf 1.
$ chmod 700 /mnt/testdir
# Now fsync directory inode 257.
#
# Since only the first leaf was changed/COWed, we log the inode item of
# inode 257 and only the dentries found in the first leaf, all have a
# key type of BTRFS_DIR_ITEM_KEY, and no keys of type
# BTRFS_DIR_INDEX_KEY, because they sort after the former type and none
# exist in the first leaf.
#
# We also log 3 items that represent ranges for dir items and dir
# indexes for which the log is authoritative:
#
# 1) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is
# authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset
# in the range [0, 2285968570] (the offset here is the crc32c of the
# dentry's name). The value 2285968570 corresponds to the offset of
# the first key of leaf 2 (which is of type BTRFS_DIR_ITEM_KEY);
#
# 2) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is
# authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset
# in the range [4293818216, (u64)-1] (the offset here is the crc32c
# of the dentry's name). The value 4293818216 corresponds to the
# offset of the highest key of type BTRFS_DIR_ITEM_KEY plus 1
# (4293818215 + 1), which is located in leaf 2;
#
# 3) a key of type BTRFS_DIR_LOG_INDEX_KEY, with an offset of 1203,
# which indicates the log is authoritative for all keys of type
# BTRFS_DIR_INDEX_KEY that have an offset in the range
# [1203, (u64)-1]. The value 1203 corresponds to the offset of the
# last key of type BTRFS_DIR_INDEX_KEY plus 1 (1202 + 1), which is
# located in leaf 3;
#
# Also, because "testdir" is a directory and inode 1458 ("dira") is a
# child directory, we log inode 1458 too.
$ xfs_io -c "fsync" /mnt/testdir
# Now move "dira", inode 1458, to be a child of the root directory
# (inode 256).
#
# Because this inode was previously logged, when "testdir" was fsynced,
# the log is updated so that the old inode reference, referring to inode
# 257 as the parent, is deleted and the new inode reference, referring
# to inode 256 as the parent, is added to the log.
$ mv /mnt/testdir/dira /mnt
# Now change some file and fsync it. This guarantees the log changes
# made by the previous move/rename operation are persisted. We do not
# need to do any special modification to the file, just any change to
# any file and sync the log.
$ xfs_io -c "pwrite -S 0xab 0 64K" -c "fsync" /mnt/testdir/file1
# Simulate a power failure and then mount again the filesystem to
# replay the log tree. We want to verify that we are able to mount the
# filesystem, meaning log replay was successful, and that directory
# inode 1458 ("dira") only has inode 256 (the filesystem's root) as
# its parent (and no longer a child of inode 257).
#
# It used to happen that during log replay we would end up having
# inode 1458 (directory "dira") with 2 hard links, being a child of
# inode 257 ("testdir") and inode 256 (the filesystem's root). This
# resulted in the tree checker detecting the issue and causing the
# mount operation to fail (with -EIO).
#
# This happened because in the log we have the new name/parent for
# inode 1458, which results in adding the new dentry with inode 256
# as the parent, but the previous dentry, under inode 257 was never
# removed - this is because the ranges for dir items and dir indexes
# of inode 257 for which the log is authoritative do not include the
# old dir item and dir index for the dentry of inode 257 referring to
# inode 1458:
#
# - for dir items, the log is authoritative for the ranges
# [0, 2285968570] and [4293818216, (u64)-1]. The dir item at inode 257
# pointing to inode 1458 has a key of (257 DIR_ITEM 3724298081), as
# previously mentioned, so the dir item is not deleted when the log
# replay procedure processes the authoritative ranges, as 3724298081
# is outside both ranges;
#
# - for dir indexes, the log is authoritative for the range
# [1203, (u64)-1], and the dir index item of inode 257 pointing to
# inode 1458 has a key of (257 DIR_INDEX 1202), as previously
# mentioned, so the dir index item is not deleted when the log
# replay procedure processes the authoritative range.
<power failure>
$ mount /dev/sdc /mnt
mount: /mnt: can't read superblock on /dev/sdc.
$ dmesg
(...)
[87849.840509] BTRFS info (device sdc): start tree-log replay
[87849.875719] BTRFS critical (device sdc): corrupt leaf: root=5 block=30539776 slot=554 ino=1458, invalid nlink: has 2 expect no more than 1 for dir
[87849.878084] BTRFS info (device sdc): leaf 30539776 gen 7 total ptrs 557 free space 2092 owner 5
[87849.879516] BTRFS info (device sdc): refs 1 lock_owner 0 current 2099108
[87849.880613] item 0 key (1181 1 0) itemoff 65275 itemsize 160
[87849.881544] inode generation 6 size 0 mode 100644
[87849.882692] item 1 key (1181 12 257) itemoff 65258 itemsize 17
(...)
[87850.562549] item 556 key (1458 12 257) itemoff 16017 itemsize 14
[87850.563349] BTRFS error (device dm-0): block=30539776 write time tree block corruption detected
[87850.564386] ------------[ cut here ]------------
[87850.564920] WARNING: CPU: 3 PID: 2099108 at fs/btrfs/disk-io.c:465 csum_one_extent_buffer+0xed/0x100 [btrfs]
[87850.566129] Modules linked in: btrfs dm_zero dm_snapshot (...)
[87850.573789] CPU: 3 PID: 2099108 Comm: mount Not tainted 5.12.0-rc8-btrfs-next-86 #1
(...)
[87850.587481] Call Trace:
[87850.587768] btree_csum_one_bio+0x244/0x2b0 [btrfs]
[87850.588354] ? btrfs_bio_fits_in_stripe+0xd8/0x110 [btrfs]
[87850.589003] btrfs_submit_metadata_bio+0xb7/0x100 [btrfs]
[87850.589654] submit_one_bio+0x61/0x70 [btrfs]
[87850.590248] submit_extent_page+0x91/0x2f0 [btrfs]
[87850.590842] write_one_eb+0x175/0x440 [btrfs]
[87850.591370] ? find_extent_buffer_nolock+0x1c0/0x1c0 [btrfs]
[87850.592036] btree_write_cache_pages+0x1e6/0x610 [btrfs]
[87850.592665] ? free_debug_processing+0x1d5/0x240
[87850.593209] do_writepages+0x43/0xf0
[87850.593798] ? __filemap_fdatawrite_range+0xa4/0x100
[87850.594391] __filemap_fdatawrite_range+0xc5/0x100
[87850.595196] btrfs_write_marked_extents+0x68/0x160 [btrfs]
[87850.596202] btrfs_write_and_wait_transaction.isra.0+0x4d/0xd0 [btrfs]
[87850.597377] btrfs_commit_transaction+0x794/0xca0 [btrfs]
[87850.598455] ? _raw_spin_unlock_irqrestore+0x32/0x60
[87850.599305] ? kmem_cache_free+0x15a/0x3d0
[87850.600029] btrfs_recover_log_trees+0x346/0x380 [btrfs]
[87850.601021] ? replay_one_extent+0x7d0/0x7d0 [btrfs]
[87850.601988] open_ctree+0x13c9/0x1698 [btrfs]
[87850.602846] btrfs_mount_root.cold+0x13/0xed [btrfs]
[87850.603771] ? kmem_cache_alloc_trace+0x7c9/0x930
[87850.604576] ? vfs_parse_fs_string+0x5d/0xb0
[87850.605293] ? kfree+0x276/0x3f0
[87850.605857] legacy_get_tree+0x30/0x50
[87850.606540] vfs_get_tree+0x28/0xc0
[87850.607163] fc_mount+0xe/0x40
[87850.607695] vfs_kern_mount.part.0+0x71/0x90
[87850.608440] btrfs_mount+0x13b/0x3e0 [btrfs]
(...)
[87850.629477] ---[ end trace 68802022b99a1ea0 ]---
[87850.630849] BTRFS: error (device sdc) in btrfs_commit_transaction:2381: errno=-5 IO failure (Error while writing out transaction)
[87850.632422] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[87850.633416] BTRFS: error (device sdc) in cleanup_transaction:1978: errno=-5 IO failure
[87850.634553] BTRFS: error (device sdc) in btrfs_replay_log:2431: errno=-5 IO failure (Failed to recover log tree)
[87850.637529] BTRFS error (device sdc): open_ctree failed
In this example the inode we moved was a directory, so it was easy to
detect the problem because directories can only have one hard link and
the tree checker immediately detects that. If the moved inode was a file,
then the log replay would succeed and we would end up having both the
new hard link (/mnt/foo) and the old hard link (/mnt/testdir/foo) present,
but only the new one should be present.
Fix this by forcing re-logging of the old parent directory when logging
the new name during a rename operation. This ensures we end up with a log
that is authoritative for a range covering the keys for the old dentry,
therefore causing the old dentry do be deleted when replaying the log.
A test case for fstests will follow up soon.
Fixes:
|
|
|
|
15c7745c9a |
btrfs: return whole extents in fiemap
`xfs_io -c 'fiemap <off> <len>' <file>`
can give surprising results on btrfs that differ from xfs.
btrfs prints out extents trimmed to fit the user input. If the user's
fiemap request has an offset, then rather than returning each whole
extent which intersects that range, we also trim the start extent to not
have start < off.
Documentation in filesystems/fiemap.txt and the xfs_io man page suggests
that returning the whole extent is expected.
Some cases which all yield the same fiemap in xfs, but not btrfs:
dd if=/dev/zero of=$f bs=4k count=1
sudo xfs_io -c 'fiemap 0 1024' $f
0: [0..7]: 26624..26631
sudo xfs_io -c 'fiemap 2048 1024' $f
0: [4..7]: 26628..26631
sudo xfs_io -c 'fiemap 2048 4096' $f
0: [4..7]: 26628..26631
sudo xfs_io -c 'fiemap 3584 512' $f
0: [7..7]: 26631..26631
sudo xfs_io -c 'fiemap 4091 5' $f
0: [7..6]: 26631..26630
I believe this is a consequence of the logic for merging contiguous
extents represented by separate extent items. That logic needs to track
the last offset as it loops through the extent items, which happens to
pick up the start offset on the first iteration, and trim off the
beginning of the full extent. To fix it, start `off` at 0 rather than
`start` so that we keep the iteration/merging intact without cutting off
the start of the extent.
after the fix, all the above commands give:
0: [0..7]: 26624..26631
The merging logic is exercised by fstest generic/483, and I have written
a new fstest for checking we don't have backwards or zero-length fiemaps
for cases like those above.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
71795ee590 |
btrfs: avoid RCU stalls while running delayed iputs
Generally a delayed iput is added when we might do the final iput, so usually we'll end up sleeping while processing the delayed iputs naturally. However there's no guarantee of this, especially for small files. In production we noticed 5 instances of RCU stalls while testing a kernel release overnight across 1000 machines, so this is relatively common: host count: 5 rcu: INFO: rcu_sched self-detected stall on CPU rcu: ....: (20998 ticks this GP) idle=59e/1/0x4000000000000002 softirq=12333372/12333372 fqs=3208 (t=21031 jiffies g=27810193 q=41075) NMI backtrace for cpu 1 CPU: 1 PID: 1713 Comm: btrfs-cleaner Kdump: loaded Not tainted 5.6.13-0_fbk12_rc1_5520_gec92bffc1ec9 #1 Call Trace: <IRQ> dump_stack+0x50/0x70 nmi_cpu_backtrace.cold.6+0x30/0x65 ? lapic_can_unplug_cpu.cold.30+0x40/0x40 nmi_trigger_cpumask_backtrace+0xba/0xca rcu_dump_cpu_stacks+0x99/0xc7 rcu_sched_clock_irq.cold.90+0x1b2/0x3a3 ? trigger_load_balance+0x5c/0x200 ? tick_sched_do_timer+0x60/0x60 ? tick_sched_do_timer+0x60/0x60 update_process_times+0x24/0x50 tick_sched_timer+0x37/0x70 __hrtimer_run_queues+0xfe/0x270 hrtimer_interrupt+0xf4/0x210 smp_apic_timer_interrupt+0x5e/0x120 apic_timer_interrupt+0xf/0x20 </IRQ> RIP: 0010:queued_spin_lock_slowpath+0x17d/0x1b0 RSP: 0018:ffffc9000da5fe48 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000000 RBX: ffff889fa81d0cd8 RCX: 0000000000000029 RDX: ffff889fff86c0c0 RSI: 0000000000080000 RDI: ffff88bfc2da7200 RBP: ffff888f2dcdd768 R08: 0000000001040000 R09: 0000000000000000 R10: 0000000000000001 R11: ffffffff82a55560 R12: ffff88bfc2da7200 R13: 0000000000000000 R14: ffff88bff6c2a360 R15: ffffffff814bd870 ? kzalloc.constprop.57+0x30/0x30 list_lru_add+0x5a/0x100 inode_lru_list_add+0x20/0x40 iput+0x1c1/0x1f0 run_delayed_iput_locked+0x46/0x90 btrfs_run_delayed_iputs+0x3f/0x60 cleaner_kthread+0xf2/0x120 kthread+0x10b/0x130 Fix this by adding a cond_resched_lock() to the loop processing delayed iputs so we can avoid these sort of stalls. CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d6f67afbdf |
btrfs: return 0 for dev_extent_hole_check_zoned hole_start in case of error
Commit |
|
|
|
88b06399c9 |
for-5.13-rc1-part2-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCaiuQACgkQxWXV+ddt WDv3Ww//bDUlNXqAYEoLKePohy1bupiqG8lKYX4s4bGEq0x0cyh4qVER/Q/lU2l2 AMf8t6Pwr/iBOPwfckreLDuFrhacvWq0K4eMkgpf++3P0Mzbj2sIBX0+XnrWluRL yFCZudJej+cpM55Ve4l6M8zrk1nbzYJLFPRRdOIFe4HonWkhI/zY6RD7kFybQevW mAxqMgIpUQAjoj5F/EhwXQ9dk6PXSZj+gaOoNrmQmN7mZMqNgSLHBEoJUHrotm1K rDlEwIRUTtNPV+rcPxcXD1GFiUxU0cZhg0jts252z89Mvaqb2g/YKaHPAR/IVIt5 enf4llZzoEeiMnHuSj9zCg4HxOvCCFV8zZYXlO7/9IqdgLJjQkElZoqTz45obWdE aoJrHAWWlulS2jPocJfJ/Zti2xBYGLjQASH0kYS+vjVxjKyqz3fuM1Tsasaf9Mcp +M2m6yMBjJ0nJMTL2CgBksCd0dHwfiBZ/YYClrMSjYlzYSU6ofA2b2hej0OjqZ4X FmpEmCBK4lySdJI+JlJKikeneOOxKSpT0xGqU+OMmbpwFH3k1N3oseu0hrG8Xreo RU1xNbekGTwRbCcCA9l5HQ/RYptT7rt/KqkC70UFEvdIijCNcptOGaTAoYvLS14O T+yu0Cizt7O0Fdg5E+MAS/qaI2yacXxBfIkMDbPxHGUg7+vUteM= =Phtq -----END PGP SIGNATURE----- Merge tag 'for-5.13-rc1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "Handle transaction start error in btrfs_fileattr_set() This is fix for code introduced by the new fileattr merge" * tag 'for-5.13-rc1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: handle transaction start error in btrfs_fileattr_set |
|
|
|
9b8a233bc2 |
btrfs: handle transaction start error in btrfs_fileattr_set
Add error handling in btrfs_fileattr_set in case of an error while
starting a transaction. This fixes btrfs/232 which otherwise used to
fail with below signature on Power.
btrfs/232 [ 1119.474650] run fstests btrfs/232 at 2021-04-21 02:21:22
<...>
[ 1366.638585] BUG: Unable to handle kernel data access on read at 0xffffffffffffff86
[ 1366.638768] Faulting instruction address: 0xc0000000009a5c88
cpu 0x0: Vector: 380 (Data SLB Access) at [c000000014f177b0]
pc: c0000000009a5c88: btrfs_update_root_times+0x58/0xc0
lr: c0000000009a5c84: btrfs_update_root_times+0x54/0xc0
<...>
pid = 24881, comm = fsstress
btrfs_update_inode+0xa0/0x140
btrfs_fileattr_set+0x5d0/0x6f0
vfs_fileattr_set+0x2a8/0x390
do_vfs_ioctl+0x1290/0x1ac0
sys_ioctl+0x6c/0x120
system_call_exception+0x3d4/0x410
system_call_common+0xec/0x278
Fixes:
|
|
|
|
142b507f91 |
for-5.13-rc1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCZnCIACgkQxWXV+ddt WDuEvhAAmC+Mkrz25GbQnSIp2FKYCCQK34D0rdghml0Bc0cJcDh3yhgIB6ZTHZ7e Z+UZu84ISK31OHKDzXtX0MINN2wuU4u4kd6PHtYj0wSVl3cX6E/K5j6YcThfI1Ru vCW5O87V9SCV5NnykIFt3sbYvsPKtF9lhgPQprj4np+wxaSyNlEF2c+zLTI3J7NV +8OlM4oi8GocZd1aAwGpVM3qUPyQSHEb9oUEp6aV1ERuAs6LIyeGks3Cag6gjPnq dYz3jV9HyZB5GtX0dmv4LeRFIog1uFi+SIEFl5RpqhB3sXN3n6XHMka4x20FXiWy PfX9+Nf4bQGx6F9rGsgHNHQP5dVhHAkZcq3E0n0yshIfNe8wDHBRlmk0wbfj4K7I VYv85SxEYpigG8KzF5gjiar4EqsaJVQcJioMxVE7z9vrW6xlOWD1lf/ViUZnB3wd IQEyGz2qOe9eqJD+dnyN7QkN9WKGSUr2p1Q/DngCIwFzKWf1qIlETNXrIL+AZ97r v4G5mMq9dCxs3s8c5SGbdF9qqK8gEuaV3iWQAoKOciuy6fbc553Q90I1v3OhW+by j2yVoo3nJbBJBuLBNWPDUlwxQF/EHPQ6nh3fvxNRgwksXgRmqywdJb5dQ8hcKgSH RsvinJhtKo5rTgtgGgmNvmLAjKIieW1lIVG4ha0O/m49HeaohDE= =GNNs -----END PGP SIGNATURE----- Merge tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "First batch of various fixes, here's a list of notable ones: - fix unmountable seed device after fstrim - fix silent data loss in zoned mode due to ordered extent splitting - fix race leading to unpersisted data and metadata on fsync - fix deadlock when cloning inline extents and using qgroups" * tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: initialize return variable in cleanup_free_space_cache_v1 btrfs: zoned: sanity check zone type btrfs: fix unmountable seed device after fstrim btrfs: fix deadlock when cloning inline extents and using qgroups btrfs: fix race leading to unpersisted data and metadata on fsync btrfs: do not consider send context as valid when trying to flush qgroups btrfs: zoned: fix silent data loss after failure splitting ordered extent |
|
|
|
d048b9c2a7 |
btrfs: use memzero_page() instead of open coded kmap pattern
There are many places where kmap/memset/kunmap patterns occur. Use the newly lifted memzero_page() to eliminate direct uses of kmap and leverage the new core functions use of kmap_local_page(). The development of this patch was aided by the following coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/memset/kunmap pattern and replace with memset*page calls // // NOTE: Offsets and other expressions may be more complex than what the script // will automatically generate. Therefore a catchall rule is provided to find // the pattern which then must be evaluated by hand. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // Then the memset pattern // @ memset_rule1 @ expression page, V, L, Off; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( -memset(ptr, 0, L); +memzero_page(page, 0, L); | -memset(ptr + Off, 0, L); +memzero_page(page, Off, L); | -memset(ptr, V, L); +memset_page(page, V, 0, L); | -memset(ptr + Off, V, L); +memset_page(page, V, Off, L); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memset_rule1 @ identifier memset_rule1.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // // Catch all // @ memset_rule2 @ expression page; identifier ptr; expression GenTo, GenSize, GenValue; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( // // Some call sites have complex expressions within the memset/memcpy // The follow are catch alls which need to be evaluated by hand. // -memset(GenTo, 0, GenSize); +memzero_pageExtra(page, GenTo, GenSize); | -memset(GenTo, GenValue, GenSize); +memset_pageExtra(page, GenValue, GenTo, GenSize); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memset_rule2 @ identifier memset_rule2.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // </smpl> Link: https://lkml.kernel.org/r/20210309212137.2610186-4-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
77364faf21 |
btrfs: initialize return variable in cleanup_free_space_cache_v1
Static analysis reports this problem
free-space-cache.c:3965:2: warning: Undefined or garbage value returned
return ret;
^~~~~~~~~~
ret is set in the node handling loop. Treat doing nothing as a success
and initialize ret to 0, although it's unlikely the loop would be
skipped. We always have block groups, but as it could lead to
transaction abort in the caller it's better to be safe.
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
784daf2b96 |
btrfs: zoned: sanity check zone type
The fstests test case generic/475 creates a dm-linear device that gets changed to a dm-error device. This leads to errors in loading the block group's zone information when running on a zoned file system, ultimately resulting in a list corruption. When running on a kernel with list debugging enabled this leads to the following crash. BTRFS: error (device dm-2) in cleanup_transaction:1953: errno=-5 IO failure kernel BUG at lib/list_debug.c:54! invalid opcode: 0000 [#1] SMP PTI CPU: 1 PID: 2433 Comm: umount Tainted: G W 5.12.0+ #1018 RIP: 0010:__list_del_entry_valid.cold+0x1d/0x47 RSP: 0018:ffffc90001473df0 EFLAGS: 00010296 RAX: 0000000000000054 RBX: ffff8881038fd000 RCX: ffffc90001473c90 RDX: 0000000100001a31 RSI: 0000000000000003 RDI: 0000000000000003 RBP: ffff888308871108 R08: 0000000000000003 R09: 0000000000000001 R10: 3961373532383838 R11: 6666666620736177 R12: ffff888308871000 R13: ffff8881038fd088 R14: ffff8881038fdc78 R15: dead000000000100 FS: 00007f353c9b1540(0000) GS:ffff888627d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f353cc2c710 CR3: 000000018e13c000 CR4: 00000000000006a0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0xc9/0x310 [btrfs] close_ctree+0x2ee/0x31a [btrfs] ? call_rcu+0x8f/0x270 ? mutex_lock+0x1c/0x40 generic_shutdown_super+0x67/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x90 cleanup_mnt+0x13e/0x1b0 task_work_run+0x63/0xb0 exit_to_user_mode_loop+0xd9/0xe0 exit_to_user_mode_prepare+0x3e/0x60 syscall_exit_to_user_mode+0x1d/0x50 entry_SYSCALL_64_after_hwframe+0x44/0xae As dm-error has no support for zones, btrfs will run it's zone emulation mode on this device. The zone emulation mode emulates conventional zones, so bail out if the zone bitmap that gets populated on mount sees the zone as sequential while we're thinking it's a conventional zone when creating a block group. Note: this scenario is unlikely in a real wold application and can only happen by this (ab)use of device-mapper targets. CC: stable@vger.kernel.org # 5.12+ Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5e753a817b |
btrfs: fix unmountable seed device after fstrim
The following test case reproduces an issue of wrongly freeing in-use
blocks on the readonly seed device when fstrim is called on the rw sprout
device. As shown below.
Create a seed device and add a sprout device to it:
$ mkfs.btrfs -fq -dsingle -msingle /dev/loop0
$ btrfstune -S 1 /dev/loop0
$ mount /dev/loop0 /btrfs
$ btrfs dev add -f /dev/loop1 /btrfs
BTRFS info (device loop0): relocating block group 290455552 flags system
BTRFS info (device loop0): relocating block group 1048576 flags system
BTRFS info (device loop0): disk added /dev/loop1
$ umount /btrfs
Mount the sprout device and run fstrim:
$ mount /dev/loop1 /btrfs
$ fstrim /btrfs
$ umount /btrfs
Now try to mount the seed device, and it fails:
$ mount /dev/loop0 /btrfs
mount: /btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error.
Block 5292032 is missing on the readonly seed device:
$ dmesg -kt | tail
<snip>
BTRFS error (device loop0): bad tree block start, want 5292032 have 0
BTRFS warning (device loop0): couldn't read-tree root
BTRFS error (device loop0): open_ctree failed
From the dump-tree of the seed device (taken before the fstrim). Block
5292032 belonged to the block group starting at 5242880:
$ btrfs inspect dump-tree -e /dev/loop0 | grep -A1 BLOCK_GROUP
<snip>
item 3 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16169 itemsize 24
block group used 114688 chunk_objectid 256 flags METADATA
<snip>
From the dump-tree of the sprout device (taken before the fstrim).
fstrim used block-group 5242880 to find the related free space to free:
$ btrfs inspect dump-tree -e /dev/loop1 | grep -A1 BLOCK_GROUP
<snip>
item 1 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16226 itemsize 24
block group used 32768 chunk_objectid 256 flags METADATA
<snip>
BPF kernel tracing the fstrim command finds the missing block 5292032
within the range of the discarded blocks as below:
kprobe:btrfs_discard_extent {
printf("freeing start %llu end %llu num_bytes %llu:\n",
arg1, arg1+arg2, arg2);
}
freeing start
|
|
|
|
f9baa501b4 |
btrfs: fix deadlock when cloning inline extents and using qgroups
There are a few exceptional cases where cloning an inline extent needs to copy the inline extent data into a page of the destination inode. When this happens, we end up starting a transaction while having a dirty page for the destination inode and while having the range locked in the destination's inode iotree too. Because when reserving metadata space for a transaction we may need to flush existing delalloc in case there is not enough free space, we have a mechanism in place to prevent a deadlock, which was introduced in commit |
|
|
|
626e9f41f7 |
btrfs: fix race leading to unpersisted data and metadata on fsync
When doing a fast fsync on a file, there is a race which can result in the
fsync returning success to user space without logging the inode and without
durably persisting new data.
The following example shows one possible scenario for this:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/bar
$ xfs_io -f -c "pwrite -S 0xab 0 1M" -c "fsync" /mnt/baz
# Now we have:
# file bar == inode 257
# file baz == inode 258
$ mv /mnt/baz /mnt/foo
# Now we have:
# file bar == inode 257
# file foo == inode 258
$ xfs_io -c "pwrite -S 0xcd 0 1M" /mnt/foo
# fsync bar before foo, it is important to trigger the race.
$ xfs_io -c "fsync" /mnt/bar
$ xfs_io -c "fsync" /mnt/foo
# After this:
# inode 257, file bar, is empty
# inode 258, file foo, has 1M filled with 0xcd
<power failure>
# Replay the log:
$ mount /dev/sdc /mnt
# After this point file foo should have 1M filled with 0xcd and not 0xab
The following steps explain how the race happens:
1) Before the first fsync of inode 258, when it has the "baz" name, its
->logged_trans is 0, ->last_sub_trans is 0 and ->last_log_commit is -1.
The inode also has the full sync flag set;
2) After the first fsync, we set inode 258 ->logged_trans to 6, which is
the generation of the current transaction, and set ->last_log_commit
to 0, which is the current value of ->last_sub_trans (done at
btrfs_log_inode()).
The full sync flag is cleared from the inode during the fsync.
The log sub transaction that was committed had an ID of 0 and when we
synced the log, at btrfs_sync_log(), we incremented root->log_transid
from 0 to 1;
3) During the rename:
We update inode 258, through btrfs_update_inode(), and that causes its
->last_sub_trans to be set to 1 (the current log transaction ID), and
->last_log_commit remains with a value of 0.
After updating inode 258, because we have previously logged the inode
in the previous fsync, we log again the inode through the call to
btrfs_log_new_name(). This results in updating the inode's
->last_log_commit from 0 to 1 (the current value of its
->last_sub_trans).
The ->last_sub_trans of inode 257 is updated to 1, which is the ID of
the next log transaction;
4) Then a buffered write against inode 258 is made. This leaves the value
of ->last_sub_trans as 1 (the ID of the current log transaction, stored
at root->log_transid);
5) Then an fsync against inode 257 (or any other inode other than 258),
happens. This results in committing the log transaction with ID 1,
which results in updating root->last_log_commit to 1 and bumping
root->log_transid from 1 to 2;
6) Then an fsync against inode 258 starts. We flush delalloc and wait only
for writeback to complete, since the full sync flag is not set in the
inode's runtime flags - we do not wait for ordered extents to complete.
Then, at btrfs_sync_file(), we call btrfs_inode_in_log() before the
ordered extent completes. The call returns true:
static inline bool btrfs_inode_in_log(...)
{
bool ret = false;
spin_lock(&inode->lock);
if (inode->logged_trans == generation &&
inode->last_sub_trans <= inode->last_log_commit &&
inode->last_sub_trans <= inode->root->last_log_commit)
ret = true;
spin_unlock(&inode->lock);
return ret;
}
generation has a value of 6 (fs_info->generation), ->logged_trans also
has a value of 6 (set when we logged the inode during the first fsync
and when logging it during the rename), ->last_sub_trans has a value
of 1, set during the rename (step 3), ->last_log_commit also has a
value of 1 (set in step 3) and root->last_log_commit has a value of 1,
which was set in step 5 when fsyncing inode 257.
As a consequence we don't log the inode, any new extents and do not
sync the log, resulting in a data loss if a power failure happens
after the fsync and before the current transaction commits.
Also, because we do not log the inode, after a power failure the mtime
and ctime of the inode do not match those we had before.
When the ordered extent completes before we call btrfs_inode_in_log(),
then the call returns false and we log the inode and sync the log,
since at the end of ordered extent completion we update the inode and
set ->last_sub_trans to 2 (the value of root->log_transid) and
->last_log_commit to 1.
This problem is found after removing the check for the emptiness of the
inode's list of modified extents in the recent commit
|
|
|
|
ffb7c2e923 |
btrfs: do not consider send context as valid when trying to flush qgroups
At qgroup.c:try_flush_qgroup() we are asserting that current->journal_info is either NULL or has the value BTRFS_SEND_TRANS_STUB. However allowing for BTRFS_SEND_TRANS_STUB makes no sense because: 1) It is misleading, because send operations are read-only and do not ever need to reserve qgroup space; 2) We already assert that current->journal_info != BTRFS_SEND_TRANS_STUB at transaction.c:start_transaction(); 3) On a kernel without CONFIG_BTRFS_ASSERT=y set, it would result in a crash if try_flush_qgroup() is ever called in a send context, because at transaction.c:start_transaction we cast current->journal_info into a struct btrfs_trans_handle pointer and then dereference it. So just do allow a send context at try_flush_qgroup() and update the comment about it. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
adbd914dcd |
btrfs: zoned: fix silent data loss after failure splitting ordered extent
On a zoned filesystem, sometimes we need to split an ordered extent into 3
different ordered extents. The original ordered extent is shortened, at
the front and at the rear, and we create two other new ordered extents to
represent the trimmed parts of the original ordered extent.
After adjusting the original ordered extent, we create an ordered extent
to represent the pre-range, and that may fail with ENOMEM for example.
After that we always try to create the ordered extent for the post-range,
and if that happens to succeed we end up returning success to the caller
as we overwrite the 'ret' variable which contained the previous error.
This means we end up with a file range for which there is no ordered
extent, which results in the range never getting a new file extent item
pointing to the new data location. And since the split operation did
not return an error, writeback does not fail and the inode's mapping is
not flagged with an error, resulting in a subsequent fsync not reporting
an error either.
It's possibly very unlikely to have the creation of the post-range ordered
extent succeed after the creation of the pre-range ordered extent failed,
but it's not impossible.
So fix this by making sure we only create the post-range ordered extent
if there was no error creating the ordered extent for the pre-range.
Fixes:
|
|
|
|
a4f7fae101 |
Merge branch 'miklos.fileattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fileattr conversion updates from Miklos Szeredi via Al Viro: "This splits the handling of FS_IOC_[GS]ETFLAGS from ->ioctl() into a separate method. The interface is reasonably uniform across the filesystems that support it and gives nice boilerplate removal" * 'miklos.fileattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (23 commits) ovl: remove unneeded ioctls fuse: convert to fileattr fuse: add internal open/release helpers fuse: unsigned open flags fuse: move ioctl to separate source file vfs: remove unused ioctl helpers ubifs: convert to fileattr reiserfs: convert to fileattr ocfs2: convert to fileattr nilfs2: convert to fileattr jfs: convert to fileattr hfsplus: convert to fileattr efivars: convert to fileattr xfs: convert to fileattr orangefs: convert to fileattr gfs2: convert to fileattr f2fs: convert to fileattr ext4: convert to fileattr ext2: convert to fileattr btrfs: convert to fileattr ... |
|
|
|
57fa2369ab |
CFI on arm64 series for v5.13-rc1
- Clean up list_sort prototypes (Sami Tolvanen) - Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen) -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmCHCR8ACgkQiXL039xt wCZyFQ//fnUZaXR2K354zDyW6CJljMf+d94RF6rH+J6eMTH2/HXa5v0iJokwABLf ussP6qF4k5wtmI22Gm9A5Zc3e4iiry5pC0jOdk0mk4gzWwFN9MdgNxJZIGA3xqhS bsBK4AGrVKjtZl48G1/ZxJuNDeJhVp6GNK2n6/Gl4rZF6R7D/Upz0XelyJRdDpcM HIGma7jZl6xfGU0mdWCzpOGK1zdMca1WVs7A4YuurSbLn5PZJrcNVWLouDqt/Si2 AduSri1gyPClicgvqWjMOzhUpuw/nJtBLRl1x1EsWk/KSZ1/uNVjlewfzdN4fZrr zbtFr2gLubYLK6JOX7/LqoHlOTgE3tYLL+WIVN75DsOGZBKgHhmebTmWLyqzV0SL oqcyM5d3ucC6msdtAK5Fv4MSp8rpjqlK1Ha4SGRT6kC2wut7AhZ3KD7eyRIz8mV9 Sa9mhignGFJnTEUp+LSbYdrAudgSKxB40WyXPmswAXX4VJFRD4ONrrcAON/SzkUT Hw/JdFRCKkJjgwNQjIQoZcUNMTbFz2PlNIEnjJWm38YImQKQlCb2mXaZKCwBkf45 aheCZk17eKoxTCXFMd+KxlyNEtS2yBfq/PpZgvw7GW/pfFbWUg1+2O41LnihIe5v zu0hN1wNCQqgfxiMZqX1OTb9C/2vybzGsXILt+9nppjZ8EBU7iU= =wU6U -----END PGP SIGNATURE----- Merge tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull CFI on arm64 support from Kees Cook: "This builds on last cycle's LTO work, and allows the arm64 kernels to be built with Clang's Control Flow Integrity feature. This feature has happily lived in Android kernels for almost 3 years[1], so I'm excited to have it ready for upstream. The wide diffstat is mainly due to the treewide fixing of mismatched list_sort prototypes. Other things in core kernel are to address various CFI corner cases. The largest code portion is the CFI runtime implementation itself (which will be shared by all architectures implementing support for CFI). The arm64 pieces are Acked by arm64 maintainers rather than coming through the arm64 tree since carrying this tree over there was going to be awkward. CFI support for x86 is still under development, but is pretty close. There are a handful of corner cases on x86 that need some improvements to Clang and objtool, but otherwise works well. Summary: - Clean up list_sort prototypes (Sami Tolvanen) - Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)" * tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: allow CONFIG_CFI_CLANG to be selected KVM: arm64: Disable CFI for nVHE arm64: ftrace: use function_nocfi for ftrace_call arm64: add __nocfi to __apply_alternatives arm64: add __nocfi to functions that jump to a physical address arm64: use function_nocfi with __pa_symbol arm64: implement function_nocfi psci: use function_nocfi for cpu_resume lkdtm: use function_nocfi treewide: Change list_sort to use const pointers bpf: disable CFI in dispatcher functions kallsyms: strip ThinLTO hashes from static functions kthread: use WARN_ON_FUNCTION_MISMATCH workqueue: use WARN_ON_FUNCTION_MISMATCH module: ensure __cfi_check alignment mm: add generic function_nocfi macro cfi: add __cficanonical add support for Clang CFI |
|
|
|
18bb8bbf13 |
btrfs: zoned: automatically reclaim zones
When a file gets deleted on a zoned file system, the space freed is not returned back into the block group's free space, but is migrated to zone_unusable. As this zone_unusable space is behind the current write pointer it is not possible to use it for new allocations. In the current implementation a zone is reset once all of the block group's space is accounted as zone unusable. This behaviour can lead to premature ENOSPC errors on a busy file system. Instead of only reclaiming the zone once it is completely unusable, kick off a reclaim job once the amount of unusable bytes exceeds a user configurable threshold between 51% and 100%. It can be set per mounted filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75% by default. Similar to reclaiming unused block groups, these dirty block groups are added to a to_reclaim list and then on a transaction commit, the reclaim process is triggered but after we deleted unused block groups, which will free space for the relocation process. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f33720657d |
btrfs: rename delete_unused_bgs_mutex to reclaim_bgs_lock
As a preparation for extending the block group deletion use case, rename the unused_bgs_mutex to reclaim_bgs_lock. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
01e86008aa |
btrfs: zoned: reset zones of relocated block groups
When relocating a block group the freed up space is not discarded in one big block, but each extent is discarded on its own with -odisard=sync. For a zoned filesystem we need to discard the whole block group at once, so btrfs_discard_extent() will translate the discard into a REQ_OP_ZONE_RESET operation, which then resets the device's zone. Failure to reset the zone is not fatal error. Discussion about the approach and regarding transaction blocking: https://lore.kernel.org/linux-btrfs/CAL3q7H4SjS_d5rBepfTMhU8Th3bJzdmyYd0g4Z60yUgC_rC_ZA@mail.gmail.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e9306ad4ef |
btrfs: more graceful errors/warnings on 32bit systems when reaching limits
Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0dc16ef4f6 |
btrfs: zoned: fix unpaired block group unfreeze during device replace
When doing a device replace on a zoned filesystem, if we find a block
group with ->to_copy == 0, we jump to the label 'done', which will result
in later calling btrfs_unfreeze_block_group(), even though at this point
we never called btrfs_freeze_block_group().
Since at this point we have neither turned the block group to RO mode nor
made any progress, we don't need to jump to the label 'done'. So fix this
by jumping instead to the label 'skip' and dropping our reference on the
block group before the jump.
Fixes:
|
|
|
|
f9690f426b |
btrfs: fix race when picking most recent mod log operation for an old root
Commit |
|
|
|
67addf2900 |
btrfs: fix metadata extent leak after failure to create subvolume
When creating a subvolume we allocate an extent buffer for its root node after starting a transaction. We setup a root item for the subvolume that points to that extent buffer and then attempt to insert the root item into the root tree - however if that fails, due to ENOMEM for example, we do not free the extent buffer previously allocated and we do not abort the transaction (as at that point we did nothing that can not be undone). This means that we effectively do not return the metadata extent back to the free space cache/tree and we leave a delayed reference for it which causes a metadata extent item to be added to the extent tree, in the next transaction commit, without having backreferences. When this happens 'btrfs check' reports the following: $ btrfs check /dev/sdi Opening filesystem to check... Checking filesystem on /dev/sdi UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb [1/7] checking root items [2/7] checking extents ref mismatch on [30425088 16384] extent item 1, found 0 backref 30425088 root 256 not referenced back 0x564a91c23d70 incorrect global backref count on 30425088 found 1 wanted 0 backpointer mismatch on [30425088 16384] owner ref check failed [30425088 16384] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space cache [4/7] checking fs roots [5/7] checking only csums items (without verifying data) [6/7] checking root refs [7/7] checking quota groups skipped (not enabled on this FS) found 212992 bytes used, error(s) found total csum bytes: 0 total tree bytes: 131072 total fs tree bytes: 32768 total extent tree bytes: 16384 btree space waste bytes: 124669 file data blocks allocated: 65536 referenced 65536 So fix this by freeing the metadata extent if btrfs_insert_root() returns an error. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1d8ba9e7e7 |
btrfs: handle remount to no compress during compression
[BUG]
When running btrfs/071 with inode_need_compress() removed from
compress_file_range(), we got the following crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
Workqueue: btrfs-delalloc btrfs_work_helper [btrfs]
RIP: 0010:compress_file_range+0x476/0x7b0 [btrfs]
Call Trace:
? submit_compressed_extents+0x450/0x450 [btrfs]
async_cow_start+0x16/0x40 [btrfs]
btrfs_work_helper+0xf2/0x3e0 [btrfs]
process_one_work+0x278/0x5e0
worker_thread+0x55/0x400
? process_one_work+0x5e0/0x5e0
kthread+0x168/0x190
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x22/0x30
---[ end trace 65faf4eae941fa7d ]---
This is already after the patch "btrfs: inode: fix NULL pointer
dereference if inode doesn't need compression."
[CAUSE]
@pages is firstly created by kcalloc() in compress_file_extent():
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
Then passed to btrfs_compress_pages() to be utilized there:
ret = btrfs_compress_pages(...
pages,
&nr_pages,
...);
btrfs_compress_pages() will initialize each page as output, in
zlib_compress_pages() we have:
pages[nr_pages] = out_page;
nr_pages++;
Normally this is completely fine, but there is a special case which
is in btrfs_compress_pages() itself:
switch (type) {
default:
return -E2BIG;
}
In this case, we didn't modify @pages nor @out_pages, leaving them
untouched, then when we cleanup pages, the we can hit NULL pointer
dereference again:
if (pages) {
for (i = 0; i < nr_pages; i++) {
WARN_ON(pages[i]->mapping);
put_page(pages[i]);
}
...
}
Since pages[i] are all initialized to zero, and btrfs_compress_pages()
doesn't change them at all, accessing pages[i]->mapping would lead to
NULL pointer dereference.
This is not possible for current kernel, as we check
inode_need_compress() before doing pages allocation.
But if we're going to remove that inode_need_compress() in
compress_file_extent(), then it's going to be a problem.
[FIX]
When btrfs_compress_pages() hits its default case, modify @out_pages to
0 to prevent such problem from happening.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212331
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
1d68128c10 |
btrfs: zoned: fail mount if the device does not support zone append
For zoned btrfs, zone append is mandatory to write to a sequential write only zone, otherwise parallel writes to the same zone could result in unaligned write errors. If a zoned block device does not support zone append (e.g. a dm-crypt zoned device using a non-NULL IV cypher), fail to mount. CC: stable@vger.kernel.org # 5.12 Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
061dde8245 |
btrfs: fix race between transaction aborts and fsyncs leading to use-after-free
There is a race between a task aborting a transaction during a commit,
a task doing an fsync and the transaction kthread, which leads to an
use-after-free of the log root tree. When this happens, it results in a
stack trace like the following:
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS: error (device dm-0) in cleanup_transaction:1958: errno=-5 IO failure
BTRFS warning (device dm-0): lost page write due to IO error on /dev/mapper/error-test (-5)
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0xa4e8 len 4096 err no 10
BTRFS error (device dm-0): error writing primary super block to device 1
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e000 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e008 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e010 len 4096 err no 10
BTRFS: error (device dm-0) in write_all_supers:4110: errno=-5 IO failure (1 errors while writing supers)
BTRFS: error (device dm-0) in btrfs_sync_log:3308: errno=-5 IO failure
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b68: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 2458471 Comm: fsstress Not tainted 5.12.0-rc5-btrfs-next-84 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
RIP: 0010:__mutex_lock+0x139/0xa40
Code: c0 74 19 (...)
RSP: 0018:ffff9f18830d7b00 EFLAGS: 00010202
RAX: 6b6b6b6b6b6b6b68 RBX: 0000000000000001 RCX: 0000000000000002
RDX: ffffffffb9c54d13 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff9f18830d7bc0 R08: 0000000000000000 R09: 0000000000000000
R10: ffff9f18830d7be0 R11: 0000000000000001 R12: ffff8c6cd199c040
R13: ffff8c6c95821358 R14: 00000000fffffffb R15: ffff8c6cbcf01358
FS: 00007fa9140c2b80(0000) GS:ffff8c6fac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa913d52000 CR3: 000000013d2b4003 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? __btrfs_handle_fs_error+0xde/0x146 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_file+0x40c/0x580 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fa9142a55c3
Code: 8b 15 09 (...)
RSP: 002b:00007fff26278d48 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000563c83cb4560 RCX: 00007fa9142a55c3
RDX: 00007fff26278cb0 RSI: 00007fff26278cb0 RDI: 0000000000000005
RBP: 0000000000000005 R08: 0000000000000001 R09: 00007fff26278d5c
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000340
R13: 00007fff26278de0 R14: 00007fff26278d96 R15: 0000563c83ca57c0
Modules linked in: btrfs dm_zero dm_snapshot dm_thin_pool (...)
---[ end trace ee2f1b19327d791d ]---
The steps that lead to this crash are the following:
1) We are at transaction N;
2) We have two tasks with a transaction handle attached to transaction N.
Task A and Task B. Task B is doing an fsync;
3) Task B is at btrfs_sync_log(), and has saved fs_info->log_root_tree
into a local variable named 'log_root_tree' at the top of
btrfs_sync_log(). Task B is about to call write_all_supers(), but
before that...
4) Task A calls btrfs_commit_transaction(), and after it sets the
transaction state to TRANS_STATE_COMMIT_START, an error happens before
it waits for the transaction's 'num_writers' counter to reach a value
of 1 (no one else attached to the transaction), so it jumps to the
label "cleanup_transaction";
5) Task A then calls cleanup_transaction(), where it aborts the
transaction, setting BTRFS_FS_STATE_TRANS_ABORTED on fs_info->fs_state,
setting the ->aborted field of the transaction and the handle to an
errno value and also setting BTRFS_FS_STATE_ERROR on fs_info->fs_state.
After that, at cleanup_transaction(), it deletes the transaction from
the list of transactions (fs_info->trans_list), sets the transaction
to the state TRANS_STATE_COMMIT_DOING and then waits for the number
of writers to go down to 1, as it's currently 2 (1 for task A and 1
for task B);
6) The transaction kthread is running and sees that BTRFS_FS_STATE_ERROR
is set in fs_info->fs_state, so it calls btrfs_cleanup_transaction().
There it sees the list fs_info->trans_list is empty, and then proceeds
into calling btrfs_drop_all_logs(), which frees the log root tree with
a call to btrfs_free_log_root_tree();
7) Task B calls write_all_supers() and, shortly after, under the label
'out_wake_log_root', it deferences the pointer stored in
'log_root_tree', which was already freed in the previous step by the
transaction kthread. This results in a use-after-free leading to a
crash.
Fix this by deleting the transaction from the list of transactions at
cleanup_transaction() only after setting the transaction state to
TRANS_STATE_COMMIT_DOING and waiting for all existing tasks that are
attached to the transaction to release their transaction handles.
This makes the transaction kthread wait for all the tasks attached to
the transaction to be done with the transaction before dropping the
log roots and doing other cleanups.
Fixes:
|
|
|
|
c4aec299fa |
btrfs: introduce submit_eb_subpage() to submit a subpage metadata page
The new function, submit_eb_subpage(), will submit all the dirty extent buffers in the page. The major difference between submit_eb_page() and submit_eb_subpage() is: - How to grab extent buffer Now we use find_extent_buffer_nospinlock() other than using page::private. All other different handling is already done in functions like lock_extent_buffer_for_io() and write_one_eb(). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f3156df944 |
btrfs: make lock_extent_buffer_for_io() to be subpage compatible
For subpage metadata, we don't use page locking at all. So just skip the page locking part for subpage. The rest of the function can be reused. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
35b6ddfa96 |
btrfs: introduce write_one_subpage_eb() function
The new function, write_one_subpage_eb(), as a subroutine for subpage metadata write, will handle the extent buffer bio submission. The major differences between the new write_one_subpage_eb() and write_one_eb() is: - No page locking When entering write_one_subpage_eb() the page is no longer locked. We only lock the page for its status update, and unlock immediately. Now we completely rely on extent io tree locking. - Extra bitmap update along with page status update Now page dirty and writeback is controlled by btrfs_subpage::dirty_bitmap and btrfs_subpage::writeback_bitmap. They both follow the schema that any sector is dirty/writeback, then the full page gets dirty/writeback. - When to update the nr_written number Now we take a shortcut, if we have cleared the last dirty bit of the page, we update nr_written. This is not completely perfect, but should emulate the old behavior well enough. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2f3186d8ee |
btrfs: introduce end_bio_subpage_eb_writepage() function
The new function, end_bio_subpage_eb_writepage(), will handle the metadata writeback endio. The major differences involved are: - How to grab extent buffer Now page::private is a pointer to btrfs_subpage, we can no longer grab extent buffer directly. Thus we need to use the bv_offset to locate the extent buffer manually and iterate through the whole range. - Use btrfs_subpage_end_writeback() caller This helper will handle the subpage writeback for us. Since this function is executed under endio context, when grabbing extent buffers it can't grab eb->refs_lock as that lock is not designed to be grabbed under hardirq context. So here introduce a helper, find_extent_buffer_nolock(), for such situation, and convert find_extent_buffer() to use that helper. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fb686c6824 |
btrfs: check return value of btrfs_commit_transaction in relocation
There are a few places where we don't check the return value of btrfs_commit_transaction in relocation.c. Thankfully all these places have straightforward error handling, so simply change all of the sites at once. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
24213fa46c |
btrfs: do proper error handling in merge_reloc_roots
We have a BUG_ON() if we get an error back from btrfs_get_fs_root(). This honestly should never fail, as at this point we have a solid coordination of fs root to reloc root, and these roots will all be in memory. But in the name of killing BUG_ON()'s remove these and handle the error condition properly, ASSERT()'ing for developers. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8717cf440d |
btrfs: handle extent corruption with select_one_root properly
In corruption cases we could have paths from a block up to no root at all, and thus we'll BUG_ON(!root) in select_one_root. Handle this by adding an ASSERT() for developers, and returning an error for normal users. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e0b085b0b0 |
btrfs: cleanup error handling in prepare_to_merge
This probably can't happen even with a corrupt file system, because we would have failed much earlier on than here. However there's no reason we can't just check and bail out as appropriate, so do that and convert the correctness BUG_ON() to an ASSERT(). Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
57a304cfd4 |
btrfs: do not panic in __add_reloc_root
If we have a duplicate entry for a reloc root then we could have fs corruption that resulted in a double allocation. Since this shouldn't happen unless there is corruption, add an ASSERT(ret != -EEXIST) to all of the callers of __add_reloc_root() to catch any logic mistakes for developers, otherwise normal error handling will happen for normal users. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3c9258632c |
btrfs: handle __add_reloc_root failures in btrfs_recover_relocation
We can already handle errors appropriately from this function, deal with an error coming from __add_reloc_root appropriately. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
790c1b8cd4 |
btrfs: do proper error handling in create_reloc_inode
We already handle some errors in this function, and the callers do the correct error handling, so clean up the rest of the function to do the appropriate error handling. There's a little extra work that needs to be done here, as we create the inode item before we create the orphan item. We could potentially add the orphan item, but if we failed to create the inode item we would have to abort the transaction. Instead add a helper to delete the inode item we created in the case that we're unable to look up the inode (this would likely be caused by an ENOMEM), which if it succeeds means we can avoid a transaction abort in this particular error case. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
24cd638902 |
btrfs: remove the extent item sanity checks in relocate_block_group
These checks are all taken care of for us by the tree checker code: - the flags don't change or are updated consistently - the v0 extent item format is invalid and caught in many other places too Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0ebb6bbbd4 |
btrfs: tree-checker: check for BTRFS_BLOCK_FLAG_FULL_BACKREF being set improperly
We need to validate that a data extent item does not have the FULL_BACKREF flag set on its flags. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
eb6b7fb4b5 |
btrfs: handle extent reference errors in do_relocation
We can already deal with errors appropriately from do_relocation, simply handle any errors that come from changing the refs at this point cleanly. We have to abort the transaction if we fail here as we've modified metadata at this point. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
253e258c34 |
btrfs: handle errors in reference count manipulation in replace_path
If any of the reference count manipulation stuff fails in replace_path we need to abort the transaction, as we've modified the blocks already. We can simply break at this point and everything will be cleaned up. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0e9873e2fe |
btrfs: handle btrfs_search_slot failure in replace_path
The search can fail for various reasons, in case of errors there's no cleanup to be done so we can pass the error to the caller, adjusting for the case where the key is not found and search slot returns 1. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
45b87c5d25 |
btrfs: handle btrfs_cow_block errors in replace_path
If we error out COWing the root node when doing a replace_path then we simply unlock and free the buffer and return the error. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7a9213a935 |
btrfs: convert logic BUG_ON()'s in replace_path to ASSERT()'s
A few BUG_ON()'s in replace_path are purely to keep us from making logical mistakes, so replace them with ASSERT()'s. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
592fbcd50c |
btrfs: do proper error handling in btrfs_update_reloc_root
We call btrfs_update_root in btrfs_update_reloc_root, which can fail for all sorts of reasons, including IO errors. Instead of panicing the box lets return the error, now that all callers properly handle those errors. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bbae13f8ab |
btrfs: handle btrfs_update_reloc_root failure in prepare_to_merge
btrfs_update_reloc_root will will return errors in the future, so handle an error properly in prepare_to_merge. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7934133fae |
btrfs: handle btrfs_update_reloc_root failure in insert_dirty_subvol
btrfs_update_reloc_root will will return errors in the future, so handle the error properly in insert_dirty_subvol. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ac54da6c37 |
btrfs: change insert_dirty_subvol to return errors
This will be able to return errors in the future, so change it to return an error and handle the errors appropriately. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2dd8298eb3 |
btrfs: handle btrfs_update_reloc_root failure in commit_fs_roots
btrfs_update_reloc_root will will return errors in the future, so handle the error properly in commit_fs_roots. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
39200e5908 |
btrfs: validate root::reloc_root after recording root in trans
If we fail to setup a root->reloc_root in a different thread that path will error out, however it still leaves root->reloc_root NULL but would still appear set up in the transaction. Subsequent calls to btrfs_record_root_in_transaction would succeed without attempting to create the reloc root, as the transid has already been updated. Handle this case by making sure we have a root->reloc_root set after a btrfs_record_root_in_transaction call so we don't end up dereferencing a NULL pointer. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
84c50ba521 |
btrfs: do proper error handling in create_reloc_root
We do memory allocations here, read blocks from disk, all sorts of operations that could easily fail at any given point. Instead of panicing the box, simply return the error back up the chain, all callers at this point have proper error handling. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
00bb36a0e7 |
btrfs: have proper error handling in btrfs_init_reloc_root
create_reloc_root will return errors in the future, and __add_reloc_root can return ENOMEM or EEXIST, so handle these errors properly. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
03a7e111a9 |
btrfs: return an error from btrfs_record_root_in_trans
We can create a reloc root when we record the root in the trans, which can fail for all sorts of different reasons. Propagate this error up the chain of callers. Future patches will fix the callers of btrfs_record_root_in_trans() to handle the error. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f0118cb6bc |
btrfs: handle record_root_in_trans failure in create_pending_snapshot
record_root_in_trans can currently fail, so handle this failure properly. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1409e6cc74 |
btrfs: handle record_root_in_trans failure in btrfs_record_root_in_trans
record_root_in_trans can fail currently, handle this failure properly. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1c442d2246 |
btrfs: handle record_root_in_trans failure in qgroup_account_snapshot
record_root_in_trans can fail currently, so handle this failure properly. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
68075ea8d7 |
btrfs: handle btrfs_record_root_in_trans failure in start_transaction
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in start_transaction. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d18c7bd95c |
btrfs: handle btrfs_record_root_in_trans failure in relocate_tree_block
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in relocate_tree_block. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
221581e485 |
btrfs: handle btrfs_record_root_in_trans failure in create_subvol
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in create_subvol. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2002ae112a |
btrfs: handle btrfs_record_root_in_trans failure in btrfs_recover_log_trees
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in btrfs_recover_log_trees. This appears tricky, however we have a reference count on the destination root, so if this fails we need to continue on in the loop to make sure the proper cleanup is done. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2731f5186b |
btrfs: handle btrfs_record_root_in_trans failure in btrfs_delete_subvolume
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in btrfs_delete_subvolume. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b0fec6fd33 |
btrfs: handle btrfs_record_root_in_trans failure in btrfs_rename
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in btrfs_rename. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
00aa8e87c9 |
btrfs: handle btrfs_record_root_in_trans failure in btrfs_rename_exchange
btrfs_record_root_in_trans will return errors in the future, so handle the error properly in btrfs_rename_exchange. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
404bccbcaa |
btrfs: do proper error handling in record_reloc_root_in_trans
Generally speaking this shouldn't ever fail, the corresponding fs root for the reloc root will already be in memory, so we won't get ENOMEM here. However if there is no corresponding root for the reloc root then we could get ENOMEM when we try to allocate it or we could get ENOENT when we look it up and see that it doesn't exist. Convert these BUG_ON()'s into ASSERT()'s and add proper error handling for the case of corruption. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
92de551b83 |
btrfs: check record_root_in_trans related failures in select_reloc_root
We will record the fs root or the reloc root in the trans in select_reloc_root. These will actually return errors in the following patches, so check their return value here and return it up the stack. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8ee66afe99 |
btrfs: convert BUG_ON()'s in select_reloc_root() to proper errors
We have several BUG_ON()'s in select_reloc_root() that can be tripped if there is an extent tree corruption. Convert these to ASSERT()'s, because if we hit it during testing it really is bad, or could indicate a problem with the backref walking code. However if users hit these problems it generally indicates corruption, I've hit a few machines in the fleet that trip over these with clearly corrupted extent trees, so be nice and print out an error message and return an error instead of bringing the whole box down. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cbdc2ebc7c |
btrfs: handle errors from select_reloc_root()
Currently select_reloc_root() doesn't return an error, but followup patches will make it possible for it to return an error. We do have proper error recovery in do_relocation however, so handle the possibility of select_reloc_root() having an error properly instead of BUG_ON(!root). I've also adjusted select_reloc_root() to return ERR_PTR(-ENOENT) if we don't find a root, instead of NULL, to make the error case easier to deal with. I've replaced the BUG_ON(!root) with an ASSERT(0) for this case as it indicates we messed up the backref walking code, but it could also indicate corruption. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1c7bfa159f |
btrfs: convert BUG_ON()'s in relocate_tree_block
We have a couple of BUG_ON()'s in relocate_tree_block() that can be tripped if we have file system corruption. Convert these to ASSERT()'s so developers still get yelled at when they break the backref code, but error out nicely for users so the whole box doesn't go down. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ffe30dd892 |
btrfs: convert some BUG_ON()'s to ASSERT()'s in do_relocation
A few of these are checking for correctness, and won't be triggered by corrupted file systems, so convert them to ASSERT() instead of BUG_ON() and add a comment explaining their existence. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
32c0a6bcaa |
btrfs: add and use readahead_batch_length
Implement readahead_batch_length() to determine the number of bytes in the current batch of readahead pages and use it in btrfs. Also use the readahead_pos to get the offset. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
183ebab766 |
btrfs: move forward declarations to the beginning of extent_io.h
There are two forward declarations deep in extent_io.h, move them to the beginning and remove the duplicate one. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Wan Jiabing <wanjiabing@vivo.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
894d137818 |
btrfs: subpage: add overview comments
This patch adds an overview how btrfs subpage support works: - limitations - behavior - basic implementation points Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5a2c60752a |
btrfs: make set_btree_ioerr accept extent buffer and be subpage compatible
Current set_btree_ioerr() only accepts @page parameter and grabs extent buffer from page::private. This works fine for sector size == PAGE_SIZE case, but not for subpage case. Add an extra parameter, @eb, for callers to pass extent buffer to this function, so that subpage code can reuse this function. And also add subpage special handling to update btrfs_subpage::error_bitmap. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0d27797e92 |
btrfs: make set/clear_extent_buffer_dirty() subpage compatible
For set_extent_buffer_dirty() to support subpage sized metadata, just
call btrfs_page_set_dirty() to handle both cases.
For clear_extent_buffer_dirty(), it needs to clear the page dirty if and
only if all extent buffers in the page range are no longer dirty.
Also do the same for page error.
This is pretty different from the existing clear_extent_buffer_dirty()
routine, so add a new helper function,
clear_subpage_extent_buffer_dirty() to do this for subpage metadata.
Also since the main part of clearing page dirty code is still the same,
extract that into btree_clear_page_dirty() so that it can be utilized
for both cases.
But there is a special race between set_extent_buffer_dirty() and
clear_extent_buffer_dirty(), where we can clear the page dirty.
[POSSIBLE RACE WINDOW]
For the race window between clear_subpage_extent_buffer_dirty() and
set_extent_buffer_dirty(), due to the fact that we can't call
clear_page_dirty_for_io() under subpage spin lock, we can race like
below:
T1 (eb1 in the same page) | T2 (eb2 in the same page)
-------------------------------+------------------------------
set_extent_buffer_dirty() | clear_extent_buffer_dirty()
|- was_dirty = false; | |- clear_subpagE_extent_buffer_dirty()
| | |- btrfs_clear_and_test_dirty()
| | | Since eb2 is the last dirty page
| | | we got:
| | | last == true;
| | |
|- btrfs_page_set_dirty() | |
| We set the page dirty and | |
| subpage dirty bitmap | |
| | |- if (last)
| | | Since we don't have subpage lock
| | | held, now @last is no longer
| | | correct
| | |- btree_clear_page_dirty()
| | Now PageDirty == false, even if
| | we have dirty_bitmap not zero.
|- ASSERT(PageDirty()); |
^^^^ CRASH
The solution here is to also lock the eb->pages[0] for subpage case of
set_extent_buffer_dirty(), to prevent racing with
clear_extent_buffer_dirty().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
b8f957715e |
btrfs: support page uptodate assertions in subpage mode
There are quite some assert checks on page uptodate in extent buffer write accessors. They ensure the destination page is already uptodate. This is fine for regular sector size case, but not for subpage case, as for subpage we only mark the page uptodate if the page contains no hole and all its extent buffers are uptodate. So instead of checking PageUptodate(), for subpage case we check the uptodate bitmap of btrfs_subpage structure. To make the check more elegant, introduce a helper, assert_eb_page_uptodate() to do the check for both subpage and regular sector size cases. The following functions are involved: - write_extent_buffer_chunk_tree_uuid() - write_extent_buffer_fsid() - write_extent_buffer() - memzero_extent_buffer() - copy_extent_buffer() - extent_buffer_test_bit() - extent_buffer_bitmap_set() - extent_buffer_bitmap_clear() Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1e5eb3d6a4 |
btrfs: make alloc_extent_buffer() check subpage dirty bitmap
In alloc_extent_buffer(), we make sure that the newly allocated page is never dirty. This is fine for sector size == PAGE_SIZE case, but for subpage it's possible that one extent buffer in the page is dirty, thus the whole page is marked dirty, and could cause false alert. To support subpage, call btrfs_page_test_dirty() to handle both cases. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
eca0f6f643 |
btrfs: subpage: support metadata checksum calculation at write time
Add a new helper, csum_dirty_subpage_buffers(), to iterate through all dirty extent buffers in one bvec. Also extract the code of calculating csum for one extent buffer into csum_one_extent_buffer(), so that both the existing csum_dirty_buffer() and the new csum_dirty_subpage_buffers() can reuse the same routine. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
139e8cd325 |
btrfs: subpage: do more sanity checks on metadata page dirtying
For btree_set_page_dirty(), we should also check the extent buffer sanity for subpage support. Unlike the regular sector size case, since one page can contain multiple extent buffers, we need to make sure there is at least one dirty extent buffer in the page. So this patch will iterate through the btrfs_subpage::dirty_bitmap to get the extent buffers, and check if any dirty extent buffer in the page range has EXTENT_BUFFER_DIRTY and proper refs. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3470da3b7d |
btrfs: subpage: introduce helpers for writeback status
Introduces the following functions to handle subpage writeback status: - btrfs_subpage_set_writeback() - btrfs_subpage_clear_writeback() - btrfs_subpage_test_writeback() These helpers can only be called when the range is ensured to be inside the page. - btrfs_page_set_writeback() - btrfs_page_clear_writeback() - btrfs_page_test_writeback() These helpers can handle both regular sector size and subpage without problem. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d8a5713e89 |
btrfs: subpage: introduce helpers for dirty status
Introduce the following functions to handle subpage dirty status: - btrfs_subpage_set_dirty() - btrfs_subpage_clear_dirty() - btrfs_subpage_test_dirty() These helpers can only be called when the range is ensured to be inside the page. - btrfs_page_set_dirty() - btrfs_page_clear_dirty() - btrfs_page_test_dirty() These helpers can handle both regular sector size and subpage without problem. Thus they would be used to replace PageDirty() related calls in later patches. There is one special point to note here, just like set_page_dirty() and clear_page_dirty_for_io(), btrfs_*page_set_dirty() and btrfs_*page_clear_dirty() must be called with page locked. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d239bcb83b |
btrfs: remove unnecessary variable shadowing in btrfs_invalidatepage()
In btrfs_invalidatepage() we re-declare @tree variable as btrfs_ordered_inode_tree. Since it's only used to do the spinlock, we can grab it from inode directly, and remove the unnecessary declaration completely. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ac5804eb85 |
btrfs: use min() to replace open-code in btrfs_invalidatepage()
In btrfs_invalidatepage() we introduce a temporary variable, new_len, to update ordered->truncated_len. But we can use min() to replace it completely and no need for the variable. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fc57ad8d33 |
btrfs: add sysfs interface for supported sectorsize
Export supported sector sizes in /sys/fs/btrfs/features/supported_sectorsizes. Currently all architectures have PAGE_SIZE, There's some disparity between read-only and read-write support but that will be unified in the future so there's only one file exporting the size. The read-only support for systems with 64K pages also works for 4K sector size. This new sysfs interface would help eg. mkfs.btrfs to print more accurate warnings about potentially incompatible option combinations. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ace75066ce |
btrfs: improve btree readahead for full send operations
Currently a full send operation uses the standard btree readahead when
iterating over the subvolume/snapshot btree, which despite bringing good
performance benefits, it could be improved in a few aspects for use cases
such as full send operations, which are guaranteed to visit every node
and leaf of a btree, in ascending and sequential order. The limitations
of that standard btree readahead implementation are the following:
1) It only triggers readahead for leaves that are physically close
to the leaf being read, within a 64K range;
2) It only triggers readahead for the next or previous leaves if the
leaf being read is not currently in memory;
3) It never triggers readahead for nodes.
So add a new readahead mode that addresses all these points and use it
for full send operations.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
The durations of the full send operation in seconds were the following:
Before this change: 217 seconds
After this change: 205 seconds (-5.7%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
eafa4fd0ad |
btrfs: fix exhaustion of the system chunk array due to concurrent allocations
When we are running out of space for updating the chunk tree, that is, when we are low on available space in the system space info, if we have many task concurrently allocating block groups, via fallocate for example, many of them can end up all allocating new system chunks when only one is needed. In extreme cases this can lead to exhaustion of the system chunk array, which has a size limit of 2048 bytes, and results in a transaction abort with errno EFBIG, producing a trace in dmesg like the following, which was triggered on a PowerPC machine with a node/leaf size of 64K: [1359.518899] ------------[ cut here ]------------ [1359.518980] BTRFS: Transaction aborted (error -27) [1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs] [1359.519152] Modules linked in: (...) [1359.519239] Supported: Yes, External [1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G X 5.3.18-47-default #1 SLE15-SP3 [1359.519274] NIP: c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8 [1359.519293] REGS: c00000056890b700 TRAP: 0700 Tainted: G X (5.3.18-47-default) [1359.519317] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48008222 XER: 00000007 [1359.519356] CFAR: c00000000013e170 IRQMASK: 0 [1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026 [1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007 [1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000 [1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0 [1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff [1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000 [1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0 [1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08 [1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs] [1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] [1359.519626] Call Trace: [1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable) [1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs] [1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs] [1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs] [1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350 [1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0 [1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40 [1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170 [1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278 [1359.520037] Instruction dump: [1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000 [1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378 [1359.520122] ---[ end trace d6c186e151022e20 ]--- The following steps explain how we can end up in this situation: 1) Task A is at check_system_chunk(), either because it is allocating a new data or metadata block group, at btrfs_chunk_alloc(), or because it is removing a block group or turning a block group RO. It does not matter why; 2) Task A sees that there is not enough free space in the system space_info object, that is 'left' is < 'thresh'. And at this point the system space_info has a value of 0 for its 'bytes_may_use' counter; 3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate a new system block group (chunk) and then reserves 'thresh' bytes in the chunk block reserve with the call to btrfs_block_rsv_add(). This changes the chunk block reserve's 'reserved' and 'size' counters by an amount of 'thresh', and changes the 'bytes_may_use' counter of the system space_info object from 0 to 'thresh'. Also during its call to btrfs_alloc_chunk(), we end up increasing the value of the 'total_bytes' counter of the system space_info object by 8MiB (the size of a system chunk stripe). This happens through the call chain: btrfs_alloc_chunk() create_chunk() btrfs_make_block_group() btrfs_update_space_info() 4) After it finishes the first phase of the block group allocation, at btrfs_chunk_alloc(), task A unlocks the chunk mutex; 5) At this point the new system block group was added to the transaction handle's list of new block groups, but its block group item, device items and chunk item were not yet inserted in the extent, device and chunk trees, respectively. That only happens later when we call btrfs_finish_chunk_alloc() through a call to btrfs_create_pending_block_groups(); Note that only when we update the chunk tree, through the call to btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter of the chunk block reserve as we COW/allocate extent buffers, through: btrfs_alloc_tree_block() btrfs_use_block_rsv() btrfs_block_rsv_use_bytes() And the system space_info's 'bytes_may_use' is decremented everytime we allocate an extent buffer for COW operations on the chunk tree, through: btrfs_alloc_tree_block() btrfs_reserve_extent() find_free_extent() btrfs_add_reserved_bytes() If we end up COWing less chunk btree nodes/leaves than expected, which is the typical case since the amount of space we reserve is always pessimistic to account for the worst possible case, we release the unused space through: btrfs_create_pending_block_groups() btrfs_trans_release_chunk_metadata() btrfs_block_rsv_release() block_rsv_release_bytes() btrfs_space_info_free_bytes_may_use() But before task A gets into btrfs_create_pending_block_groups()... 6) Many other tasks start allocating new block groups through fallocate, each one does the first phase of block group allocation in a serialized way, since btrfs_chunk_alloc() takes the chunk mutex before calling check_system_chunk() and btrfs_alloc_chunk(). However before everyone enters the final phase of the block group allocation, that is, before calling btrfs_create_pending_block_groups(), new tasks keep coming to allocate new block groups and while at check_system_chunk(), the system space_info's 'bytes_may_use' keeps increasing each time a task reserves space in the chunk block reserve. This means that eventually some other task can end up not seeing enough free space in the system space_info and decide to allocate yet another system chunk. This may repeat several times if yet more new tasks keep allocating new block groups before task A, and all the other tasks, finish the creation of the pending block groups, which is when reserved space in excess is released. Eventually this can result in exhaustion of system chunk array in the superblock, with btrfs_add_system_chunk() returning EFBIG, resulting later in a transaction abort. Even when we don't reach the extreme case of exhausting the system array, most, if not all, unnecessarily created system block groups end up being unused since when finishing creation of the first pending system block group, the creation of the following ones end up not needing to COW nodes/leaves of the chunk tree, so we never allocate and deallocate from them, resulting in them never being added to the list of unused block groups - as a consequence they don't get deleted by the cleaner kthread - the only exceptions are if we unmount and mount the filesystem again, which adds any unused block groups to the list of unused block groups, if a scrub is run, which also adds unused block groups to the unused list, and under some circumstances when using a zoned filesystem or async discard, which may also add unused block groups to the unused list. So fix this by: *) Tracking the number of reserved bytes for the chunk tree per transaction, which is the sum of reserved chunk bytes by each transaction handle currently being used; *) When there is not enough free space in the system space_info, if there are other transaction handles which reserved chunk space, wait for some of them to complete in order to have enough excess reserved space released, and then try again. Otherwise proceed with the creation of a new system chunk. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b7a7a83463 |
btrfs: make reflinks respect O_SYNC O_DSYNC and S_SYNC flags
If we reflink to or from a file opened with O_SYNC/O_DSYNC or to/from a file that has the S_SYNC attribute set, we totally ignore that and do not durably persist the reflink changes. Since a reflink can change the data readable from a file (and mtime/ctime, or a file size), it makes sense to durably persist (fsync) the source and destination files/ranges. This was previously discussed at: https://lore.kernel.org/linux-btrfs/20200903035225.GJ6090@magnolia/ The recently introduced test case generic/628, from fstests, exercises these scenarios and currently fails without this change. So make sure we fsync the source and destination files/ranges when either of them was opened with O_SYNC/O_DSYNC or has the S_SYNC attribute set, just like XFS already does. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bb05b298af |
btrfs: zoned: bail out in btrfs_alloc_chunk for bad input
gcc complains that the ctl->max_chunk_size member might be used
uninitialized when none of the three conditions for initializing it in
init_alloc_chunk_ctl_policy_zoned() are true:
In function ‘init_alloc_chunk_ctl_policy_zoned’,
inlined from ‘init_alloc_chunk_ctl’ at fs/btrfs/volumes.c:5023:3,
inlined from ‘btrfs_alloc_chunk’ at fs/btrfs/volumes.c:5340:2:
include/linux/compiler-gcc.h:48:45: error: ‘ctl.max_chunk_size’ may be used uninitialized [-Werror=maybe-uninitialized]
4998 | ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
| ^~~
fs/btrfs/volumes.c: In function ‘btrfs_alloc_chunk’:
fs/btrfs/volumes.c:5316:32: note: ‘ctl’ declared here
5316 | struct alloc_chunk_ctl ctl;
| ^~~
If we ever get into this condition, something is seriously
wrong, as validity is checked in the callers
btrfs_alloc_chunk
init_alloc_chunk_ctl
init_alloc_chunk_ctl_policy_zoned
so the same logic as in init_alloc_chunk_ctl_policy_regular()
and a few other places should be applied. This avoids both further
data corruption, and the compile-time warning.
Fixes:
|
|
|
|
3227788cd3 |
btrfs: fix a potential hole punching failure
In commit |
|
|
|
e75f9fd194 |
btrfs: zoned: move log tree node allocation out of log_root_tree->log_mutex
Commit |
|
|
|
2cdb3909c9 |
btrfs: use percpu_read_positive instead of sum_positive for need_preempt
Looking at perf data for a fio workload I noticed that we were spending
a pretty large chunk of time (around 5%) doing percpu_counter_sum() in
need_preemptive_reclaim. This is silly, as we only want to know if we
have more ordered than delalloc to see if we should be counting the
delayed items in our threshold calculation. Change this to
percpu_read_positive() to avoid the overhead.
I ran this through fsperf to validate the changes, obviously the latency
numbers in dbench and fio are quite jittery, so take them as you wish,
but overall the improvements on throughput, iops, and bw are all
positive. Each test was run two times, the given value is the average
of both runs for their respective column.
btrfs ssd normal test results
bufferedrandwrite16g results
metric baseline current diff
==========================================================
write_io_kbytes 16777216 16777216 0.00%
read_clat_ns_p99 0 0 0.00%
write_bw_bytes 1.04e+08 1.05e+08 1.12%
read_iops 0 0 0.00%
write_clat_ns_p50 13888 11840 -14.75%
read_io_kbytes 0 0 0.00%
read_io_bytes 0 0 0.00%
write_clat_ns_p99 35008 29312 -16.27%
read_bw_bytes 0 0 0.00%
elapsed 170 167 -1.76%
write_lat_ns_min 4221.50 3762.50 -10.87%
sys_cpu 39.65 35.37 -10.79%
write_lat_ns_max 2.67e+10 2.50e+10 -6.63%
read_lat_ns_min 0 0 0.00%
write_iops 25270.10 25553.43 1.12%
read_lat_ns_max 0 0 0.00%
read_clat_ns_p50 0 0 0.00%
dbench60 results
metric baseline current diff
==================================================
qpathinfo 11.12 12.73 14.52%
throughput 416.09 445.66 7.11%
flush 3485.63 1887.55 -45.85%
qfileinfo 0.70 1.92 173.86%
ntcreatex 992.60 695.76 -29.91%
qfsinfo 2.43 3.71 52.48%
close 1.67 3.14 88.09%
sfileinfo 66.54 105.20 58.10%
rename 809.23 619.59 -23.43%
find 16.88 15.46 -8.41%
unlink 820.54 670.86 -18.24%
writex 3375.20 2637.91 -21.84%
deltree 386.33 449.98 16.48%
readx 3.43 3.41 -0.60%
mkdir 0.05 0.03 -38.46%
lockx 0.26 0.26 -0.76%
unlockx 0.81 0.32 -60.33%
dio4kbs16threads results
metric baseline current diff
================================================================
write_io_kbytes 5249676 3357150 -36.05%
read_clat_ns_p99 0 0 0.00%
write_bw_bytes 89583501.50 57291192.50 -36.05%
read_iops 0 0 0.00%
write_clat_ns_p50 242688 263680 8.65%
read_io_kbytes 0 0 0.00%
read_io_bytes 0 0 0.00%
write_clat_ns_p99 15826944 36732928 132.09%
read_bw_bytes 0 0 0.00%
elapsed 61 61 0.00%
write_lat_ns_min 42704 42095 -1.43%
sys_cpu 5.27 3.45 -34.52%
write_lat_ns_max 7.43e+08 9.27e+08 24.71%
read_lat_ns_min 0 0 0.00%
write_iops 21870.97 13987.11 -36.05%
read_lat_ns_max 0 0 0.00%
read_clat_ns_p50 0 0 0.00%
randwrite2xram results
metric baseline current diff
================================================================
write_io_kbytes 24831972 28876262 16.29%
read_clat_ns_p99 0 0 0.00%
write_bw_bytes 83745273.50 92182192.50 10.07%
read_iops 0 0 0.00%
write_clat_ns_p50 13952 11648 -16.51%
read_io_kbytes 0 0 0.00%
read_io_bytes 0 0 0.00%
write_clat_ns_p99 50176 52992 5.61%
read_bw_bytes 0 0 0.00%
elapsed 314 332 5.73%
write_lat_ns_min 5920.50 5127 -13.40%
sys_cpu 7.82 7.35 -6.07%
write_lat_ns_max 5.27e+10 3.88e+10 -26.44%
read_lat_ns_min 0 0 0.00%
write_iops 20445.62 22505.42 10.07%
read_lat_ns_max 0 0 0.00%
read_clat_ns_p50 0 0 0.00%
untarfirefox results
metric baseline current diff
==============================================
elapsed 47.41 47.40 -0.03%
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
e2b84217f3 |
btrfs: update outdated comment at btrfs_replace_file_extents()
There is a comment at btrfs_replace_file_extents() that mentions that we
set the full sync flag on an inode when cloning into a file with a size
greater than or equals to 16MiB, through try_release_extent_mapping() when
we truncate the page cache after replacing file extents during a clone
operation.
That is not true anymore since commit
|
|
|
|
0c0218e9a6 |
btrfs: update outdated comment at btrfs_orphan_cleanup()
btrfs_orphan_cleanup() has a comment referring to find_dead_roots, but
function does not exists since commit
|
|
|
|
ffbc10a144 |
btrfs: update debug message when checking seq number of a delayed ref
We used to encode two different numbers in the tree mod log counter used
for sequence numbers, one in the upper 32 bits and the other one in the
lower 32 bits. However that is no longer the case, we stopped doing that
since commit
|
|
|
|
4bae788075 |
btrfs: add and use helper to get lowest sequence number for the tree mod log
There are two places outside the tree mod log module that extract the lowest sequence number of the tree mod log. These places end up duplicating code and open coding the logic and internal implementation details of the tree mod log. So add a helper to the tree mod log module and header that returns the lowest sequence number or 0 if there aren't any tree mod log users at the moment. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ffe1d039d7 |
btrfs: remove unnecessary leaf check at btrfs_tree_mod_log_free_eb()
At btrfs_tree_mod_log_free_eb() we check if we are dealing with a leaf, and if so, return immediately and do nothing. However this check can be removed, because after it we call tree_mod_need_log(), which returns false when given an extent buffer that corresponds to a leaf. So just remove the leaf check and pass the extent buffer to tree_mod_need_log(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
888dd18339 |
btrfs: use the new bit BTRFS_FS_TREE_MOD_LOG_USERS at btrfs_free_tree_block()
Instead of exposing implementation details of the tree mod log to check if there are active tree mod log users at btrfs_free_tree_block(), use the new bit BTRFS_FS_TREE_MOD_LOG_USERS for fs_info->flags instead. This way extent-tree.c does not need to known about any of the internals of the tree mod log and avoids taking a lock unnecessarily as well. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bc03f39ec3 |
btrfs: use a bit to track the existence of tree mod log users
The tree modification log functions are called very frequently, basically they are called every time a btree is modified (a pointer added or removed to a node, a new root for a btree is set, etc). Because of that, to avoid heavy lock contention on the lock that protects the list of tree mod log users, we have checks that test the emptiness of the list with a full memory barrier before the checks, so that when there are no tree mod log users we avoid taking the lock. Replace the memory barrier and list emptiness check with a test for a new bit set at fs_info->flags. This bit is used to indicate when there are tree mod log users, set whenever a user is added to the list and cleared when the last user is removed from the list. This makes the intention a bit more obvious and possibly more efficient (assuming test_bit() may be cheaper than a full memory barrier on some architectures). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
406808ab2f |
btrfs: use booleans where appropriate for the tree mod log functions
Several functions of the tree modification log use integers as booleans, so change them to use booleans instead, making their use more clear. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f3a84ccd28 |
btrfs: move the tree mod log code into its own file
The tree modification log, which records modifications done to btrees, is quite large and currently spread all over ctree.c, which is a huge file already. To make things better organized, move all that code into its own separate source and header files. Functions and definitions that are used outside of the module (mostly by ctree.c) are renamed so that they start with a "btrfs_" prefix. Everything else remains unchanged. This makes it easier to go over the tree modification log code every time I need to go read it to fix a bug. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor comment updates ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9a002d531b |
btrfs: integrity-checker: convert block context kmap's to kmap_local_page
btrfsic_read_block() (which calls kmap()) and btrfsic_release_block_ctx() (which calls kunmap()) are always called within a single thread of execution. Therefore the mappings created within these calls can be a thread local mapping. Convert the kmap() of bloc_ctx->pagev to kmap_local_page(). Luckily the unmap loops backwards through the array pointer so no adjustment needs to be made to the unmapping order. Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3e037efdbd |
btrfs: integrity-checker: use kmap_local_page in __btrfsic_submit_bio
Again there is an array of pointers which must be unmapped in the correct order. Convert the kmap()'s to kmap_local_page() and adjust the unmapping to work backwards through the unmapping loop. Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
94a0b58d2d |
btrfs: raid56: convert kmaps to kmap_local_page
These kmaps are thread local and don't need to be atomic. So they can use the more efficient kmap_local_page(). However, the mapping of pages in the stripes and the additional parity and qstripe pages are a bit trickier because the unmapping must occur in the opposite order from the mapping. Furthermore, the pointer array in __raid_recover_end_io() may get reordered. Convert these calls to kmap_local_page() taking care to reverse the unmappings of any page arrays as well as being careful with the mappings of any special pages such as the parity and qstripe pages. Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
58c1a35cd5 |
btrfs: convert kmap to kmap_local_page, simple cases
Use a simple coccinelle script to help convert the most common kmap()/kunmap() patterns to kmap_local_page()/kunmap_local(). Note that some kmaps which were caught by this script needed to be handled by hand because of the strict unmapping order of kunmap_local() so they are not included in this patch. But this script got us started. There's another temp variable added for the final length write to the first page so it does not interfere with cpage_out that is used for mapping other pages. The development of this patch was aided by the follow script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap and replace with kmap_local_page then mark kunmap // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ @ catch_all @ expression e, e2; @@ ( -kmap(e) +kmap_local_page(e) ) ... ( -kunmap(...) +kunmap_local() ) // </smpl> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cea628008f |
btrfs: remove duplicated in_range() macro
The in_range() macro is defined twice in btrfs' source, once in ctree.h and once in misc.h. Remove the definition in ctree.h and include misc.h in the files depending on it. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
209ecbb858 |
btrfs: remove stale comment and logic from btrfs_inode_in_log()
Currently btrfs_inode_in_log() checks the list of modified extents of the inode, and has a comment mentioning why, as it used to be necessary to make sure if we did something like the following: mmap write range A mmap write range B msync range A (ranged fsync) msync range B (ranged fsync) we ended up with both ranges being logged. If we did not check it, then the second fsync would do nothing because btrfs_inode_in_log() would return true. This was added in |
|
|
|
bc0939fcfa |
btrfs: fix race between marking inode needs to be logged and log syncing
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
885f46d87f |
btrfs: fix race between memory mapped writes and fsync
When doing an fsync we flush all delalloc, lock the inode (VFS lock), flush
any new delalloc that might have been created before taking the lock and
then wait either for the ordered extents to complete or just for the
writeback to complete (depending on whether the full sync flag is set or
not). We then start logging the inode and assume that while we are doing it
no one else is touching the inode's file extent items (or adding new ones).
That is generally true because all operations that modify an inode acquire
the inode's lock first, including buffered and direct IO writes. However
there is one exception: memory mapped writes, which do not and can not
acquire the inode's lock.
This can cause two types of issues: ending up logging file extent items
with overlapping ranges, which is detected by the tree checker and will
result in aborting the transaction when starting writeback for a log
tree's extent buffers, or a silent corruption where we log a version of
the file that never existed.
Scenario 1 - logging overlapping extents
The following steps explain how we can end up with file extents items with
overlapping ranges in a log tree due to a race between a fsync and memory
mapped writes:
1) Task A starts an fsync on inode X, which has the full sync runtime flag
set. First it starts by flushing all delalloc for the inode;
2) Task A then locks the inode and flushes any other delalloc that might
have been created after the previous flush and waits for all ordered
extents to complete;
3) In the inode's root we have the following leaf:
Leaf N, generation == current transaction id:
---------------------------------------------------------
| (...) [ file extent item, offset 640K, length 128K ] |
---------------------------------------------------------
The last file extent item in leaf N covers the file range from 640K to
768K;
4) Task B does a memory mapped write for the page corresponding to the
file range from 764K to 768K;
5) Task A starts logging the inode. At copy_inode_items_to_log() it uses
btrfs_search_forward() to search for leafs modified in the current
transaction that contain items for the inode. It finds leaf N and copies
all the inode items from that leaf into the log tree.
Now the log tree has a copy of the last file extent item from leaf N.
At the end of the while loop at copy_inode_items_to_log(), we have the
minimum key set to:
min_key.objectid = <inode X number>
min_key.type = BTRFS_EXTENT_DATA_KEY
min_key.offset = 640K
Then we increment the key's offset by 1 so that the next call to
btrfs_search_forward() leaves us at the first key greater than the key
we just processed.
But before btrfs_search_forward() is called again...
6) Dellaloc for the page at offset 764K, dirtied by task B, is started.
It can be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) When the respective ordered extent completes, it trims the length of
the existing file extent item for file offset 640K from 128K to 124K,
and a new file extent item is added with a key offset of 764K and a
length of 4K;
8) Task A calls btrfs_search_forward(), which returns us a path pointing
to the leaf (can be leaf N or some other) containing the new file extent
item for file offset 764K.
We end up copying this item to the log tree, which overlaps with the
last copied file extent item, which covers the file range from 640K to
768K.
When writeback is triggered for log tree's extent buffers, the issue
will be detected by the tree checker which will dump a trace and an
error message on dmesg/syslog. If the writeback is triggered when
syncing the log, which typically is, then we also end up aborting the
current transaction.
This is the same type of problem fixed in
|
|
|
|
8d9b4a162a |
btrfs: exclude mmap from happening during all fallocate operations
There's a small window where a deadlock can happen between fallocate and
mmap. This is described in detail by Filipe:
"""
When doing a fallocate operation we lock the inode, flush delalloc within
the target range, wait for any ordered extents to complete and then lock
the file range. Before we lock the range and after we flush delalloc,
there is a time window where another task can come in and do a memory
mapped write for a page within the fallocate range.
This means that after fallocate locks the range, there can be a dirty page
in the range. More often than not, this does not cause any problem.
The exception is when we are low on available metadata space, because an
fallocate operation needs to start a transaction while holding the file
range locked, either through btrfs_prealloc_file_range() or through the
call to btrfs_fallocate_update_isize(). If that's the case, we can end up
in a deadlock. The following list of steps explains how that happens:
1) A fallocate operation starts, locks the inode, flushes delalloc in the
range and waits for ordered extents in the range to complete;
2) Before the fallocate task locks the file range, another task does a
memory mapped write for a page in the fallocate target range. This is
possible since memory mapped writes do not (and can not) lock the
inode;
3) The fallocate task locks the file range. At this point there is one
dirty page in the range (due to the memory mapped write);
4) When the fallocate task attempts to start a transaction, it blocks when
attempting to reserve metadata space, since we are low on available
metadata space. Before blocking (wait on its reservation ticket), it
starts the async reclaim task (if not running already);
5) The async reclaim task is not able to release space through any other
means, so it decides to flush delalloc for inodes with dirty pages.
It finds that the inode used in the fallocate operation has a dirty
page and therefore queues a job (fs_info->flush_workers workqueue) to
flush delalloc for that inode and waits on that job to complete;
6) The flush job blocks when attempting to lock the file range because
it is currently locked by the fallocate task;
7) The fallocate task keeps waiting for its metadata reservation, waiting
for a wakeup on its reservation ticket. The async reclaim task is
waiting on the flush job, which in turn is waiting for locking the file
range that is currently locked by the fallocate task. So unless some
other task is able to release enough metadata space, for example an
ordered extent for some other inode completes, we end up in a deadlock
between all these tasks.
When this happens stack traces like the following show up in dmesg/syslog:
INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
schedule+0x45/0xe0
lock_extent_bits+0x1e6/0x2d0 [btrfs]
? finish_wait+0x90/0x90
btrfs_invalidatepage+0x32c/0x390 [btrfs]
? __mod_memcg_state+0x8e/0x160
__extent_writepage+0x2d4/0x400 [btrfs]
extent_write_cache_pages+0x2b2/0x500 [btrfs]
? lock_release+0x20e/0x4c0
? trace_hardirqs_on+0x1b/0xf0
extent_writepages+0x43/0x90 [btrfs]
? lock_acquire+0x1a3/0x490
do_writepages+0x43/0xe0
? __filemap_fdatawrite_range+0xa4/0x100
__filemap_fdatawrite_range+0xc5/0x100
btrfs_run_delalloc_work+0x17/0x40 [btrfs]
btrfs_work_helper+0xf1/0x600 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x50/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
? kvm_clock_read+0x14/0x30
? wait_for_completion+0x81/0x110
schedule+0x45/0xe0
schedule_timeout+0x30c/0x580
? _raw_spin_unlock_irqrestore+0x3c/0x60
? lock_acquire+0x1a3/0x490
? try_to_wake_up+0x7a/0xa20
? lock_release+0x20e/0x4c0
? lock_acquired+0x199/0x490
? wait_for_completion+0x81/0x110
wait_for_completion+0xab/0x110
start_delalloc_inodes+0x2af/0x390 [btrfs]
btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
flush_space+0x24f/0x660 [btrfs]
btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x20f/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
(...)
several tasks waiting for the inode lock held by the fallocate task below
(...)
RIP: 0033:0x7f61efe73fff
Code: Unable to access opcode bytes at RIP 0x7f61efe73fd5.
RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000202 ORIG_RAX: 000000000000013c
RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73fff
RDX: 00000000ffffff9c RSI: 0000560fbd5d90a0 RDI: 00000000ffffff9c
RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
R10: 0000560fbd5d7ad0 R11: 0000000000000202 R12: 0000000000000001
R13: 000000000000005e R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
task:fdm-stress state:D stack: 0 pid:2508243 ppid:2508153 flags:0x00000000
Call Trace:
__schedule+0x5d1/0xcf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
schedule+0x45/0xe0
__reserve_bytes+0x4a4/0xb10 [btrfs]
? finish_wait+0x90/0x90
btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
btrfs_block_rsv_add+0x1f/0x50 [btrfs]
start_transaction+0x2d1/0x760 [btrfs]
btrfs_replace_file_extents+0x120/0x930 [btrfs]
? btrfs_fallocate+0xdcf/0x1260 [btrfs]
btrfs_fallocate+0xdfb/0x1260 [btrfs]
? filename_lookup+0xf1/0x180
vfs_fallocate+0x14f/0x440
ioctl_preallocate+0x92/0xc0
do_vfs_ioctl+0x66b/0x750
? __do_sys_newfstat+0x53/0x60
__x64_sys_ioctl+0x62/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
"""
Fix this by disallowing mmaps from happening while we're doing any of
the fallocate operations on this inode.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
8c99516a8c |
btrfs: exclude mmaps while doing remap
Darrick reported a potential issue to me where we could allow mmap
writes after validating a page range matched in the case of dedupe.
Generally we rely on lock page -> lock extent with the ordered flush to
protect us, but this is done after we check the pages because we use the
generic helpers, so we could modify the page in between doing the check
and locking the range.
There also exists a deadlock, as described by Filipe
"""
When cloning a file range, we lock the inodes, flush any delalloc within
the respective file ranges, wait for any ordered extents and then lock the
file ranges in both inodes. This means that right after we flush delalloc
and before we lock the file ranges, memory mapped writes can come in and
dirty pages in the file ranges of the clone operation.
Most of the time this is harmless and causes no problems. However, if we
are low on available metadata space, we can later end up in a deadlock
when starting a transaction to replace file extent items. This happens if
when allocating metadata space for the transaction, we need to wait for
the async reclaim thread to release space and the reclaim thread needs to
flush delalloc for the inode that got the memory mapped write and has its
range locked by the clone task.
Basically what happens is the following:
1) A clone operation locks inodes A and B, flushes delalloc for both
inodes in the respective file ranges and waits for any ordered extents
in those ranges to complete;
2) Before the clone task locks the file ranges, another task does a
memory mapped write (which does not lock the inode) for one of the
inodes of the clone operation. So now we have a dirty page in one of
the ranges used by the clone operation;
3) The clone operation locks the file ranges for inodes A and B;
4) Later, when iterating over the file extents of inode A, the clone
task attempts to start a transaction. There's not enough available
free metadata space, so the async reclaim task is started (if not
running already) and we wait for someone to wake us up on our
reservation ticket;
5) The async reclaim task is not able to release space by any other
means and decides to flush delalloc for the inode of the clone
operation;
6) The workqueue job used to flush the inode blocks when starting
delalloc for the inode, since the file range is currently locked by
the clone task;
7) But the clone task is waiting on its reservation ticket and the async
reclaim task is waiting on the flush job to complete, which can't
progress since the clone task has the file range locked. So unless
some other task is able to release space, for example an ordered
extent for some other inode completes, we have a deadlock between all
these tasks;
When this happens stack traces like the following show up in dmesg/syslog:
INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
schedule+0x45/0xe0
lock_extent_bits+0x1e6/0x2d0 [btrfs]
? finish_wait+0x90/0x90
btrfs_invalidatepage+0x32c/0x390 [btrfs]
? __mod_memcg_state+0x8e/0x160
__extent_writepage+0x2d4/0x400 [btrfs]
extent_write_cache_pages+0x2b2/0x500 [btrfs]
? lock_release+0x20e/0x4c0
? trace_hardirqs_on+0x1b/0xf0
extent_writepages+0x43/0x90 [btrfs]
? lock_acquire+0x1a3/0x490
do_writepages+0x43/0xe0
? __filemap_fdatawrite_range+0xa4/0x100
__filemap_fdatawrite_range+0xc5/0x100
btrfs_run_delalloc_work+0x17/0x40 [btrfs]
btrfs_work_helper+0xf1/0x600 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x50/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
? kvm_clock_read+0x14/0x30
? wait_for_completion+0x81/0x110
schedule+0x45/0xe0
schedule_timeout+0x30c/0x580
? _raw_spin_unlock_irqrestore+0x3c/0x60
? lock_acquire+0x1a3/0x490
? try_to_wake_up+0x7a/0xa20
? lock_release+0x20e/0x4c0
? lock_acquired+0x199/0x490
? wait_for_completion+0x81/0x110
wait_for_completion+0xab/0x110
start_delalloc_inodes+0x2af/0x390 [btrfs]
btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
flush_space+0x24f/0x660 [btrfs]
btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x20f/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
(...)
several other tasks blocked on inode locks held by the clone task below
(...)
RIP: 0033:0x7f61efe73fff
Code: Unable to access opcode bytes at RIP 0x7f61efe73fd5.
RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000202 ORIG_RAX: 000000000000013c
RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73fff
RDX: 00000000ffffff9c RSI: 0000560fbd604690 RDI: 00000000ffffff9c
RBP: 00007ffc3371beb0 R08: 0000000000000002 R09: 0000560fbd5d75f0
R10: 0000560fbd5d81f0 R11: 0000000000000202 R12: 0000000000000002
R13: 000000000000000b R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
task: fdm-stress state:D stack: 0 pid:2508234 ppid:2508153 flags:0x00004000
Call Trace:
__schedule+0x5d1/0xcf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
schedule+0x45/0xe0
__reserve_bytes+0x4a4/0xb10 [btrfs]
? finish_wait+0x90/0x90
btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
btrfs_block_rsv_add+0x1f/0x50 [btrfs]
start_transaction+0x2d1/0x760 [btrfs]
btrfs_replace_file_extents+0x120/0x930 [btrfs]
? lock_release+0x20e/0x4c0
btrfs_clone+0x3e4/0x7e0 [btrfs]
? btrfs_lookup_first_ordered_extent+0x8e/0x100 [btrfs]
btrfs_clone_files+0xf6/0x150 [btrfs]
btrfs_remap_file_range+0x324/0x3d0 [btrfs]
do_clone_file_range+0xd4/0x1f0
vfs_clone_file_range+0x4d/0x230
? lock_release+0x20e/0x4c0
ioctl_file_clone+0x8f/0xc0
do_vfs_ioctl+0x342/0x750
__x64_sys_ioctl+0x62/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
"""
Fix both of these issues by excluding mmaps from happening we are doing
any sort of remap, which prevents this race completely.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
64708539cd |
btrfs: use btrfs_inode_lock/btrfs_inode_unlock inode lock helpers
A few places we intermix btrfs_inode_lock with a inode_unlock, and some places we just use inode_lock/inode_unlock instead of btrfs_inode_lock. None of these places are using this incorrectly, but as we adjust some of these callers it would be nice to keep everything consistent, so convert everybody to use btrfs_inode_lock/btrfs_inode_unlock. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8318ba79ee |
btrfs: add a i_mmap_lock to our inode
We need to be able to exclude page_mkwrite from happening concurrently with certain operations. To facilitate this, add a i_mmap_lock to our inode, down_read() it in our mkwrite, and add a new ILOCK flag to indicate that we want to take the i_mmap_lock as well. I used pahole to check the size of the btrfs_inode, the sizes are as follows no lockdep: before: 1120 (3 per 4k page) after: 1160 (3 per 4k page) lockdep: before: 2072 (1 per 4k page) after: 2224 (1 per 4k page) We're slightly larger but it doesn't change how many objects we can fit per page. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5e295768a0 |
btrfs: remove mirror argument from btrfs_csum_verify_data()
The parameter mirror is not used and does not make sense for checksum verification of the given bio. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6e65ae7629 |
btrfs: remove force argument from run_delalloc_nocow()
force_cow can be calculated from inode and does not need to be passed as an argument. This simplifies run_delalloc_nocow() call from btrfs_run_delalloc_range() A new function, should_nocow() checks if the range should be NOCOWed or not. The function returns true iff either BTRFS_INODE_NODATA or BTRFS_INODE_PREALLOC, but is not a defrag extent. Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d6ade6894e |
btrfs: don't opencode extent_changeset_free
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7000babdda |
btrfs: assign proper values to a bool variable in dev_extent_hole_check_zoned
Fix the following coccicheck warnings: ./fs/btrfs/volumes.c:1462:10-11: WARNING: return of 0/1 in function 'dev_extent_hole_check_zoned' with return type bool. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2ce73c6335 |
btrfs: add btree read ahead for incremental send operations
Currently we do not do btree read ahead when doing an incremental send,
however we know that we will read and process any node or leaf in the
send root that has a generation greater than the generation of the parent
root. So triggering read ahead for such nodes and leafs is beneficial
for an incremental send.
This change does that, triggers read ahead of any node or leaf in the
send root that has a generation greater then the generation of the
parent root. As for the parent root, no readahead is triggered because
knowing in advance which nodes/leaves are going to be read is not so
linear and there's often a large time window between visiting nodes or
leaves of the parent root. So I opted to leave out the parent root,
and triggering read ahead for its nodes/leaves seemed to have not made
significant difference.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of ram:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing incremental send..."
start=$(date +%s)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s)
echo
echo "Incremental send took $((end - start)) seconds"
umount $MNT
Before this change, incremental send duration:
with $initial_file_count == 200000: 51 seconds
with $initial_file_count == 500000: 168 seconds
After this change, incremental send duration:
with $initial_file_count == 200000: 39 seconds (-26.7%)
with $initial_file_count == 500000: 125 seconds (-29.4%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, and 77759 nodes and leaves in the btree of
the second snapshot. The root nodes were at level 2.
While for $initial_file_count == 500000 there are 152476 nodes and leaves
in the btree of the first snapshot, and 190511 nodes and leaves in the
btree of the second snapshot. The root nodes were at level 2 as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
19358b154f |
btrfs: add btree read ahead for full send operations
When doing a full send we know that we are going to be reading every node
and leaf of the send root, so we benefit from enabling read ahead for the
btree.
This change enables read ahead for full send operations only, incremental
sends will have read ahead enabled in a different way by a separate patch.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing incremental send..."
start=$(date +%s)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s)
echo
echo "Incremental send took $((end - start)) seconds"
umount $MNT
Before this change, full send duration:
with $initial_file_count == 200000: 165 seconds
with $initial_file_count == 500000: 407 seconds
After this change, full send duration:
with $initial_file_count == 200000: 149 seconds (-10.2%)
with $initial_file_count == 500000: 353 seconds (-14.2%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, while for $initial_file_count == 500000 there
are 152476 nodes and leaves. The roots were at level 2.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
98686ffc71 |
btrfs: simplify code flow in btrfs_delayed_inode_reserve_metadata
btrfs_block_rsv_add can return only ENOSPC since it's called with NO_FLUSH modifier. This so simplify the logic in btrfs_delayed_inode_reserve_metadata to exploit this invariant. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add assert and comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8e3c9d3cf8 |
btrfs: remove btrfs_inode parameter from btrfs_delayed_inode_reserve_metadata
It's only used for tracepoint to obtain the inode number, but we already have the ino from btrfs_delayed_node::inode_id. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ae396a3b7a |
btrfs: simplify commit logic in try_flush_qgroup
It's no longer expected to call this function with an open transaction so all the workarounds concerning this can be removed. In fact it'll constitute a bug to call this function with a transaction already held so WARN in this case. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e5ce988690 |
btrfs: scrub: drop a few function declarations
Drop function declarations at the beginning of the file scrub.c. These functions are defined before they are used in the same file and don't need forward declaration. No functional changes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f4639636b6 |
btrfs: change return type to bool in btrfs_extent_readonly
btrfs_extent_readonly() checks if the block group is readonly, the bool return type should be used. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
05947ae186 |
btrfs: unexport btrfs_extent_readonly() and make it static
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So move it from extent-tree.c to inode.c and declare it as static. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b6e9f16c5f |
btrfs: replace open coded while loop with proper construct
btrfs_inc_block_group_ro wants to ensure that the current transaction is
not running dirty block groups, if it is it waits and loops again.
That logic is currently implemented using a goto label. Actually using
a proper do {} while() construct doesn't hurt readability nor does it
introduce excessive nesting and makes the relevant code stand out by
being encompassed in the loop construct. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
20bbf20e95 |
btrfs: replace offset_in_entry with in_range
No point in duplicating the functionality just use the generic helper that has the same semantics. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cca5de97ae |
btrfs: make find_desired_extent take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
bfc78479eb |
btrfs: make btrfs_replace_file_extents take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0b3dcd131d |
btrfs: fix comment for btrfs ordered extent flag bits
There is small error in comment about BTRFS_ORDERED_* flags, added in
commit
|
|
|
|
97fc297754 |
btrfs: convert to fileattr
Use the fileattr API to let the VFS handle locking, permission checking and conversion. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Cc: David Sterba <dsterba@suse.com> |
|
|
|
7d90072491 |
for-5.12-rc6-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBy9DoACgkQxWXV+ddt WDtqdxAAnK4zx79k5ok6nlj8JlOfReimX4wPYYigiiKGY40cfQUZ1YUqbDscvrt+ cbzvqJuMU/V/UVaPW/CLmNi5XpNlSmj0229iwy59BIcpXfgtAMTsa1zsY4teZ/AT 3noNuT15CTeybwii0nT++AkqJbCbwXc5ItccGh9ZMOQwXuA5IUVTAzKrulUJoxXN zt23lX/ivtSfUH+pMMIG6wMVG2eGIP5m9drw+2n0yK08gt+oprLYnaAaE389mXgb TIRBafeBY7UA1YEcA4JDBDMNa0L8yWSV+XiMhxw7Ear7KoROAunKNbsG8USll6zb zBftfO+Gzv86wVvvPXg2KR8Qs9vyJMw2bOROFKzOnd+wQQ76v0XefOhNUUN98E6g tLTmCH+M1B1Qm1j2hVyOect/PMY51xqJA9xwlTtAbqIcz4qyOtfTR9KqqlWxVKJW 9pAEMII063xEKVxgv2khOhewEjOgqa4v9YFQjVXdcHPKvGTAYBeoJA735+WnQ1HZ okPC5k3DoEcVZEkUPvespEsAqm+RoBufNxWmQ7hq5N3IwZAXsIwTlhysgrXQWyc9 aTigWBq6rQ/bMz/57vI626+MAMh3StL+UOxlWiT+GToInpjZwoxZ0lgQdD6vUfUm T90T2930+PTkykQM9sNdQygGiH0J5FzkvneYvpkOYJ/+vphsRiA= =MuRt -----END PGP SIGNATURE----- Merge tag 'for-5.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "One more patch that we'd like to get to 5.12 before release. It's changing where and how the superblock is stored in the zoned mode. It is an on-disk format change but so far there are no implications for users as the proper mkfs support hasn't been merged and is waiting for the kernel side to settle. Until now, the superblocks were derived from the zone index, but zone size can differ per device. This is changed to be based on fixed offset values, to make it independent of the device zone size. The work on that got a bit delayed, we discussed the exact locations to support potential device sizes and usecases. (Partially delayed also due to my vacation.) Having that in the same release where the zoned mode is declared usable is highly desired, there are userspace projects that need to be updated to recognize the feature. Pushing that to the next release would make things harder to test" * tag 'for-5.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: move superblock logging zone location |
|
|
|
53b74fa990 |
btrfs: zoned: move superblock logging zone location
Moves the location of the superblock logging zones. The new locations of the logging zones are now determined based on fixed block addresses instead of on fixed zone numbers. The old placement method based on fixed zone numbers causes problems when one needs to inspect a file system image without access to the drive zone information. In such case, the super block locations cannot be reliably determined as the zone size is unknown. By locating the superblock logging zones using fixed addresses, we can scan a dumped file system image without the zone information since a super block copy will always be present at or after the fixed known locations. Introduce the following three pairs of zones containing fixed offset locations, regardless of the device zone size. - primary superblock: offset 0B (and the following zone) - first copy: offset 512G (and the following zone) - Second copy: offset 4T (4096G, and the following zone) If a logging zone is outside of the disk capacity, we do not record the superblock copy. The first copy position is much larger than for a non-zoned filesystem, which is at 64M. This is to avoid overlapping with the log zones for the primary superblock. This higher location is arbitrary but allows supporting devices with very large zone sizes, plus some space around in between. Such large zone size is unrealistic and very unlikely to ever be seen in real devices. Currently, SMR disks have a zone size of 256MB, and we are expecting ZNS drives to be in the 1-4GB range, so this limit gives us room to breathe. For now, we only allow zone sizes up to 8GB. The maximum zone size that would still fit in the space is 256G. The fixed location addresses are somewhat arbitrary, with the intent of maintaining superblock reliability for smaller and larger devices, with the preference for the latter. For this reason, there are two superblocks under the first 1T. This should cover use cases for physical devices and for emulated/device-mapper devices. The superblock logging zones are reserved for superblock logging and never used for data or metadata blocks. Note that we only reserve the two zones per primary/copy actually used for superblock logging. We do not reserve the ranges of zones possibly containing superblocks with the largest supported zone size (0-16GB, 512G-528GB, 4096G-4112G). The zones containing the fixed location offsets used to store superblocks on a non-zoned volume are also reserved to avoid confusion. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4f0f586bf0 |
treewide: Change list_sort to use const pointers
list_sort() internally casts the comparison function passed to it to a different type with constant struct list_head pointers, and uses this pointer to call the functions, which trips indirect call Control-Flow Integrity (CFI) checking. Instead of removing the consts, this change defines the list_cmp_func_t type and changes the comparison function types of all list_sort() callers to use const pointers, thus avoiding type mismatches. Suggested-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com |
|
|
|
701c09c988 |
for-5.12-rc4-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBctBgACgkQxWXV+ddt
WDu1nA//bzuPwW3nO+enE+ipi4t6UJTJpHLeDgdMshWwhBIHVt+oFxTUIt4Zd0kT
0hJ+mbNrZHzmDmzpb6ifQn0D6k+wq6zbsEgLtwgmPmBszaXIw46FvnYnxd9FtCde
9SQzBKa86i/KMkRtaIvpUcunniIo5Aj0Hvu0oPgTKObqiB4HP2nV6rKody+mP9JW
RanWbBi0JvI4UE/J2Ud1sNWFdDtVpXpcktj1dsI8gbsYNR05HpM08SEUgeF/ts3I
yB/L18I5CUeFHyo/yogbj7kkikugPGsmOj/A86UZ6x3NxWoC+m7UXoGrO2/qlFem
qd3ioXZKlnPqeX29kAy/REa3xjE61istlDVC/vckqmXBfYc6WK/KAJvFAGI+/3VI
9HvIbBokUQzekhFlA02RTqGcasStXX7VSeJyzyAbXjGhZQKfFTHR8ZBtrREiVBC9
58K+g8SSqIb/9iJqYV4h82lSBRSdf9kHx7CSB2gOBuifihY+chVr4Xzhq12IlXbK
TNlue0BTwYLJStwx2dnY2beLbLG34/4FNRsuAR/9JsCio7Bfj0qN8htIyvfsiMxr
mkrH7+Ykd10FqC8uu6MHiW9k428871Era3B97TgyQ0V17ehh4IN0v9V7kckk9EWw
3omaPwuF2FGfFOoTR7ipKO0nDx0/y2knnDSTsWknNG09Ciwa+Ww=
=SuJv
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fixes for issues that have some user visibility and are simple enough
for this time of development cycle:
- a few fixes for rescue= mount option, adding more checks for
missing trees
- fix sleeping in atomic context on qgroup deletion
- fix subvolume deletion on mount
- fix build with M= syntax
- fix checksum mismatch error message for direct io"
* tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix check_data_csum() error message for direct I/O
btrfs: fix sleep while in non-sleep context during qgroup removal
btrfs: fix subvolume/snapshot deletion not triggered on mount
btrfs: fix build when using M=fs/btrfs
btrfs: do not initialize dev replace for bad dev root
btrfs: initialize device::fs_info always
btrfs: do not initialize dev stats if we have no dev_root
btrfs: zoned: remove outdated WARN_ON in direct IO
|
|
|
|
81aa0968b7 |
for-5.12-rc3-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBTeBsACgkQxWXV+ddt
WDtwcBAAoto5Pbc3Lvt0aha3qn9q/Ms9lNU3YIwTjqXV3lIRKksWCS7kQmWlFmLz
dILhdRBg1iWVh8qbeqpL5su7yNJduypsY/ImJroukb/BzwQViFRDGy5qIc56qLH2
OVTx4LQ0zdqVdD86Qj0mt9ilSjgXYN+J53IUjsSSyJIpgt3vVcfjCYSkFO8zBiMH
eliRtYShzJHkjEwVWLZRzk76oTnFQEC28IdYJ4y95mYl2wCABfTU2ylSeVDTtc6O
x+fNMHHRmde2nbsHc+0eMm7rYLXuzvyx/tY17u6A6iwEQLGjE4rXOVZ7kA93WgAd
YTXhM/B+YFfirNh029Av/MJP+2t9YBEODAHl1tnOdM0mfvXkpimaW0jvUEhi5f6I
ZGu5FytscsgjyUK827WL7bZKO8WMzTLQvB3ryZ9UcrHm3QbZ7xGdoBE2L86p4Euw
LiXUALdOWeYjFKSW9WWKrtQBtdjlLQYqJt+hL0ifaGlnfoi2G+DQeKtL9ZAKH5Cu
gcjDUewnJtYPLyDOCRjQPFcts/MD5o81qMLeEwshmZT/bNMD9JOGEppCxBWGWSCx
dYGq04Wib/dN710i5jB1XbJboBmT2SZDyBeiKTpCXs5mECBU00uWkkO98oId1YS3
wHu9qyGUOi2g88V27jH593/JstUYn6zyxJYIZX84mzcxOqZlKuo=
=auMP
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"There are still regressions being found and fixed in the zoned mode
and subpage code, the rest are fixes for bugs reported by users.
Regressions:
- subpage block support:
- readahead works on the proper block size
- fix last page zeroing
- zoned mode:
- linked list corruption for tree log
Fixes:
- qgroup leak after falloc failure
- tree mod log and backref resolving:
- extent buffer cloning race when resolving backrefs
- pin deleted leaves with active tree mod log users
- drop debugging flag from slab cache"
* tag 'for-5.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: always pin deleted leaves when there are active tree mod log users
btrfs: fix race when cloning extent buffer during rewind of an old root
btrfs: fix slab cache flags for free space tree bitmap
btrfs: subpage: make readahead work properly
btrfs: subpage: fix wild pointer access during metadata read failure
btrfs: zoned: fix linked list corruption after log root tree allocation failure
btrfs: fix qgroup data rsv leak caused by falloc failure
btrfs: track qgroup released data in own variable in insert_prealloc_file_extent
btrfs: fix wrong offset to zero out range beyond i_size
|
|
|
|
c1d6abdac4 |
btrfs: fix check_data_csum() error message for direct I/O
Commit 1dae796aabf6 ("btrfs: inode: sink parameter start and len to
check_data_csum()") replaced the start parameter to check_data_csum()
with page_offset(), but page_offset() is not meaningful for direct I/O
pages. Bring back the start parameter.
Fixes:
|
|
|
|
0bb7883009 |
btrfs: fix sleep while in non-sleep context during qgroup removal
While removing a qgroup's sysfs entry we end up taking the kernfs_mutex,
through kobject_del(), while holding the fs_info->qgroup_lock spinlock,
producing the following trace:
[821.843637] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:281
[821.843641] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 28214, name: podman
[821.843644] CPU: 3 PID: 28214 Comm: podman Tainted: G W 5.11.6 #15
[821.843646] Hardware name: Dell Inc. PowerEdge R330/084XW4, BIOS 2.11.0 12/08/2020
[821.843647] Call Trace:
[821.843650] dump_stack+0xa1/0xfb
[821.843656] ___might_sleep+0x144/0x160
[821.843659] mutex_lock+0x17/0x40
[821.843662] kernfs_remove_by_name_ns+0x1f/0x80
[821.843666] sysfs_remove_group+0x7d/0xe0
[821.843668] sysfs_remove_groups+0x28/0x40
[821.843670] kobject_del+0x2a/0x80
[821.843672] btrfs_sysfs_del_one_qgroup+0x2b/0x40 [btrfs]
[821.843685] __del_qgroup_rb+0x12/0x150 [btrfs]
[821.843696] btrfs_remove_qgroup+0x288/0x2a0 [btrfs]
[821.843707] btrfs_ioctl+0x3129/0x36a0 [btrfs]
[821.843717] ? __mod_lruvec_page_state+0x5e/0xb0
[821.843719] ? page_add_new_anon_rmap+0xbc/0x150
[821.843723] ? kfree+0x1b4/0x300
[821.843725] ? mntput_no_expire+0x55/0x330
[821.843728] __x64_sys_ioctl+0x5a/0xa0
[821.843731] do_syscall_64+0x33/0x70
[821.843733] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[821.843736] RIP: 0033:0x4cd3fb
[821.843741] RSP: 002b:000000c000906b20 EFLAGS: 00000206 ORIG_RAX: 0000000000000010
[821.843744] RAX: ffffffffffffffda RBX: 000000c000050000 RCX: 00000000004cd3fb
[821.843745] RDX: 000000c000906b98 RSI: 000000004010942a RDI: 000000000000000f
[821.843747] RBP: 000000c000907cd0 R08: 000000c000622901 R09: 0000000000000000
[821.843748] R10: 000000c000d992c0 R11: 0000000000000206 R12: 000000000000012d
[821.843749] R13: 000000000000012c R14: 0000000000000200 R15: 0000000000000049
Fix this by removing the qgroup sysfs entry while not holding the spinlock,
since the spinlock is only meant for protection of the qgroup rbtree.
Reported-by: Stuart Shelton <srcshelton@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/7A5485BB-0628-419D-A4D3-27B1AF47E25A@gmail.com/
Fixes:
|
|
|
|
8d488a8c7b |
btrfs: fix subvolume/snapshot deletion not triggered on mount
During the mount procedure we are calling btrfs_orphan_cleanup() against
the root tree, which will find all orphans items in this tree. When an
orphan item corresponds to a deleted subvolume/snapshot (instead of an
inode space cache), it must not delete the orphan item, because that will
cause btrfs_find_orphan_roots() to not find the orphan item and therefore
not add the corresponding subvolume root to the list of dead roots, which
results in the subvolume's tree never being deleted by the cleanup thread.
The same applies to the remount from RO to RW path.
Fix this by making btrfs_find_orphan_roots() run before calling
btrfs_orphan_cleanup() against the root tree.
A test case for fstests will follow soon.
Reported-by: Robbie Ko <robbieko@synology.com>
Link: https://lore.kernel.org/linux-btrfs/b19f4310-35e0-606e-1eea-2dd84d28c5da@synology.com/
Fixes:
|
|
|
|
ebd99a6b34 |
btrfs: fix build when using M=fs/btrfs
There are people building the module with M= that's supposed to be used
for external modules. This got broken in
|
|
|
|
3cb894972f |
btrfs: do not initialize dev replace for bad dev root
While helping Neal fix his broken file system I added a debug patch to catch if we were calling btrfs_search_slot with a NULL root, and this stack trace popped: we tried to search with a NULL root CPU: 0 PID: 1760 Comm: mount Not tainted 5.11.0-155.nealbtrfstest.1.fc34.x86_64 #1 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/22/2020 Call Trace: dump_stack+0x6b/0x83 btrfs_search_slot.cold+0x11/0x1b ? btrfs_init_dev_replace+0x36/0x450 btrfs_init_dev_replace+0x71/0x450 open_ctree+0x1054/0x1610 btrfs_mount_root.cold+0x13/0xfa legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x131/0x3d0 ? legacy_get_tree+0x27/0x40 ? btrfs_show_options+0x640/0x640 legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 path_mount+0x441/0xa80 __x64_sys_mount+0xf4/0x130 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f644730352e Fix this by not starting the device replace stuff if we do not have a NULL dev root. Reported-by: Neal Gompa <ngompa13@gmail.com> CC: stable@vger.kernel.org # 5.11+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
820a49dafc |
btrfs: initialize device::fs_info always
Neal reported a panic trying to use -o rescue=all BUG: kernel NULL pointer dereference, address: 0000000000000030 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 696 Comm: mount Tainted: G W 5.12.0-rc2+ #296 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:btrfs_device_init_dev_stats+0x1d/0x200 RSP: 0018:ffffafaec1483bb8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff9a5715bcb298 RCX: 0000000000000070 RDX: ffff9a5703248000 RSI: ffff9a57052ea150 RDI: ffff9a5715bca400 RBP: ffff9a57052ea150 R08: 0000000000000070 R09: ffff9a57052ea150 R10: 000130faf0741c10 R11: 0000000000000000 R12: ffff9a5703700000 R13: 0000000000000000 R14: ffff9a5715bcb278 R15: ffff9a57052ea150 FS: 00007f600d122c40(0000) GS:ffff9a577bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000030 CR3: 0000000112a46005 CR4: 0000000000370ef0 Call Trace: ? btrfs_init_dev_stats+0x1f/0xf0 ? kmem_cache_alloc+0xef/0x1f0 btrfs_init_dev_stats+0x5f/0xf0 open_ctree+0x10cb/0x1720 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 path_mount+0x433/0xa00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae This happens because when we call btrfs_init_dev_stats we do device->fs_info->dev_root. However device->fs_info isn't initialized because we were only calling btrfs_init_devices_late() if we properly read the device root. However we don't actually need the device root to init the devices, this function simply assigns the devices their ->fs_info pointer properly, so this needs to be done unconditionally always so that we can properly dereference device->fs_info in rescue cases. Reported-by: Neal Gompa <ngompa13@gmail.com> CC: stable@vger.kernel.org # 5.11+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
82d62d06db |
btrfs: do not initialize dev stats if we have no dev_root
Neal reported a panic trying to use -o rescue=all BUG: kernel NULL pointer dereference, address: 0000000000000030 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 0 PID: 4095 Comm: mount Not tainted 5.11.0-0.rc7.149.fc34.x86_64 #1 RIP: 0010:btrfs_device_init_dev_stats+0x4c/0x1f0 RSP: 0018:ffffa60285fbfb68 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88b88f806498 RCX: ffff88b82e7a2a10 RDX: ffffa60285fbfb97 RSI: ffff88b82e7a2a10 RDI: 0000000000000000 RBP: ffff88b88f806b3c R08: 0000000000000000 R09: 0000000000000000 R10: ffff88b82e7a2a10 R11: 0000000000000000 R12: ffff88b88f806a00 R13: ffff88b88f806478 R14: ffff88b88f806a00 R15: ffff88b82e7a2a10 FS: 00007f698be1ec40(0000) GS:ffff88b937e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000030 CR3: 0000000092c9c006 CR4: 00000000003706f0 Call Trace: ? btrfs_init_dev_stats+0x1f/0xf0 btrfs_init_dev_stats+0x62/0xf0 open_ctree+0x1019/0x15ff btrfs_mount_root.cold+0x13/0xfa legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x131/0x3d0 ? legacy_get_tree+0x27/0x40 ? btrfs_show_options+0x640/0x640 legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 path_mount+0x441/0xa80 __x64_sys_mount+0xf4/0x130 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f698c04e52e This happens because we unconditionally attempt to initialize device stats on mount, but we may not have been able to read the device root. Fix this by skipping initializing the device stats if we do not have a device root. Reported-by: Neal Gompa <ngompa13@gmail.com> CC: stable@vger.kernel.org # 5.11+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f3da882eae |
btrfs: zoned: remove outdated WARN_ON in direct IO
In btrfs_submit_direct() there's a WAN_ON_ONCE() that will trigger if we're submitting a DIO write on a zoned filesystem but are not using REQ_OP_ZONE_APPEND to submit the IO to the block device. This is a left over from a previous version where btrfs_dio_iomap_begin() didn't use btrfs_use_zone_append() to check for sequential write only zones. It is an oversight from the development phase. In v11 (I think) I've added |
|
|
|
485df75554 |
btrfs: always pin deleted leaves when there are active tree mod log users
When freeing a tree block we may end up adding its extent back to the free space cache/tree, as long as there are no more references for it, it was created in the current transaction and writeback for it never happened. This is generally fine, however when we have tree mod log operations it can result in inconsistent versions of a btree after unwinding extent buffers with the recorded tree mod log operations. This is because: * We only log operations for nodes (adding and removing key/pointers), for leaves we don't do anything; * This means that we can log a MOD_LOG_KEY_REMOVE_WHILE_FREEING operation for a node that points to a leaf that was deleted; * Before we apply the logged operation to unwind a node, we can have that leaf's extent allocated again, either as a node or as a leaf, and possibly for another btree. This is possible if the leaf was created in the current transaction and writeback for it never started, in which case btrfs_free_tree_block() returns its extent back to the free space cache/tree; * Then, before applying the tree mod log operation, some task allocates the metadata extent just freed before, and uses it either as a leaf or as a node for some btree (can be the same or another one, it does not matter); * After applying the MOD_LOG_KEY_REMOVE_WHILE_FREEING operation we now get the target node with an item pointing to the metadata extent that now has content different from what it had before the leaf was deleted. It might now belong to a different btree and be a node and not a leaf anymore. As a consequence, the results of searches after the unwinding can be unpredictable and produce unexpected results. So make sure we pin extent buffers corresponding to leaves when there are tree mod log users. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
dbcc7d57bf |
btrfs: fix race when cloning extent buffer during rewind of an old root
While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:1210!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G W 5.11.0-2d11c0084b02-misc-next+ #89
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
FS: 00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
Call Trace:
btrfs_search_old_slot+0x265/0x10d0
? lock_acquired+0xbb/0x600
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x30/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? resolve_indirect_refs+0xfc0/0xfc0
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x160/0x210
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? poison_range+0x38/0x40
? unpoison_range+0x14/0x40
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? lock_downgrade+0x3d0/0x3d0
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? _raw_spin_unlock+0x22/0x30
? __kasan_check_write+0x14/0x20
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x205e/0x4040
? __might_sleep+0x71/0xe0
? btrfs_ioctl_get_supported_features+0x30/0x30
? getrusage+0x4b6/0x9c0
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __might_fault+0x64/0xd0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __task_pid_nr_ns+0xd3/0x250
? lock_acquire+0xc7/0x510
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fd1976e2427
Code: 00 00 90 48 8b 05 (...)
RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
Modules linked in:
---[ end trace ec8931a1c36e57be ]---
(gdb) l *(__tree_mod_log_rewind+0x3b1)
0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
1205 * the modification. as we're going backwards, we do the
1206 * opposite of each operation here.
1207 */
1208 switch (tm->op) {
1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 BUG_ON(tm->slot < n);
1211 fallthrough;
1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 case MOD_LOG_KEY_REMOVE:
1214 btrfs_set_node_key(eb, &tm->key, tm->slot);
Here's what happens to hit that BUG_ON():
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
tree_mod_log_insert_root(eb X, eb Y, 1);
3) At tree_mod_log_insert_root() we create tree mod log elements for each
slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
with a ->logical pointing to ebX->start. These are placed in an array
named tm_list.
Lets assume there are N elements (N pointers in eb X);
4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
to the level of eb X and ->generation set to the generation of eb X;
5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
tm_list as argument. After that, tree_mod_log_free_eb() calls
__tree_mod_log_insert() for each member of tm_list in reverse order,
from highest slot in eb X, slot N - 1, to slot 0 of eb X;
6) __tree_mod_log_insert() sets the sequence number of each given tree mod
log operation - it increments fs_info->tree_mod_seq and sets
fs_info->tree_mod_seq as the sequence number of the given tree mod log
operation.
This means that for the tm_list created at tree_mod_log_insert_root(),
the element corresponding to slot 0 of eb X has the highest sequence
number (1 + N), and the element corresponding to the last slot has the
lowest sequence number (2);
7) Then, after inserting tm_list's elements into the tree mod log rbtree,
the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
sequence number, which is N + 2;
8) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
9) Later some other task T allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
10) The tree mod log user task calls btrfs_search_old_slot(), which calls
get_old_root(), and finally that calls __tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
11) First iteration of the while loop finds the tree mod log element with
sequence number N + 2, for the logical address of eb Y and of type
MOD_LOG_ROOT_REPLACE;
12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
of the loop, and set root_logical to point to tm->old_root.logical
which corresponds to the logical address of eb X;
13) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
the old slot N - 1 of eb X (eb X had N items in it before being freed);
14) We then break out of the while loop and return the tree mod log operation
of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
eb X, to get_old_root();
15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
and set "logical" to the logical address of eb X, which was the old
root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
which results in adding a tree mod log operation of type
MOD_LOG_KEY_ADD to the tree mod log - this is done at
ctree.c:insert_ptr() - but after adding the tree mod log operation
and before updating the number of items in eb X from 0 to 1...
17) The task at get_old_root() calls tree_mod_log_search() and gets the
tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
Then it enters the following if branch:
if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
(...)
} (...)
Calls read_tree_block() for eb X, which gets a reference on eb X but
does not lock it - task T has it locked.
Then it clones eb X while it has nritems set to 0 in its header, before
task T sets nritems to 1 in eb X's header. From hereupon we use the
clone of eb X which no other task has access to;
18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
mod log operation we just got from tree_mod_log_search() in the
previous step and the cloned version of eb X;
19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
of items set in eb X's clone, which is 0. Then we enter the while loop,
and in its first iteration we process the MOD_LOG_KEY_ADD operation,
which just decrements "n" from 0 to (u32)-1, since "n" is declared with
a type of u32. At the end of this iteration we call rb_next() to find the
next tree mod log operation for eb X, that gives us the mod log operation
of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
number of N + 1 (steps 3 to 6);
20) Then we go back to the top of the while loop and trigger the following
BUG_ON():
(...)
switch (tm->op) {
case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.
Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes:
|
|
|
|
34e49994d0 |
btrfs: fix slab cache flags for free space tree bitmap
The free space tree bitmap slab cache is created with SLAB_RED_ZONE but
that's a debugging flag and not always enabled. Also the other slabs are
created with at least SLAB_MEM_SPREAD that we want as well to average
the memory placement cost.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes:
|
|
|
|
60484cd9d5 |
btrfs: subpage: make readahead work properly
In readahead infrastructure, we are using a lot of hard coded PAGE_SHIFT while we're not doing anything specific to PAGE_SIZE. One of the most affected part is the radix tree operation of btrfs_fs_info::reada_tree. If using PAGE_SHIFT, subpage metadata readahead is broken and does no help reading metadata ahead. Fix the problem by using btrfs_fs_info::sectorsize_bits so that readahead could work for subpage. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d9bb77d51e |
btrfs: subpage: fix wild pointer access during metadata read failure
[BUG] When running fstests for btrfs subpage read-write test, it has a very high chance to crash at generic/475 with the following stack: BTRFS warning (device dm-8): direct IO failed ino 510 rw 1,34817 sector 0xcdf0 len 94208 err no 10 Unable to handle kernel paging request at virtual address ffff80001157e7c0 CPU: 2 PID: 687125 Comm: kworker/u12:4 Tainted: G WC 5.12.0-rc2-custom+ #5 Hardware name: Khadas VIM3 (DT) Workqueue: btrfs-endio-meta btrfs_work_helper [btrfs] pc : queued_spin_lock_slowpath+0x1a0/0x390 lr : do_raw_spin_lock+0xc4/0x11c Call trace: queued_spin_lock_slowpath+0x1a0/0x390 _raw_spin_lock+0x68/0x84 btree_readahead_hook+0x38/0xc0 [btrfs] end_bio_extent_readpage+0x504/0x5f4 [btrfs] bio_endio+0x170/0x1a4 end_workqueue_fn+0x3c/0x60 [btrfs] btrfs_work_helper+0x1b0/0x1b4 [btrfs] process_one_work+0x22c/0x430 worker_thread+0x70/0x3a0 kthread+0x13c/0x140 ret_from_fork+0x10/0x30 Code: 910020e0 8b0200c2 f861d884 aa0203e1 (f8246827) [CAUSE] In end_bio_extent_readpage(), if we hit an error during read, we will handle the error differently for data and metadata. For data we queue a repair, while for metadata, we record the error and let the caller choose what to do. But the code is still using page->private to grab extent buffer, which no longer points to extent buffer for subpage metadata pages. Thus this wild pointer access leads to above crash. [FIX] Introduce a helper, find_extent_buffer_readpage(), to grab extent buffer. The difference against find_extent_buffer_nospinlock() is: - Also handles regular sectorsize == PAGE_SIZE case - No extent buffer refs increase/decrease As extent buffer under IO must have non-zero refs, so this is safe Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e3d3b41576 |
btrfs: zoned: fix linked list corruption after log root tree allocation failure
When using a zoned filesystem, while syncing the log, if we fail to
allocate the root node for the log root tree, we are not removing the
log context we allocated on stack from the list of log contexts of the
log root tree. This means after the return from btrfs_sync_log() we get
a corrupted linked list.
Fix this by allocating the node before adding our stack allocated context
to the list of log contexts of the log root tree.
Fixes:
|
|
|
|
a3ee79bd8f |
btrfs: fix qgroup data rsv leak caused by falloc failure
[BUG]
When running fsstress with only falloc workload, and a very low qgroup
limit set, we can get qgroup data rsv leak at unmount time.
BTRFS warning (device dm-0): qgroup 0/5 has unreleased space, type 0 rsv 20480
BTRFS error (device dm-0): qgroup reserved space leaked
The minimal reproducer looks like:
#!/bin/bash
dev=/dev/test/test
mnt="/mnt/btrfs"
fsstress=~/xfstests-dev/ltp/fsstress
runtime=8
workload()
{
umount $dev &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
btrfs quota en $mnt
btrfs quota rescan -w $mnt
btrfs qgroup limit 16m 0/5 $mnt
$fsstress -w -z -f creat=10 -f fallocate=10 -p 2 -n 100 \
-d $mnt -v > /tmp/fsstress
umount $mnt
if dmesg | grep leak ; then
echo "!!! FAILED !!!"
exit 1
fi
}
for (( i=0; i < $runtime; i++)); do
echo "=== $i/$runtime==="
workload
done
Normally it would fail before round 4.
[CAUSE]
In function insert_prealloc_file_extent(), we first call
btrfs_qgroup_release_data() to know how many bytes are reserved for
qgroup data rsv.
Then use that @qgroup_released number to continue our work.
But after we call btrfs_qgroup_release_data(), we should either queue
@qgroup_released to delayed ref or free them manually in error path.
Unfortunately, we lack the error handling to free the released bytes,
leaking qgroup data rsv.
All the error handling function outside won't help at all, as we have
released the range, meaning in inode io tree, the EXTENT_QGROUP_RESERVED
bit is already cleared, thus all btrfs_qgroup_free_data() call won't
free any data rsv.
[FIX]
Add free_qgroup tag to manually free the released qgroup data rsv.
Reported-by: Nikolay Borisov <nborisov@suse.com>
Reported-by: David Sterba <dsterba@suse.cz>
Fixes:
|
|
|
|
fbf48bb0b1 |
btrfs: track qgroup released data in own variable in insert_prealloc_file_extent
There is a piece of weird code in insert_prealloc_file_extent(), which
looks like:
ret = btrfs_qgroup_release_data(inode, file_offset, len);
if (ret < 0)
return ERR_PTR(ret);
if (trans) {
ret = insert_reserved_file_extent(trans, inode,
file_offset, &stack_fi,
true, ret);
...
}
extent_info.is_new_extent = true;
extent_info.qgroup_reserved = ret;
...
Note how the variable @ret is abused here, and if anyone is adding code
just after btrfs_qgroup_release_data() call, it's super easy to
overwrite the @ret and cause tons of qgroup related bugs.
Fix such abuse by introducing new variable @qgroup_released, so that we
won't reuse the existing variable @ret.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
d2dcc8ed8e |
btrfs: fix wrong offset to zero out range beyond i_size
[BUG] The test generic/091 fails , with the following output: fsx -N 10000 -o 128000 -l 500000 -r PSIZE -t BSIZE -w BSIZE -Z -W mapped writes DISABLED Seed set to 1 main: filesystem does not support fallocate mode FALLOC_FL_COLLAPSE_RANGE, disabling! main: filesystem does not support fallocate mode FALLOC_FL_INSERT_RANGE, disabling! skipping zero size read truncating to largest ever: 0xe400 copying to largest ever: 0x1f400 cloning to largest ever: 0x70000 cloning to largest ever: 0x77000 fallocating to largest ever: 0x7a120 Mapped Read: non-zero data past EOF (0x3a7ff) page offset 0x800 is 0xf2e1 <<< ... [CAUSE] In commit |
|
|
|
ce307084c9 |
block-5.12-2021-03-12-v2
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmBLzKsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpi0ID/9djN1db0OrAjQgWdOQsKwzcPG4fmVRHJAu
Zi8SPRj0ByonWGaPWjiSi297/j00dfYFFIXaB1Pfo4j0wX0IK8bJINl0G8SN6Dag
WYBBrT/5rCQgD8fjQ1XhuzuqLwxwcZfYXAnCAlqABG18nPk532D4dX2CMEasl8F7
XWTTj5PqHDN4bCcriH1GEA5S+2nmoz5YXjNZEDcY3/pQMdyb8Jo9mRfZubkrnRxK
c9fz2LjUz0IRaSb+9PILY5qDLOSIh+vHOIk/3BKW9DoqU/S3kTTr4twqnOclfVPH
VgJM9b+sHveVCztCJ9bnNGkW7HWjUQa8gb/B40NBxKEhw7w/HCjykhhxd+QTUQTM
GJVMRGYWhzuUEuU1M1hArPua0GLmPKSvC0CRgbKRmgPNjshTquZPJnBBFwv2wZKQ
GkrwktdK9ihE1ya4gu20MupST3PIpT3jtc6NAizr6DCy0wJ0Z1X5KYnFdbtS79No
I9qPC8lu3AcZq6NXdBfTO9ngIdiUwi9AfSYj7koS/4dmnVccVJmaj0/NNmVp2Ro3
HtaObanBnTi9v8YHl8WgX6lq5RjuQ204fXmd0No4mHFvgxsl7YaX+JBts7S3A2Nf
PoQLqmulcLmzT3EVuEg279aXw2rbnyWHARbF/5/tIr4JcugtLJhwFnBA5YgFreq9
lSbqgoKSHw==
=qHyO
-----END PGP SIGNATURE-----
Merge tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"Mostly just random fixes all over the map.
The only odd-one-out change is finally getting the rename of
BIO_MAX_PAGES to BIO_MAX_VECS done. This should've been done with the
multipage bvec change, but it's been left.
Do it now to avoid hassles around changes piling up for the next merge
window.
Summary:
- NVMe pull request:
- one more quirk (Dmitry Monakhov)
- fix max_zone_append_sectors initialization (Chaitanya Kulkarni)
- nvme-fc reset/create race fix (James Smart)
- fix status code on aborts/resets (Hannes Reinecke)
- fix the CSS check for ZNS namespaces (Chaitanya Kulkarni)
- fix a use after free in a debug printk in nvme-rdma (Lv Yunlong)
- Follow-up NVMe error fix for NULL 'id' (Christoph)
- Fixup for the bd_size_lock being IRQ safe, now that the offending
driver has been dropped (Damien).
- rsxx probe failure error return (Jia-Ju)
- umem probe failure error return (Wei)
- s390/dasd unbind fixes (Stefan)
- blk-cgroup stats summing fix (Xunlei)
- zone reset handling fix (Damien)
- Rename BIO_MAX_PAGES to BIO_MAX_VECS (Christoph)
- Suppress uevent trigger for hidden devices (Daniel)
- Fix handling of discard on busy device (Jan)
- Fix stale cache issue with zone reset (Shin'ichiro)"
* tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block:
nvme: fix the nsid value to print in nvme_validate_or_alloc_ns
block: Discard page cache of zone reset target range
block: Suppress uevent for hidden device when removed
block: rename BIO_MAX_PAGES to BIO_MAX_VECS
nvme-pci: add the DISABLE_WRITE_ZEROES quirk for a Samsung PM1725a
nvme-rdma: Fix a use after free in nvmet_rdma_write_data_done
nvme-core: check ctrl css before setting up zns
nvme-fc: fix racing controller reset and create association
nvme-fc: return NVME_SC_HOST_ABORTED_CMD when a command has been aborted
nvme-fc: set NVME_REQ_CANCELLED in nvme_fc_terminate_exchange()
nvme: add NVME_REQ_CANCELLED flag in nvme_cancel_request()
nvme: simplify error logic in nvme_validate_ns()
nvme: set max_zone_append_sectors nvme_revalidate_zones
block: rsxx: fix error return code of rsxx_pci_probe()
block: Fix REQ_OP_ZONE_RESET_ALL handling
umem: fix error return code in mm_pci_probe()
blk-cgroup: Fix the recursive blkg rwstat
s390/dasd: fix hanging IO request during DASD driver unbind
s390/dasd: fix hanging DASD driver unbind
block: Try to handle busy underlying device on discard
|
|
|
|
a8affc03a9 |
block: rename BIO_MAX_PAGES to BIO_MAX_VECS
Ever since the addition of multipage bio_vecs BIO_MAX_PAGES has been horribly confusingly misnamed. Rename it to BIO_MAX_VECS to stop confusing users of the bio API. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20210311110137.1132391-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
f09b04cc64 |
for-5.12-rc1-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBCOi4ACgkQxWXV+ddt
WDtXvw//TWx3m05qHJqqG8V90uel8hB2J5vd4CA2r62Je1G8RDho57Bo7fyvL4l+
mdCPt+INajb0mpp0IoHMtyLHefojgNOsrX6FAK1/gjnLkjRLFZ3wQqkA34Ue9pNs
2u+rMY6eB105iaS3VejEmiebr++MZfjfQRV+GXU336AEeOEDZdgol8o6jMyde5TO
zRH9Dni5Sy/YAGGAb0vaoG2BMyVigrqkbjkzwjYChbUj/KuyffAgQj0v8BvsC9Y6
DnPD5yrt5kSZzuqQFH7c2jxLN0cvW+tJ0znCpnwn/nmiCALbl6y2a4dmewC32TwJ
II+3OPGpYudafLJEP15qafsJb7LmEfnGwUIrfEZbyb4lQG12uyYOdP3IN7+8td14
fd29GE62w5aErsmurcMFj/x43k4DIfcqC8b+Y+S27JZF1szh7ExCfoYC/6c5e5Qf
j6/6RtRSVqdxImRd0QYv3mCIeSG0CH2UR/1otvC81jRTHRyB3r6TV8wPLo+5K/Rk
ongKZ+BQa5RUk8skdFburhrkDDKgfBcjlexl5Gsqw+D/xTGNAcVnNQrTtW9sTSle
hB3b7CunXA1eCyui2SIqN1dR8hwao4b9RzYNs3y2jWjSPZD/Bp0BdQ8oxSPvIWkX
a8kauFGhKhY2Tdqau+CQ4UbbQWzEB7FulkPCOLiHDDZjyxIvAA4=
=tlU3
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"More regression fixes and stabilization.
Regressions:
- zoned mode
- count zone sizes in wider int types
- fix space accounting for read-only block groups
- subpage: fix page tail zeroing
Fixes:
- fix spurious warning when remounting with free space tree
- fix warning when creating a directory with smack enabled
- ioctl checks for qgroup inheritance when creating a snapshot
- qgroup
- fix missing unlock on error path in zero range
- fix amount of released reservation on error
- fix flushing from unsafe context with open transaction,
potentially deadlocking
- minor build warning fixes"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: do not account freed region of read-only block group as zone_unusable
btrfs: zoned: use sector_t for zone sectors
btrfs: subpage: fix the false data csum mismatch error
btrfs: fix warning when creating a directory with smack enabled
btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
btrfs: export and rename qgroup_reserve_meta
btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
btrfs: fix spurious free_space_tree remount warning
btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
btrfs: ref-verify: use 'inline void' keyword ordering
|
|
|
|
badae9c869 |
btrfs: zoned: do not account freed region of read-only block group as zone_unusable
We migrate zone unusable bytes to read-only bytes when a block group is
set to read-only, and account all the free region as bytes_readonly.
Thus, we should not increase block_group->zone_unusable when the block
group is read-only.
Fixes:
|
|
|
|
d734492a14 |
btrfs: zoned: use sector_t for zone sectors
We need to use sector_t for zone_sectors, or it would set the zone size
to zero when the size >= 4GB (= 2^24 sectors) by shifting the
zone_sectors value by SECTOR_SHIFT. We're assuming zones sizes up to
8GiB.
Fixes:
|
|
|
|
c28ea613fa |
btrfs: subpage: fix the false data csum mismatch error
[BUG]
When running fstresss, we can hit strange data csum mismatch where the
on-disk data is in fact correct (passes scrub).
With some extra debug info added, we have the following traces:
0482us: btrfs_do_readpage: root=5 ino=284 offset=393216, submit force=0 pgoff=0 iosize=8192
0494us: btrfs_do_readpage: root=5 ino=284 offset=401408, submit force=0 pgoff=8192 iosize=4096
0498us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=393216 len=8192
0591us: btrfs_do_readpage: root=5 ino=284 offset=405504, submit force=0 pgoff=12288 iosize=36864
0594us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=401408 len=4096
0863us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=405504 len=36864
0933us: btrfs_verify_data_csum: root=5 ino=284 offset=393216 len=8192
0967us: btrfs_do_readpage: root=5 ino=284 offset=442368, skip beyond isize pgoff=49152 iosize=16384
1047us: btrfs_verify_data_csum: root=5 ino=284 offset=401408 len=4096
1163us: btrfs_verify_data_csum: root=5 ino=284 offset=405504 len=36864
1290us: check_data_csum: !!! root=5 ino=284 offset=438272 pg_off=45056 !!!
7387us: end_bio_extent_readpage: root=5 ino=284 before pending_read_bios=0
[CAUSE]
Normally we expect all submitted bio reads to only touch the range we
specified, and under subpage context, it means we should only touch the
range specified in each bvec.
But in data read path, inside end_bio_extent_readpage(), we have page
zeroing which only takes regular page size into consideration.
This means for subpage if we have an inode whose content looks like below:
0 16K 32K 48K 64K
|///////| |///////| |
|//| = data needs to be read from disk
| | = hole
And i_size is 64K initially.
Then the following race can happen:
T1 | T2
--------------------------------+--------------------------------
btrfs_do_readpage() |
|- isize = 64K; |
| At this time, the isize is |
| 64K |
| |
|- submit_extent_page() |
| submit previous assembled bio|
| assemble bio for [0, 16K) |
| |
|- submit_extent_page() |
submit read bio for [0, 16K) |
assemble read bio for |
[32K, 48K) |
|
| btrfs_setsize()
| |- i_size_write(, 16K);
| Now i_size is only 16K
end_io() for [0K, 16K) |
|- end_bio_extent_readpage() |
|- btrfs_verify_data_csum() |
| No csum error |
|- i_size = 16K; |
|- zero_user_segment(16K, |
PAGE_SIZE); |
!!! We zeroed range |
!!! [32K, 48K) |
| end_io for [32K, 48K)
| |- end_bio_extent_readpage()
| |- btrfs_verify_data_csum()
| ! CSUM MISMATCH !
| ! As the range is zeroed now !
[FIX]
To fix the problem, make end_bio_extent_readpage() to only zero the
range of bvec.
The bug only affects subpage read-write support, as for full read-only
mount we can't change i_size thus won't hit the race condition.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
fd57a98d6f |
btrfs: fix warning when creating a directory with smack enabled
When we have smack enabled, during the creation of a directory smack may attempt to add a "smack transmute" xattr on the inode, which results in the following warning and trace: WARNING: CPU: 3 PID: 2548 at fs/btrfs/transaction.c:537 start_transaction+0x489/0x4f0 Modules linked in: nft_objref nf_conntrack_netbios_ns (...) CPU: 3 PID: 2548 Comm: mkdir Not tainted 5.9.0-rc2smack+ #81 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:start_transaction+0x489/0x4f0 Code: e9 be fc ff ff (...) RSP: 0018:ffffc90001887d10 EFLAGS: 00010202 RAX: ffff88816f1e0000 RBX: 0000000000000201 RCX: 0000000000000003 RDX: 0000000000000201 RSI: 0000000000000002 RDI: ffff888177849000 RBP: ffff888177849000 R08: 0000000000000001 R09: 0000000000000004 R10: ffffffff825e8f7a R11: 0000000000000003 R12: ffffffffffffffe2 R13: 0000000000000000 R14: ffff88803d884270 R15: ffff8881680d8000 FS: 00007f67317b8440(0000) GS:ffff88817bcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f67247a22a8 CR3: 000000004bfbc002 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? slab_free_freelist_hook+0xea/0x1b0 ? trace_hardirqs_on+0x1c/0xe0 btrfs_setxattr_trans+0x3c/0xf0 __vfs_setxattr+0x63/0x80 smack_d_instantiate+0x2d3/0x360 security_d_instantiate+0x29/0x40 d_instantiate_new+0x38/0x90 btrfs_mkdir+0x1cf/0x1e0 vfs_mkdir+0x14f/0x200 do_mkdirat+0x6d/0x110 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f673196ae6b Code: 8b 05 11 (...) RSP: 002b:00007ffc3c679b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000053 RAX: ffffffffffffffda RBX: 00000000000001ff RCX: 00007f673196ae6b RDX: 0000000000000000 RSI: 00000000000001ff RDI: 00007ffc3c67a30d RBP: 00007ffc3c67a30d R08: 00000000000001ff R09: 0000000000000000 R10: 000055d3e39fe930 R11: 0000000000000246 R12: 0000000000000000 R13: 00007ffc3c679cd8 R14: 00007ffc3c67a30d R15: 00007ffc3c679ce0 irq event stamp: 11029 hardirqs last enabled at (11037): [<ffffffff81153fe6>] console_unlock+0x486/0x670 hardirqs last disabled at (11044): [<ffffffff81153c01>] console_unlock+0xa1/0x670 softirqs last enabled at (8864): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20 softirqs last disabled at (8851): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20 This happens because at btrfs_mkdir() we call d_instantiate_new() while holding a transaction handle, which results in the following call chain: btrfs_mkdir() trans = btrfs_start_transaction(root, 5); d_instantiate_new() smack_d_instantiate() __vfs_setxattr() btrfs_setxattr_trans() btrfs_start_transaction() start_transaction() WARN_ON() --> a tansaction start has TRANS_EXTWRITERS set in its type h->orig_rsv = h->block_rsv h->block_rsv = NULL btrfs_end_transaction(trans) Besides the warning triggered at start_transaction, we set the handle's block_rsv to NULL which may cause some surprises later on. So fix this by making btrfs_setxattr_trans() not start a transaction when we already have a handle on one, stored in current->journal_info, and use that handle. We are good to use the handle because at btrfs_mkdir() we did reserve space for the xattr and the inode item. Reported-by: Casey Schaufler <casey@schaufler-ca.com> CC: stable@vger.kernel.org # 5.4+ Acked-by: Casey Schaufler <casey@schaufler-ca.com> Tested-by: Casey Schaufler <casey@schaufler-ca.com> Link: https://lore.kernel.org/linux-btrfs/434d856f-bd7b-4889-a6ec-e81aaebfa735@schaufler-ca.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4d14c5cde5 |
btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
Calling btrfs_qgroup_reserve_meta_prealloc from btrfs_delayed_inode_reserve_metadata can result in flushing delalloc while holding a transaction and delayed node locks. This is deadlock prone. In the past multiple commits: * |
|
|
|
80e9baed72 |
btrfs: export and rename qgroup_reserve_meta
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0f9c03d824 |
btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
Following commit |
|
|
|
c55a4319c4 |
btrfs: fix spurious free_space_tree remount warning
The intended logic of the check is to catch cases where the desired free_space_tree setting doesn't match the mounted setting, and the remount is anything but ro->rw. However, it makes the mistake of checking equality on a masked integer (btrfs_test_opt) against a boolean (btrfs_fs_compat_ro). If you run the reproducer: $ mount -o space_cache=v2 dev mnt $ mount -o remount,ro mnt you would expect no warning, because the remount is not attempting to change the free space tree setting, but we do see the warning. To fix this, add explicit bool type casts to the condition. I tested a variety of transitions: sudo mount -o space_cache=v2 /dev/vg0/lv0 mnt/lol (fst enabled) mount -o remount,ro mnt/lol (no warning, no fst change) sudo mount -o remount,rw,space_cache=v1,clear_cache (no warning, ro->rw) sudo mount -o remount,rw,space_cache=v2 mnt (warning, rw->rw with change) sudo mount -o remount,ro mnt (no warning, no fst change) sudo mount -o remount,rw,space_cache=v2 mnt (no warning, no fst change) Reported-by: Chris Murphy <lists@colorremedies.com> CC: stable@vger.kernel.org # 5.11 Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5011c5a663 |
btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
The problem is we're copying "inherit" from user space but we don't
necessarily know that we're copying enough data for a 64 byte
struct. Then the next problem is that 'inherit' has a variable size
array at the end, and we have to verify that array is the size we
expected.
Fixes:
|
|
|
|
4f6a49de64 |
btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
If btrfs_qgroup_reserve_data returns an error (i.e quota limit reached)
the handling logic directly goes to the 'out' label without first
unlocking the extent range between lockstart, lockend. This results in
deadlocks as other processes try to lock the same extent.
Fixes:
|
|
|
|
aedb9d9089 |
btrfs: ref-verify: use 'inline void' keyword ordering
Fix build warnings of function signature when CONFIG_STACKTRACE is not enabled by reordering the 'inline' and 'void' keywords. ../fs/btrfs/ref-verify.c:221:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] static void inline __save_stack_trace(struct ref_action *ra) ../fs/btrfs/ref-verify.c:225:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] static void inline __print_stack_trace(struct btrfs_fs_info *fs_info, Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7a7fd0de4a |
Merge branch 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull kmap conversion updates from David Sterba:
"This contains changes regarding kmap API use and eg conversion from
kmap_atomic to kmap_local_page.
The API belongs to memory management but to save cross-tree
dependency headaches we've agreed to take it through the btrfs tree
because there are some trivial conversions possible, while the rest
will need some time and getting the easy cases out of the way would be
convenient.
The changes can be grouped:
- function exports, new helpers
- new VM_BUG_ON for additional verification; it's been discussed if
it should be VM_BUG_ON or BUG_ON, the former was chosen due to
performance reasons
- code replaced by relevant helpers"
[ This is an updated version of a request that originally came in during
the merge window, but I asked for some updates:
https://lore.kernel.org/lkml/cover.1614090658.git.dsterba@suse.com/
which is why this got merge after the merge window closed. - Linus ]
* 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: use copy_highpage() instead of 2 kmaps()
btrfs: use memcpy_[to|from]_page() and kmap_local_page()
mm/highmem: Add VM_BUG_ON() to mem*_page() calls
mm/highmem: Introduce memcpy_page(), memmove_page(), and memset_page()
mm/highmem: Convert memcpy_[to|from]_page() to kmap_local_page()
mm/highmem: Lift memcpy_[to|from]_page to core
|
|
|
|
c608aca57d |
for-5.12-rc1-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmA85UwACgkQxWXV+ddt
WDsdeA/8DXM6pMGaLkYcvkGvR53/vWwQlKq+i+3zuc41fYFJ7k+DQ7/K5hDbEMoM
E7YsksoRlNVruH/ZvSdtx1exQ/tNrTdqPuds/UR31lIvS2NX9OZZToGWoC8VmrNw
eS9yAwz/7JKUBA6MlMxZFv89OJoHUX9brPSeZVA8hOo3jDr5LXVm0IBskYOBUDRx
JIvt+lkJLKMXPWxwUt3hbkbFPAUQVxYYavhJhWiXT9gdxF+eRgjMI0EN43vBMN2y
kZtoZGeWR64heo9ehFzYMDlAVyph/loGovQ7m6XVzkk5DQGitg0vs3iAG46WjEXt
jxt0ZKmJQwJb3/zNPd8VlLMhULGc56jcq8uhaC2pXjhy18p7EAXml+fH51BExLYK
11hiWtWsrbTsZuYgr6fpqVFukkL/yyH/s7iCWT8Wn+AoPg2fUD99F5nkKT2T0Sso
t7MyJVlTdq8avWbTB+8kFx8+Hy1TsRz3Ic2Zpm8+F3KeVflrb31jJIp3cxPCdfUp
fWX+7VDjKVt00Ti7uP0fAaFO4hn2FjYcWzR3KOjomWox+8LVxB8PbD4H8jD7As2a
5gGGOULmkiZej7hcP6J6zvnmgZIVAGPsSGSVfZtPh4VGiycL3DozcD0x5QerLchR
NZDyIBh2KGE0cRr+cjkPxDyeqfGXQ7VUjp13CBriCkER8SOmBdw=
=QJEy
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is the first batch of fixes that usually arrive during the merge
window code freeze. Regressions and stable material.
Regressions:
- fix deadlock in log sync in zoned mode
- fix bugs in subpage mode still wrongly assuming sectorsize == page
size
Fixes:
- fix missing kunmap of the Q stripe in RAID6
- block group fixes:
- fix race between extent freeing/allocation when using bitmaps
- avoid double put of block group when emptying cluster
- swapfile fixes:
- fix swapfile writes vs running scrub
- fix swapfile activation vs snapshot creation
- fix stale data exposure after cloning a hole with NO_HOLES enabled
- remove tree-checker check that does not work in case information
from other leaves is necessary"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: fix deadlock on log sync
btrfs: avoid double put of block group when emptying cluster
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
btrfs: tree-checker: do not error out if extent ref hash doesn't match
btrfs: fix race between swap file activation and snapshot creation
btrfs: fix race between writes to swap files and scrub
btrfs: avoid checking for RO block group twice during nocow writeback
btrfs: fix race between extent freeing/allocation when using bitmaps
btrfs: make check_compressed_csum() to be subpage compatible
btrfs: make btrfs_submit_compressed_read() subpage compatible
btrfs: fix raid6 qstripe kmap
|
|
|
|
80cc838423 |
btrfs: use copy_highpage() instead of 2 kmaps()
There are many places where kmap/memove/kunmap patterns occur. This pattern exists in the core common function copy_highpage(). Use copy_highpage to avoid open coding the use of kmap and leverages the core functions use of kmap_local_page(). Development of this patch was aided by the following coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/copypage/kunmap pattern and replace with copy_highpage calls // // NOTE: The expressions in the copy page version of this kmap pattern are // overly complex and so these all need individual attention. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // Then a copy_page where we have 2 pages involved. // @ copy_page_rule @ expression page, page2, To, From, Size; identifier ptr, ptr2; type VP, VP2; @@ /* kmap */ ( -VP ptr = kmap(page); ... -VP2 ptr2 = kmap(page2); | -VP ptr = kmap_atomic(page); ... -VP2 ptr2 = kmap_atomic(page2); | -ptr = kmap(page); ... -ptr2 = kmap(page2); | -ptr = kmap_atomic(page); ... -ptr2 = kmap_atomic(page2); ) // 1 or more copy versions of the entire page <+... ( -copy_page(To, From); +copy_highpage(To, From); | -memmove(To, From, Size); +memmoveExtra(To, From, Size); ) ...+> /* kunmap */ ( -kunmap(page2); ... -kunmap(page); | -kunmap(page); ... -kunmap(page2); | -kmap_atomic(ptr2); ... -kmap_atomic(ptr); ) // Remove any pointers left unused @ depends on copy_page_rule @ identifier copy_page_rule.ptr; identifier copy_page_rule.ptr2; type VP, VP1; type VP2, VP21; @@ -VP ptr; ... when != ptr; ? VP1 ptr; -VP2 ptr2; ... when != ptr2; ? VP21 ptr2; // </smpl> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3590ec5899 |
btrfs: use memcpy_[to|from]_page() and kmap_local_page()
There are many places where the pattern kmap/memcpy/kunmap occurs. This pattern was lifted to the core common functions memcpy_[to|from]_page(). Use these new functions to reduce the code, eliminate direct uses of kmap, and leverage the new core functions use of kmap_local_page(). Also, there is 1 place where a kmap/memcpy is followed by an optional memset. Here we leave the kmap open coded to avoid remapping the page but use kmap_local_page() directly. Development of this patch was aided by the coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls // // NOTE: Offsets and other expressions may be more complex than what the script // will automatically generate. Therefore a catchall rule is provided to find // the pattern which then must be evaluated by hand. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // simple memcpy version // @ memcpy_rule1 @ expression page, T, F, B, Off; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( -memcpy(ptr + Off, F, B); +memcpy_to_page(page, Off, F, B); | -memcpy(ptr, F, B); +memcpy_to_page(page, 0, F, B); | -memcpy(T, ptr + Off, B); +memcpy_from_page(T, page, Off, B); | -memcpy(T, ptr, B); +memcpy_from_page(T, page, 0, B); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memcpy_rule1 @ identifier memcpy_rule1.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // // Some callers kmap without a temp pointer // @ memcpy_rule2 @ expression page, T, Off, F, B; @@ <+... ( -memcpy(kmap(page) + Off, F, B); +memcpy_to_page(page, Off, F, B); | -memcpy(kmap(page), F, B); +memcpy_to_page(page, 0, F, B); | -memcpy(T, kmap(page) + Off, B); +memcpy_from_page(T, page, Off, B); | -memcpy(T, kmap(page), B); +memcpy_from_page(T, page, 0, B); ) ...+> -kunmap(page); // No need for the ptr variable removal // // Catch all // @ memcpy_rule3 @ expression page; expression GenTo, GenFrom, GenSize; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( // // Some call sites have complex expressions within the memcpy // match a catch all to be evaluated by hand. // -memcpy(GenTo, GenFrom, GenSize); +memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize); +memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memcpy_rule3 @ identifier memcpy_rule3.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // <smpl> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
87fa0f3eb2 |
mm/filemap: rename generic_file_buffered_read to filemap_read
Rename generic_file_buffered_read to match the naming of filemap_fault, also update the written parameter to a more descriptive name and improve the kerneldoc comment. Link: https://lkml.kernel.org/r/20210122160140.223228-18-willy@infradead.org Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
7d6beb71da |
idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
https://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
|
|
|
|
6e37d24599 |
btrfs: zoned: fix deadlock on log sync
Lockdep with fstests test case btrfs/041 detected a unsafe locking
scenario when we allocate the log node on a zoned filesystem.
btrfs/041
============================================
WARNING: possible recursive locking detected
5.11.0-rc7+ #939 Not tainted
--------------------------------------------
xfs_io/698 is trying to acquire lock:
ffff88810cd673a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x3d1/0xee0 [btrfs]
but task is already holding lock:
ffff88810b0fc3a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x313/0xee0 [btrfs]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&root->log_mutex);
lock(&root->log_mutex);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by xfs_io/698:
#0: ffff88810cd66620 (sb_internal){.+.+}-{0:0}, at: btrfs_sync_file+0x2c3/0x570 [btrfs]
#1: ffff88810b0fc3a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x313/0xee0 [btrfs]
stack backtrace:
CPU: 0 PID: 698 Comm: xfs_io Not tainted 5.11.0-rc7+ #939
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack+0x77/0x97
__lock_acquire.cold+0xb9/0x32a
lock_acquire+0xb5/0x400
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
__mutex_lock+0x7b/0x8d0
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
? find_first_extent_bit+0x9f/0x100 [btrfs]
? __mutex_unlock_slowpath+0x35/0x270
btrfs_sync_log+0x3d1/0xee0 [btrfs]
btrfs_sync_file+0x3a8/0x570 [btrfs]
__x64_sys_fsync+0x34/0x60
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This happens, because we are taking the ->log_mutex albeit it has already
been locked.
Also while at it, fix the bogus unlock of the tree_log_mutex in the error
handling.
Fixes:
|
|
|
|
95c85fba1f |
btrfs: avoid double put of block group when emptying cluster
It's wrong calling btrfs_put_block_group in
__btrfs_return_cluster_to_free_space if the block group passed is
different than the block group the cluster represents. As this means the
cluster doesn't have a reference to the passed block group. This results
in double put and a use-after-free bug.
Fix this by simply bailing if the block group we passed in does not
match the block group on the cluster.
Fixes:
|
|
|
|
3660d0bcdb |
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
When using the NO_HOLES feature, if we clone a file range that spans only
a hole into a range that is at or beyond the current i_size of the
destination file, we end up not setting the full sync runtime flag on the
inode. As a result, if we then fsync the destination file and have a power
failure, after log replay we can end up exposing stale data instead of
having a hole for that range.
The conditions for this to happen are the following:
1) We have a file with a size of, for example, 1280K;
2) There is a written (non-prealloc) extent for the file range from 1024K
to 1280K with a length of 256K;
3) This particular file extent layout is durably persisted, so that the
existing superblock persisted on disk points to a subvolume root where
the file has that exact file extent layout and state;
4) The file is truncated to a smaller size, to an offset lower than the
start offset of its last extent, for example to 800K. The truncate sets
the full sync runtime flag on the inode;
6) Fsync the file to log it and clear the full sync runtime flag;
7) Clone a region that covers only a hole (implicit hole due to NO_HOLES)
into the file with a destination offset that starts at or beyond the
256K file extent item we had - for example to offset 1024K;
8) Since the clone operation does not find extents in the source range,
we end up in the if branch at the bottom of btrfs_clone() where we
punch a hole for the file range starting at offset 1024K by calling
btrfs_replace_file_extents(). There we end up not setting the full
sync flag on the inode, because we don't know we are being called in
a clone context (and not fallocate's punch hole operation), and
neither do we create an extent map to represent a hole because the
requested range is beyond eof;
9) A further fsync to the file will be a fast fsync, since the clone
operation did not set the full sync flag, and therefore it relies on
modified extent maps to correctly log the file layout. But since
it does not find any extent map marking the range from 1024K (the
previous eof) to the new eof, it does not log a file extent item
for that range representing the hole;
10) After a power failure no hole for the range starting at 1024K is
punched and we end up exposing stale data from the old 256K extent.
Turning this into exact steps:
$ mkfs.btrfs -f -O no-holes /dev/sdi
$ mount /dev/sdi /mnt
# Create our test file with 3 extents of 256K and a 256K hole at offset
# 256K. The file has a size of 1280K.
$ xfs_io -f -s \
-c "pwrite -S 0xab -b 256K 0 256K" \
-c "pwrite -S 0xcd -b 256K 512K 256K" \
-c "pwrite -S 0xef -b 256K 768K 256K" \
-c "pwrite -S 0x73 -b 256K 1024K 256K" \
/mnt/sdi/foobar
# Make sure it's durably persisted. We want the last committed super
# block to point to this particular file extent layout.
sync
# Now truncate our file to a smaller size, falling within a position of
# the second extent. This sets the full sync runtime flag on the inode.
# Then fsync the file to log it and clear the full sync flag from the
# inode. The third extent is no longer part of the file and therefore
# it is not logged.
$ xfs_io -c "truncate 800K" -c "fsync" /mnt/foobar
# Now do a clone operation that only clones the hole and sets back the
# file size to match the size it had before the truncate operation
# (1280K).
$ xfs_io \
-c "reflink /mnt/foobar 256K 1024K 256K" \
-c "fsync" \
/mnt/foobar
# File data before power failure:
$ od -A d -t x1 /mnt/foobar
0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
*
0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
*
0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef
*
0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
1310720
<power fail>
# Mount the fs again to replay the log tree.
$ mount /dev/sdi /mnt
# File data after power failure:
$ od -A d -t x1 /mnt/foobar
0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
*
0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
*
0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef
*
0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
1048576 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73
*
1310720
The range from 1024K to 1280K should correspond to a hole but instead it
points to stale data, to the 256K extent that should not exist after the
truncate operation.
The issue does not exists when not using NO_HOLES, because for that case
we use file extent items to represent holes, these are found and copied
during the loop that iterates over extents at btrfs_clone(), and that
causes btrfs_replace_file_extents() to be called with a non-NULL
extent_info argument and therefore set the full sync runtime flag on the
inode.
So fix this by making the code that deals with a trailing hole during
cloning, at btrfs_clone(), to set the full sync flag on the inode, if the
range starts at or beyond the current i_size.
A test case for fstests will follow soon.
Backporting notes: for kernel 5.4 the change goes to ioctl.c into
btrfs_clone before the last call to btrfs_punch_hole_range.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
1119a72e22 |
btrfs: tree-checker: do not error out if extent ref hash doesn't match
The tree checker checks the extent ref hash at read and write time to
make sure we do not corrupt the file system. Generally extent
references go inline, but if we have enough of them we need to make an
item, which looks like
key.objectid = <bytenr>
key.type = <BTRFS_EXTENT_DATA_REF_KEY|BTRFS_TREE_BLOCK_REF_KEY>
key.offset = hash(tree, owner, offset)
However if key.offset collide with an unrelated extent reference we'll
simply key.offset++ until we get something that doesn't collide.
Obviously this doesn't match at tree checker time, and thus we error
while writing out the transaction. This is relatively easy to
reproduce, simply do something like the following
xfs_io -f -c "pwrite 0 1M" file
offset=2
for i in {0..10000}
do
xfs_io -c "reflink file 0 ${offset}M 1M" file
offset=$(( offset + 2 ))
done
xfs_io -c "reflink file 0 17999258914816 1M" file
xfs_io -c "reflink file 0 35998517829632 1M" file
xfs_io -c "reflink file 0 53752752058368 1M" file
btrfs filesystem sync
And the sync will error out because we'll abort the transaction. The
magic values above are used because they generate hash collisions with
the first file in the main subvol.
The fix for this is to remove the hash value check from tree checker, as
we have no idea which offset ours should belong to.
Reported-by: Tuomas Lähdekorpi <tuomas.lahdekorpi@gmail.com>
Fixes:
|
|
|
|
dd0734f2a8 |
btrfs: fix race between swap file activation and snapshot creation
When creating a snapshot we check if the current number of swap files, in
the root, is non-zero, and if it is, we error out and warn that we can not
create the snapshot because there are active swap files.
However this is racy because when a task started activation of a swap
file, another task might have started already snapshot creation and might
have seen the counter for the number of swap files as zero. This means
that after the swap file is activated we may end up with a snapshot of the
same root successfully created, and therefore when the first write to the
swap file happens it has to fall back into COW mode, which should never
happen for active swap files.
Basically what can happen is:
1) Task A starts snapshot creation and enters ioctl.c:create_snapshot().
There it sees that root->nr_swapfiles has a value of 0 so it continues;
2) Task B enters btrfs_swap_activate(). It is not aware that another task
started snapshot creation but it did not finish yet. It increments
root->nr_swapfiles from 0 to 1;
3) Task B checks that the file meets all requirements to be an active
swap file - it has NOCOW set, there are no snapshots for the inode's
root at the moment, no file holes, no reflinked extents, etc;
4) Task B returns success and now the file is an active swap file;
5) Task A commits the transaction to create the snapshot and finishes.
The swap file's extents are now shared between the original root and
the snapshot;
6) A write into an extent of the swap file is attempted - there is a
snapshot of the file's root, so we fall back to COW mode and therefore
the physical location of the extent changes on disk.
So fix this by taking the snapshot lock during swap file activation before
locking the extent range, as that is the order in which we lock these
during buffered writes.
Fixes:
|
|
|
|
195a49eaf6 |
btrfs: fix race between writes to swap files and scrub
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes:
|
|
|
|
20903032cd |
btrfs: avoid checking for RO block group twice during nocow writeback
During the nocow writeback path, we currently iterate the rbtree of block groups twice: once for checking if the target block group is RO with the call to btrfs_extent_readonly()), and once again for getting a nocow reference on the block group with a call to btrfs_inc_nocow_writers(). Since btrfs_inc_nocow_writers() already returns false when the target block group is RO, remove the call to btrfs_extent_readonly(). Not only we avoid searching the blocks group rbtree twice, it also helps reduce contention on the lock that protects it (specially since it is a spin lock and not a read-write lock). That may make a noticeable difference on very large filesystems, with thousands of allocated block groups. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3c17916510 |
btrfs: fix race between extent freeing/allocation when using bitmaps
During allocation the allocator will try to allocate an extent using
cluster policy. Once the current cluster is exhausted it will remove the
entry under btrfs_free_cluster::lock and subsequently acquire
btrfs_free_space_ctl::tree_lock to dispose of the already-deleted entry
and adjust btrfs_free_space_ctl::total_bitmap. This poses a problem
because there exists a race condition between removing the entry under
one lock and doing the necessary accounting holding a different lock
since extent freeing only uses the 2nd lock. This can result in the
following situation:
T1: T2:
btrfs_alloc_from_cluster insert_into_bitmap <holds tree_lock>
if (entry->bytes == 0) if (block_group && !list_empty(&block_group->cluster_list)) {
rb_erase(entry)
spin_unlock(&cluster->lock);
(total_bitmaps is still 4) spin_lock(&cluster->lock);
<doesn't find entry in cluster->root>
spin_lock(&ctl->tree_lock); <goes to new_bitmap label, adds
<blocked since T2 holds tree_lock> <a new entry and calls add_new_bitmap>
recalculate_thresholds <crashes,
due to total_bitmaps
becoming 5 and triggering
an ASSERT>
To fix this ensure that once depleted, the cluster entry is deleted when
both cluster lock and tree locks are held in the allocator (T1), this
ensures that even if there is a race with a concurrent
insert_into_bitmap call it will correctly find the entry in the cluster
and add the new space to it.
CC: <stable@vger.kernel.org> # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
04d4ba4c90 |
btrfs: make check_compressed_csum() to be subpage compatible
Currently check_compressed_csum() completely relies on sectorsize == PAGE_SIZE to do checksum verification for compressed extents. To make it subpage compatible, this patch will: - Do extra calculation for the csum range Since we have multiple sectors inside a page, we need to only hash the range we want, not the full page anymore. - Do sector-by-sector hash inside the page With this patch and previous conversion on btrfs_submit_compressed_read(), now we can read subpage compressed extents properly, and do proper csum verification. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
be6a13613f |
btrfs: make btrfs_submit_compressed_read() subpage compatible
For compressed read, we always submit page read using page size. This doesn't work well with subpage, as for subpage one page can contain several sectors. Such submission will read range out of what we want, and cause problems. Thankfully to make it subpage compatible, we only need to change how the last page of the compressed extent is read. Instead of always adding a full page to the compressed read bio, if we're at the last page, calculate the size using compressed length, so that we only add part of the range into the compressed read bio. Since we are here, also change the PAGE_SIZE used in lookup_extent_mapping() to sectorsize. This modification won't cause any functional change, as lookup_extent_mapping() can handle the case where the search range is larger than found extent range. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d70cef0d46 |
btrfs: fix raid6 qstripe kmap
When a qstripe is required an extra page is allocated and mapped. There
were 3 problems:
1) There is no corresponding call of kunmap() for the qstripe page.
2) There is no reason to map the qstripe page more than once if the
number of bits set in rbio->dbitmap is greater than one.
3) There is no reason to map the parity page and unmap it each time
through the loop.
The page memory can continue to be reused with a single mapping on each
iteration by raid6_call.gen_syndrome() without remapping. So map the
page for the duration of the loop.
Similarly, improve the algorithm by mapping the parity page just 1 time.
Fixes:
|
|
|
|
582cd91f69 |
for-5.12/block-2021-02-17
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmAtmIwQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgplzLEAC5O+3rBM8QuiJdo39Yppmuw4hDJ6hOKynP EJQLKQQi0VfXgU+MprGvcbpFYmNbgICvUICQkEzJuk++kPCu/BJtJz0yErQeLgS+ RdXiPV6enbF7iRML5TVRTr1q/z7sJMXcIIJ8Pz/rU/JNfGYExVd0WfnEY9mp1jOt Bl9V+qyTazdP+Ma4+uEPatSayqcdi1rxB5I+7v/sLiOvKZZWkaRZjUZ/mxAjUfvK dBOOPjMygEo3tCLkIyyA6lpLvr1r+SUZhLuebRLEKa3To3TW6RtoG0qwpKmI2iKw ylLeVLB60nM9RUxjflVOfBsHxz1bDg5Ve86y5nCjQd4Jo8x1c4DnecyGE5/Tu8Rg rgbsfD6nFWzhDCvcZT0XrfQ4ZAjIL2IfT+ypQiQ6UlRd3hvIKRmzWMkjuH2svr0u ey9Kq+lYerI4cM0F3W73gzUKdIQOuCzBCYxQuSQQomscBa7FCInyU192dAI9Aj6l Yd06mgKu6qCx6zLv6JfpBqaBHZMwyGE4dmZgPQFuuwO+b4N+Ck3Jm5fzEzw/xIxQ wdo/DlsAl60BXentB6FByGBJaCjVdSymRqN/xNCAbFKCjmr6TLBuXPfg1gYYO7xC VOcVjWe8iN3wWHZab3t2mxMKH9B9B/KKzIhu6TNHSmgtQ5paZPRCBx995pDyRw26 WC22RGC2MA== =os1E -----END PGP SIGNATURE----- Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block Pull core block updates from Jens Axboe: "Another nice round of removing more code than what is added, mostly due to Christoph's relentless pursuit of tech debt removal/cleanups. This pull request contains: - Two series of BFQ improvements (Paolo, Jan, Jia) - Block iov_iter improvements (Pavel) - bsg error path fix (Pan) - blk-mq scheduler improvements (Jan) - -EBUSY discard fix (Jan) - bvec allocation improvements (Ming, Christoph) - bio allocation and init improvements (Christoph) - Store bdev pointer in bio instead of gendisk + partno (Christoph) - Block trace point cleanups (Christoph) - hard read-only vs read-only split (Christoph) - Block based swap cleanups (Christoph) - Zoned write granularity support (Damien) - Various fixes/tweaks (Chunguang, Guoqing, Lei, Lukas, Huhai)" * tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block: (104 commits) mm: simplify swapdev_block sd_zbc: clear zone resources for non-zoned case block: introduce blk_queue_clear_zone_settings() zonefs: use zone write granularity as block size block: introduce zone_write_granularity limit block: use blk_queue_set_zoned in add_partition() nullb: use blk_queue_set_zoned() to setup zoned devices nvme: cleanup zone information initialization block: document zone_append_max_bytes attribute block: use bi_max_vecs to find the bvec pool md/raid10: remove dead code in reshape_request block: mark the bio as cloned in bio_iov_bvec_set block: set BIO_NO_PAGE_REF in bio_iov_bvec_set block: remove a layer of indentation in bio_iov_iter_get_pages block: turn the nr_iovecs argument to bio_alloc* into an unsigned short block: remove the 1 and 4 vec bvec_slabs entries block: streamline bvec_alloc block: factor out a bvec_alloc_gfp helper block: move struct biovec_slab to bio.c block: reuse BIO_INLINE_VECS for integrity bvecs ... |
|
|
|
4f016a316f |
New code for 5.12:
- Adjust the final parameter of iomap_dio_rw.
- Add a new flag to request that iomap directio writes return EAGAIN if
the write is not a pure overwrite within EOF; this will be used to
reduce lock contention with unaligned direct writes on XFS.
- Amend XFS' directio code to eliminate exclusive locking for unaligned
direct writes if the circumstances permit
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmAZgQAACgkQ+H93GTRK
tOtNqw/+KPff1NjQVK2k361R0+LjlEHfe2nxh7+kS10IiR5nbBz4Fu+GwEosZKq+
H9ficBbZ0wIveV+5CEt2xZLEJFC4LZUpNPVVrUf8XPLKiVexP/U3wtKzmv9Z7D5J
5walMWQycVeR+ycomynV36giqekvARL7KCQG5By2ITfSNxfnb/wvKhn1d61ZDOF6
f4xzq7F6+cEOrSZt2LcFzGSfsTl6oakYMAomPU57sqGmw7MHRqoPTErbdh2HnVJy
yQ47eiZgSKWKA+Qm+VvHHePYCYnu0nvA2rbNerjTN70hnO8rK9S0Vle6Sp5CUqAX
sXOy8zxOLYKqyM4S/QkIN2TGIyWg+CHiakVLZGF3Q4AUDDYfpD0cHvAe9N3v9euL
qt8ypT8dz2C3qiTg5E31xy033wlAP0wg3FZiLAqEjL5o3fzD+qbplTiSmYbMV2Fb
xuu7a2T6u1MHaIn1IhaL0cB49Fzn+5EMyp6BlAucAOakyuqJCyJiXokdk0Looy5e
jUshvcwWcmHMpI/YYYY6t56KV6tl2exGq5sySY5U6dr8/r5lwc0SI+TrYFG0jTR8
59DGd5CkKgdBFcuys+eaZDXgr7A4ymkVE+pE0QNDz9UwNP20tLb3dQNlhgxchUgu
NgPaFgQkoNM3HmQNyU2wX/t1aFlC/doqSkb/96UWQSxq6IrajMU=
=AR07
-----END PGP SIGNATURE-----
Merge tag 'iomap-5.12-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull iomap updates from Darrick Wong:
"The big change in this cycle is some new code to make it possible for
XFS to try unaligned directio overwrites without taking locks. If the
block is fully written and within EOF (i.e. doesn't require any
further fs intervention) then we can let the unlocked write proceed.
If not, we fall back to synchronizing direct writes.
Summary:
- Adjust the final parameter of iomap_dio_rw.
- Add a new flag to request that iomap directio writes return EAGAIN
if the write is not a pure overwrite within EOF; this will be used
to reduce lock contention with unaligned direct writes on XFS.
- Amend XFS' directio code to eliminate exclusive locking for
unaligned direct writes if the circumstances permit"
* tag 'iomap-5.12-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: reduce exclusive locking on unaligned dio
xfs: split the unaligned DIO write code out
xfs: improve the reflink_bounce_dio_write tracepoint
xfs: simplify the read/write tracepoints
xfs: remove the buffered I/O fallback assert
xfs: cleanup the read/write helper naming
xfs: make xfs_file_aio_write_checks IOCB_NOWAIT-aware
xfs: factor out a xfs_ilock_iocb helper
iomap: add a IOMAP_DIO_OVERWRITE_ONLY flag
iomap: pass a flags argument to iomap_dio_rw
iomap: rename the flags variable in __iomap_dio_rw
|
|
|
|
6f3952cbe0 |
for-5.12-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAqyGEACgkQxWXV+ddt
WDuU6BAAhfI5BndMm6a1LooMsBHTR7Mh/aFXZEKX7vCDRnrkr+WiihDFhXu4tH3y
arRsdwMnJCnta2/JMI5xCZZRg9Bsb/Sa0qWoR9sDBVoGRMnE1DS5YHQyv0bfJYk0
qYOW/jorBV1n/hL19+WbDFajwajP86uGtlDKV7cJ/C3lIogQma7zQ7ygwxbDcZqm
ZQVHg7ooM4P1t7EV0eDlatxn0Sm8KFkxXD7dbu37qDLWr3Aw8N4IwT7I9h4b+/tg
hL4dqMPxX6AyRiI0VBsqKnmcRWtT9cN7yw0+J+/JK5KuaFFx3qyZZ+EQu1jAGZDt
2m432YKya8LQfyBuSe8uoCIcczhGoD0EPIhspecDMfWTvxdo+AeTJZzZzj3u1y+v
3pih+gBN1sa8vRVSX08mIBF/k0pPfxRu7gIjvl4wl18bm3Khq5VJ93ImP7DNroNg
bKiUG35K+kvXGBNaLY71zZfO6aLMddK73aDudSbYOS8XcbKhor1G8j5o5/EkcVQA
wio4Gw5BmfVeRuXOl2h1aEXThk+469s0DR7MiMiAA6917cUjQiFUgFOaogR0XY3S
8ffX+S50AFW834J0eIGHPLmzi70WwSSXCS2q+zl87PPRK5+jCp9ZzWGi9MGG1qdh
fp7XVMkzHVSKGK5GXB+ICUfzkShxfTCh+EbxcXIulONxsEdADsc=
=0O6r
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This brings updates of space handling, performance improvements or bug
fixes. The subpage block size and zoned mode features have reached
state where they're usable but with limitations.
Performance or related:
- do not block on deleted block group mutex in the cleaner, avoids
some long stalls
- improved flushing: make it work better with ticket space
reservations and avoid excessive transaction commits in some
scenarios, slightly improves throughput for random write load
- preemptive background flushing: separate the logic from ticket
reservations, improve the accounting and decisions when to flush in
low space conditions
- less lock contention related to running delayed refs, let just one
thread do the flushing when there are many inside transaction
commit
- dbench workload improvements: avoid unnecessary work when logging
inodes, fewer fallbacks to transaction commit and thus less waiting
for it (+7% throughput, -20% latency)
Core:
- subpage block size
- currently read-only support
- refactor and generalize code where sectorsize is assumed to be
page size, add the subpage handling everywhere
- the read-write support is on the way, page sizes are still
limited to 4K or 64K
- zoned mode, first working version but with limitations
- SMR/ZBC/ZNS friendly allocation mode, utilizing the "no fixed
location for structures" and chunked allocation
- superblock as the only fixed data structure needs special
handling, uses 2 consecutive zones as a ring buffer
- tree-log support with a dedicated block group to avoid unordered
writes
- emulated zones on non-zoned devices
- not yet working
- all non-single block group profiles, requires more zone write
pointer synchronization between the multiple block groups
- fitrim due to dependency on space cache, can be implemented
Fixes:
- ref-verify: proper tree owner and node level tracking
- fix pinned byte accounting, causing some early ENOSPC now more
likely due to other changes in delayed refs
Other:
- error handling fixes and improvements
- more error injection points
- more function documentation
- more and updated tracepoints
- subset of W=1 checked by default
- update comments to allow more automatic kdoc parameter checks"
* tag 'for-5.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (144 commits)
btrfs: zoned: enable to mount ZONED incompat flag
btrfs: zoned: deal with holes writing out tree-log pages
btrfs: zoned: reorder log node allocation on zoned filesystem
btrfs: zoned: serialize log transaction on zoned filesystems
btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
btrfs: split alloc_log_tree()
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems
btrfs: zoned: enable relocation on a zoned filesystem
btrfs: zoned: support dev-replace in zoned filesystems
btrfs: zoned: implement copying for zoned device-replace
btrfs: zoned: implement cloning for zoned device-replace
btrfs: zoned: mark block groups to copy for device-replace
btrfs: zoned: do not use async metadata checksum on zoned filesystems
btrfs: zoned: wait for existing extents before truncating
btrfs: zoned: serialize metadata IO
btrfs: zoned: introduce dedicated data write path for zoned filesystems
btrfs: zoned: enable zone append writing for direct IO
btrfs: zoned: use ZONE_APPEND write for zoned mode
btrfs: save irq flags when looking up an ordered extent
btrfs: zoned: cache if block group is on a sequential zone
...
|
|
|
|
e42ee56fe5 |
for-5.11-rc7-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAmlkAACgkQxWXV+ddt WDuwNxAAiBAhEwPllzyU86p4RMMip5pa24zu11HkTya65yGk6EFuj4zTlx/L5Fn6 JOjxwlPqaTItER1PYJ5HRdIy1Y2E4eWEiDLolvmvDCPZrfKRKhBU1MZbgXwDbp+Z pwaJGIm5ZaXDGyuFge3bKA48BERfqxRBO3qIOZ0tzgsUFLlZ2d9EdDc99093/J6k QzIijXQjFnvnB2MNawN1b/KQ63xqXLo2hemKcKIFCxJHm9eaet/qwGHl5iuR5ScY bOGCWvLSkCXceartDur3msOZXur09YLyfeYmE9dj1FN3aNu97sW8VivWRrs3aglK if51iYrrjKSnDr4SOK28S5UYdgeStb/qWWtosdcMsQVBo0t7iCnGT2psGaQCkdfG FChqbs2uXlbJrojlelV6xbaU3S2D2MtSz5mF+I2G5MpQbj1jkhYE9ZTUQeibcd7o l+edn/VJvVK4X0NAX8pIWJ4nFY1HqUTyfn28IQ7ymBhyyUloIoazvSkBuSWy6iy0 9aPpohOKjCw8Y3MbgcIfIEJhdK+aIKF8ZPh52+zcXQzf1OtSryVarLHsNXWm9vJ8 tHsRHCzrbLFdAXZccT6YlerzPs4+PVf44UknDbFCg7sLcG04NIGGrMXOtTHwgEZL BEywTjAMlMDjrEXouxYAPNPnEg/NlvQGZYRvBnxrtZE4G2fxJ7o= =7w6G -----END PGP SIGNATURE----- Merge tag 'for-5.11-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "A regression fix caused by a refactoring in 5.11. A corrupted superblock wouldn't be detected by checksum verification due to wrongly placed initialization of the checksum length, thus making memcmp always work" * tag 'for-5.11-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: initialize fs_info::csum_size earlier in open_ctree |
|
|
|
83c68bbcb6 |
btrfs: initialize fs_info::csum_size earlier in open_ctree
User reported that btrfs-progs misc-tests/028-superblock-recover fails:
[TEST/misc] 028-superblock-recover
unexpected success: mounted fs with corrupted superblock
test failed for case 028-superblock-recover
The test case expects that a broken image with bad superblock will be
rejected to be mounted. However, the test image just passed csum check
of superblock and was successfully mounted.
Commit
|
|
|
|
9d294a685f |
btrfs: zoned: enable to mount ZONED incompat flag
This final patch adds the ZONED incompat flag to the supported flags and enables to mount ZONED flagged file system. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b528f46713 |
btrfs: zoned: deal with holes writing out tree-log pages
Since the zoned filesystem requires sequential write out of metadata, we cannot proceed with a hole in tree-log pages. When such a hole exists, btree_write_cache_pages() will return -EAGAIN. This happens when someone, e.g., a concurrent transaction commit, writes a dirty extent in this tree-log commit. If we are not going to wait for the extents, we can hope the concurrent writing fills the hole for us. So, we can ignore the error in this case and hope the next write will succeed. If we want to wait for them and got the error, we cannot wait for them because it will cause a deadlock. So, let's bail out to a full commit in this case. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3ddebf27fc |
btrfs: zoned: reorder log node allocation on zoned filesystem
This is the 3/3 patch to enable tree-log on zoned filesystems. The allocation order of nodes of "fs_info->log_root_tree" and nodes of "root->log_root" is not the same as the writing order of them. So, the writing causes unaligned write errors. Reorder the allocation of them by delaying allocation of the root node of "fs_info->log_root_tree," so that the node buffers can go out sequentially to devices. Cc: Filipe Manana <fdmanana@gmail.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fa1a0f42a0 |
btrfs: zoned: serialize log transaction on zoned filesystems
This is the 2/3 patch to enable tree-log on zoned filesystems. Since we can start more than one log transactions per subvolume simultaneously, nodes from multiple transactions can be allocated interleaved. Such mixed allocation results in non-sequential writes at the time of a log transaction commit. The nodes of the global log root tree (fs_info->log_root_tree), also have the same problem with mixed allocation. Serializes log transactions by waiting for a committing transaction when someone tries to start a new transaction, to avoid the mixed allocation problem. We must also wait for running log transactions from another subvolume, but there is no easy way to detect which subvolume root is running a log transaction. So, this patch forbids starting a new log transaction when other subvolumes already allocated the global log root tree. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
40ab3be102 |
btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems. The tree-log feature does not work on a zoned filesystem as is. Blocks for a tree-log tree are allocated mixed with other metadata blocks and btrfs writes and syncs the tree-log blocks to devices at the time of fsync(), which has a different timing than a global transaction commit. As a result, both writing tree-log blocks and writing other metadata blocks become non-sequential writes that zoned filesystems must avoid. Introduce a dedicated block group for tree-log blocks, so that tree-log blocks and other metadata blocks can be separate write streams. As a result, each write stream can now be written to devices separately. "fs_info->treelog_bg" tracks the dedicated block group and assigns "treelog_bg" on-demand on tree-log block allocation time. This commit extends the zoned block allocator to use the block group. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6ab6ebb760 |
btrfs: split alloc_log_tree()
This is a preparation patch for the next patch. Split alloc_log_tree() into two parts. The first one allocating the tree structure, remains in alloc_log_tree() and the second part allocating the tree node, which is moved into btrfs_alloc_log_tree_node(). Also export the latter part is to be used in the next patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f7ef5287a6 |
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems
When a bad checksum is found and if the filesystem has a mirror of the
damaged data, we read the correct data from the mirror and writes it to
damaged blocks. This however, violates the sequential write constraints
of a zoned block device.
We can consider three methods to repair an IO failure in zoned filesystems:
(1) Reset and rewrite the damaged zone
(2) Allocate new device extent and replace the damaged device extent to
the new extent
(3) Relocate the corresponding block group
Method (1) is most similar to a behavior done with regular devices.
However, it also wipes non-damaged data in the same device extent, and
so it unnecessary degrades non-damaged data.
Method (2) is much like device replacing but done in the same device. It
is safe because it keeps the device extent until the replacing finish.
However, extending device replacing is non-trivial. It assumes
"src_dev->physical == dst_dev->physical". Also, the extent mapping
replacing function should be extended to support replacing device extent
position in one device.
Method (3) invokes relocation of the damaged block group and is
straightforward to implement. It relocates all the mirrored device
extents, so it potentially is a more costly operation than method (1) or
(2). But it relocates only used extents which reduce the total IO size.
Let's apply method (3) for now. In the future, we can extend device-replace
and apply method (2).
For protecting a block group gets relocated multiple time with multiple
IO errors, this commit introduces "relocating_repair" bit to show it's
now relocating to repair IO failures. Also it uses a new kthread
"btrfs-relocating-repair", not to block IO path with relocating process.
This commit also supports repairing in the scrub process.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
32430c6148 |
btrfs: zoned: enable relocation on a zoned filesystem
Currently fallocate() is disabled on a zoned filesystem. Since current relocation process relies on preallocation to move file data extents, it must be handled differently. On a zoned filesystem, we just truncate the inode to the size that we wanted to pre-allocate. Then, we flush dirty pages on the file before finishing the relocation process. run_delalloc_zoned() will handle all the allocations and submit IOs to the underlying layers. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7db1c5d14d |
btrfs: zoned: support dev-replace in zoned filesystems
This is 4/4 patch to implement device-replace on zoned filesystems. Even after the copying is done, the write pointers of the source device and the destination device may not be synchronized. For example, when the last allocated extent is freed before device-replace process, the extent is not copied, leaving a hole there. Synchronize the write pointers by writing zeroes to the destination device. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
de17addce7 |
btrfs: zoned: implement copying for zoned device-replace
This is 3/4 patch to implement device-replace on zoned filesystems.
This commit implements copying. To do this, it tracks the write pointer
during the device replace process. As device-replace's copy process is
smart enough to only copy used extents on the source device, we have to
fill the gap to honor the sequential write requirement in the target
device.
The device-replace process on zoned filesystems must copy or clone all
the extents in the source device exactly once. So, we need to ensure
allocations started just before the dev-replace process to have their
corresponding extent information in the B-trees.
finish_extent_writes_for_zoned() implements that functionality, which
basically is the removed code in the commit
|
|
|
|
6143c23ccc |
btrfs: zoned: implement cloning for zoned device-replace
This is 2/4 patch to implement device replace for zoned filesystems. In zoned mode, a block group must be either copied (from the source device to the target device) or cloned (to both devices). Implement the cloning part. If a block group targeted by an IO is marked to copy, we should not clone the IO to the destination device, because the block group is eventually copied by the replace process. This commit also handles cloning of device reset. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
78ce9fc269 |
btrfs: zoned: mark block groups to copy for device-replace
This is the 1/4 patch to support device-replace on zoned filesystems.
We have two types of IOs during the device replace process. One is an IO
to "copy" (by the scrub functions) all the device extents from the source
device to the destination device. The other one is an IO to "clone" (by
handle_ops_on_dev_replace()) new incoming write IOs from users to the
source device into the target device.
Cloning incoming IOs can break the sequential write rule in on target
device. When a write is mapped in the middle of a block group, the IO is
directed to the middle of a target device zone, which breaks the
sequential write requirement.
However, the cloning function cannot be disabled since incoming IOs
targeting already copied device extents must be cloned so that the IO is
executed on the target device.
We cannot use dev_replace->cursor_{left,right} to determine whether a bio
is going to a not yet copied region. Since we have a time gap between
finishing btrfs_scrub_dev() and rewriting the mapping tree in
btrfs_dev_replace_finishing(), we can have a newly allocated device extent
which is never cloned nor copied.
So the point is to copy only already existing device extents. This patch
introduces mark_block_group_to_copy() to mark existing block groups as a
target of copying. Then, handle_ops_on_dev_replace() and dev-replace can
check the flag to do their job.
Also, btrfs_finish_block_group_to_copy() will check if the copied stripe
is the last stripe in the block group. With the last stripe copied,
the to_copy flag is finally disabled. Afterwards we can safely clone
incoming IOs on this block group.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
4eef29ef63 |
btrfs: zoned: do not use async metadata checksum on zoned filesystems
On zoned filesystems, btrfs uses per-fs zoned_meta_io_lock to serialize the metadata write IOs. Even with this serialization, write bios sent from btree_write_cache_pages can be reordered by async checksum workers as these workers are per CPU and not per zone. To preserve write bio ordering, we disable async metadata checksum on a zoned filesystem. This does not result in lower performance with HDDs as a single CPU core is fast enough to do checksum for a single zone write stream with the maximum possible bandwidth of the device. If multiple zones are being written simultaneously, HDD seek overhead lowers the achievable maximum bandwidth, resulting again in a per zone checksum serialization not affecting the performance. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
24c0a7227f |
btrfs: zoned: wait for existing extents before truncating
When truncating a file, file buffers which have already been allocated but not yet written may be truncated. Truncating these buffers could cause breakage of a sequential write pattern in a block group if the truncated blocks are for example followed by blocks allocated to another file. To avoid this problem, always wait for write out of all unwritten buffers before proceeding with the truncate execution. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0bc09ca129 |
btrfs: zoned: serialize metadata IO
We cannot use zone append for writing metadata, because the B-tree nodes have references to each other using logical address. Without knowing the address in advance, we cannot construct the tree in the first place. So we need to serialize write IOs for metadata. We cannot add a mutex around allocation and submission because metadata blocks are allocated in an earlier stage to build up B-trees. Add a zoned_meta_io_lock and hold it during metadata IO submission in btree_write_cache_pages() to serialize IOs. Furthermore, this adds a per-block group metadata IO submission pointer "meta_write_pointer" to ensure sequential writing, which can break when attempting to write back blocks in an unfinished transaction. If the writing out failed because of a hole and the write out is for data integrity (WB_SYNC_ALL), it returns EAGAIN. A caller like fsync() code should handle this properly e.g. by falling back to a full transaction commit. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
42c0110009 |
btrfs: zoned: introduce dedicated data write path for zoned filesystems
If more than one IO is issued for one file extent, these IO can be written to separate regions on a device. Since we cannot map one file extent to such a separate area on a zoned filesystem, we need to follow the "one IO == one ordered extent" rule. The normal buffered, uncompressed and not pre-allocated write path (used by cow_file_range()) sometimes does not follow this rule. It can write a part of an ordered extent when specified a region to write e.g., when its called from fdatasync(). Introduce a dedicated (uncompressed buffered) data write path for zoned filesystems, that will COW the region and write it at once. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
544d24f9de |
btrfs: zoned: enable zone append writing for direct IO
Likewise to buffered IO, enable zone append writing for direct IO when its used on a zoned block device. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d8e3fb106f |
btrfs: zoned: use ZONE_APPEND write for zoned mode
Enable zone append writing for zoned mode. When using zone append, a bio is issued to the start of a target zone and the device decides to place it inside the zone. Upon completion the device reports the actual written position back to the host. Three parts are necessary to enable zone append mode. First, modify the bio to use REQ_OP_ZONE_APPEND in btrfs_submit_bio_hook() and adjust the bi_sector to point the beginning of the zone. Second, record the returned physical address (and disk/partno) to the ordered extent in end_bio_extent_writepage() after the bio has been completed. We cannot resolve the physical address to the logical address because we can neither take locks nor allocate a buffer in this end_bio context. So, we need to record the physical address to resolve it later in btrfs_finish_ordered_io(). And finally, rewrite the logical addresses of the extent mapping and checksum data according to the physical address using btrfs_rmap_block. If the returned address matches the originally allocated address, we can skip this rewriting process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
24533f6a9a |
btrfs: save irq flags when looking up an ordered extent
A following patch will add another caller of btrfs_lookup_ordered_extent(), but from a bio's endio context. btrfs_lookup_ordered_extent() uses spin_lock_irq() which unconditionally disables interrupts. Change this to spin_lock_irqsave() so interrupts aren't disabled and re-enabled unconditionally. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
08f455593f |
btrfs: zoned: cache if block group is on a sequential zone
On a zoned filesystem, cache if a block group is on a sequential write only zone. On sequential write only zones, we can use REQ_OP_ZONE_APPEND for writing data, therefore provide btrfs_use_zone_append() to figure out if IO is targeting a sequential write only zone and we can use REQ_OP_ZONE_APPEND for data writing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
138082f366 |
btrfs: extend btrfs_rmap_block for specifying a device
btrfs_rmap_block currently reverse-maps the physical addresses on all devices to the corresponding logical addresses. Extend the function to match to a specified device. The old functionality of querying all devices is left intact by specifying NULL as target device. A block_device instead of a btrfs_device is passed into btrfs_rmap_block, as this function is intended to reverse-map the result of a bio, which only has a block_device. Also export the function for later use. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cacb2cea46 |
btrfs: zoned: check if bio spans across an ordered extent
To ensure that an ordered extent maps to a contiguous region on disk, we need to maintain a "one bio == one ordered extent" rule. Ensure that constructing bio does not span more than an ordered extent. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d22002fd37 |
btrfs: zoned: split ordered extent when bio is sent
For a zone append write, the device decides the location the data is being written to. Therefore we cannot ensure that two bios are written consecutively on the device. In order to ensure that an ordered extent maps to a contiguous region on disk, we need to maintain a "one bio == one ordered extent" rule. Implement splitting of an ordered extent and extent map on bio submission to adhere to the rule. extract_ordered_extent() hooks into btrfs_submit_data_bio() and splits the corresponding ordered extent so that the ordered extent's region fits into one bio and the corresponding device limits. Several sanity checks need to be done in extract_ordered_extent() e.g. - We cannot split once end_bio'd ordered extent because we cannot divide ordered->bytes_left for the split ones - We do not expect a compressed ordered extent - We should not have checksum list because we omit the list splitting. Since the function is called before btrfs_wq_submit_bio() or btrfs_csum_one_bio(), this should be always ensured. We also need to split an extent map by creating a new one. If not, unpin_extent_cache() complains about the difference between the start of the extent map and the file's logical offset. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cfe94440d1 |
btrfs: zoned: handle REQ_OP_ZONE_APPEND as writing
Zoned filesystems use REQ_OP_ZONE_APPEND bios for writing to actual devices. Let btrfs_end_bio() and btrfs_op be aware of it, by mapping REQ_OP_ZONE_APPEND to BTRFS_MAP_WRITE and using btrfs_op() instead of bio_op(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e1326f0339 |
btrfs: zoned: use bio_add_zone_append_page
A zoned device has its own hardware restrictions e.g. max_zone_append_size when using REQ_OP_ZONE_APPEND. To follow these restrictions, use bio_add_zone_append_page() instead of bio_add_page(). We need target device to use bio_add_zone_append_page(), so this commit reads the chunk information to cache the target device to btrfs_io_bio(bio)->device. Caching only the target device is sufficient here as zoned filesystems only supports the single profile at the moment. Once more profiles will be supported btrfs_io_bio can hold an extent_map to be able to check for the restrictions of all devices the btrfs_bio will be mapped to. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
953651eb30 |
btrfs: factor out helper adding a page to bio
Factor out adding a page to a bio from submit_extent_page(). The page is added only when bio_flags are the same, contiguous and the added page fits in the same stripe as pages in the bio. Condition checks are reordered to allow early return to avoid possibly heavy btrfs_bio_fits_in_stripe() calling. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
dcba6e48b5 |
btrfs: zoned: reset zones of unused block groups
We must reset the zones of a deleted unused block group to rewind the zones' write pointers to the zones' start. To do this, we can use the DISCARD_SYNC code to do the reset when the filesystem is running on zoned devices. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
011b41bffa |
btrfs: zoned: advance allocation pointer after tree log node
Since the allocation info of a tree log node is not recorded in the extent tree, calculate_alloc_pointer() cannot detect this node, so the pointer can be over a tree node. Replaying the log calls btrfs_remove_free_space() for each node in the log tree. So, advance the pointer after the node to not allocate over it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d3575156f6 |
btrfs: zoned: redirty released extent buffers
Tree manipulating operations like merging nodes often release once-allocated tree nodes. Such nodes are cleaned so that pages in the node are not uselessly written out. On zoned volumes, however, such optimization blocks the following IOs as the cancellation of the write out of the freed blocks breaks the sequential write sequence expected by the device. Introduce a list of clean and unwritten extent buffers that have been released in a transaction. Redirty the buffers so that btree_write_cache_pages() can send proper bios to the devices. Besides it clears the entire content of the extent buffer not to confuse raw block scanners e.g. 'btrfs check'. By clearing the content, csum_dirty_buffer() complains about bytenr mismatch, so avoid the checking and checksum using newly introduced buffer flag EXTENT_BUFFER_NO_CHECK. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2eda57089e |
btrfs: zoned: implement sequential extent allocation
Implement a sequential extent allocator for zoned filesystems. This allocator only needs to check if there is enough space in the block group after the allocation pointer to satisfy the extent allocation request. Therefore the allocator never manages bitmaps or clusters. Also, add assertions to the corresponding functions. As zone append writing is used, it would be unnecessary to track the allocation offset, as the allocator only needs to check available space. But by tracking and returning the offset as an allocated region, we can skip modification of ordered extents and checksum information when there is no IO reordering. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
169e0da91a |
btrfs: zoned: track unusable bytes for zones
In a zoned filesystem a once written then freed region is not usable until the underlying zone has been reset. So we need to distinguish such unusable space from usable free space. Therefore we need to introduce the "zone_unusable" field to the block group structure, and "bytes_zone_unusable" to the space_info structure to track the unusable space. Pinned bytes are always reclaimed to the unusable space. But, when an allocated region is returned before using e.g., the block group becomes read-only between allocation time and reservation time, we can safely return the region to the block group. For the situation, this commit introduces "btrfs_add_free_space_unused". This behaves the same as btrfs_add_free_space() on regular filesystem. On zoned filesystems, it rewinds the allocation offset. Because the read-only bytes tracks free but unusable bytes when the block group is read-only, we need to migrate the zone_unusable bytes to read-only bytes when a block group is marked read-only. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a94794d50d |
btrfs: zoned: calculate allocation offset for conventional zones
Conventional zones do not have a write pointer, so we cannot use it to determine the allocation offset for sequential allocation if a block group contains a conventional zone. But instead, we can consider the end of the highest addressed extent in the block group for the allocation offset. For new block group, we cannot calculate the allocation offset by consulting the extent tree, because it can cause deadlock by taking extent buffer lock after chunk mutex, which is already taken in btrfs_make_block_group(). Since it is a new block group anyways, we can simply set the allocation offset to 0. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
08e11a3db0 |
btrfs: zoned: load zone's allocation offset
A zoned filesystem must allocate blocks at the zones' write pointer. The device's write pointer position can be mapped to a logical address within a block group. To facilitate this, add an "alloc_offset" to the block-group to track the logical addresses of the write pointer. This logical address is populated in btrfs_load_block_group_zone_info() from the write pointers of corresponding zones. For now, zoned filesystems the single profile. Supporting non-single profile with zone append writing is not trivial. For example, in the DUP profile, we send a zone append writing IO to two zones on a device. The device reply with written LBAs for the IOs. If the offsets of the returned addresses from the beginning of the zone are different, then it results in different logical addresses. We need fine-grained logical to physical mapping to support such separated physical address issue. Since it should require additional metadata type, disable non-single profiles for now. This commit supports the case all the zones in a block group are sequential. The next patch will handle the case having a conventional zone. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
381a696eb5 |
btrfs: zoned: verify device extent is aligned to zone
Add a check in verify_one_dev_extent() to ensure that a device extent on a zoned block device is aligned to the respective zone boundary. If it isn't, mark the filesystem as unclean. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1cd6121f2a |
btrfs: zoned: implement zoned chunk allocator
Implement a zoned chunk and device extent allocator. One device zone becomes a device extent so that a zone reset affects only this device extent and does not change the state of blocks in the neighbor device extents. To implement the allocator, we need to extend the following functions for a zoned filesystem. - init_alloc_chunk_ctl - dev_extent_search_start - dev_extent_hole_check - decide_stripe_size init_alloc_chunk_ctl_zoned() is mostly the same as regular one. It always set the stripe_size to the zone size and aligns the parameters to the zone size. dev_extent_search_start() only aligns the start offset to zone boundaries. We don't care about the first 1MB like in regular filesystem because we anyway reserve the first two zones for superblock logging. dev_extent_hole_check_zoned() checks if zones in given hole are either conventional or empty sequential zones. Also, it skips zones reserved for superblock logging. With the change to the hole, the new hole may now contain pending extents. So, in this case, loop again to check that. Finally, decide_stripe_size_zoned() should shrink the number of devices instead of stripe size because we need to honor stripe_size == zone_size. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3c9daa09cc |
btrfs: zoned: allow zoned filesystems on non-zoned block devices
Run a zoned filesystem on non-zoned devices. This is done by "slicing up" the block device into static sized chunks and fake a conventional zone on each of them. The emulated zone size is determined from the size of device extent. This is mainly aimed at testing of zoned filesystems, i.e. the zoned chunk allocator, on regular block devices. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1cb3dc3f79 |
btrfs: zoned: disallow fitrim on zoned filesystems
The implementation of fitrim depends on space cache, which is not used and disabled for zoned extent allocator. So the current code does not work with zoned filesystem. In the future, we can implement fitrim for zoned filesystems by enabling space cache (but, only for fitrim) or scanning the extent tree at fitrim time. For now, disallow fitrim on zoned filesystems. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b53429bad3 |
btrfs: zoned: do not load fs_info::zoned from incompat flag
Don't set the zoned flag in fs_info as soon as we're encountering the incompat filesystem flag for a zoned filesystem on mount. The zoned flag in fs_info is in a union together with the zone_size, so setting it too early will result in setting an incorrect zone_size as well. Once the correct zone_size is read from the device, we can rely on the zoned flag in fs_info as well to determine if the filesystem is zoned. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4afd2fe835 |
btrfs: release path before calling to btrfs_load_block_group_zone_info
Since we have no write pointer in conventional zones, we cannot determine the allocation offset from it. Instead, we set the allocation offset after the highest addressed extent. This is done by reading the extent tree in btrfs_load_block_group_zone_info(). However, this function is called from btrfs_read_block_groups(), so the read lock for the tree node could be recursively taken. To avoid this unsafe locking scenario, release the path before reading the extent tree to get the allocation offset. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d6639b35da |
btrfs: zoned: use regular super block location on zone emulation
A zoned filesystem currently has a superblock at the beginning of the superblock logging zones if the zones are conventional. This difference in superblock position causes a chicken-and-egg problem for filesystems with emulated zones. Since the device is a regular (non-zoned) device, we cannot know if the filesystem is regular or zoned while reading the superblock. But, to load the superblock, we need to see if it is emulated zoned or not. Place the superblocks at the same location as they are on regular filesystem on regular devices to solve the problem. It is possible because it's ensured that all the superblock locations are at an (emulated) conventional zone on regular devices. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7365104236 |
btrfs: zoned: defer loading zone info after opening trees
This is a preparation patch to implement zone emulation on a regular device. To emulate a zoned filesystem on a regular (non-zoned) device, we need to decide an emulated zone size. Instead of making it a compile-time static value, we'll make it configurable at mkfs time. Since we have one zone == one device extent restriction, we can determine the emulated zone size from the size of a device extent. We can extend btrfs_get_dev_zone_info() to show a regular device filled with conventional zones once the zone size is decided. The current call site of btrfs_get_dev_zone_info() during the mount process is earlier than loading the file system trees so that we don't know the size of a device extent at this point. Thus we can't slice a regular device to conventional zones. This patch introduces btrfs_get_dev_zone_info_all_devices to load the zone info for all the devices. And, it places this function in open_ctree() after loading the trees. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
72c9925f87 |
btrfs: fix extent buffer leak on failure to copy root
At btrfs_copy_root(), if the call to btrfs_inc_ref() fails we end up
returning without unlocking and releasing our reference on the extent
buffer named "cow" we previously allocated with btrfs_alloc_tree_block().
So fix that by unlocking the extent buffer and dropping our reference on
it before returning.
Fixes:
|
|
|
|
2c4d8cb737 |
btrfs: explain page locking and readahead in read_extent_buffer_pages()
In read_extent_buffer_pages(), if we failed to lock the page atomically, we just exit with return value 0. This is counter-intuitive, as normally if we can't lock what we need, we would return something like EAGAIN. But that return hides under (wait == WAIT_NONE) branch, which only gets triggered for readahead. And for readahead, if we failed to lock the page, it means the extent buffer is either being read by other thread, or has been read and is under modification. Either way the eb will or has been cached, thus readahead has no need to wait for it. Add comment on this counter-intuitive behavior. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0bb3eb3ee8 |
btrfs: allow read-only mount of 4K sector size fs on 64K page system
This adds the basic RO mount ability for 4K sector size on 64K page system. Currently we only plan to support 4K and 64K page system. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
92082d4097 |
btrfs: integrate page status update for data read path into begin/end_page_read
In btrfs data page read path, the page status update are handled in two
different locations:
btrfs_do_read_page()
{
while (cur <= end) {
/* No need to read from disk */
if (HOLE/PREALLOC/INLINE){
memset();
set_extent_uptodate();
continue;
}
/* Read from disk */
ret = submit_extent_page(end_bio_extent_readpage);
}
end_bio_extent_readpage()
{
endio_readpage_uptodate_page_status();
}
This is fine for sectorsize == PAGE_SIZE case, as for above loop we
should only hit one branch and then exit.
But for subpage, there is more work to be done in page status update:
- Page Unlock condition
Unlike regular page size == sectorsize case, we can no longer just
unlock a page.
Only the last reader of the page can unlock the page.
This means, we can unlock the page either in the while() loop, or in
the endio function.
- Page uptodate condition
Since we have multiple sectors to read for a page, we can only mark
the full page uptodate if all sectors are uptodate.
To handle both subpage and regular cases, introduce a pair of functions
to help handling page status update:
- begin_page_read()
For regular case, it does nothing.
For subpage case, it updates the reader counters so that later
end_page_read() can know who is the last one to unlock the page.
- end_page_read()
This is just endio_readpage_uptodate_page_status() renamed.
The original name is a little too long and too specific for endio.
The new thing added is the condition for page unlock.
Now for subpage data, we unlock the page if we're the last reader.
This does not only provide the basis for subpage data read, but also
hide the special handling of page read from the main read loop.
Also, since we're changing how the page lock is handled, there are two
existing error paths where we need to manually unlock the page before
calling begin_page_read().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
32443de338 |
btrfs: introduce btrfs_subpage for data inodes
To support subpage sector size, data also need extra info to make sure which sectors in a page are uptodate/dirty/... This patch will make pages for data inodes get btrfs_subpage structure attached, and detached when the page is freed. This patch also slightly changes the timing when set_page_extent_mapped() is called to make sure: - We have page->mapping set page->mapping->host is used to grab btrfs_fs_info, thus we can only call this function after page is mapped to an inode. One call site attaches pages to inode manually, thus we have to modify the timing of set_page_extent_mapped() a bit. - As soon as possible, before other operations Since memory allocation can fail, we have to do extra error handling. Calling set_page_extent_mapped() as soon as possible can simply the error handling for several call sites. The idea is pretty much the same as iomap_page, but with more bitmaps for btrfs specific cases. Currently the plan is to switch iomap if iomap can provide sector aligned write back (only write back dirty sectors, but not the full page, data balance require this feature). So we will stick to btrfs specific bitmap for now. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
371cdc0700 |
btrfs: introduce subpage metadata validation check
For subpage metadata validation check, there are some differences: - Read must finish in one bvec Since we're just reading one subpage range in one page, it should never be split into two bios nor two bvecs. - How to grab the existing eb Instead of grabbing eb using page->private, we have to go search radix tree as we don't have any direct pointer at hand. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4325cb2293 |
btrfs: support subpage in endio_readpage_update_page_status()
To handle subpage status update, add the following: - Use btrfs_page_*() subpage-aware helpers to update page status Now we can handle both cases well. - No page unlock for subpage metadata Since subpage metadata doesn't utilize page locking at all, skip it. For subpage data locking, it's handled in later commits. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4012daf769 |
btrfs: introduce read_extent_buffer_subpage()
Introduce a helper, read_extent_buffer_subpage(), to do the subpage extent buffer read. The difference between regular and subpage routines are: - No page locking Here we completely rely on extent locking. Page locking can reduce the concurrency greatly, as if we lock one page to read one extent buffer, all the other extent buffers in the same page will have to wait. - Extent uptodate condition Despite the existing PageUptodate() and EXTENT_BUFFER_UPTODATE check, We also need to check btrfs_subpage::uptodate_bitmap. - No page iteration Just one page, no need to loop, this greatly simplified the subpage routine. This patch only implements the bio submit part, no endio support yet. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d1e86e3fc3 |
btrfs: support subpage in try_release_extent_buffer()
Unlike the original try_release_extent_buffer(), try_release_subpage_extent_buffer() will iterate through all the ebs in the page, and try to release each. We can release the full page only after there's no private attached, which means all ebs of that page have been released as well. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
92d83e9436 |
btrfs: support subpage in btrfs_clone_extent_buffer
For btrfs_clone_extent_buffer(), it's mostly the same code of __alloc_dummy_extent_buffer(), except it has extra page copy. So to make it subpage compatible, we only need to: - Call set_extent_buffer_uptodate() instead of SetPageUptodate() This will set correct uptodate bit for subpage and regular sector size cases. Since we're calling set_extent_buffer_uptodate() which will also set EXTENT_BUFFER_UPTODATE bit, we don't need to manually set that bit either. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
251f2acc71 |
btrfs: support subpage in set/clear_extent_buffer_uptodate()
To support subpage in set_extent_buffer_uptodate and clear_extent_buffer_uptodate we only need to use the subpage-aware helpers to update the page bits. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
03a816b32b |
btrfs: introduce helpers for subpage error status
Introduce the following functions to handle subpage error status: - btrfs_subpage_set_error() - btrfs_subpage_clear_error() - btrfs_subpage_test_error() These helpers can only be called when the page has subpage attached and the range is ensured to be inside the page. - btrfs_page_set_error() - btrfs_page_clear_error() - btrfs_page_test_error() These helpers can handle both regular sector size and subpage without problem. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a1d767c11c |
btrfs: introduce helpers for subpage uptodate status
Introduce the following functions to handle subpage uptodate status: - btrfs_subpage_set_uptodate() - btrfs_subpage_clear_uptodate() - btrfs_subpage_test_uptodate() These helpers can only be called when the page has subpage attached and the range is ensured to be inside the page. - btrfs_page_set_uptodate() - btrfs_page_clear_uptodate() - btrfs_page_test_uptodate() These helpers can handle both regular sector size and subpage. Although caller should still ensure that the range is inside the page. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
09bc1f0fb8 |
btrfs: attach private to dummy extent buffer pages
There are locations where we allocate dummy extent buffers for temporary usage, like in tree_mod_log_rewind() or get_old_root(). These dummy extent buffers will be handled by the same eb accessors, and if they don't have page::private subpage eb accessors could fail. To address such problems, make __alloc_dummy_extent_buffer() attach page private for dummy extent buffers too. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8ff8466d29 |
btrfs: support subpage for extent buffer page release
In btrfs_release_extent_buffer_pages(), we need to add extra handling for subpage. Introduce a helper, detach_extent_buffer_page(), to do different handling for regular and subpage cases. For subpage case, handle detaching page private. For unmapped (dummy or cloned) ebs, we can detach the page private immediately as the page can only be attached to one unmapped eb. For mapped ebs, we have to ensure there are no eb in the page range before we delete it, as page->private is shared between all ebs in the same page. But there is a subpage specific race, where we can race with extent buffer allocation, and clear the page private while new eb is still being utilized, like this: Extent buffer A is the new extent buffer which will be allocated, while extent buffer B is the last existing extent buffer of the page. T1 (eb A) | T2 (eb B) -------------------------------+------------------------------ alloc_extent_buffer() | btrfs_release_extent_buffer_pages() |- p = find_or_create_page() | | |- attach_extent_buffer_page() | | | | |- detach_extent_buffer_page() | | |- if (!page_range_has_eb()) | | | No new eb in the page range yet | | | As new eb A hasn't yet been | | | inserted into radix tree. | | |- btrfs_detach_subpage() | | |- detach_page_private(); |- radix_tree_insert() | Then we have a metadata eb whose page has no private bit. To avoid such race, we introduce a subpage metadata-specific member, btrfs_subpage::eb_refs. In alloc_extent_buffer() we increase eb_refs in the critical section of private_lock. Then page_range_has_eb() will return true for detach_extent_buffer_page(), and will not detach page private. The section is marked by: - btrfs_page_inc_eb_refs() - btrfs_page_dec_eb_refs() Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
819822107d |
btrfs: make grab_extent_buffer_from_page() handle subpage case
For subpage case, grab_extent_buffer() can't really get an extent buffer just from btrfs_subpage. We have radix tree lock protecting us from inserting the same eb into the tree. Thus we don't really need to do the extra hassle, just let alloc_extent_buffer() handle the existing eb in radix tree. Now if two ebs are being allocated as the same time, one will fail with -EEIXST when inserting into the radix tree. So for grab_extent_buffer(), just always return NULL for subpage case. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
760f991f14 |
btrfs: make attach_extent_buffer_page() handle subpage case
For subpage case, we need to allocate additional memory for each metadata page. So we need to: - Allow attach_extent_buffer_page() to return int to indicate allocation failure - Allow manually pre-allocate subpage memory for alloc_extent_buffer() As we don't want to use GFP_ATOMIC under spinlock, we introduce btrfs_alloc_subpage() and btrfs_free_subpage() functions for this purpose. (The simple wrap for btrfs_free_subpage() is for later convert to kmem_cache. Already internally tested without problem) - Preallocate btrfs_subpage structure for alloc_extent_buffer() We don't want to call memory allocation with spinlock held, so do preallocation before we acquire mapping->private_lock. - Handle subpage and regular case differently in attach_extent_buffer_page() For regular case, no change, just do the usual thing. For subpage case, allocate new memory or use the preallocated memory. For future subpage metadata, we will make use of radix tree to grab extent buffer. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
cac06d843f |
btrfs: introduce the skeleton of btrfs_subpage structure
For sectorsize < page size support, we need a structure to record extra status info for each sector of a page. Introduce the skeleton structure, all subpage related code would go to subpage.[ch]. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
62c053fbb2 |
btrfs: set UNMAPPED bit early in btrfs_clone_extent_buffer() for subpage support
For the incoming subpage support, UNMAPPED extent buffer will have different behavior in btrfs_release_extent_buffer(). This means we need to set UNMAPPED bit early before calling btrfs_release_extent_buffer(). Currently there is only one caller which relies on btrfs_release_extent_buffer() in its error path while set UNMAPPED bit late: - btrfs_clone_extent_buffer() Make it subpage compatible by setting the UNMAPPED bit early, since we're here, also move the UPTODATE bit early. There is another caller, __alloc_dummy_extent_buffer(), setting UNMAPPED bit late, but that function clean up the allocated page manually, thus no need for any modification. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6869b0a8be |
btrfs: merge PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK to PAGE_START_WRITEBACK
PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK are two defines used in __process_pages_contig(), to let the function know to clear page dirty bit and then set page writeback. However page writeback and dirty bits are conflicting (at least for sector size == PAGE_SIZE case), this means these two have to be always updated together. This means we can merge PAGE_CLEAR_DIRTY and PAGE_SET_WRITEBACK to PAGE_START_WRITEBACK. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d0c2f4fa55 |
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Often an fsync needs to fallback to a transaction commit for several reasons (to ensure consistency after a power failure, a new block group was allocated or a temporary error such as ENOMEM or ENOSPC happened). In that case the log is marked as needing a full commit and any concurrent tasks attempting to log inodes or commit the log will also fallback to the transaction commit. When this happens they all wait for the task that first started the transaction commit to finish the transaction commit - however they wait until the full transaction commit happens, which is not needed, as they only need to wait for the superblocks to be persisted and not for unpinning all the extents pinned during the transaction's lifetime, which even for short lived transactions can be a few thousand and take some significant amount of time to complete - for dbench workloads I have observed up to 4~5 milliseconds of time spent unpinning extents in the worst cases, and the number of pinned extents was between 2 to 3 thousand. So allow fsync tasks to skip waiting for the unpinning of extents when they call btrfs_commit_transaction() and they were not the task that started the transaction commit (that one has to do it, the alternative would be to offload the transaction commit to another task so that it could avoid waiting for the extent unpinning or offload the extent unpinning to another task). This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit After applying the entire patchset, dbench shows improvements in respect to throughput and latency. The script used to measure it is the following: $ cat dbench-test.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-m single -d single" echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $DEV &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 300 64 umount $MNT The test was run on a physical machine with 12 cores (Intel corei7), 64G of ram, using a NVMe device and a non-debug kernel configuration (Debian's default configuration). Before applying patchset, 32 clients: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX |
|
|
|
64d6b281ba |
btrfs: remove unnecessary check_parent_dirs_for_sync()
Whenever we fsync an inode, if it is a directory, a regular file that was created in the current transaction or has last_unlink_trans set to the generation of the current transaction, we check if any of its ancestor inodes (and the inode itself if it is a directory) can not be logged and need a fallback to a full transaction commit - if so, we return with a value of 1 in order to fallback to a transaction commit. However we often do not need to fallback to a transaction commit because: 1) The ancestor inode is not an immediate parent, and therefore there is not an explicit request to log it and it is not needed neither to guarantee the consistency of the inode originally asked to be logged (fsynced) nor its immediate parent; 2) The ancestor inode was already logged before, in which case any link, unlink or rename operation updates the log as needed. So for these two cases we can avoid an unnecessary transaction commit. Therefore remove check_parent_dirs_for_sync() and add a check at the top of btrfs_log_inode() to make us fallback immediately to a transaction commit when we are logging a directory inode that can not be logged and needs a full transaction commit. All we need to protect is the case where after renaming a file someone fsyncs only the old directory, which would result is losing the renamed file after a log replay. This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit Performance results, after applying all patches, are mentioned in the change log of the last patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0e44cb3f94 |
btrfs: skip logging inodes already logged when logging new entries
When logging new directory entries of a directory, we log the inodes of new dentries and the inodes of dentries pointing to directories that may have been created in past transactions. For the case of directories we log in full mode, which can be particularly expensive for large directories. We do use btrfs_inode_in_log() to skip already logged inodes, however for that helper to return true, it requires that the log transaction used to log the inode to be already committed. This means that when we have more than one task using the same log transaction we can end up logging an inode multiple times, which is a waste of time and not necessary since the log will be committed by one of the tasks and the others will wait for the log transaction to be committed before returning to user space. So simply replace the use of btrfs_inode_in_log() with the new helper function need_log_inode(), introduced in a previous commit. This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit Performance results, after applying all patches, are mentioned in the change log of the last patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3e6a86a193 |
btrfs: skip logging directories already logged when logging all parents
Some times when we fsync an inode we need to do a full log of all its ancestors (due to unlink, link or rename operations), which can be an expensive operation, specially if the directories are large. However if we find an ancestor directory inode that is already logged in the current transaction, and has no inserted/updated/deleted xattrs since it was last logged, we can skip logging the directory again. We are safe to skip that since we know that for logged directories, any link, unlink or rename operations that implicate the directory will update the log as necessary. So use the helper need_log_dir(), introduced in a previous commit, to detect already logged directories that can be skipped. This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit Performance results, after applying all patches, are mentioned in the change log of the last patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ab12313a9f |
btrfs: avoid logging new ancestor inodes when logging new inode
When we fsync a new file, created in the current transaction, we check all its ancestor inodes and always log them if they were created in the current transaction - even if we have already logged them before, which is a waste of time. So avoid logging new ancestor inodes if they were already logged before and have no xattrs added/updated/removed since they were last logged. This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit Performance results, after applying all patches, are mentioned in the change log of the last patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e593e54ed1 |
btrfs: stop setting nbytes when filling inode item for logging
When we fill an inode item for logging we are setting its nbytes field with the value returned by inode_get_bytes() (a VFS API), however we do not need it because it is not used during log replay. In fact, for fast fsyncs, when we call inode_get_bytes() we may even get an outdated value for nbytes because the nbytes field of the inode is only updated when ordered extents complete, and a fast fsync only waits for writeback to complete, it does not wait for ordered extent completion. So just remove the setup of nbytes and add an explicit comment mentioning why we do not set it. This also avoids adding contention on the inode's i_lock (VFS) with concurrent stat() calls, since that spinlock is used by inode_get_bytes() which is also called by our stat callback (btrfs_getattr()). This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit Performance results, after applying all patches, are mentioned in the change log of the last patch. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ddffcf6fb5 |
btrfs: remove unnecessary directory inode item update when deleting dir entry
When we remove a directory entry, as part of an unlink operation, if the
directory was logged before we must remove the directory index items from
the log. We are also updating the inode item of the directory to update
its i_size, but that is not necessary because during log replay we do not
need it and we correctly adjust the i_size in the inode item of the
subvolume as we process directory index items and replay deletes.
This is not needed since commit
|
|
|
|
4203431319 |
btrfs: let callers of btrfs_get_io_geometry pass the em
Before this change, the btrfs_get_io_geometry() function was calling btrfs_get_chunk_map() to get the extent mapping, necessary for calculating the I/O geometry. It was using that extent mapping only internally and freeing the pointer after its execution. That resulted in calling btrfs_get_chunk_map() de facto twice by the __btrfs_map_block() function. It was calling btrfs_get_io_geometry() first and then calling btrfs_get_chunk_map() directly to get the extent mapping, used by the rest of the function. Change that to passing the extent mapping to the btrfs_get_io_geometry() function as an argument. This could improve performance in some cases. For very large filesystems, i.e. several thousands of allocated chunks, not only this avoids searching two times the rbtree, saving time, it may also help reducing contention on the lock that protects the tree - thinking of writeback starting for multiple inodes, other tasks allocating or removing chunks, and anything else that requires access to the rbtree. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Michal Rostecki <mrostecki@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add Filipe's analysis ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
951c80f83d |
btrfs: fix double accounting of ordered extent for subpage case in btrfs_invalidapge
Commit |
|
|
|
a4559e6f6f |
btrfs: simplify condition in __btrfs_run_delayed_items
Fix the following coccicheck warnings: ./fs/btrfs/delayed-inode.c:1157:39-41: WARNING !A || A && B is equivalent to !A || B. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Suggested-by: Jiapeng Zhong <oswb@linux.alibaba.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Abaci Team <abaci-bugfix@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2965194b77 |
btrfs: remove wrong comment for can_nocow_extent()
The comment for can_nocow_extent() says that the function will flush
ordered extents, however that never happens and was never true before the
comment was added in commit
|
|
|
|
e5ad49e215 |
btrfs: add a trace class for dumping the current ENOSPC state
Often when I'm debugging ENOSPC related issues I have to resort to printing the entire ENOSPC state with trace_printk() in different spots. This gets pretty annoying, so add a trace state that does this for us. Then add a trace point at the end of preemptive flushing so you can see the state of the space_info when we decide to exit preemptive flushing. This helped me figure out we weren't kicking in the preemptive flushing soon enough. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4b02b00fe5 |
btrfs: adjust the flush trace point to include the source
Since we have normal ticketed flushing and preemptive flushing, adjust the tracepoint so that we know the source of the flushing action to make it easier to debug problems. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
88a777a6e5 |
btrfs: implement space clamping for preemptive flushing
Starting preemptive flushing at 50% of available free space is a good start, but some workloads are particularly abusive and can quickly overwhelm the preemptive flushing code and drive us into using tickets. Handle this by clamping down on our threshold for starting and continuing to run preemptive flushing. This is particularly important for our overcommit case, as we can really drive the file system into overages and then it's more difficult to pull it back as we start to actually fill up the file system. The clamping is essentially 2^CLAMP, but we start at 1 so whatever we calculate for overcommit is the baseline. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2e294c6049 |
btrfs: simplify the logic in need_preemptive_flushing
A lot of this was added all in one go with no explanation, and is a bit unwieldy and confusing. Simplify the logic to start preemptive flushing if we've reserved more than half of our available free space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9f42d37748 |
btrfs: rework btrfs_calc_reclaim_metadata_size
Currently btrfs_calc_reclaim_metadata_size does two things, it returns the space currently required for flushing by the tickets, and if there are no tickets it calculates a value for the preemptive flushing. However for the normal ticketed flushing we really only care about the space required for tickets. We will accidentally come in and flush one time, but as soon as we see there are no tickets we bail out of our flushing. Fix this by making btrfs_calc_reclaim_metadata_size really only tell us what is required for flushing if we have people waiting on space. Then move the preemptive flushing logic into need_preemptive_reclaim(). We ignore btrfs_calc_reclaim_metadata_size() in need_preemptive_reclaim() because if we are in this path then we made our reservation and there are not pending tickets currently, so we do not need to check it, simply do the fuzzy logic to check if we're getting low on space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f205edf773 |
btrfs: check reclaim_size in need_preemptive_reclaim
If we're flushing space for tickets then we have space_info->reclaim_size set and we do not need to do background reclaim. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ae7913ba52 |
btrfs: rename need_do_async_reclaim
All of our normal flushing is asynchronous reclaim, so this helper is poorly named. This is more checking if we need to preemptively flush space, so rename it to need_preemptive_reclaim. Also switch it to bool and make it plain static as followup patches will move more code here. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
576fa34830 |
btrfs: improve preemptive background space flushing
Currently if we ever have to flush space because we do not have enough we allocate a ticket and attach it to the space_info, and then systematically flush things in the filesystem that hold space reservations until our space is reclaimed. However this has a latency cost, we must go to sleep and wait for the flushing to make progress before we are woken up and allowed to continue doing our work. In order to address that we used to kick off the async worker to flush space preemptively, so that we could be reclaiming space hopefully before any tasks needed to stop and wait for space to reclaim. When I introduced the ticketed ENOSPC stuff this broke slightly in the fact that we were using tickets to indicate if we were done flushing. No tickets, no more flushing. However this meant that we essentially never preemptively flushed. This caused a write performance regression that Nikolay noticed in an unrelated patch that removed the committing of the transaction during btrfs_end_transaction. The behavior that happened pre that patch was btrfs_end_transaction() would see that we were low on space, and it would commit the transaction. This was bad because in this particular case you could end up with thousands and thousands of transactions being committed during the 5 minute reproducer. With the patch to remove this behavior we got much more sane transaction commits, but we ended up slower because we would write for a while, flush, write for a while, flush again. To address this we need to reinstate a preemptive flushing mechanism. However it is distinctly different from our ticketing flushing in that it doesn't have tickets to base it's decisions on. Instead of bolting this logic into our existing flushing work, add another worker to handle this preemptive flushing. Here we will attempt to be slightly intelligent about the things that we flushing, attempting to balance between whichever pool is taking up the most space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f00c42dd4c |
btrfs: introduce a FORCE_COMMIT_TRANS flush operation
Solely for preemptive flushing, we want to be able to force the transaction commit without any of the ambiguity of may_commit_transaction(). This is because may_commit_transaction() checks tickets and such, and in preemptive flushing we already know it'll be helpful, so use this to keep the code nice and clean and straightforward. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5deb17e18e |
btrfs: track ordered bytes instead of just dio ordered bytes
We track dio_bytes because the shrink delalloc code needs to know if we have more DIO in flight than we have normal buffered IO. The reason for this is because we can't "flush" DIO, we have to just wait on the ordered extents to finish. However this is true of all ordered extents. If we have more ordered space outstanding than dirty pages we should be waiting on ordered extents. We already are ok on this front technically, because we always do a FLUSH_DELALLOC_WAIT loop, but I want to use the ordered counter in the preemptive flushing code as well, so change this to count all ordered bytes instead of just DIO ordered bytes. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ac1ea10e75 |
btrfs: add a trace point for reserve tickets
While debugging a ENOSPC related performance problem I needed to see the time difference between start and end of a reserve ticket, so add a trace point to report when we handle a reserve ticket. I opted to spit out start_ns itself without calculating the difference because there could be a gap between enabling the tracepoint and setting start_ns. Doing it this way allows us to filter on 0 start_ns so we don't get bogus entries, and we can easily calculate the time difference with bpftrace or something else. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
91e79a83ff |
btrfs: make flush_space take a enum btrfs_flush_state instead of int
I got a automated message from somebody who runs clang against our kernels and it's because I used the wrong enum type for what I passed into flush_space, caught by -Wenum-conversion. Change the argument to be explicitly the enum we're expecting to make everything consistent. Maybe eventually gcc will catch errors like this. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8898038309 |
btrfs: send: use struct send_ctx *sctx for btrfs_compare_trees and changed_cb
btrfs_compare_trees and changed_cb use a void *ctx parameter instead of
struct send_ctx *sctx but when used in changed_cb it is immediately
cast to `struct send_ctx *sctx = ctx;`.
changed_cb is only ever called from btrfs_compare_trees and full_send_tree:
- full_send_tree already passes a struct send_ctx *sctx
- btrfs_compare_trees is only called by send_subvol with a struct send_ctx *sctx
- void *ctx in btrfs_compare_trees is only used to be passed to changed_cb
So casting to/from void *ctx seems unnecessary and directly using
struct send_ctx *sctx instead provides better type-safety.
The original reason for using void *ctx in the first place seems to have
been dropped with
|
|
|
|
488bc2a2d2 |
btrfs: run delayed refs less often in commit_cowonly_roots
We love running delayed refs in commit_cowonly_roots, but it is a bit excessive. I was seeing cases of running 3 or 4 refs a few times in a row during this time. Instead simply: - update all of the roots first - then run delayed refs - then handle the empty block groups case - and then if we have any more dirty roots do the whole thing again This allows us to be much more efficient with our delayed ref running, as we can batch a few more operations at once. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
dac348e925 |
btrfs: stop running all delayed refs during snapshot
This was added in commit
|
|
|
|
b7774425e0 |
btrfs: remove bogus BUG_ON in alloc_reserved_tree_block
The fix |
|
|
|
2a4d84c11a |
btrfs: move delayed ref flushing for qgroup into qgroup helper
The commit
|
|
|
|
ad368f3394 |
btrfs: only run delayed refs once before committing
We try to pre-flush the delayed refs when committing, because we want to do as little work as possible in the critical section of the transaction commit. However doing this twice can lead to very long transaction commit delays as other threads are allowed to continue to generate more delayed refs, which potentially delays the commit by multiple minutes in very extreme cases. So simply stick to one pre-flush, and then continue the rest of the transaction commit. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
61a56a992f |
btrfs: delayed refs pre-flushing should only run the heads we have
Previously our delayed ref running used the total number of items as the items to run. However we changed that to number of heads to run with the delayed_refs_rsv, as generally we want to run all of the operations for one bytenr. But with btrfs_run_delayed_refs(trans, 0) we set our count to 2x the number of items that we have. This is generally fine, but if we have some operation generation loads of delayed refs while we're doing this pre-flushing in the transaction commit, we'll just spin forever doing delayed refs. Fix this to simply pick the number of delayed refs we currently have, that way we do not end up doing a lot of extra work that's being generated in other threads. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e19eb11f4f |
btrfs: only let one thread pre-flush delayed refs in commit
I've been running a stress test that runs 20 workers in their own subvolume, which are running an fsstress instance with 4 threads per worker, which is 80 total fsstress threads. In addition to this I'm running balance in the background as well as creating and deleting snapshots. This test takes around 12 hours to run normally, going slower and slower as the test goes on. The reason for this is because fsstress is running fsync sometimes, and because we're messing with block groups we often fall through to btrfs_commit_transaction, so will often have 20-30 threads all calling btrfs_commit_transaction at the same time. These all get stuck contending on the extent tree while they try to run delayed refs during the initial part of the commit. This is suboptimal, really because the extent tree is a single point of failure we only want one thread acting on that tree at once to reduce lock contention. Fix this by making the flushing mechanism a bit operation, to make it easy to use test_and_set_bit() in order to make sure only one task does this initial flush. Once we're into the transaction commit we only have one thread doing delayed ref running, it's just this initial pre-flush that is problematic. With this patch my stress test takes around 90 minutes to run, instead of 12 hours. The memory barrier is not necessary for the flushing bit as it's ordered, unlike plain int. The transaction state accessed in btrfs_should_end_transaction could be affected by that too as it's not always used under transaction lock. Upon Nikolay's analysis in [1] it's not necessary: In should_end_transaction it's read without holding any locks. (U) It's modified in btrfs_cleanup_transaction without holding the fs_info->trans_lock (U), but the STATE_ERROR flag is going to be set. set in cleanup_transaction under fs_info->trans_lock (L) set in btrfs_commit_trans to COMMIT_START under fs_info->trans_lock.(L) set in btrfs_commit_trans to COMMIT_DOING under fs_info->trans_lock.(L) set in btrfs_commit_trans to COMMIT_UNBLOCK under fs_info->trans_lock.(L) set in btrfs_commit_trans to COMMIT_COMPLETED without locks but at this point the transaction is finished and fs_info->running_trans is NULL (U but irrelevant). So by the looks of it we can have a concurrent READ race with a WRITE, due to reads not taking a lock. In this case what we want to ensure is we either see new or old state. I consulted with Will Deacon and he said that in such a case we'd want to annotate the accesses to ->state with (READ|WRITE)_ONCE so as to avoid a theoretical tear, in this case I don't think this could happen but I imagine at some point KCSAN would flag such an access as racy (which it is). [1] https://lore.kernel.org/linux-btrfs/e1fd5cc1-0f28-f670-69f4-e9958b4964e6@suse.com Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add comments regarding memory barrier ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ddfd08cb04 |
btrfs: do not block on deleted bgs mutex in the cleaner
While running some stress tests I started getting hung task messages. This is because the delete unused block groups code has to take the delete_unused_bgs_mutex to do it's work, which is taken by balance to make sure we don't delete block groups while we're balancing. The problem is that balance can take a while, and so we were getting hung task warnings. We don't need to block and run these things, and the cleaner is needed to do other work, so trylock on this mutex and just bail if we can't acquire it right away. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
867ed321f9 |
btrfs: abort the transaction if we fail to inc ref in btrfs_copy_root
While testing my error handling patches, I added a error injection site
at btrfs_inc_extent_ref, to validate the error handling I added was
doing the correct thing. However I hit a pretty ugly corruption while
doing this check, with the following error injection stack trace:
btrfs_inc_extent_ref
btrfs_copy_root
create_reloc_root
btrfs_init_reloc_root
btrfs_record_root_in_trans
btrfs_start_transaction
btrfs_update_inode
btrfs_update_time
touch_atime
file_accessed
btrfs_file_mmap
This is because we do not catch the error from btrfs_inc_extent_ref,
which in practice would be ENOMEM, which means we lose the extent
references for a root that has already been allocated and inserted,
which is the problem. Fix this by aborting the transaction if we fail
to do the reference modification.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
eddda68d97 |
btrfs: add asserts for deleting backref cache nodes
A weird KASAN problem that Zygo reported could have been easily caught if we checked for basic things in our backref freeing code. We have two methods of freeing a backref node - btrfs_backref_free_node: this just is kfree() essentially. - btrfs_backref_drop_node: this actually unlinks the node and cleans up everything and then calls btrfs_backref_free_node(). We should mostly be using btrfs_backref_drop_node(), to make sure the node is properly unlinked from the backref cache, and only use btrfs_backref_free_node() when we know the node isn't actually linked to the backref cache. We made a mistake here and thus got the KASAN splat. Make this style of issue easier to find by adding some ASSERT()'s to btrfs_backref_free_node() and adjusting our deletion stuff to properly init the list so we can rely on list_empty() checks working properly. BUG: KASAN: use-after-free in btrfs_backref_cleanup_node+0x18a/0x420 Read of size 8 at addr ffff888112402950 by task btrfs/28836 CPU: 0 PID: 28836 Comm: btrfs Tainted: G W 5.10.0-e35f27394290-for-next+ #23 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Call Trace: dump_stack+0xbc/0xf9 ? btrfs_backref_cleanup_node+0x18a/0x420 print_address_description.constprop.8+0x21/0x210 ? record_print_text.cold.34+0x11/0x11 ? btrfs_backref_cleanup_node+0x18a/0x420 ? btrfs_backref_cleanup_node+0x18a/0x420 kasan_report.cold.10+0x20/0x37 ? btrfs_backref_cleanup_node+0x18a/0x420 __asan_load8+0x69/0x90 btrfs_backref_cleanup_node+0x18a/0x420 btrfs_backref_release_cache+0x83/0x1b0 relocate_block_group+0x394/0x780 ? merge_reloc_roots+0x4a0/0x4a0 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 ? check_flags.part.50+0x6c/0x1e0 ? btrfs_relocate_chunk+0x120/0x120 ? kmem_cache_alloc_trace+0xa06/0xcb0 ? _copy_from_user+0x83/0xc0 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 ? __kasan_check_read+0x11/0x20 ? check_chain_key+0x1f4/0x2f0 ? __asan_loadN+0xf/0x20 ? btrfs_ioctl_get_supported_features+0x30/0x30 ? kvm_sched_clock_read+0x18/0x30 ? check_chain_key+0x1f4/0x2f0 ? lock_downgrade+0x3f0/0x3f0 ? handle_mm_fault+0xad6/0x2150 ? do_vfs_ioctl+0xfc/0x9d0 ? ioctl_file_clone+0xe0/0xe0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags+0x26/0x30 ? lock_is_held_type+0xc3/0xf0 ? syscall_enter_from_user_mode+0x1b/0x60 ? do_syscall_64+0x13/0x80 ? rcu_read_lock_sched_held+0xa1/0xd0 ? __kasan_check_read+0x11/0x20 ? __fget_light+0xae/0x110 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f4c4bdfe427 RSP: 002b:00007fff33ee6df8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fff33ee6e98 RCX: 00007f4c4bdfe427 RDX: 00007fff33ee6e98 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 R10: fffffffffffff59d R11: 0000000000000202 R12: 0000000000000001 R13: 0000000000000000 R14: 00007fff33ee8a34 R15: 0000000000000001 Allocated by task 28836: kasan_save_stack+0x21/0x50 __kasan_kmalloc.constprop.18+0xbe/0xd0 kasan_kmalloc+0x9/0x10 kmem_cache_alloc_trace+0x410/0xcb0 btrfs_backref_alloc_node+0x46/0xf0 btrfs_backref_add_tree_node+0x60d/0x11d0 build_backref_tree+0xc5/0x700 relocate_tree_blocks+0x2be/0xb90 relocate_block_group+0x2eb/0x780 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 28836: kasan_save_stack+0x21/0x50 kasan_set_track+0x20/0x30 kasan_set_free_info+0x1f/0x30 __kasan_slab_free+0xf3/0x140 kasan_slab_free+0xe/0x10 kfree+0xde/0x200 btrfs_backref_error_cleanup+0x452/0x530 build_backref_tree+0x1a5/0x700 relocate_tree_blocks+0x2be/0xb90 relocate_block_group+0x2eb/0x780 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff888112402900 which belongs to the cache kmalloc-128 of size 128 The buggy address is located 80 bytes inside of 128-byte region [ffff888112402900, ffff888112402980) The buggy address belongs to the page: page:0000000028b1cd08 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888131c810c0 pfn:0x112402 flags: 0x17ffe0000000200(slab) raw: 017ffe0000000200 ffffea000424f308 ffffea0007d572c8 ffff888100040440 raw: ffff888131c810c0 ffff888112402000 0000000100000009 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888112402800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888112402880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff888112402900: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888112402980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888112402a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Link: https://lore.kernel.org/linux-btrfs/20201208194607.GI31381@hungrycats.org/ CC: stable@vger.kernel.org # 5.10+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f78743fbda |
btrfs: do not warn if we can't find the reloc root when looking up backref
The backref code is looking for a reloc_root that corresponds to the given fs root. However any number of things could have gone wrong while initializing that reloc_root, like ENOMEM while trying to allocate the root itself, or EIO while trying to write the root item. This would result in no corresponding reloc_root being in the reloc root cache, and thus would return NULL when we do the find_reloc_root() call. Because of this we do not want to WARN_ON(). This presumably was meant to catch developer errors, cases where we messed up adding the reloc root. However we can easily hit this case with error injection, and thus should not do a WARN_ON(). CC: stable@vger.kernel.org # 5.10+ Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
938fcbfb0c |
btrfs: splice remaining dirty_bg's onto the transaction dirty bg list
While doing error injection testing with my relocation patches I hit the following assert: assertion failed: list_empty(&block_group->dirty_list), in fs/btrfs/block-group.c:3356 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3357! invalid opcode: 0000 [#1] SMP NOPTI CPU: 0 PID: 24351 Comm: umount Tainted: G W 5.10.0-rc3+ #193 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:assertfail.constprop.0+0x18/0x1a RSP: 0018:ffffa09b019c7e00 EFLAGS: 00010282 RAX: 0000000000000056 RBX: ffff8f6492c18000 RCX: 0000000000000000 RDX: ffff8f64fbc27c60 RSI: ffff8f64fbc19050 RDI: ffff8f64fbc19050 RBP: ffff8f6483bbdc00 R08: 0000000000000000 R09: 0000000000000000 R10: ffffa09b019c7c38 R11: ffffffff85d70928 R12: ffff8f6492c18100 R13: ffff8f6492c18148 R14: ffff8f6483bbdd70 R15: dead000000000100 FS: 00007fbfda4cdc40(0000) GS:ffff8f64fbc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fbfda666fd0 CR3: 000000013cf66002 CR4: 0000000000370ef0 Call Trace: btrfs_free_block_groups.cold+0x55/0x55 close_ctree+0x2c5/0x306 ? fsnotify_destroy_marks+0x14/0x100 generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1b1/0x1d0 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This happened because I injected an error in btrfs_cow_block() while running the dirty block groups. When we run the dirty block groups, we splice the list onto a local list to process. However if an error occurs, we only cleanup the transactions dirty block group list, not any pending block groups we have on our locally spliced list. In fact if we fail to allocate a path in this function we'll also fail to clean up the splice list. Fix this by splicing the list back onto the transaction dirty block group list so that the block groups are cleaned up. Then add a 'out' label and have the error conditions jump to out so that the errors are handled properly. This also has the side-effect of fixing a problem where we would clear 'ret' on error because we unconditionally ran btrfs_run_delayed_refs(). CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c78a10aebb |
btrfs: fix reloc root leak with 0 ref reloc roots on recovery
When recovering a relocation, if we run into a reloc root that has 0 refs we simply add it to the reloc_control->reloc_roots list, and then clean it up later. The problem with this is __del_reloc_root() doesn't do anything if the root isn't in the radix tree, which in this case it won't be because we never call __add_reloc_root() on the reloc_root. This exit condition simply isn't correct really. During normal operation we can remove ourselves from the rb tree and then we're meant to clean up later at merge_reloc_roots() time, and this happens correctly. During recovery we're depending on free_reloc_roots() to drop our references, but we're short-circuiting. Fix this by continuing to check if we're on the list and dropping ourselves from the reloc_control root list and dropping our reference appropriately. Change the corresponding BUG_ON() to an ASSERT() that does the correct thing if we aren't in the rb tree. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2e626e5673 |
btrfs: remove repeated word in struct member comment
Comment for processed extent end of range has an unnecessary "in", remove it. Signed-off-by: Nigel Christian <nigel.l.christian@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
81e75ac74e |
btrfs: account for new extents being deleted in total_bytes_pinned
My recent patch set "A variety of lock contention fixes", found here https://lore.kernel.org/linux-btrfs/cover.1608319304.git.josef@toxicpanda.com/ (Tracked in https://github.com/btrfs/linux/issues/86) that reduce lock contention on the extent root by running delayed refs less often resulted in a regression in generic/371. This test fallocate()'s the fs until it's full, deletes all the files, and then tries to fallocate() until full again. Before these patches we would run all of the delayed refs during flushing, and then would commit the transaction because we had plenty of pinned space to recover in order to allocate. However my patches made it so we weren't running the delayed refs as aggressively, which meant that we appeared to have less pinned space when we were deciding to commit the transaction. We use the space_info->total_bytes_pinned to approximate how much space we have pinned. It's approximate because if we remove a reference to an extent we may free it, but there may be more references to it than we know of at that point, but we account it as pinned at the creation time, and then it's properly accounted when the delayed ref runs. The way we account for pinned space is if the delayed_ref_head->total_ref_mod is < 0, because that is clearly a freeing option. However there is another case, and that is where ->total_ref_mod == 0 && ->must_insert_reserved == 1. When we allocate a new extent, we have ->total_ref_mod == 1 and we have ->must_insert_reserved == 1. This is used to indicate that it is a brand new extent and will need to have its extent entry added before we modify any references on the delayed ref head. But if we subsequently remove that extent reference, our ->total_ref_mod will be 0, and that space will be pinned and freed. Accounting for this case properly allows for generic/371 to pass with my delayed refs patches applied. It's important to note that this problem exists without the referenced patches, it just was uncovered by them. CC: stable@vger.kernel.org # 5.10 Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2187374f35 |
btrfs: handle space_info::total_bytes_pinned inside the delayed ref itself
Currently we pass things around to figure out if we maybe freeing data based on the state of the delayed refs head. This makes the accounting sort of confusing and hard to follow, as it's distinctly separate from the delayed ref heads stuff, but also depends on it entirely. Fix this by explicitly adjusting the space_info->total_bytes_pinned in the delayed refs code. We now have two places where we modify this counter, once where we create the delayed and destroy the delayed refs, and once when we pin and unpin the extents. This means there is a slight overlap between delayed refs and the pin/unpin mechanisms, but this is simply used by the ENOSPC infrastructure to determine if we need to commit the transaction, so there's no adverse affect from this, we might simply commit thinking it will give us enough space when it might not. CC: stable@vger.kernel.org # 5.10 Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e9aa7c285d |
btrfs: enable W=1 checks for btrfs
Now that the btrfs' codebase is clean of almost all W=1 warnings let's enable those checks unconditionally for the entire fs/btrfs/ and its subdirectories to catch potential errors during development. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8c31a3dbaa |
btrfs: zoned: remove unused variable in btrfs_sb_log_location_bdev
This fixes warning:
fs/btrfs/zoned.c:491:6: warning: variable ‘zone_size’ set but not used [-Wunused-but-set-variable]
491 | u64 zone_size;
which got introduced in
|
|
|
|
3bed2da1b0 |
btrfs: fix parameter description for functions in extent_io.c
This makes the file W=1 clean and fixes the following warnings: fs/btrfs/extent_io.c:414: warning: Function parameter or member 'tree' not described in '__etree_search' fs/btrfs/extent_io.c:414: warning: Function parameter or member 'offset' not described in '__etree_search' fs/btrfs/extent_io.c:414: warning: Function parameter or member 'next_ret' not described in '__etree_search' fs/btrfs/extent_io.c:414: warning: Function parameter or member 'prev_ret' not described in '__etree_search' fs/btrfs/extent_io.c:414: warning: Function parameter or member 'p_ret' not described in '__etree_search' fs/btrfs/extent_io.c:414: warning: Function parameter or member 'parent_ret' not described in '__etree_search' fs/btrfs/extent_io.c:1607: warning: Function parameter or member 'tree' not described in 'find_contiguous_extent_bit' fs/btrfs/extent_io.c:1607: warning: Function parameter or member 'start' not described in 'find_contiguous_extent_bit' fs/btrfs/extent_io.c:1607: warning: Function parameter or member 'start_ret' not described in 'find_contiguous_extent_bit' fs/btrfs/extent_io.c:1607: warning: Function parameter or member 'end_ret' not described in 'find_contiguous_extent_bit' fs/btrfs/extent_io.c:1607: warning: Function parameter or member 'bits' not described in 'find_contiguous_extent_bit' fs/btrfs/extent_io.c:1644: warning: Function parameter or member 'tree' not described in 'find_first_clear_extent_bit' fs/btrfs/extent_io.c:1644: warning: Function parameter or member 'start' not described in 'find_first_clear_extent_bit' fs/btrfs/extent_io.c:1644: warning: Function parameter or member 'start_ret' not described in 'find_first_clear_extent_bit' fs/btrfs/extent_io.c:1644: warning: Function parameter or member 'end_ret' not described in 'find_first_clear_extent_bit' fs/btrfs/extent_io.c:1644: warning: Function parameter or member 'bits' not described in 'find_first_clear_extent_bit' fs/btrfs/extent_io.c:4187: warning: Function parameter or member 'epd' not described in 'extent_write_cache_pages' fs/btrfs/extent_io.c:4187: warning: Excess function parameter 'data' description in 'extent_write_cache_pages' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d98b188ea4 |
btrfs: fix parameter description in space-info.c
With these fixes space-info.c is clear for W=1 warnings, namely the following ones are fixed: fs/btrfs/space-info.c:575: warning: Function parameter or member 'fs_info' not described in 'may_commit_transaction' fs/btrfs/space-info.c:575: warning: Function parameter or member 'space_info' not described in 'may_commit_transaction' fs/btrfs/space-info.c:1231: warning: Function parameter or member 'fs_info' not described in 'handle_reserve_ticket' fs/btrfs/space-info.c:1231: warning: Function parameter or member 'space_info' not described in 'handle_reserve_ticket' fs/btrfs/space-info.c:1231: warning: Function parameter or member 'ticket' not described in 'handle_reserve_ticket' fs/btrfs/space-info.c:1231: warning: Function parameter or member 'flush' not described in 'handle_reserve_ticket' fs/btrfs/space-info.c:1315: warning: Function parameter or member 'fs_info' not described in '__reserve_bytes' fs/btrfs/space-info.c:1315: warning: Function parameter or member 'space_info' not described in '__reserve_bytes' fs/btrfs/space-info.c:1315: warning: Function parameter or member 'orig_bytes' not described in '__reserve_bytes' fs/btrfs/space-info.c:1315: warning: Function parameter or member 'flush' not described in '__reserve_bytes' fs/btrfs/space-info.c:1427: warning: Function parameter or member 'root' not described in 'btrfs_reserve_metadata_bytes' fs/btrfs/space-info.c:1427: warning: Function parameter or member 'block_rsv' not described in 'btrfs_reserve_metadata_bytes' fs/btrfs/space-info.c:1427: warning: Function parameter or member 'orig_bytes' not described in 'btrfs_reserve_metadata_bytes' fs/btrfs/space-info.c:1427: warning: Function parameter or member 'flush' not described in 'btrfs_reserve_metadata_bytes' fs/btrfs/space-info.c:1462: warning: Function parameter or member 'fs_info' not described in 'btrfs_reserve_data_bytes' fs/btrfs/space-info.c:1462: warning: Function parameter or member 'bytes' not described in 'btrfs_reserve_data_bytes' fs/btrfs/space-info.c:1462: warning: Function parameter or member 'flush' not described in 'btrfs_reserve_data_bytes' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b762d1d08d |
btrfs: fix parameter description of btrfs_inode_rsv_release/btrfs_delalloc_release_space
Fixes following warnings: fs/btrfs/delalloc-space.c:205: warning: Function parameter or member 'inode' not described in 'btrfs_inode_rsv_release' fs/btrfs/delalloc-space.c:205: warning: Function parameter or member 'qgroup_free' not described in 'btrfs_inode_rsv_release' fs/btrfs/delalloc-space.c:472: warning: Function parameter or member 'reserved' not described in 'btrfs_delalloc_release_space' fs/btrfs/delalloc-space.c:472: warning: Function parameter or member 'qgroup_free' not described in 'btrfs_delalloc_release_space' fs/btrfs/delalloc-space.c:472: warning: Excess function parameter 'release_bytes' description in 'btrfs_delalloc_release_space' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6e353e3b3c |
btrfs: document btrfs_check_shared parameters
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2639631d34 |
btrfs: fix description format of fs_info of btrfs_wait_on_delayed_iputs
Fixes fs/btrfs/inode.c:3101: warning: Function parameter or member 'fs_info' not described in 'btrfs_wait_on_delayed_iputs' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9ee9b97990 |
btrfs: document fs_info in btrfs_rmap_block
Fixes fs/btrfs/block-group.c:1570: warning: Function parameter or member 'fs_info' not described in 'btrfs_rmap_block' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9241969547 |
btrfs: document now parameter of peek_discard_list
Fixes fs/btrfs/discard.c:203: warning: Function parameter or member 'now' not described in 'peek_discard_list' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f092cf3cfd |
btrfs: improve parameter description for __btrfs_write_out_cache
Fixes following W=1 warnings: fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'root' not described in '__btrfs_write_out_cache' fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'inode' not described in '__btrfs_write_out_cache' fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'ctl' not described in '__btrfs_write_out_cache' fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'block_group' not described in '__btrfs_write_out_cache' fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'io_ctl' not described in '__btrfs_write_out_cache' fs/btrfs/free-space-cache.c:1317: warning: Function parameter or member 'trans' not described in '__btrfs_write_out_cache' Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
696eb22b67 |
btrfs: fix parameter description in delayed-ref.c functions
This fixes the following warnings: fs/btrfs/delayed-ref.c:80: warning: Function parameter or member 'fs_info' not described in 'btrfs_delayed_refs_rsv_release' fs/btrfs/delayed-ref.c:80: warning: Function parameter or member 'nr' not described in 'btrfs_delayed_refs_rsv_release' fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'fs_info' not described in 'btrfs_migrate_to_delayed_refs_rsv' fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'src' not described in 'btrfs_migrate_to_delayed_refs_rsv' fs/btrfs/delayed-ref.c:128: warning: Function parameter or member 'num_bytes' not described in 'btrfs_migrate_to_delayed_refs_rsv' fs/btrfs/delayed-ref.c:174: warning: Function parameter or member 'fs_info' not described in 'btrfs_delayed_refs_rsv_refill' fs/btrfs/delayed-ref.c:174: warning: Function parameter or member 'flush' not described in 'btrfs_delayed_refs_rsv_refill' Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ca4207ae13 |
btrfs: fix function description formats in file-item.c
This fixes following W=1 warnings: fs/btrfs/file-item.c:27: warning: Cannot understand * @inode: the inode we want to update the disk_i_size for on line 27 - I thought it was a doc line fs/btrfs/file-item.c:65: warning: Cannot understand * @inode - the inode we're modifying on line 65 - I thought it was a doc line fs/btrfs/file-item.c:91: warning: Cannot understand * @inode - the inode we're modifying on line 91 - I thought it was a doc line Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9ad37bb3ff |
btrfs: fix parameter description of btrfs_add_extent_mapping
This fixes the following compiler warnings: fs/btrfs/extent_map.c:601: warning: Function parameter or member 'fs_info' not described in 'btrfs_add_extent_mapping' fs/btrfs/extent_map.c:601: warning: Function parameter or member 'em_tree' not described in 'btrfs_add_extent_mapping' fs/btrfs/extent_map.c:601: warning: Function parameter or member 'em_in' not described in 'btrfs_add_extent_mapping' fs/btrfs/extent_map.c:601: warning: Function parameter or member 'start' not described in 'btrfs_add_extent_mapping' fs/btrfs/extent_map.c:601: warning: Function parameter or member 'len' not described in 'btrfs_add_extent_mapping' Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
401bd2dd12 |
btrfs: document modified parameter of add_extent_mapping
Fixes fs/btrfs/extent_map.c:399: warning: Function parameter or member 'modified' not described in 'add_extent_mapping' Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3c198fe064 |
btrfs: rework the order of btrfs_ordered_extent::flags
[BUG]
There is a long existing bug in the last parameter of
btrfs_add_ordered_extent(), in commit
|
|
|
|
fe3b7bb085 |
btrfs: remove redundant NULL check before kvfree
Fix below warnings reported by coccicheck: ./fs/btrfs/raid56.c:237:2-8: WARNING: NULL check before some freeing functions is not needed. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Yang Li <abaci-bugfix@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7e2a870a59 |
btrfs: do not cleanup upper nodes in btrfs_backref_cleanup_node
Zygo reported the following panic when testing my error handling patches for relocation: kernel BUG at fs/btrfs/backref.c:2545! invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 3 PID: 8472 Comm: btrfs Tainted: G W 14 Hardware name: QEMU Standard PC (i440FX + PIIX, Call Trace: btrfs_backref_error_cleanup+0x4df/0x530 build_backref_tree+0x1a5/0x700 ? _raw_spin_unlock+0x22/0x30 ? release_extent_buffer+0x225/0x280 ? free_extent_buffer.part.52+0xd7/0x140 relocate_tree_blocks+0x2a6/0xb60 ? kasan_unpoison_shadow+0x35/0x50 ? do_relocation+0xc10/0xc10 ? kasan_kmalloc+0x9/0x10 ? kmem_cache_alloc_trace+0x6a3/0xcb0 ? free_extent_buffer.part.52+0xd7/0x140 ? rb_insert_color+0x342/0x360 ? add_tree_block.isra.36+0x236/0x2b0 relocate_block_group+0x2eb/0x780 ? merge_reloc_roots+0x470/0x470 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x18f0 ? pvclock_clocksource_read+0xeb/0x190 ? btrfs_relocate_chunk+0x120/0x120 ? lock_contended+0x620/0x6e0 ? do_raw_spin_lock+0x1e0/0x1e0 ? do_raw_spin_unlock+0xa8/0x140 btrfs_ioctl_balance+0x1f9/0x460 btrfs_ioctl+0x24c8/0x4380 ? __kasan_check_read+0x11/0x20 ? check_chain_key+0x1f4/0x2f0 ? __asan_loadN+0xf/0x20 ? btrfs_ioctl_get_supported_features+0x30/0x30 ? kvm_sched_clock_read+0x18/0x30 ? check_chain_key+0x1f4/0x2f0 ? lock_downgrade+0x3f0/0x3f0 ? handle_mm_fault+0xad6/0x2150 ? do_vfs_ioctl+0xfc/0x9d0 ? ioctl_file_clone+0xe0/0xe0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags+0x26/0x30 ? lock_is_held_type+0xc3/0xf0 ? syscall_enter_from_user_mode+0x1b/0x60 ? do_syscall_64+0x13/0x80 ? rcu_read_lock_sched_held+0xa1/0xd0 ? __kasan_check_read+0x11/0x20 ? __fget_light+0xae/0x110 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This occurs because of this check if (RB_EMPTY_NODE(&upper->rb_node)) BUG_ON(!list_empty(&node->upper)); As we are dropping the backref node, if we discover that our upper node in the edge we just cleaned up isn't linked into the cache that we are now done with this node, thus the BUG_ON(). However this is an erroneous assumption, as we will look up all the references for a node first, and then process the pending edges. All of the 'upper' nodes in our pending edges won't be in the cache's rb_tree yet, because they haven't been processed. We could very well have many edges still left to cleanup on this node. The fact is we simply do not need this check, we can just process all of the edges only for this node, because below this check we do the following if (list_empty(&upper->lower)) { list_add_tail(&upper->lower, &cache->leaves); upper->lowest = 1; } If the upper node truly isn't used yet, then we add it to the cache->leaves list to be cleaned up later. If it is still used then the last child node that has it linked into its node will add it to the leaves list and then it will be cleaned up. Fix this problem by dropping this logic altogether. With this fix I no longer see the panic when testing with error injection in the backref code. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f7ba2d3751 |
btrfs: keep track of the root owner for relocation reads
While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c0f0a9e716 |
btrfs: introduce helper to grab an existing extent buffer from a page
This patch will extract the code to grab an extent buffer from a page into a helper, grab_extent_buffer_from_page(). This reduces one indent level, and provides the work place for later expansion for subapge support. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c0fab48095 |
btrfs: update comment for btrfs_dirty_pages
The original comment is from the initial merge, which has several problems: - No holes check any more - No inline decision is made Update the out-of-date comment with more correct one. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6bc5636a67 |
btrfs: refactor __extent_writepage_io() to improve readability
The refactoring involves the following modifications: - iosize alignment In fact we don't really need to manually do alignment at all. All extent maps should already be aligned, thus basic ASSERT() check would be enough. - redundant variables We have extra variable like blocksize/pg_offset/end. They are all unnecessary. @blocksize can be replaced by sectorsize size directly, and it's only used to verify the em start/size is aligned. @pg_offset can be easily calculated using @cur and page_offset(page). @end is just assigned from @page_end and never modified, use "start + PAGE_SIZE - 1" directly and remove @page_end. - remove some BUG_ON()s The BUG_ON()s are for extent map, which we have tree-checker to check on-disk extent data item and runtime check. ASSERT() should be enough. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0c64c33c60 |
btrfs: rename parameter offset to disk_bytenr in submit_extent_page
The parameter offset is confusing, it's supposed to be the disk bytenr of metadata/data. Rename it to disk_bytenr and update the comment. Also rename each offset passed to submit_extent_page() as @disk_bytenr so they're consistent. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
58f74b2203 |
btrfs: refactor btrfs_dec_test_* functions for ordered extents
The refactoring involves the following modifications:
- Return bool instead of int
- Parameter update for @cached of btrfs_dec_test_first_ordered_pending()
For btrfs_dec_test_first_ordered_pending(), @cached is only used to
return the finished ordered extent.
Rename it to @finished_ret.
- Comment updates
* Change one stale comment
Which still refers to btrfs_dec_test_ordered_pending(), but the
context is calling btrfs_dec_test_first_ordered_pending().
* Follow the common comment style for both functions
Add more detailed descriptions for parameters and the return value
* Move the reason why test_and_set_bit() is used into the call sites
- Change how the return value is calculated
The most anti-human part of the return value is:
if (...)
ret = 1;
...
return ret == 0;
This means, when we set ret to 1, the function returns 0.
Change the local variable name to @finished, and directly return the
value of it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
523929f1ca |
btrfs: make btrfs_dio_private::bytes u32
btrfs_dio_private::bytes is only assigned from bio::bi_iter::bi_size, which is never larger than U32. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d7830b7155 |
btrfs: remove always true condition in btrfs_start_delalloc_roots
Following the rework in
|
|
|
|
9db4dc241e |
btrfs: make btrfs_start_delalloc_root's nr argument a long
It's currently u64 which gets instantly translated either to LONG_MAX (if U64_MAX is passed) or cast to an unsigned long (which is in fact, wrong because writeback_control::nr_to_write is a signed, long type). Just convert the function's argument to be long time which obviates the need to manually convert u64 value to a long. Adjust all call sites which pass U64_MAX to pass LONG_MAX. Finally ensure that in shrink_delalloc the u64 is converted to a long without overflowing, resulting in a negative number. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9c4a062a94 |
btrfs: send: remove stale code when checking for shared extents
After commit
|
|
|
|
7056bf69e5 |
btrfs: consolidate btrfs_previous_item ret val handling in btrfs_shrink_device
Instead of having three 'if' to handle non-NULL return value consolidate this in one 'if (ret)'. That way the code is more obvious: - Always drop delete_unused_bgs_mutex if ret is not NULL - If ret is negative -> goto done - If it's 1 -> reset ret to 0, release the path and finish the loop. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1478143ac8 |
btrfs: ref-verify: make sure owner is set for all refs
I noticed that shared ref entries in ref-verify didn't have the proper owner set, which caused me to think there was something seriously wrong. However the problem is if we have a parent we simply weren't filling out the owner part of the reference, even though we have it. Fix this by making sure we set all the proper fields when we modify a reference, this way we'll have the proper owner if a problem happens and we don't waste time thinking we're updating the wrong level. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0d73a11c62 |
btrfs: ref-verify: pass down tree block level when building refs
I noticed that sometimes I would have the wrong level printed out with ref-verify while testing some error injection related problems. This is because we only get the level from the main extent item, but our references could go off the current leaf into another, and at that point we lose our level. Fix this by keeping track of the last tree block level that we found, the same way we keep track of our bytenr and num_bytes, in case we happen to wander into another leaf while still processing the references for a bytenr. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1fec12a560 |
btrfs: noinline btrfs_should_cancel_balance
I was attempting to reproduce a problem that Zygo hit, but my error injection wasn't firing for a few of the common calls to btrfs_should_cancel_balance. This is because the compiler decided to inline it at these spots. Keep this from happening by explicitly marking the function as noinline so that error injection will always work. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f75e2b79b5 |
btrfs: allow error injection for btrfs_search_slot and btrfs_cow_block
The following patches are going to address error handling in relocation, in order to test those patches I need to be able to inject errors in btrfs_search_slot and btrfs_cow_block, as we call both of these pretty often in different cases during relocation. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
69948022c9 |
btrfs: remove new_dirid argument from btrfs_create_subvol_root
It's no longer used. While at it also remove new_dirid in create_subvol as it's used in a single place and open code it. No functional changes. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
23125104d8 |
btrfs: make btrfs_root::free_objectid hold the next available objectid
Adjust the way free_objectid is being initialized, it now stores BTRFS_FIRST_FREE_OBJECTID rather than the, somewhat arbitrary, BTRFS_FIRST_FREE_OBJECTID - 1. This change also has the added benefit that now it becomes unnecessary to explicitly initialize free_objectid for a newly create fs root. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6b8fad576a |
btrfs: rename btrfs_root::highest_objectid to free_objectid
This reflects the true purpose of the member as it's being used solely in context where a new objectid is being allocated. Future changes will also change the way it's being used to closely follow this semantics. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
543068a217 |
btrfs: rename btrfs_find_free_objectid to btrfs_get_free_objectid
This better reflects the semantics of the function i.e no search is performed whatsoever. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
453e487386 |
btrfs: rename btrfs_find_highest_objectid to btrfs_init_root_free_objectid
This function is used to initialize the in-memory btrfs_root::highest_objectid member, which is used to get an available objectid. Rename it to better reflect its semantics. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
149716570b |
btrfs: cleanup local variables in btrfs_file_write_iter
First replace all inode instances with a pointer to btrfs_inode. This removes multiple invocations of the BTRFS_I macro, subsequently remove 2 local variables as they are called only once and simply refer to them directly. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
3cc64e7ebf |
btrfs: clarify error returns values in __load_free_space_cache
Return value in __load_free_space_cache is not properly set after
(unlikely) memory allocation failures and 0 is returned instead.
This is not a problem for the caller load_free_space_cache because only
value 1 is considered as 'cache loaded' but for clarity it's better
to set the errors accordingly.
Fixes:
|
|
|
|
4f4317c13a |
btrfs: fix error handling in commit_fs_roots
While doing error injection I would sometimes get a corrupt file system. This is because I was injecting errors at btrfs_search_slot, but would only do it one time per stack. This uncovered a problem in commit_fs_roots, where if we get an error we would just break. However we're in a nested loop, the first loop being a loop to find all the dirty fs roots, and then subsequent root updates would succeed clearing the error value. This isn't likely to happen in real scenarios, however we could potentially get a random ENOMEM once and then not again, and we'd end up with a corrupted file system. Fix this by moving the error checking around a bit to the main loop, as this is the only place where something will fail, and return the error as soon as it occurs. With this patch my reproducer no longer corrupts the file system. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c05d51c773 |
for-5.11-rc5-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAUIkAACgkQxWXV+ddt
WDsWVg/+IIEk9H1v9q9ShvVmPvmnlT8/0ywj1hdwFMBkFBjIeU8tBz9ZMGPXCzrF
XemmWKChVOnR3SIq/bMrwuRC/Gv/pBvwVshXLP51YJHv7lSGX0Ayrb27BFQcVaC/
3QhpE7veEiqxwLyMj+LWG4hE2X+oqiqzrXCpeC5un4zEluT45RSKooqueQ4jM8aw
DrKLQA57a1YEIqrE2KQzy5A6BnSNyxPXEEX34kbugmmen46Fh77hrwme1K9vQn1t
v3/V4LcarXADxxokAxU2Igb/vK0+BN33NOYsBwLWWD4kUaTGS4KczsDOowkRRTMH
/qiQUdca0X7ElR+VFl8rgB8PxuJcZ87aCdsMkErUA4sjxyp11VDIeEgirPNAcXtR
b+1LIkn3k3l8JzkKyXwDuZuNBsh0idTY24IE+QDBMIGq+jE1N6N3t5gEwa2NeaiP
9O5QnS5XAJCo8a9+gp1aF5z94vwQwvf9TA80nGrnpxGmXEEEZ9PgXsc4JON1Blhn
NtJDwBPzEjHCEYdE73/lRMsLmYeGhpRugKb+lQ+OTo2iZzxH2SjWn9vXKiN7vAp2
zysjzdPfkY5BLggH5cPg0fuRaf/Is00EeVqn3eA7QsFKDhrpoPFBO+aV5xeshsaz
8fjt7kkXFb+Vyy4SDvmPioJQ7/MFZ5Czn+BL1JwO4l/vYcEMUzM=
=/yHv
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes for a late rc:
- fix lockdep complaint on 32bit arches and also remove an unsafe
memory use due to device vs filesystem lifetime
- two fixes for free space tree:
* race during log replay and cache rebuild, now more likely to
happen due to changes in this dev cycle
* possible free space tree corruption with online conversion
during initial tree population"
* tag 'for-5.11-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix log replay failure due to race with space cache rebuild
btrfs: fix lockdep warning due to seqcount_mutex on 32bit arch
btrfs: fix possible free space tree corruption with online conversion
|
|
|
|
616c6a6884 |
btrfs: use bio_kmalloc in __alloc_device
Use bio_kmalloc instead of open coding it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Acked-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
9ad6d91f05 |
btrfs: fix log replay failure due to race with space cache rebuild
After a sudden power failure we may end up with a space cache on disk that
is not valid and needs to be rebuilt from scratch.
If that happens, during log replay when we attempt to pin an extent buffer
from a log tree, at btrfs_pin_extent_for_log_replay(), we do not wait for
the space cache to be rebuilt through the call to:
btrfs_cache_block_group(cache, 1);
That is because that only waits for the task (work queue job) that loads
the space cache to change the cache state from BTRFS_CACHE_FAST to any
other value. That is ok when the space cache on disk exists and is valid,
but when the cache is not valid and needs to be rebuilt, it ends up
returning as soon as the cache state changes to BTRFS_CACHE_STARTED (done
at caching_thread()).
So this means that we can end up trying to unpin a range which is not yet
marked as free in the block group. This results in the call to
btrfs_remove_free_space() to return -EINVAL to
btrfs_pin_extent_for_log_replay(), which in turn makes the log replay fail
as well as mounting the filesystem. More specifically the -EINVAL comes
from free_space_cache.c:remove_from_bitmap(), because the requested range
is not marked as free space (ones in the bitmap), we have the following
condition triggered:
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
(...)
if (ret < 0 || search_start != *offset)
return -EINVAL;
(...)
It's the "search_start != *offset" that results in the condition being
evaluated to true.
When this happens we got the following in dmesg/syslog:
[72383.415114] BTRFS: device fsid 32b95b69-0ea9-496a-9f02-3f5a56dc9322 devid 1 transid 1432 /dev/sdb scanned by mount (3816007)
[72383.417837] BTRFS info (device sdb): disk space caching is enabled
[72383.418536] BTRFS info (device sdb): has skinny extents
[72383.423846] BTRFS info (device sdb): start tree-log replay
[72383.426416] BTRFS warning (device sdb): block group 30408704 has wrong amount of free space
[72383.427686] BTRFS warning (device sdb): failed to load free space cache for block group 30408704, rebuilding it now
[72383.454291] BTRFS: error (device sdb) in btrfs_recover_log_trees:6203: errno=-22 unknown (Failed to pin buffers while recovering log root tree.)
[72383.456725] BTRFS: error (device sdb) in btrfs_replay_log:2253: errno=-22 unknown (Failed to recover log tree)
[72383.460241] BTRFS error (device sdb): open_ctree failed
We also mark the range for the extent buffer in the excluded extents io
tree. That is fine when the space cache is valid on disk and we can load
it, in which case it causes no problems.
However, for the case where we need to rebuild the space cache, because it
is either invalid or it is missing, having the extent buffer range marked
in the excluded extents io tree leads to a -EINVAL failure from the call
to btrfs_remove_free_space(), resulting in the log replay and mount to
fail. This is because by having the range marked in the excluded extents
io tree, the caching thread ends up never adding the range of the extent
buffer as free space in the block group since the calls to
add_new_free_space(), called from load_extent_tree_free(), filter out any
ranges that are marked as excluded extents.
So fix this by making sure that during log replay we wait for the caching
task to finish completely when we need to rebuild a space cache, and also
drop the need to mark the extent buffer range in the excluded extents io
tree, as well as clearing ranges from that tree at
btrfs_finish_extent_commit().
This started to happen with some frequency on large filesystems having
block groups with a lot of fragmentation since the recent commit
|
|
|
|
c41ec4529d |
btrfs: fix lockdep warning due to seqcount_mutex on 32bit arch
This effectively reverts commit |
|
|
|
2f96e40212 |
btrfs: fix possible free space tree corruption with online conversion
While running btrfs/011 in a loop I would often ASSERT() while trying to
add a new free space entry that already existed, or get an EEXIST while
adding a new block to the extent tree, which is another indication of
double allocation.
This occurs because when we do the free space tree population, we create
the new root and then populate the tree and commit the transaction.
The problem is when you create a new root, the root node and commit root
node are the same. During this initial transaction commit we will run
all of the delayed refs that were paused during the free space tree
generation, and thus begin to cache block groups. While caching block
groups the caching thread will be reading from the main root for the
free space tree, so as we make allocations we'll be changing the free
space tree, which can cause us to add the same range twice which results
in either the ASSERT(ret != -EEXIST); in __btrfs_add_free_space, or in a
variety of different errors when running delayed refs because of a
double allocation.
Fix this by marking the fs_info as unsafe to load the free space tree,
and fall back on the old slow method. We could be smarter than this,
for example caching the block group while we're populating the free
space tree, but since this is a serious problem I've opted for the
simplest solution.
CC: stable@vger.kernel.org # 4.9+
Fixes:
|
|
|
|
309dca309f |
block: store a block_device pointer in struct bio
Replace the gendisk pointer in struct bio with a pointer to the newly improved struct block device. From that the gendisk can be trivially accessed with an extra indirection, but it also allows to directly look up all information related to partition remapping. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
|
|
|
549c729771
|
fs: make helpers idmap mount aware
Extend some inode methods with an additional user namespace argument. A filesystem that is aware of idmapped mounts will receive the user namespace the mount has been marked with. This can be used for additional permission checking and also to enable filesystems to translate between uids and gids if they need to. We have implemented all relevant helpers in earlier patches. As requested we simply extend the exisiting inode method instead of introducing new ones. This is a little more code churn but it's mostly mechanical and doesnt't leave us with additional inode methods. Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
ba73d98745
|
namei: handle idmapped mounts in may_*() helpers
The may_follow_link(), may_linkat(), may_lookup(), may_open(), may_o_create(), may_create_in_sticky(), may_delete(), and may_create() helpers determine whether the caller is privileged enough to perform the associated operations. Let them handle idmapped mounts by mapping the inode or fsids according to the mount's user namespace. Afterwards the checks are identical to non-idmapped inodes. The patch takes care to retrieve the mount's user namespace right before performing permission checks and passing it down into the fileystem so the user namespace can't change in between by someone idmapping a mount that is currently not idmapped. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-13-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
0d56a4518d
|
stat: handle idmapped mounts
The generic_fillattr() helper fills in the basic attributes associated with an inode. Enable it to handle idmapped mounts. If the inode is accessed through an idmapped mount map it into the mount's user namespace before we store the uid and gid. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-12-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
e65ce2a50c
|
acl: handle idmapped mounts
The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
2f221d6f7b
|
attr: handle idmapped mounts
When file attributes are changed most filesystems rely on the setattr_prepare(), setattr_copy(), and notify_change() helpers for initialization and permission checking. Let them handle idmapped mounts. If the inode is accessed through an idmapped mount map it into the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Helpers that perform checks on the ia_uid and ia_gid fields in struct iattr assume that ia_uid and ia_gid are intended values and have already been mapped correctly at the userspace-kernelspace boundary as we already do today. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
21cb47be6f
|
inode: make init and permission helpers idmapped mount aware
The inode_owner_or_capable() helper determines whether the caller is the owner of the inode or is capable with respect to that inode. Allow it to handle idmapped mounts. If the inode is accessed through an idmapped mount it according to the mount's user namespace. Afterwards the checks are identical to non-idmapped mounts. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Similarly, allow the inode_init_owner() helper to handle idmapped mounts. It initializes a new inode on idmapped mounts by mapping the fsuid and fsgid of the caller from the mount's user namespace. If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
47291baa8d
|
namei: make permission helpers idmapped mount aware
The two helpers inode_permission() and generic_permission() are used by the vfs to perform basic permission checking by verifying that the caller is privileged over an inode. In order to handle idmapped mounts we extend the two helpers with an additional user namespace argument. On idmapped mounts the two helpers will make sure to map the inode according to the mount's user namespace and then peform identical permission checks to inode_permission() and generic_permission(). If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
2f63296578 |
iomap: pass a flags argument to iomap_dio_rw
Pass a set of flags to iomap_dio_rw instead of the boolean wait_for_completion argument. The IOMAP_DIO_FORCE_WAIT flag replaces the wait_for_completion, but only needs to be passed when the iocb isn't synchronous to start with to simplify the callers. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> [djwong: rework xfs_file.c so that we can push iomap changes separately] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
|
|
|
9791581c04 |
for-5.11-rc4-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmAIojwACgkQxWXV+ddt
WDstnw/+O0KSsK6ChZCNdjqFAgWL41RYj0fPOgM/8xlNaQyYHS0Jczeoud6m/2Wm
U41kTb/a6xpmx0Z/2uf/5pDIBPFld/IUuUf/AdJsMzy8Bpky2/sfg6Kmx0tKGLXQ
1WKp9ox0MlAUI0Tz/jGfX5rwsIgWKYKIF2iGUio/H1ktR3l+cXlmLWsSIB43F6VL
AjKRRyFCNU//dV7syNMmmj9yU0HpSs53SpWxUIURuTFaE71LyUgzaxDTlZ6c/PET
e4wdf8nl0wzEESCgSUPdh2AWNNiTEbbGhhhNi9250PUyQki2f4AGBlxVSLZH/fDn
6PbBDvefW4umCMeMxxmgnYJU6tG78qg/LvxzZXt54rOtB0WMbrIl0u7hFCVhQ3Qk
nqrS4tqeaL+OeuR6xamBMaRohgRFa9S+QVjTwtDFo/oVYH4TVvQDfKQS6GsWwDvB
ySzz3WewoFqhe47cMsy28Dg49xkDSIJIr5hmSNGSXTreZ2JIa+qLKywoH87+YDIE
ql0PN47z4NB+MbWDV7SZM8DCVqiQ7+1LOV9bPmqfvNl3YTfvXyMaoPLmWWVstPr2
iyhXrvESgm1s2RCF1a0tXIkv82L6QYjJ3eeEDsvAmtKBouNL9BnMvwi3zW5yKiry
m1qj7C7e6C1TivYitcCfbRCKqeAnUv8VwkSbW9BvNDe7i5AD++U=
=gSYr
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more one line fixes for various bugs, stable material.
- fix send when emitting clone operation from the same file and root
- fix double free on error when cleaning backrefs
- lockdep fix during relocation
- handle potential error during reloc when starting transaction
- skip running delayed refs during commit (leftover from code removal
in this dev cycle)"
* tag 'for-5.11-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: don't clear ret in btrfs_start_dirty_block_groups
btrfs: fix lockdep splat in btrfs_recover_relocation
btrfs: do not double free backref nodes on error
btrfs: don't get an EINTR during drop_snapshot for reloc
btrfs: send: fix invalid clone operations when cloning from the same file and root
btrfs: no need to run delayed refs after commit_fs_roots during commit
|
|
|
|
34d1eb0e59 |
btrfs: don't clear ret in btrfs_start_dirty_block_groups
If we fail to update a block group item in the loop we'll break, however we'll do btrfs_run_delayed_refs and lose our error value in ret, and thus not clean up properly. Fix this by only running the delayed refs if there was no failure. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fb28610097 |
btrfs: fix lockdep splat in btrfs_recover_relocation
While testing the error paths of relocation I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc6+ #217 Not tainted ------------------------------------------------------ mount/779 is trying to acquire lock: ffffa0e676945418 (&fs_info->balance_mutex){+.+.}-{3:3}, at: btrfs_recover_balance+0x2f0/0x340 but task is already holding lock: ffffa0e60ee31da8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-root-00){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x462/0x8f0 btrfs_update_root+0x55/0x2b0 btrfs_drop_snapshot+0x398/0x750 clean_dirty_subvols+0xdf/0x120 btrfs_recover_relocation+0x534/0x5a0 btrfs_start_pre_rw_mount+0xcb/0x170 open_ctree+0x151f/0x1726 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (sb_internal#2){.+.+}-{0:0}: start_transaction+0x444/0x700 insert_balance_item.isra.0+0x37/0x320 btrfs_balance+0x354/0xf40 btrfs_ioctl_balance+0x2cf/0x380 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->balance_mutex){+.+.}-{3:3}: __lock_acquire+0x1120/0x1e10 lock_acquire+0x116/0x370 __mutex_lock+0x7e/0x7b0 btrfs_recover_balance+0x2f0/0x340 open_ctree+0x1095/0x1726 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &fs_info->balance_mutex --> sb_internal#2 --> btrfs-root-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(sb_internal#2); lock(btrfs-root-00); lock(&fs_info->balance_mutex); *** DEADLOCK *** 2 locks held by mount/779: #0: ffffa0e60dc040e0 (&type->s_umount_key#47/1){+.+.}-{3:3}, at: alloc_super+0xb5/0x380 #1: ffffa0e60ee31da8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x100 stack backtrace: CPU: 0 PID: 779 Comm: mount Not tainted 5.10.0-rc6+ #217 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1120/0x1e10 lock_acquire+0x116/0x370 ? btrfs_recover_balance+0x2f0/0x340 __mutex_lock+0x7e/0x7b0 ? btrfs_recover_balance+0x2f0/0x340 ? btrfs_recover_balance+0x2f0/0x340 ? rcu_read_lock_sched_held+0x3f/0x80 ? kmem_cache_alloc_trace+0x2c4/0x2f0 ? btrfs_get_64+0x5e/0x100 btrfs_recover_balance+0x2f0/0x340 open_ctree+0x1095/0x1726 btrfs_mount_root.cold+0x12/0xea ? rcu_read_lock_sched_held+0x3f/0x80 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 ? __kmalloc_track_caller+0x2f2/0x320 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 ? capable+0x3a/0x60 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This is straightforward to fix, simply release the path before we setup the balance_ctl. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
49ecc679ab |
btrfs: do not double free backref nodes on error
Zygo reported the following KASAN splat:
BUG: KASAN: use-after-free in btrfs_backref_cleanup_node+0x18a/0x420
Read of size 8 at addr ffff888112402950 by task btrfs/28836
CPU: 0 PID: 28836 Comm: btrfs Tainted: G W 5.10.0-e35f27394290-for-next+ #23
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
Call Trace:
dump_stack+0xbc/0xf9
? btrfs_backref_cleanup_node+0x18a/0x420
print_address_description.constprop.8+0x21/0x210
? record_print_text.cold.34+0x11/0x11
? btrfs_backref_cleanup_node+0x18a/0x420
? btrfs_backref_cleanup_node+0x18a/0x420
kasan_report.cold.10+0x20/0x37
? btrfs_backref_cleanup_node+0x18a/0x420
__asan_load8+0x69/0x90
btrfs_backref_cleanup_node+0x18a/0x420
btrfs_backref_release_cache+0x83/0x1b0
relocate_block_group+0x394/0x780
? merge_reloc_roots+0x4a0/0x4a0
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x1900
? check_flags.part.50+0x6c/0x1e0
? btrfs_relocate_chunk+0x120/0x120
? kmem_cache_alloc_trace+0xa06/0xcb0
? _copy_from_user+0x83/0xc0
btrfs_ioctl_balance+0x3a7/0x460
btrfs_ioctl+0x24c8/0x4360
? __kasan_check_read+0x11/0x20
? check_chain_key+0x1f4/0x2f0
? __asan_loadN+0xf/0x20
? btrfs_ioctl_get_supported_features+0x30/0x30
? kvm_sched_clock_read+0x18/0x30
? check_chain_key+0x1f4/0x2f0
? lock_downgrade+0x3f0/0x3f0
? handle_mm_fault+0xad6/0x2150
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? check_flags.part.50+0x6c/0x1e0
? check_flags.part.50+0x6c/0x1e0
? check_flags+0x26/0x30
? lock_is_held_type+0xc3/0xf0
? syscall_enter_from_user_mode+0x1b/0x60
? do_syscall_64+0x13/0x80
? rcu_read_lock_sched_held+0xa1/0xd0
? __kasan_check_read+0x11/0x20
? __fget_light+0xae/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f4c4bdfe427
Allocated by task 28836:
kasan_save_stack+0x21/0x50
__kasan_kmalloc.constprop.18+0xbe/0xd0
kasan_kmalloc+0x9/0x10
kmem_cache_alloc_trace+0x410/0xcb0
btrfs_backref_alloc_node+0x46/0xf0
btrfs_backref_add_tree_node+0x60d/0x11d0
build_backref_tree+0xc5/0x700
relocate_tree_blocks+0x2be/0xb90
relocate_block_group+0x2eb/0x780
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x1900
btrfs_ioctl_balance+0x3a7/0x460
btrfs_ioctl+0x24c8/0x4360
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 28836:
kasan_save_stack+0x21/0x50
kasan_set_track+0x20/0x30
kasan_set_free_info+0x1f/0x30
__kasan_slab_free+0xf3/0x140
kasan_slab_free+0xe/0x10
kfree+0xde/0x200
btrfs_backref_error_cleanup+0x452/0x530
build_backref_tree+0x1a5/0x700
relocate_tree_blocks+0x2be/0xb90
relocate_block_group+0x2eb/0x780
btrfs_relocate_block_group+0x26e/0x4c0
btrfs_relocate_chunk+0x52/0x120
btrfs_balance+0xe2e/0x1900
btrfs_ioctl_balance+0x3a7/0x460
btrfs_ioctl+0x24c8/0x4360
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This occurred because we freed our backref node in
btrfs_backref_error_cleanup(), but then tried to free it again in
btrfs_backref_release_cache(). This is because
btrfs_backref_release_cache() will cycle through all of the
cache->leaves nodes and free them up. However
btrfs_backref_error_cleanup() freed the backref node with
btrfs_backref_free_node(), which simply kfree()d the backref node
without unlinking it from the cache. Change this to a
btrfs_backref_drop_node(), which does the appropriate cleanup and
removes the node from the cache->leaves list, so when we go to free the
remaining cache we don't trip over items we've already dropped.
Fixes:
|
|
|
|
18d3bff411 |
btrfs: don't get an EINTR during drop_snapshot for reloc
This was partially fixed by |
|
|
|
518837e650 |
btrfs: send: fix invalid clone operations when cloning from the same file and root
When an incremental send finds an extent that is shared, it checks which file extent items in the range refer to that extent, and for those it emits clone operations, while for others it emits regular write operations to avoid corruption at the destination (as described and fixed by commit |
|
|
|
14ff8e1970 |
btrfs: no need to run delayed refs after commit_fs_roots during commit
The inode number cache has been removed in this dev cycle, there's one
more leftover. We don't need to run the delayed refs again after
commit_fs_roots as stated in the comment, because btrfs_save_ino_cache
is no more since
|
|
|
|
6e68b9961f |
for-5.11-rc3-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl/8jD4ACgkQxWXV+ddt
WDteWQ//QcpD6STpLwAC+g6zJyJln7Au9lfQvawugvOJssbtdPkJQP3ZiK+Izwi/
/xagu6XMazJM+47acNJKDNntOqVkp+O6CxEbLU+rL/D288L3HEGxayZ2LL90wm6J
tbIebOE+BSVZ/5oe0jVdqZXwYvUtTiJ7PoFgrZPXJCnddSitZRD3tC4Wmi/Yo5+0
+7CW6PT3/s7KARwYXpgpMM5vi8qO2nfHfTUdRlSh59g7zC/TH7HiitL6roHzlX1k
g/aaKYLVcg62OPpw7ZXwde/qH8n1TR+H5WX6vBInqd/9jYcNkVGqijCgBeL1TJkN
Vx/b69ccODK2GNzuuYoo3k3XvSwZWsOTZp+k4y3EZ1cMONMo1snu/xglYsvSZvUL
lNCQlA9hIZNskRwEvkEea68/bQdiOl6xezgR9tajMlmz7oCsV/Cz/MJ+RfqaxdH3
bV6eTTex67lQfzAda+gN+zjBrFzQdmK700gKimdzF1XfcYmmCIdZVX8Gm/N6ldQN
LNRe8zYRaqrmRk9PQ355RqYDZmft/wLiUV6V0j74oV65WpPe2R4pULWdmPAGm6Oj
UWM+ZR3u9m8asg7ghKYgct2pxCS3+gLbDNXNcOSxYxthEEZB2JqkAMjtjCfwJilN
PXfuXaBKRmRck+AcYfbBrfJOljQ+zAJdTK/Rid40TwwpFCe/jjY=
=G3R4
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"More material for stable trees.
- tree-checker: check item end overflow
- fix false warning during relocation regarding extent type
- fix inode flushing logic, caused notable performance regression
(since 5.10)
- debugging fixups:
- print correct offset for reloc tree key
- pass reliable fs_info pointer to error reporting helper"
* tag 'for-5.11-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: shrink delalloc pages instead of full inodes
btrfs: reloc: fix wrong file extent type check to avoid false ENOENT
btrfs: tree-checker: check if chunk item end overflows
btrfs: prevent NULL pointer dereference in extent_io_tree_panic
btrfs: print the actual offset in btrfs_root_name
|
|
|
|
e076ab2a2c |
btrfs: shrink delalloc pages instead of full inodes
Commit |
|
|
|
50e31ef486 |
btrfs: reloc: fix wrong file extent type check to avoid false ENOENT
[BUG]
There are several bug reports about recent kernel unable to relocate
certain data block groups.
Sometimes the error just goes away, but there is one reporter who can
reproduce it reliably.
The dmesg would look like:
[438.260483] BTRFS info (device dm-10): balance: start -dvrange=34625344765952..34625344765953
[438.269018] BTRFS info (device dm-10): relocating block group 34625344765952 flags data|raid1
[450.439609] BTRFS info (device dm-10): found 167 extents, stage: move data extents
[463.501781] BTRFS info (device dm-10): balance: ended with status: -2
[CAUSE]
The ENOENT error is returned from the following call chain:
add_data_references()
|- delete_v1_space_cache();
|- if (!found)
return -ENOENT;
The variable @found is set to true if we find a data extent whose
disk bytenr matches parameter @data_bytes.
With extra debugging, the offending tree block looks like this:
leaf bytenr = 42676709441536, data_bytenr = 34626327621632
ctime 1567904822.739884119 (2019-09-08 03:07:02)
mtime 0.0 (1970-01-01 01:00:00)
otime 0.0 (1970-01-01 01:00:00)
item 27 key (51933 EXTENT_DATA 0) itemoff 9854 itemsize 53
generation 1517381 type 2 (prealloc)
prealloc data disk byte 34626327621632 nr 262144 <<<
prealloc data offset 0 nr 262144
item 28 key (52262 ROOT_ITEM 0) itemoff 9415 itemsize 439
generation 2618893 root_dirid 256 bytenr 42677048360960 level 3 refs 1
lastsnap 2618893 byte_limit 0 bytes_used 5557338112 flags 0x0(none)
uuid d0d4361f-d231-6d40-8901-fe506e4b2b53
Although item 27 has disk bytenr 34626327621632, which matches the
data_bytenr, its type is prealloc, not reg.
This makes the existing code skip that item, and return ENOENT.
[FIX]
The code is modified in commit
|
|
|
|
347fb0cfc9 |
btrfs: tree-checker: check if chunk item end overflows
While mounting a crafted image provided by user, kernel panics due to the invalid chunk item whose end is less than start. [66.387422] loop: module loaded [66.389773] loop0: detected capacity change from 262144 to 0 [66.427708] BTRFS: device fsid a62e00e8-e94e-4200-8217-12444de93c2e devid 1 transid 12 /dev/loop0 scanned by mount (613) [66.431061] BTRFS info (device loop0): disk space caching is enabled [66.431078] BTRFS info (device loop0): has skinny extents [66.437101] BTRFS error: insert state: end < start 29360127 37748736 [66.437136] ------------[ cut here ]------------ [66.437140] WARNING: CPU: 16 PID: 613 at fs/btrfs/extent_io.c:557 insert_state.cold+0x1a/0x46 [btrfs] [66.437369] CPU: 16 PID: 613 Comm: mount Tainted: G O 5.11.0-rc1-custom #45 [66.437374] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014 [66.437378] RIP: 0010:insert_state.cold+0x1a/0x46 [btrfs] [66.437420] RSP: 0018:ffff93e5414c3908 EFLAGS: 00010286 [66.437427] RAX: 0000000000000000 RBX: 0000000001bfffff RCX: 0000000000000000 [66.437431] RDX: 0000000000000000 RSI: ffffffffb90d4660 RDI: 00000000ffffffff [66.437434] RBP: ffff93e5414c3938 R08: 0000000000000001 R09: 0000000000000001 [66.437438] R10: ffff93e5414c3658 R11: 0000000000000000 R12: ffff8ec782d72aa0 [66.437441] R13: ffff8ec78bc71628 R14: 0000000000000000 R15: 0000000002400000 [66.437447] FS: 00007f01386a8580(0000) GS:ffff8ec809000000(0000) knlGS:0000000000000000 [66.437451] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66.437455] CR2: 00007f01382fa000 CR3: 0000000109a34000 CR4: 0000000000750ee0 [66.437460] PKRU: 55555554 [66.437464] Call Trace: [66.437475] set_extent_bit+0x652/0x740 [btrfs] [66.437539] set_extent_bits_nowait+0x1d/0x20 [btrfs] [66.437576] add_extent_mapping+0x1e0/0x2f0 [btrfs] [66.437621] read_one_chunk+0x33c/0x420 [btrfs] [66.437674] btrfs_read_chunk_tree+0x6a4/0x870 [btrfs] [66.437708] ? kvm_sched_clock_read+0x18/0x40 [66.437739] open_ctree+0xb32/0x1734 [btrfs] [66.437781] ? bdi_register_va+0x1b/0x20 [66.437788] ? super_setup_bdi_name+0x79/0xd0 [66.437810] btrfs_mount_root.cold+0x12/0xeb [btrfs] [66.437854] ? __kmalloc_track_caller+0x217/0x3b0 [66.437873] legacy_get_tree+0x34/0x60 [66.437880] vfs_get_tree+0x2d/0xc0 [66.437888] vfs_kern_mount.part.0+0x78/0xc0 [66.437897] vfs_kern_mount+0x13/0x20 [66.437902] btrfs_mount+0x11f/0x3c0 [btrfs] [66.437940] ? kfree+0x5ff/0x670 [66.437944] ? __kmalloc_track_caller+0x217/0x3b0 [66.437962] legacy_get_tree+0x34/0x60 [66.437974] vfs_get_tree+0x2d/0xc0 [66.437983] path_mount+0x48c/0xd30 [66.437998] __x64_sys_mount+0x108/0x140 [66.438011] do_syscall_64+0x38/0x50 [66.438018] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [66.438023] RIP: 0033:0x7f0138827f6e [66.438033] RSP: 002b:00007ffecd79edf8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [66.438040] RAX: ffffffffffffffda RBX: 00007f013894c264 RCX: 00007f0138827f6e [66.438044] RDX: 00005593a4a41360 RSI: 00005593a4a33690 RDI: 00005593a4a3a6c0 [66.438047] RBP: 00005593a4a33440 R08: 0000000000000000 R09: 0000000000000001 [66.438050] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [66.438054] R13: 00005593a4a3a6c0 R14: 00005593a4a41360 R15: 00005593a4a33440 [66.438078] irq event stamp: 18169 [66.438082] hardirqs last enabled at (18175): [<ffffffffb81154bf>] console_unlock+0x4ff/0x5f0 [66.438088] hardirqs last disabled at (18180): [<ffffffffb8115427>] console_unlock+0x467/0x5f0 [66.438092] softirqs last enabled at (16910): [<ffffffffb8a00fe2>] asm_call_irq_on_stack+0x12/0x20 [66.438097] softirqs last disabled at (16905): [<ffffffffb8a00fe2>] asm_call_irq_on_stack+0x12/0x20 [66.438103] ---[ end trace e114b111db64298b ]--- [66.438107] BTRFS error: found node 12582912 29360127 on insert of 37748736 29360127 [66.438127] BTRFS critical: panic in extent_io_tree_panic:679: locking error: extent tree was modified by another thread while locked (errno=-17 Object already exists) [66.441069] ------------[ cut here ]------------ [66.441072] kernel BUG at fs/btrfs/extent_io.c:679! [66.442064] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [66.443018] CPU: 16 PID: 613 Comm: mount Tainted: G W O 5.11.0-rc1-custom #45 [66.444538] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014 [66.446223] RIP: 0010:extent_io_tree_panic.isra.0+0x23/0x25 [btrfs] [66.450878] RSP: 0018:ffff93e5414c3948 EFLAGS: 00010246 [66.451840] RAX: 0000000000000000 RBX: 0000000001bfffff RCX: 0000000000000000 [66.453141] RDX: 0000000000000000 RSI: ffffffffb90d4660 RDI: 00000000ffffffff [66.454445] RBP: ffff93e5414c3948 R08: 0000000000000001 R09: 0000000000000001 [66.455743] R10: ffff93e5414c3658 R11: 0000000000000000 R12: ffff8ec782d728c0 [66.457055] R13: ffff8ec78bc71628 R14: ffff8ec782d72aa0 R15: 0000000002400000 [66.458356] FS: 00007f01386a8580(0000) GS:ffff8ec809000000(0000) knlGS:0000000000000000 [66.459841] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66.460895] CR2: 00007f01382fa000 CR3: 0000000109a34000 CR4: 0000000000750ee0 [66.462196] PKRU: 55555554 [66.462692] Call Trace: [66.463139] set_extent_bit.cold+0x30/0x98 [btrfs] [66.464049] set_extent_bits_nowait+0x1d/0x20 [btrfs] [66.490466] add_extent_mapping+0x1e0/0x2f0 [btrfs] [66.514097] read_one_chunk+0x33c/0x420 [btrfs] [66.534976] btrfs_read_chunk_tree+0x6a4/0x870 [btrfs] [66.555718] ? kvm_sched_clock_read+0x18/0x40 [66.575758] open_ctree+0xb32/0x1734 [btrfs] [66.595272] ? bdi_register_va+0x1b/0x20 [66.614638] ? super_setup_bdi_name+0x79/0xd0 [66.633809] btrfs_mount_root.cold+0x12/0xeb [btrfs] [66.652938] ? __kmalloc_track_caller+0x217/0x3b0 [66.671925] legacy_get_tree+0x34/0x60 [66.690300] vfs_get_tree+0x2d/0xc0 [66.708221] vfs_kern_mount.part.0+0x78/0xc0 [66.725808] vfs_kern_mount+0x13/0x20 [66.742730] btrfs_mount+0x11f/0x3c0 [btrfs] [66.759350] ? kfree+0x5ff/0x670 [66.775441] ? __kmalloc_track_caller+0x217/0x3b0 [66.791750] legacy_get_tree+0x34/0x60 [66.807494] vfs_get_tree+0x2d/0xc0 [66.823349] path_mount+0x48c/0xd30 [66.838753] __x64_sys_mount+0x108/0x140 [66.854412] do_syscall_64+0x38/0x50 [66.869673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [66.885093] RIP: 0033:0x7f0138827f6e [66.945613] RSP: 002b:00007ffecd79edf8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [66.977214] RAX: ffffffffffffffda RBX: 00007f013894c264 RCX: 00007f0138827f6e [66.994266] RDX: 00005593a4a41360 RSI: 00005593a4a33690 RDI: 00005593a4a3a6c0 [67.011544] RBP: 00005593a4a33440 R08: 0000000000000000 R09: 0000000000000001 [67.028836] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [67.045812] R13: 00005593a4a3a6c0 R14: 00005593a4a41360 R15: 00005593a4a33440 [67.216138] ---[ end trace e114b111db64298c ]--- [67.237089] RIP: 0010:extent_io_tree_panic.isra.0+0x23/0x25 [btrfs] [67.325317] RSP: 0018:ffff93e5414c3948 EFLAGS: 00010246 [67.347946] RAX: 0000000000000000 RBX: 0000000001bfffff RCX: 0000000000000000 [67.371343] RDX: 0000000000000000 RSI: ffffffffb90d4660 RDI: 00000000ffffffff [67.394757] RBP: ffff93e5414c3948 R08: 0000000000000001 R09: 0000000000000001 [67.418409] R10: ffff93e5414c3658 R11: 0000000000000000 R12: ffff8ec782d728c0 [67.441906] R13: ffff8ec78bc71628 R14: ffff8ec782d72aa0 R15: 0000000002400000 [67.465436] FS: 00007f01386a8580(0000) GS:ffff8ec809000000(0000) knlGS:0000000000000000 [67.511660] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [67.535047] CR2: 00007f01382fa000 CR3: 0000000109a34000 CR4: 0000000000750ee0 [67.558449] PKRU: 55555554 [67.581146] note: mount[613] exited with preempt_count 2 The image has a chunk item which has a logical start 37748736 and length 18446744073701163008 (-8M). The calculated end 29360127 overflows. EEXIST was caught by insert_state() because of the duplicate end and extent_io_tree_panic() was called. Add overflow check of chunk item end to tree checker so it can be detected early at mount time. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=208929 CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Su Yue <l@damenly.su> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
29b665cc51 |
btrfs: prevent NULL pointer dereference in extent_io_tree_panic
Some extent io trees are initialized with NULL private member (e.g.
btrfs_device::alloc_state and btrfs_fs_info::excluded_extents).
Dereference of a NULL tree->private as inode pointer will cause panic.
Pass tree->fs_info as it's known to be valid in all cases.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=208929
Fixes:
|
|
|
|
71008734d2 |
btrfs: print the actual offset in btrfs_root_name
We're supposed to print the root_key.offset in btrfs_root_name in the
case of a reloc root, not the objectid. Fix this helper to take the key
so we have access to the offset when we need it.
Fixes:
|
|
|
|
71c061d244 |
for-5.11-rc2-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl/0cI8ACgkQxWXV+ddt
WDspQw/8DcC8zhGgunk0m2kcXd6dFOGbsr3hNGCsgUSKESRw6AgTZ0rJf/QLjayF
/vaJWzQW9ijfZ92fWZS+mrmskk0N8RFOsEvkCRLesgRaasbrkchLBo5HGQasOBEV
LXyU878GrBkNaHzClJz+JdU26i0d17BFdddgtZVQ1St9Wd9ecc7Q6iqG80RWFeE7
uVbhv+QjocM3EieOnwIy5Mz6jZgJLYwqw7/y2njKduBeJtbt1K1j/y7IJk0WFMUM
8eUpDL6vlAHB8FjV2wWOzO46bbEaUpaBADM6yabrq0lnM0kr7Rb+WV/WSLM/AZ3g
Hzs4qROOEP+zjfZ5nYjJQDJRMpSipZomsUY5uMZnhRxlZuHPaoBotRRzs5AIZYj2
BnkfucOcjxS/JTBD//ltJXE8RxbMIyMBBBipbBwqmxOkR9gM9BPuJ6iJPfUX//gG
1GHJ+FPns8ua3JW21ih6H31xNEPS36tsywvE8yCEtEWMxCFCBwgGu+4D8KpGBjtY
ySFxkxxAbTuFi9fqSE/mBC+6lpbVTO0OvizuoEQh8C2izkXRbDsDVgPN8d7rCW7h
Cdox4DUp61sNf+G3ll9Dv9ceAXroZTVRTHGjlav6NAFpydz3yPo5x54Ex7S+k3oN
BAcZEl1Tl3hz4WxF8Ywc+yJ8n8l9AVa3KcYRXVbyVjTGg+JjU94=
=jlQf
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes that arrived before the end of the year:
- a bunch of fixes related to transaction handle lifetime wrt various
operations (umount, remount, qgroup scan, orphan cleanup)
- async discard scheduling fixes
- fix item size calculation when item keys collide for extend refs
(hardlinks)
- fix qgroup flushing from running transaction
- fix send, wrong file path when there is an inode with a pending
rmdir
- fix deadlock when cloning inline extent and low on free metadata
space"
* tag 'for-5.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: run delayed iputs when remounting RO to avoid leaking them
btrfs: add assertion for empty list of transactions at late stage of umount
btrfs: fix race between RO remount and the cleaner task
btrfs: fix transaction leak and crash after cleaning up orphans on RO mount
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan
btrfs: merge critical sections of discard lock in workfn
btrfs: fix racy access to discard_ctl data
btrfs: fix async discard stall
btrfs: tests: initialize test inodes location
btrfs: send: fix wrong file path when there is an inode with a pending rmdir
btrfs: qgroup: don't try to wait flushing if we're already holding a transaction
btrfs: correctly calculate item size used when item key collision happens
btrfs: fix deadlock when cloning inline extent and low on free metadata space
|
|
|
|
a8cc263eb5 |
btrfs: run delayed iputs when remounting RO to avoid leaking them
When remounting RO, after setting the superblock with the RO flag, the cleaner task will start sleeping and do nothing, since the call to btrfs_need_cleaner_sleep() keeps returning 'true'. However, when the cleaner task goes to sleep, the list of delayed iputs may not be empty. As long as we are in RO mode, the cleaner task will keep sleeping and never run the delayed iputs. This means that if a filesystem unmount is started, we get into close_ctree() with a non-empty list of delayed iputs, and because the filesystem is in RO mode and is not in an error state (or a transaction aborted), btrfs_error_commit_super() and btrfs_commit_super(), which run the delayed iputs, are never called, and later we fail the assertion that checks if the delayed iputs list is empty: assertion failed: list_empty(&fs_info->delayed_iputs), in fs/btrfs/disk-io.c:4049 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3153! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 1 PID: 3780621 Comm: umount Tainted: G L 5.6.0-rc2-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014 RIP: 0010:assertfail.constprop.0+0x18/0x26 [btrfs] Code: 8b 7b 58 48 85 ff 74 (...) RSP: 0018:ffffb748c89bbdf8 EFLAGS: 00010246 RAX: 0000000000000051 RBX: ffff9608f2584000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff91998988 RDI: 00000000ffffffff RBP: ffff9608f25870d8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffc0cbc500 R13: ffffffff92411750 R14: 0000000000000000 R15: ffff9608f2aab250 FS: 00007fcbfaa66c80(0000) GS:ffff960936c80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fffc2c2dd38 CR3: 0000000235e54002 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x1a2/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x93/0xc0 exit_to_usermode_loop+0xf9/0x100 do_syscall_64+0x20d/0x260 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fcbfaca6307 Code: eb 0b 00 f7 d8 64 89 (...) RSP: 002b:00007fffc2c2ed68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 0000558203b559b0 RCX: 00007fcbfaca6307 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000558203b55bc0 RBP: 0000000000000000 R08: 0000000000000001 R09: 00007fffc2c2dad0 R10: 0000558203b55bf0 R11: 0000000000000246 R12: 0000558203b55bc0 R13: 00007fcbfadcc204 R14: 0000558203b55aa8 R15: 0000000000000000 Modules linked in: btrfs dm_flakey dm_log_writes (...) ---[ end trace d44d303790049ef6 ]--- So fix this by making the remount RO path run any remaining delayed iputs after waiting for the cleaner to become inactive. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0a31daa4b6 |
btrfs: add assertion for empty list of transactions at late stage of umount
Add an assertion to close_ctree(), after destroying all the work queues, to verify we do not have any transaction still open or committing at that at that point. If we have any, it means something is seriously wrong and that can cause memory leaks and use-after-free problems. This is motivated by the previous patches that fixed bugs where we ended up leaking an open transaction after unmounting the filesystem. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a0a1db70df |
btrfs: fix race between RO remount and the cleaner task
When we are remounting a filesystem in RO mode we can race with the cleaner
task and result in leaking a transaction if the filesystem is unmounted
shortly after, before the transaction kthread had a chance to commit that
transaction. That also results in a crash during unmount, due to a
use-after-free, if hardware acceleration is not available for crc32c.
The following sequence of steps explains how the race happens.
1) The filesystem is mounted in RW mode and the cleaner task is running.
This means that currently BTRFS_FS_CLEANER_RUNNING is set at
fs_info->flags;
2) The cleaner task is currently running delayed iputs for example;
3) A filesystem RO remount operation starts;
4) The RO remount task calls btrfs_commit_super(), which commits any
currently open transaction, and it finishes;
5) At this point the cleaner task is still running and it creates a new
transaction by doing one of the following things:
* When running the delayed iput() for an inode with a 0 link count,
in which case at btrfs_evict_inode() we start a transaction through
the call to evict_refill_and_join(), use it and then release its
handle through btrfs_end_transaction();
* When deleting a dead root through btrfs_clean_one_deleted_snapshot(),
a transaction is started at btrfs_drop_snapshot() and then its handle
is released through a call to btrfs_end_transaction_throttle();
* When the remount task was still running, and before the remount task
called btrfs_delete_unused_bgs(), the cleaner task also called
btrfs_delete_unused_bgs() and it picked and removed one block group
from the list of unused block groups. Before the cleaner task started
a transaction, through btrfs_start_trans_remove_block_group() at
btrfs_delete_unused_bgs(), the remount task had already called
btrfs_commit_super();
6) So at this point the filesystem is in RO mode and we have an open
transaction that was started by the cleaner task;
7) Shortly after a filesystem unmount operation starts. At close_ctree()
we stop the transaction kthread before it had a chance to commit the
transaction, since less than 30 seconds (the default commit interval)
have elapsed since the last transaction was committed;
8) We end up calling iput() against the btree inode at close_ctree() while
there is an open transaction, and since that transaction was used to
update btrees by the cleaner, we have dirty pages in the btree inode
due to COW operations on metadata extents, and therefore writeback is
triggered for the btree inode.
So btree_write_cache_pages() is invoked to flush those dirty pages
during the final iput() on the btree inode. This results in creating a
bio and submitting it, which makes us end up at
btrfs_submit_metadata_bio();
9) At btrfs_submit_metadata_bio() we end up at the if-then-else branch
that calls btrfs_wq_submit_bio(), because check_async_write() returned
a value of 1. This value of 1 is because we did not have hardware
acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not
set in fs_info->flags;
10) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the
workqueue at fs_info->workers, which was already freed before by the
call to btrfs_stop_all_workers() at close_ctree(). This results in an
invalid memory access due to a use-after-free, leading to a crash.
When this happens, before the crash there are several warnings triggered,
since we have reserved metadata space in a block group, the delayed refs
reservation, etc:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs]
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs]
Code: f0 01 00 00 48 39 c2 75 (...)
RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206
RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8
RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800
RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110
R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100
FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_free_block_groups+0x17f/0x2f0 [btrfs]
close_ctree+0x2ba/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f15ee221ee7
Code: ff 0b 00 f7 d8 64 89 01 48 (...)
RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000
RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0
R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000
R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace dd74718fef1ed5c6 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs]
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs]
Code: 48 83 bb b0 03 00 00 00 (...)
RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206
RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff
RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110
R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100
FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_free_block_groups+0x24c/0x2f0 [btrfs]
close_ctree+0x2ba/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f15ee221ee7
Code: ff 0b 00 f7 d8 64 89 01 (...)
RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000
RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0
R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000
R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace dd74718fef1ed5c7 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs]
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs]
Code: ad de 49 be 22 01 00 (...)
RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206
RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246
RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00
R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100
FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
close_ctree+0x2ba/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f15ee221ee7
Code: ff 0b 00 f7 d8 64 89 (...)
RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000
RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0
R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000
R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace dd74718fef1ed5c8 ]---
BTRFS info (device sdc): space_info 4 has 268238848 free, is not full
BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536
BTRFS info (device sdc): global_block_rsv: size 0 reserved 0
BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0
BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0
And the crash, which only happens when we do not have crc32c hardware
acceleration, produces the following trace immediately after those
warnings:
stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs]
Code: 54 55 53 48 89 f3 (...)
RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282
RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0
RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8
R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000
FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_wq_submit_bio+0xb3/0xd0 [btrfs]
btrfs_submit_metadata_bio+0x44/0xc0 [btrfs]
submit_one_bio+0x61/0x70 [btrfs]
btree_write_cache_pages+0x414/0x450 [btrfs]
? kobject_put+0x9a/0x1d0
? trace_hardirqs_on+0x1b/0xf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
? free_debug_processing+0x1e1/0x2b0
do_writepages+0x43/0xe0
? lock_acquired+0x199/0x490
__writeback_single_inode+0x59/0x650
writeback_single_inode+0xaf/0x120
write_inode_now+0x94/0xd0
iput+0x187/0x2b0
close_ctree+0x2c6/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f3cfebabee7
Code: ff 0b 00 f7 d8 64 89 01 (...)
RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000
RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0
R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000
R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
---[ end trace dd74718fef1ed5cc ]---
Finally when we remove the btrfs module (rmmod btrfs), there are several
warnings about objects that were allocated from our slabs but were never
freed, consequence of the transaction that was never committed and got
leaked:
=============================================================================
BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
slab_err+0xb7/0xdc
? lock_acquired+0x199/0x490
__kmem_cache_shutdown+0x1ac/0x3c0
? lock_release+0x20e/0x4c0
kmem_cache_destroy+0x55/0x120
btrfs_delayed_ref_exit+0x11/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
INFO: Object 0x0000000050cbdd61 @offset=12104
INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs]
btrfs_free_tree_block+0x128/0x360 [btrfs]
__btrfs_cow_block+0x489/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x1117/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
commit_cowonly_roots+0xfb/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
INFO: Object 0x0000000086e9b0ff @offset=12776
INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs]
btrfs_alloc_tree_block+0x2bf/0x360 [btrfs]
alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs]
__btrfs_cow_block+0x12d/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x1117/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs]
commit_cowonly_roots+0x248/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
close_ctree+0x113/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
kmem_cache_destroy+0x119/0x120
btrfs_delayed_ref_exit+0x11/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 0b (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
=============================================================================
BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200
CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
slab_err+0xb7/0xdc
? lock_acquired+0x199/0x490
__kmem_cache_shutdown+0x1ac/0x3c0
? lock_release+0x20e/0x4c0
kmem_cache_destroy+0x55/0x120
btrfs_delayed_ref_exit+0x1d/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
INFO: Object 0x000000001a340018 @offset=4408
INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs]
btrfs_free_tree_block+0x128/0x360 [btrfs]
__btrfs_cow_block+0x489/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x63d/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
btrfs_commit_transaction+0x60/0xc40 [btrfs]
create_subvol+0x56a/0x990 [btrfs]
btrfs_mksubvol+0x3fb/0x4a0 [btrfs]
__btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs]
btrfs_ioctl_snap_create+0x58/0x80 [btrfs]
btrfs_ioctl+0x1a92/0x36f0 [btrfs]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
INFO: Object 0x000000002b46292a @offset=13648
INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs]
btrfs_alloc_tree_block+0x2bf/0x360 [btrfs]
alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs]
__btrfs_cow_block+0x12d/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x63d/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
commit_cowonly_roots+0xfb/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
close_ctree+0x113/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
kmem_cache_destroy+0x119/0x120
btrfs_delayed_ref_exit+0x1d/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
=============================================================================
BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
slab_err+0xb7/0xdc
? lock_acquired+0x199/0x490
__kmem_cache_shutdown+0x1ac/0x3c0
? __mutex_unlock_slowpath+0x45/0x2a0
kmem_cache_destroy+0x55/0x120
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
INFO: Object 0x000000004cf95ea8 @offset=6264
INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_alloc_tree_block+0x1e0/0x360 [btrfs]
alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs]
__btrfs_cow_block+0x12d/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0xabd/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
commit_cowonly_roots+0xfb/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
close_ctree+0x113/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects
CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
kmem_cache_destroy+0x119/0x120
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1
So fix this by making the remount path to wait for the cleaner task before
calling btrfs_commit_super(). The remount path now waits for the bit
BTRFS_FS_CLEANER_RUNNING to be cleared from fs_info->flags before calling
btrfs_commit_super() and this ensures the cleaner can not start a
transaction after that, because it sleeps when the filesystem is in RO
mode and we have already flagged the filesystem as RO before waiting for
BTRFS_FS_CLEANER_RUNNING to be cleared.
This also introduces a new flag BTRFS_FS_STATE_RO to be used for
fs_info->fs_state when the filesystem is in RO mode. This is because we
were doing the RO check using the flags of the superblock and setting the
RO mode simply by ORing into the superblock's flags - those operations are
not atomic and could result in the cleaner not seeing the update from the
remount task after it clears BTRFS_FS_CLEANER_RUNNING.
Tested-by: Fabian Vogt <fvogt@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
638331fa56 |
btrfs: fix transaction leak and crash after cleaning up orphans on RO mount
When we delete a root (subvolume or snapshot), at the very end of the
operation, we attempt to remove the root's orphan item from the root tree,
at btrfs_drop_snapshot(), by calling btrfs_del_orphan_item(). We ignore any
error from btrfs_del_orphan_item() since it is not a serious problem and
the next time the filesystem is mounted we remove such stray orphan items
at btrfs_find_orphan_roots().
However if the filesystem is mounted RO and we have stray orphan items for
any previously deleted root, we can end up leaking a transaction and other
data structures when unmounting the filesystem, as well as crashing if we
do not have hardware acceleration for crc32c available.
The steps that lead to the transaction leak are the following:
1) The filesystem is mounted in RW mode;
2) A subvolume is deleted;
3) When the cleaner kthread runs btrfs_drop_snapshot() to delete the root,
it gets a failure at btrfs_del_orphan_item(), which is ignored, due to
an ENOMEM when allocating a path for example. So the orphan item for
the root remains in the root tree;
4) The filesystem is unmounted;
5) The filesystem is mounted RO (-o ro). During the mount path we call
btrfs_find_orphan_roots(), which iterates the root tree searching for
orphan items. It finds the orphan item for our deleted root, and since
it can not find the root, it starts a transaction to delete the orphan
item (by calling btrfs_del_orphan_item());
6) The RO mount completes;
7) Before the transaction kthread commits the transaction created for
deleting the orphan item (i.e. less than 30 seconds elapsed since the
mount, the default commit interval), a filesystem unmount operation is
started;
8) At close_ctree(), we stop the transaction kthread, but we still have a
transaction open with at least one dirty extent buffer, a leaf for the
tree root which was COWed when deleting the orphan item;
9) We then proceed to destroy the work queues, free the roots and block
groups, etc. After that we drop the last reference on the btree inode by
calling iput() on it. Since there are dirty pages for the btree inode,
corresponding to the COWed extent buffer, btree_write_cache_pages() is
invoked to flush those dirty pages. This results in creating a bio and
submitting it, which makes us end up at btrfs_submit_metadata_bio();
10) At btrfs_submit_metadata_bio() we end up at the if-then-else branch
that calls btrfs_wq_submit_bio(), because check_async_write() returned
a value of 1. This value of 1 is because we did not have hardware
acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not
set in fs_info->flags;
11) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the
workqueue at fs_info->workers, which was already freed before by the
call to btrfs_stop_all_workers() at close_ctree(). This results in an
invalid memory access due to a use-after-free, leading to a crash.
When this happens, before the crash there are several warnings triggered,
since we have reserved metadata space in a block group, the delayed refs
reservation, etc:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs]
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs]
Code: f0 01 00 00 48 39 c2 75 (...)
RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206
RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8
RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800
RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110
R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100
FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_free_block_groups+0x17f/0x2f0 [btrfs]
close_ctree+0x2ba/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f15ee221ee7
Code: ff 0b 00 f7 d8 64 89 01 48 (...)
RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000
RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0
R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000
R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace dd74718fef1ed5c6 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs]
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs]
Code: 48 83 bb b0 03 00 00 00 (...)
RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206
RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff
RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110
R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100
FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_free_block_groups+0x24c/0x2f0 [btrfs]
close_ctree+0x2ba/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f15ee221ee7
Code: ff 0b 00 f7 d8 64 89 01 (...)
RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000
RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0
R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000
R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace dd74718fef1ed5c7 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs]
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs]
Code: ad de 49 be 22 01 00 (...)
RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206
RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246
RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00
R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100
FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
close_ctree+0x2ba/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f15ee221ee7
Code: ff 0b 00 f7 d8 64 89 (...)
RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000
RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0
R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000
R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace dd74718fef1ed5c8 ]---
BTRFS info (device sdc): space_info 4 has 268238848 free, is not full
BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536
BTRFS info (device sdc): global_block_rsv: size 0 reserved 0
BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0
BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0
And the crash, which only happens when we do not have crc32c hardware
acceleration, produces the following trace immediately after those
warnings:
stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs]
Code: 54 55 53 48 89 f3 (...)
RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282
RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0
RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8
R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000
FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_wq_submit_bio+0xb3/0xd0 [btrfs]
btrfs_submit_metadata_bio+0x44/0xc0 [btrfs]
submit_one_bio+0x61/0x70 [btrfs]
btree_write_cache_pages+0x414/0x450 [btrfs]
? kobject_put+0x9a/0x1d0
? trace_hardirqs_on+0x1b/0xf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
? free_debug_processing+0x1e1/0x2b0
do_writepages+0x43/0xe0
? lock_acquired+0x199/0x490
__writeback_single_inode+0x59/0x650
writeback_single_inode+0xaf/0x120
write_inode_now+0x94/0xd0
iput+0x187/0x2b0
close_ctree+0x2c6/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f3cfebabee7
Code: ff 0b 00 f7 d8 64 89 01 (...)
RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7
RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000
RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0
R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000
R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60
Modules linked in: btrfs dm_snapshot dm_thin_pool (...)
---[ end trace dd74718fef1ed5cc ]---
Finally when we remove the btrfs module (rmmod btrfs), there are several
warnings about objects that were allocated from our slabs but were never
freed, consequence of the transaction that was never committed and got
leaked:
=============================================================================
BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
slab_err+0xb7/0xdc
? lock_acquired+0x199/0x490
__kmem_cache_shutdown+0x1ac/0x3c0
? lock_release+0x20e/0x4c0
kmem_cache_destroy+0x55/0x120
btrfs_delayed_ref_exit+0x11/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
INFO: Object 0x0000000050cbdd61 @offset=12104
INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs]
btrfs_free_tree_block+0x128/0x360 [btrfs]
__btrfs_cow_block+0x489/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x1117/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
commit_cowonly_roots+0xfb/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
INFO: Object 0x0000000086e9b0ff @offset=12776
INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs]
btrfs_alloc_tree_block+0x2bf/0x360 [btrfs]
alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs]
__btrfs_cow_block+0x12d/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x1117/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs]
commit_cowonly_roots+0x248/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
close_ctree+0x113/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
kmem_cache_destroy+0x119/0x120
btrfs_delayed_ref_exit+0x11/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 0b (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
=============================================================================
BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200
CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
slab_err+0xb7/0xdc
? lock_acquired+0x199/0x490
__kmem_cache_shutdown+0x1ac/0x3c0
? lock_release+0x20e/0x4c0
kmem_cache_destroy+0x55/0x120
btrfs_delayed_ref_exit+0x1d/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
INFO: Object 0x000000001a340018 @offset=4408
INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs]
btrfs_free_tree_block+0x128/0x360 [btrfs]
__btrfs_cow_block+0x489/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x63d/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
btrfs_commit_transaction+0x60/0xc40 [btrfs]
create_subvol+0x56a/0x990 [btrfs]
btrfs_mksubvol+0x3fb/0x4a0 [btrfs]
__btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs]
btrfs_ioctl_snap_create+0x58/0x80 [btrfs]
btrfs_ioctl+0x1a92/0x36f0 [btrfs]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
INFO: Object 0x000000002b46292a @offset=13648
INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs]
btrfs_alloc_tree_block+0x2bf/0x360 [btrfs]
alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs]
__btrfs_cow_block+0x12d/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0x63d/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
commit_cowonly_roots+0xfb/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
close_ctree+0x113/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
kmem_cache_destroy+0x119/0x120
btrfs_delayed_ref_exit+0x1d/0x35 [btrfs]
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
=============================================================================
BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200
CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
slab_err+0xb7/0xdc
? lock_acquired+0x199/0x490
__kmem_cache_shutdown+0x1ac/0x3c0
? __mutex_unlock_slowpath+0x45/0x2a0
kmem_cache_destroy+0x55/0x120
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 f5 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
INFO: Object 0x000000004cf95ea8 @offset=6264
INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873
__slab_alloc.isra.0+0x109/0x1c0
kmem_cache_alloc+0x7bb/0x830
btrfs_alloc_tree_block+0x1e0/0x360 [btrfs]
alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs]
__btrfs_cow_block+0x12d/0x5f0 [btrfs]
btrfs_cow_block+0xf7/0x220 [btrfs]
btrfs_search_slot+0x62a/0xc40 [btrfs]
btrfs_del_orphan_item+0x65/0xd0 [btrfs]
btrfs_find_orphan_roots+0x1bf/0x200 [btrfs]
open_ctree+0x125a/0x18a0 [btrfs]
btrfs_mount_root.cold+0x13/0xed [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xe0
fc_mount+0xe/0x40
vfs_kern_mount.part.0+0x71/0x90
btrfs_mount+0x13b/0x3e0 [btrfs]
INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803
kmem_cache_free+0x34c/0x3c0
__btrfs_run_delayed_refs+0xabd/0x1290 [btrfs]
btrfs_run_delayed_refs+0x81/0x210 [btrfs]
commit_cowonly_roots+0xfb/0x300 [btrfs]
btrfs_commit_transaction+0x367/0xc40 [btrfs]
close_ctree+0x113/0x2fa [btrfs]
generic_shutdown_super+0x6c/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x68/0xb0
exit_to_user_mode_prepare+0x1bb/0x1c0
syscall_exit_to_user_mode+0x4b/0x260
entry_SYSCALL_64_after_hwframe+0x44/0xa9
kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects
CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8d/0xb5
kmem_cache_destroy+0x119/0x120
exit_btrfs_fs+0xa/0x59 [btrfs]
__x64_sys_delete_module+0x194/0x260
? fpregs_assert_state_consistent+0x1e/0x40
? exit_to_user_mode_prepare+0x55/0x1c0
? trace_hardirqs_on+0x1b/0xf0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f693e305897
Code: 73 01 c3 48 8b 0d f9 (...)
RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897
RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8
RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000
R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740
R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760
BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1
So fix this by calling btrfs_find_orphan_roots() in the mount path only if
we are mounting the filesystem in RW mode. It's pointless to have it called
for RO mounts anyway, since despite adding any deleted roots to the list of
dead roots, we will never have the roots deleted until the filesystem is
remounted in RW mode, as the cleaner kthread does nothing when we are
mounted in RO - btrfs_need_cleaner_sleep() always returns true and the
cleaner spends all time sleeping, never cleaning dead roots.
This is accomplished by moving the call to btrfs_find_orphan_roots() from
open_ctree() to btrfs_start_pre_rw_mount(), which also guarantees that
if later the filesystem is remounted RW, we populate the list of dead
roots and have the cleaner task delete the dead roots.
Tested-by: Fabian Vogt <fvogt@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
cb13eea3b4 |
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan
If we remount a filesystem in RO mode while the qgroup rescan worker is running, we can end up having it still running after the remount is done, and at unmount time we may end up with an open transaction that ends up never getting committed. If that happens we end up with several memory leaks and can crash when hardware acceleration is unavailable for crc32c. Possibly it can lead to other nasty surprises too, due to use-after-free issues. The following steps explain how the problem happens. 1) We have a filesystem mounted in RW mode and the qgroup rescan worker is running; 2) We remount the filesystem in RO mode, and never stop/pause the rescan worker, so after the remount the rescan worker is still running. The important detail here is that the rescan task is still running after the remount operation committed any ongoing transaction through its call to btrfs_commit_super(); 3) The rescan is still running, and after the remount completed, the rescan worker started a transaction, after it finished iterating all leaves of the extent tree, to update the qgroup status item in the quotas tree. It does not commit the transaction, it only releases its handle on the transaction; 4) A filesystem unmount operation starts shortly after; 5) The unmount task, at close_ctree(), stops the transaction kthread, which had not had a chance to commit the open transaction since it was sleeping and the commit interval (default of 30 seconds) has not yet elapsed since the last time it committed a transaction; 6) So after stopping the transaction kthread we still have the transaction used to update the qgroup status item open. At close_ctree(), when the filesystem is in RO mode and no transaction abort happened (or the filesystem is in error mode), we do not expect to have any transaction open, so we do not call btrfs_commit_super(); 7) We then proceed to destroy the work queues, free the roots and block groups, etc. After that we drop the last reference on the btree inode by calling iput() on it. Since there are dirty pages for the btree inode, corresponding to the COWed extent buffer for the quotas btree, btree_write_cache_pages() is invoked to flush those dirty pages. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 8) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 9) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 Fix this issue by having the remount path stop the qgroup rescan worker when we are remounting RO and teach the rescan worker to stop when a remount is in progress. If later a remount in RW mode happens, we are already resuming the qgroup rescan worker through the call to btrfs_qgroup_rescan_resume(), so we do not need to worry about that. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8fc058597a |
btrfs: merge critical sections of discard lock in workfn
btrfs_discard_workfn() drops discard_ctl->lock just to take it again in a moment in btrfs_discard_schedule_work(). Avoid that and also reuse ktime. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1ea2872fc6 |
btrfs: fix racy access to discard_ctl data
Because only one discard worker may be running at any given point, it could have been safe to modify ->prev_discard, etc. without synchronization, if not for @override flag in btrfs_discard_schedule_work() and delayed_work_pending() returning false while workfn is running. That may lead to torn reads of u64 for some architectures, but that's not a big problem as only slightly affects the discard rate. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ea9ed87c73 |
btrfs: fix async discard stall
Might happen that bg->discard_eligible_time was changed without rescheduling, so btrfs_discard_workfn() wakes up earlier than that new time, peek_discard_list() returns NULL, and all work halts and goes to sleep without further rescheduling even there are block groups to discard. It happens pretty often, but not so visible from the userspace because after some time it usually will be kicked off anyway by someone else calling btrfs_discard_reschedule_work(). Fix it by continue rescheduling if block group discard lists are not empty. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
675a4fc8f3 |
btrfs: tests: initialize test inodes location
I noticed that sometimes the module failed to load because the self tests failed like this: BTRFS: selftest: fs/btrfs/tests/inode-tests.c:963 miscount, wanted 1, got 0 This turned out to be because sometimes the btrfs ino would be the btree inode number, and thus we'd skip calling the set extent delalloc bit helper, and thus not adjust ->outstanding_extents. Fix this by making sure we initialize test inodes with a valid inode number so that we don't get random failures during self tests. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0b3f407e67 |
btrfs: send: fix wrong file path when there is an inode with a pending rmdir
When doing an incremental send, if we have a new inode that happens to have the same number that an old directory inode had in the base snapshot and that old directory has a pending rmdir operation, we end up computing a wrong path for the new inode, causing the receiver to fail. Example reproducer: $ cat test-send-rmdir.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV >/dev/null mount $DEV $MNT mkdir $MNT/dir touch $MNT/dir/file1 touch $MNT/dir/file2 touch $MNT/dir/file3 # Filesystem looks like: # # . (ino 256) # |----- dir/ (ino 257) # |----- file1 (ino 258) # |----- file2 (ino 259) # |----- file3 (ino 260) # btrfs subvolume snapshot -r $MNT $MNT/snap1 btrfs send -f /tmp/snap1.send $MNT/snap1 # Now remove our directory and all its files. rm -fr $MNT/dir # Unmount the filesystem and mount it again. This is to ensure that # the next inode that is created ends up with the same inode number # that our directory "dir" had, 257, which is the first free "objectid" # available after mounting again the filesystem. umount $MNT mount $DEV $MNT # Now create a new file (it could be a directory as well). touch $MNT/newfile # Filesystem now looks like: # # . (ino 256) # |----- newfile (ino 257) # btrfs subvolume snapshot -r $MNT $MNT/snap2 btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2 # Now unmount the filesystem, create a new one, mount it and try to apply # both send streams to recreate both snapshots. umount $DEV mkfs.btrfs -f $DEV >/dev/null mount $DEV $MNT btrfs receive -f /tmp/snap1.send $MNT btrfs receive -f /tmp/snap2.send $MNT umount $MNT When running the test, the receive operation for the incremental stream fails: $ ./test-send-rmdir.sh Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1' At subvol /mnt/sdi/snap1 Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2' At subvol /mnt/sdi/snap2 At subvol snap1 At snapshot snap2 ERROR: chown o257-9-0 failed: No such file or directory So fix this by tracking directories that have a pending rmdir by inode number and generation number, instead of only inode number. A test case for fstests follows soon. Reported-by: Massimo B. <massimo.b@gmx.net> Tested-by: Massimo B. <massimo.b@gmx.net> Link: https://lore.kernel.org/linux-btrfs/6ae34776e85912960a253a8327068a892998e685.camel@gmx.net/ CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ae5e070eac |
btrfs: qgroup: don't try to wait flushing if we're already holding a transaction
There is a chance of racing for qgroup flushing which may lead to deadlock: Thread A | Thread B (not holding trans handle) | (holding a trans handle) --------------------------------+-------------------------------- __btrfs_qgroup_reserve_meta() | __btrfs_qgroup_reserve_meta() |- try_flush_qgroup() | |- try_flush_qgroup() |- QGROUP_FLUSHING bit set | | | | |- test_and_set_bit() | | |- wait_event() |- btrfs_join_transaction() | |- btrfs_commit_transaction()| !!! DEAD LOCK !!! Since thread A wants to commit transaction, but thread B is holding a transaction handle, blocking the commit. At the same time, thread B is waiting for thread A to finish its commit. This is just a hot fix, and would lead to more EDQUOT when we're near the qgroup limit. The proper fix would be to make all metadata/data reservations happen without holding a transaction handle. CC: stable@vger.kernel.org # 5.9+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9a66497156 |
btrfs: correctly calculate item size used when item key collision happens
Item key collision is allowed for some item types, like dir item and
inode refs, but the overall item size is limited by the nodesize.
item size(ins_len) passed from btrfs_insert_empty_items to
btrfs_search_slot already contains size of btrfs_item.
When btrfs_search_slot reaches leaf, we'll see if we need to split leaf.
The check incorrectly reports that split leaf is required, because
it treats the space required by the newly inserted item as
btrfs_item + item data. But in item key collision case, only item data
is actually needed, the newly inserted item could merge into the existing
one. No new btrfs_item will be inserted.
And split_leaf return EOVERFLOW from following code:
if (extend && data_size + btrfs_item_size_nr(l, slot) +
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
return -EOVERFLOW;
In most cases, when callers receive EOVERFLOW, they either return
this error or handle in different ways. For example, in normal dir item
creation the userspace will get errno EOVERFLOW; in inode ref case
INODE_EXTREF is used instead.
However, this is not the case for rename. To avoid the unrecoverable
situation in rename, btrfs_check_dir_item_collision is called in
early phase of rename. In this function, when item key collision is
detected leaf space is checked:
data_size = sizeof(*di) + name_len;
if (data_size + btrfs_item_size_nr(leaf, slot) +
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root->fs_info))
the sizeof(struct btrfs_item) + btrfs_item_size_nr(leaf, slot) here
refers to existing item size, the condition here correctly calculates
the needed size for collision case rather than the wrong case above.
The consequence of inconsistent condition check between
btrfs_check_dir_item_collision and btrfs_search_slot when item key
collision happens is that we might pass check here but fail
later at btrfs_search_slot. Rename fails and volume is forced readonly
[436149.586170] ------------[ cut here ]------------
[436149.586173] BTRFS: Transaction aborted (error -75)
[436149.586196] WARNING: CPU: 0 PID: 16733 at fs/btrfs/inode.c:9870 btrfs_rename2+0x1938/0x1b70 [btrfs]
[436149.586227] CPU: 0 PID: 16733 Comm: python Tainted: G D 4.18.0-rc5+ #1
[436149.586228] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016
[436149.586238] RIP: 0010:btrfs_rename2+0x1938/0x1b70 [btrfs]
[436149.586254] RSP: 0018:ffffa327043a7ce0 EFLAGS: 00010286
[436149.586255] RAX: 0000000000000000 RBX: ffff8d8a17d13340 RCX: 0000000000000006
[436149.586256] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8d8a7fc164b0
[436149.586257] RBP: ffffa327043a7da0 R08: 0000000000000560 R09: 7265282064657472
[436149.586258] R10: 0000000000000000 R11: 6361736e61725420 R12: ffff8d8a0d4c8b08
[436149.586258] R13: ffff8d8a17d13340 R14: ffff8d8a33e0a540 R15: 00000000000001fe
[436149.586260] FS: 00007fa313933740(0000) GS:ffff8d8a7fc00000(0000) knlGS:0000000000000000
[436149.586261] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[436149.586262] CR2: 000055d8d9c9a720 CR3: 000000007aae0003 CR4: 00000000003606f0
[436149.586295] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[436149.586296] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[436149.586296] Call Trace:
[436149.586311] vfs_rename+0x383/0x920
[436149.586313] ? vfs_rename+0x383/0x920
[436149.586315] do_renameat2+0x4ca/0x590
[436149.586317] __x64_sys_rename+0x20/0x30
[436149.586324] do_syscall_64+0x5a/0x120
[436149.586330] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[436149.586332] RIP: 0033:0x7fa3133b1d37
[436149.586348] RSP: 002b:00007fffd3e43908 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
[436149.586349] RAX: ffffffffffffffda RBX: 00007fa3133b1d30 RCX: 00007fa3133b1d37
[436149.586350] RDX: 000055d8da06b5e0 RSI: 000055d8da225d60 RDI: 000055d8da2c4da0
[436149.586351] RBP: 000055d8da2252f0 R08: 00007fa313782000 R09: 00000000000177e0
[436149.586351] R10: 000055d8da010680 R11: 0000000000000246 R12: 00007fa313840b00
Thanks to Hans van Kranenburg for information about crc32 hash collision
tools, I was able to reproduce the dir item collision with following
python script.
https://github.com/wutzuchieh/misc_tools/blob/master/crc32_forge.py Run
it under a btrfs volume will trigger the abort transaction. It simply
creates files and rename them to forged names that leads to
hash collision.
There are two ways to fix this. One is to simply revert the patch
|
|
|
|
3d45f221ce |
btrfs: fix deadlock when cloning inline extent and low on free metadata space
When cloning an inline extent there are cases where we can not just copy
the inline extent from the source range to the target range (e.g. when the
target range starts at an offset greater than zero). In such cases we copy
the inline extent's data into a page of the destination inode and then
dirty that page. However, after that we will need to start a transaction
for each processed extent and, if we are ever low on available metadata
space, we may need to flush existing delalloc for all dirty inodes in an
attempt to release metadata space - if that happens we may deadlock:
* the async reclaim task queued a delalloc work to flush delalloc for
the destination inode of the clone operation;
* the task executing that delalloc work gets blocked waiting for the
range with the dirty page to be unlocked, which is currently locked
by the task doing the clone operation;
* the async reclaim task blocks waiting for the delalloc work to complete;
* the cloning task is waiting on the waitqueue of its reservation ticket
while holding the range with the dirty page locked in the inode's
io_tree;
* if metadata space is not released by some other task (like delalloc for
some other inode completing for example), the clone task waits forever
and as a consequence the delalloc work and async reclaim tasks will hang
forever as well. Releasing more space on the other hand may require
starting a transaction, which will hang as well when trying to reserve
metadata space, resulting in a deadlock between all these tasks.
When this happens, traces like the following show up in dmesg/syslog:
[87452.323003] INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
[87452.323644] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.324248] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.324852] task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
[87452.325520] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[87452.326136] Call Trace:
[87452.326737] __schedule+0x5d1/0xcf0
[87452.327390] schedule+0x45/0xe0
[87452.328174] lock_extent_bits+0x1e6/0x2d0 [btrfs]
[87452.328894] ? finish_wait+0x90/0x90
[87452.329474] btrfs_invalidatepage+0x32c/0x390 [btrfs]
[87452.330133] ? __mod_memcg_state+0x8e/0x160
[87452.330738] __extent_writepage+0x2d4/0x400 [btrfs]
[87452.331405] extent_write_cache_pages+0x2b2/0x500 [btrfs]
[87452.332007] ? lock_release+0x20e/0x4c0
[87452.332557] ? trace_hardirqs_on+0x1b/0xf0
[87452.333127] extent_writepages+0x43/0x90 [btrfs]
[87452.333653] ? lock_acquire+0x1a3/0x490
[87452.334177] do_writepages+0x43/0xe0
[87452.334699] ? __filemap_fdatawrite_range+0xa4/0x100
[87452.335720] __filemap_fdatawrite_range+0xc5/0x100
[87452.336500] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[87452.337216] btrfs_work_helper+0xf1/0x600 [btrfs]
[87452.337838] process_one_work+0x24e/0x5e0
[87452.338437] worker_thread+0x50/0x3b0
[87452.339137] ? process_one_work+0x5e0/0x5e0
[87452.339884] kthread+0x153/0x170
[87452.340507] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.341153] ret_from_fork+0x22/0x30
[87452.341806] INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
[87452.342487] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.343274] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.344049] task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
[87452.344974] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[87452.345655] Call Trace:
[87452.346305] __schedule+0x5d1/0xcf0
[87452.346947] ? kvm_clock_read+0x14/0x30
[87452.347676] ? wait_for_completion+0x81/0x110
[87452.348389] schedule+0x45/0xe0
[87452.349077] schedule_timeout+0x30c/0x580
[87452.349718] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[87452.350340] ? lock_acquire+0x1a3/0x490
[87452.351006] ? try_to_wake_up+0x7a/0xa20
[87452.351541] ? lock_release+0x20e/0x4c0
[87452.352040] ? lock_acquired+0x199/0x490
[87452.352517] ? wait_for_completion+0x81/0x110
[87452.353000] wait_for_completion+0xab/0x110
[87452.353490] start_delalloc_inodes+0x2af/0x390 [btrfs]
[87452.353973] btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
[87452.354455] flush_space+0x24f/0x660 [btrfs]
[87452.355063] btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
[87452.355565] process_one_work+0x24e/0x5e0
[87452.356024] worker_thread+0x20f/0x3b0
[87452.356487] ? process_one_work+0x5e0/0x5e0
[87452.356973] kthread+0x153/0x170
[87452.357434] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.357880] ret_from_fork+0x22/0x30
(...)
< stack traces of several tasks waiting for the locks of the inodes of the
clone operation >
(...)
[92867.444138] RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
[92867.444624] RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73f97
[92867.445116] RDX: 0000000000000000 RSI: 0000560fbd5d7a40 RDI: 0000560fbd5d8960
[92867.445595] RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
[92867.446070] R10: 00007ffc3371b996 R11: 0000000000000246 R12: 0000000000000000
[92867.446820] R13: 000000000000001f R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
[92867.447361] task:fsstress state:D stack: 0 pid:2508238 ppid:2508153 flags:0x00004000
[92867.447920] Call Trace:
[92867.448435] __schedule+0x5d1/0xcf0
[92867.448934] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[92867.449423] schedule+0x45/0xe0
[92867.449916] __reserve_bytes+0x4a4/0xb10 [btrfs]
[92867.450576] ? finish_wait+0x90/0x90
[92867.451202] btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
[92867.451815] btrfs_block_rsv_add+0x1f/0x50 [btrfs]
[92867.452412] start_transaction+0x2d1/0x760 [btrfs]
[92867.453216] clone_copy_inline_extent+0x333/0x490 [btrfs]
[92867.453848] ? lock_release+0x20e/0x4c0
[92867.454539] ? btrfs_search_slot+0x9a7/0xc30 [btrfs]
[92867.455218] btrfs_clone+0x569/0x7e0 [btrfs]
[92867.455952] btrfs_clone_files+0xf6/0x150 [btrfs]
[92867.456588] btrfs_remap_file_range+0x324/0x3d0 [btrfs]
[92867.457213] do_clone_file_range+0xd4/0x1f0
[92867.457828] vfs_clone_file_range+0x4d/0x230
[92867.458355] ? lock_release+0x20e/0x4c0
[92867.458890] ioctl_file_clone+0x8f/0xc0
[92867.459377] do_vfs_ioctl+0x342/0x750
[92867.459913] __x64_sys_ioctl+0x62/0xb0
[92867.460377] do_syscall_64+0x33/0x80
[92867.460842] entry_SYSCALL_64_after_hwframe+0x44/0xa9
(...)
< stack traces of more tasks blocked on metadata reservation like the clone
task above, because the async reclaim task has deadlocked >
(...)
Another thing to notice is that the worker task that is deadlocked when
trying to flush the destination inode of the clone operation is at
btrfs_invalidatepage(). This is simply because the clone operation has a
destination offset greater than the i_size and we only update the i_size
of the destination file after cloning an extent (just like we do in the
buffered write path).
Since the async reclaim path uses btrfs_start_delalloc_roots() to trigger
the flushing of delalloc for all inodes that have delalloc, add a runtime
flag to an inode to signal it should not be flushed, and for inodes with
that flag set, start_delalloc_inodes() will simply skip them. When the
cloning code needs to dirty a page to copy an inline extent, set that flag
on the inode and then clear it when the clone operation finishes.
This could be sporadically triggered with test case generic/269 from
fstests, which exercises many fsstress processes running in parallel with
several dd processes filling up the entire filesystem.
CC: stable@vger.kernel.org # 5.9+
Fixes:
|
|
|
|
ac7ac4618c |
for-5.11/block-2020-12-14
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl/Xec8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpoLbEACzXypgZWwMdfgRckA/Vt333rXHtbhUV+hK
2XP+P81iRvr9Esi31UPbRp82vrgcDO0cpI1QmQojS5U5TIQP88BfXptfRZZu48eb
wT5RDDNQ34HItqAh/yEuYsv9yUKcxeIrB99tBVvM+4UmQg9zTdIW3mg6PvCBdbhV
N38jI0tCF/PJatjfRuphT/nXonQLPWBlVDmZk06KZQFOwQe9ep1vUi1+nbiRPuo3
geFBpTh1Kp6Vl1B3n4RpECs6Y7I0RRuJdaH2sDizICla1/BW91F9fQwHimNnUxUq
e1Q1kMuh6ftcQGkYlHSYcPhuv6CvorldTZCO5arPxWpcwvxriTSMRPWAgUr5pEiF
fhiGhqeDu9e6vl9vS31wUD1B30hy+jFz9wyjRrDwJ3cPHH1JVBjTzvdX+cIh/1ku
IbIwUMteUtvUrzqAv/DzbGhedp7xWtOFaVo8j0QFYh9zkjd6b8yDOF/yztwX2gjY
Xt1cd+KpDSiN449ZRaoMI0sCJAxqzhMa6nsWlb0L7KuNyWKAbvKQBm9Rb47FLV9A
Vx70KC+zkFoyw23capvIahmQazerriUJ5PGe0lVm6ROgmIFdCpXTPDjnrvq/6RZ/
GEpD7gTW9atGJ7EuEE8686sAfKD5kneChWLX5EHXf0d0AG5Mr2lKsluiGp5LpPJg
Q1Xqs6xwww==
=zo4w
-----END PGP SIGNATURE-----
Merge tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Another series of killing more code than what is being added, again
thanks to Christoph's relentless cleanups and tech debt tackling.
This contains:
- blk-iocost improvements (Baolin Wang)
- part0 iostat fix (Jeffle Xu)
- Disable iopoll for split bios (Jeffle Xu)
- block tracepoint cleanups (Christoph Hellwig)
- Merging of struct block_device and hd_struct (Christoph Hellwig)
- Rework/cleanup of how block device sizes are updated (Christoph
Hellwig)
- Simplification of gendisk lookup and removal of block device
aliasing (Christoph Hellwig)
- Block device ioctl cleanups (Christoph Hellwig)
- Removal of bdget()/blkdev_get() as exported API (Christoph Hellwig)
- Disk change rework, avoid ->revalidate_disk() (Christoph Hellwig)
- sbitmap improvements (Pavel Begunkov)
- Hybrid polling fix (Pavel Begunkov)
- bvec iteration improvements (Pavel Begunkov)
- Zone revalidation fixes (Damien Le Moal)
- blk-throttle limit fix (Yu Kuai)
- Various little fixes"
* tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block: (126 commits)
blk-mq: fix msec comment from micro to milli seconds
blk-mq: update arg in comment of blk_mq_map_queue
blk-mq: add helper allocating tagset->tags
Revert "block: Fix a lockdep complaint triggered by request queue flushing"
nvme-loop: use blk_mq_hctx_set_fq_lock_class to set loop's lock class
blk-mq: add new API of blk_mq_hctx_set_fq_lock_class
block: disable iopoll for split bio
block: Improve blk_revalidate_disk_zones() checks
sbitmap: simplify wrap check
sbitmap: replace CAS with atomic and
sbitmap: remove swap_lock
sbitmap: optimise sbitmap_deferred_clear()
blk-mq: skip hybrid polling if iopoll doesn't spin
blk-iocost: Factor out the base vrate change into a separate function
blk-iocost: Factor out the active iocgs' state check into a separate function
blk-iocost: Move the usage ratio calculation to the correct place
blk-iocost: Remove unnecessary advance declaration
blk-iocost: Fix some typos in comments
blktrace: fix up a kerneldoc comment
block: remove the request_queue to argument request based tracepoints
...
|
|
|
|
f1ee3b8829 |
for-5.11-tag
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl/XdB4ACgkQxWXV+ddt
WDv41g//dOkrwjAVBfDUwRT/yKqojyEsZB1aNyHlPHFw8KEw5oIW7wxR4oqXi2ed
/i9KIJe4E9AfqAiexhLvA+Wyt/Sgwz+k4ys82PKhhRNQn7LE4tvhSBUu6JYJDU09
6I1jagya7ILa8akFXZTmVbXdliI4Ab+pcXWAmQYK/xPVDxYTSsBf4o4MilNBA9FS
lTwwBh5GTEtIkubr2yVd3pKfF4fT2g1hd+yglpHaOzpcrLMNN4hj4sUFlLbx/FlJ
MWo+914cSNKJoebbnqhK9djD9hggaaXnNooqfBOXUhZN0VN9rQoKb5tW+TREQmFm
shrmBSqN7CaqKfSOMZs7WOnTuTvmV/825PnLqDqcTUaLw+BgdyacpO9WflgfSs16
Cdvagr1SqbrSQ/3WYCpbqPLDNP3XuZ6+m5OWizf6fhyo8xdFcUHZgRC8qejDlycy
V/zP0c5OYOMi5vo6x/zhrD7Uft7xoFUVcSJCe8WPri082d9LbA2BqwCsullD60PQ
K/fsmlHs5Uxxy3MFgBPVDdWGgaa9rQ2vXequezbozBIIeeVL+Q9zkeyBFSYuFeE8
HToRE9B9BUEUh+p1JxPjOdFH/m+sKe1WMdmRLQthMzfOiNWW7pp/nL5rl4BUVmjm
58dQS73Cj/YNdBomRJXPPtgKIJPAWRrzU/JBcwAdMoKy57oh9NQ=
=5YAS
-----END PGP SIGNATURE-----
Merge tag 'for-5.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"We have a mix of all kinds of changes, feature updates, core stuff,
performance improvements and lots of cleanups and preparatory changes.
User visible:
- export filesystem generation in sysfs
- new features for mount option 'rescue':
- what's currently supported is exported in sysfs
- 'ignorebadroots'/'ibadroots' - continue even if some essential
tree roots are not usable (extent, uuid, data reloc, device,
csum, free space)
- 'ignoredatacsums'/'idatacsums' - skip checksum verification on
data
- 'all' - now enables 'ignorebadroots' + 'ignoredatacsums' +
'nologreplay'
- export read mirror policy settings to sysfs, new policies will be
added in the future
- remove inode number cache feature (mount -o inode_cache), obsoleted
in 5.9
User visible fixes:
- async discard scheduling fixes on high loads
- update inode byte counter atomically so stat() does not report
wrong value in some cases
- free space tree fixes:
- correctly report status of v2 after remount
- clear v1 cache inodes when v2 is newly enabled after remount
Core:
- switch own tree lock implementation to standard rw semaphore:
- one-level lock nesting is not required anymore, the last use of
this was in free space that's now loaded asynchronously
- own implementation of adaptive spinning before taking mutex has
been part of rwsem
- performance seems to be better in general, much better (+tens
of percents) for some workloads
- lockdep does not complain
- finish direct IO conversion to iomap infrastructure, remove
temporary workaround for DSYNC after iomap API updates
- preparatory work to support data and metadata blocks smaller than
page:
- generalize code that assumes sectorsize == PAGE_SIZE, lots of
refactoring
- planned namely for 64K pages (eg. arm64, ppc64)
- scrub read-only support
- preparatory work for zoned allocation mode (SMR/ZBC/ZNS friendly):
- disable incompatible features
- round-robin superblock write
- free space cache (v1) is loaded asynchronously, remove tree path
recursion
- slightly improved time tacking for transaction kthread wake ups
Performance improvements (note that the numbers depend on load type or
other features and weren't run on the same machine):
- skip unnecessary work:
- do not start readahead for csum tree when scrubbing non-data
block groups
- do not start and wait for delalloc on snapshot roots on
transaction commit
- fix race when defragmenting leads to unnecessary IO
- dbench speedups (+throughput%/-max latency%):
- skip unnecessary searches for xattrs when logging an inode
(+10.8/-8.2)
- stop incrementing log batch when joining log transaction (1-2)
- unlock path before checking if extent is shared during nocow
writeback (+5.0/-20.5), on fio load +9.7% throughput/-9.8%
runtime
- several tree log improvements, eg. removing unnecessary
operations, fixing races that lead to additional work
(+12.7/-8.2)
- tree-checker error branches annotated with unlikely() (+3%
throughput)
Other:
- cleanups
- lockdep fixes
- more btrfs_inode conversions
- error variable cleanups"
* tag 'for-5.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (198 commits)
btrfs: scrub: allow scrub to work with subpage sectorsize
btrfs: scrub: support subpage data scrub
btrfs: scrub: support subpage tree block scrub
btrfs: scrub: always allocate one full page for one sector for RAID56
btrfs: scrub: reduce width of extent_len/stripe_len from 64 to 32 bits
btrfs: refactor btrfs_lookup_bio_sums to handle out-of-order bvecs
btrfs: remove btrfs_find_ordered_sum call from btrfs_lookup_bio_sums
btrfs: handle sectorsize < PAGE_SIZE case for extent buffer accessors
btrfs: update num_extent_pages to support subpage sized extent buffer
btrfs: don't allow tree block to cross page boundary for subpage support
btrfs: calculate inline extent buffer page size based on page size
btrfs: factor out btree page submission code to a helper
btrfs: make btrfs_verify_data_csum follow sector size
btrfs: pass bio_offset to check_data_csum() directly
btrfs: rename bio_offset of extent_submit_bio_start_t to dio_file_offset
btrfs: fix lockdep warning when creating free space tree
btrfs: skip space_cache v1 setup when not using it
btrfs: remove free space items when disabling space cache v1
btrfs: warn when remount will not change the free space tree
btrfs: use superblock state to print space_cache mount option
...
|
|
|
|
edd7ab7684 |
The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic implementation
which builds the base for the kmap_local() API and make the
kmap_atomic() interface wrappers which handle the disabling/enabling of
preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a mapping
is established. It has to disable migration instead to guarantee that
the virtual address of the mapped slot is the same accross preemption.
- Provide better debug facilities: guard pages and enforced utilization
of the mapping mechanics on 64bit systems when the architecture allows
it.
- Provide the new kmap_local() API which can now be used to cleanup the
kmap_atomic() usage sites all over the place. Most of the usage sites
do not require the implicit disabling of preemption and pagefaults so
the penalty on 64bit and 32bit non-highmem systems is removed and quite
some of the code can be simplified. A wholesale conversion is not
possible because some usage depends on the implicit side effects and
some need to be cleaned up because they work around these side effects.
The migrate disable side effect is only effective on highmem systems
and when enforced debugging is enabled. On 64bit and 32bit non-highmem
systems the overhead is completely avoided.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi
0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT
4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP
p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF
RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH
+x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR
ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V
Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz
XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj
FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO
HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+
+jlfoJhMbtx5Gg==
=n71I
-----END PGP SIGNATURE-----
Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kmap updates from Thomas Gleixner:
"The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic
implementation which builds the base for the kmap_local() API and
make the kmap_atomic() interface wrappers which handle the
disabling/enabling of preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a
mapping is established. It has to disable migration instead to
guarantee that the virtual address of the mapped slot is the same
across preemption.
- Provide better debug facilities: guard pages and enforced
utilization of the mapping mechanics on 64bit systems when the
architecture allows it.
- Provide the new kmap_local() API which can now be used to cleanup
the kmap_atomic() usage sites all over the place. Most of the usage
sites do not require the implicit disabling of preemption and
pagefaults so the penalty on 64bit and 32bit non-highmem systems is
removed and quite some of the code can be simplified. A wholesale
conversion is not possible because some usage depends on the
implicit side effects and some need to be cleaned up because they
work around these side effects.
The migrate disable side effect is only effective on highmem
systems and when enforced debugging is enabled. On 64bit and 32bit
non-highmem systems the overhead is completely avoided"
* tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
ARM: highmem: Fix cache_is_vivt() reference
x86/crashdump/32: Simplify copy_oldmem_page()
io-mapping: Provide iomap_local variant
mm/highmem: Provide kmap_local*
sched: highmem: Store local kmaps in task struct
x86: Support kmap_local() forced debugging
mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL
microblaze/mm/highmem: Add dropped #ifdef back
xtensa/mm/highmem: Make generic kmap_atomic() work correctly
mm/highmem: Take kmap_high_get() properly into account
highmem: High implementation details and document API
Documentation/io-mapping: Remove outdated blurb
io-mapping: Cleanup atomic iomap
mm/highmem: Remove the old kmap_atomic cruft
highmem: Get rid of kmap_types.h
xtensa/mm/highmem: Switch to generic kmap atomic
sparc/mm/highmem: Switch to generic kmap atomic
powerpc/mm/highmem: Switch to generic kmap atomic
nds32/mm/highmem: Switch to generic kmap atomic
...
|
|
|
|
b42fe98c92 |
btrfs: scrub: allow scrub to work with subpage sectorsize
Since btrfs scrub is utilizing its own infrastructure to submit read/write, scrub is independent from all other routines. This brings one very neat feature, allow us to read 4K data into offset 0 of a 64K page. So is the writeback routine. This makes scrub on subpage sector size much easier to implement, and thanks to previous commits which just changed the implementation to always do scrub based on sector size, now scrub can handle subpage filesystem without any problem. This patch will just remove the restriction on (sectorsize != PAGE_SIZE), to make scrub finally work on subpage filesystems. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b29dca44ab |
btrfs: scrub: support subpage data scrub
Btrfs scrub is more flexible than buffered data write path, as we can read an unaligned subpage data into page offset 0. This ability makes subpage support much easier, we just need to check each scrub_page::page_len and ensure we only calculate hash for [0, page_len) of a page. There is a small thing to notice: for subpage case, we still do sector by sector scrub. This means we will submit a read bio for each sector to scrub, resulting in the same amount of read bios, just like on the 4K page systems. This behavior can be considered as a good thing, if we want everything to be the same as 4K page systems. But this also means, we're wasting the possibility to submit larger bio using 64K page size. This is another problem to consider in the future. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
53f3251d3b |
btrfs: scrub: support subpage tree block scrub
To support subpage tree block scrub, scrub_checksum_tree_block() only needs to learn 2 new tricks: - Follow sector size Now scrub_page only represents one sector, we need to follow it properly. - Run checksum on all sectors Since scrub_page only represents one sector, we need to run checksum on all sectors, not only (nodesize >> PAGE_SIZE). Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d0a7a9c050 |
btrfs: scrub: always allocate one full page for one sector for RAID56
For scrub_pages() and scrub_pages_for_parity(), we currently allocate one scrub_page structure for one page. This is fine if we only read/write one sector one time. But for cases like scrubbing RAID56, we need to read/write the full stripe, which is in 64K size for now. For subpage size, we will submit the read in just one page, which is normally a good thing, but for RAID56 case, it only expects to see one sector, not the full stripe in its endio function. This could lead to wrong parity checksum for RAID56 on subpage. To make the existing code work well for subpage case, here we take a shortcut by always allocating a full page for one sector. This should provide the base to make RAID56 work for subpage case. The cost is pretty obvious now, for one RAID56 stripe now we always need 16 pages. For support subpage situation (64K page size, 4K sector size), this means we need full one megabyte to scrub just one RAID56 stripe. And for data scrub, each 4K sector will also need one 64K page. This is mostly just a workaround, the proper fix for this is a much larger project, using scrub_block to replace scrub_page, and allow scrub_block to handle multi pages, csums, and csum_bitmap to avoid allocating one page for each sector. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fa485d21a7 |
btrfs: scrub: reduce width of extent_len/stripe_len from 64 to 32 bits
Btrfs on-disk format chose to use u64 for almost everything, but there are a other restrictions that won't let us use more than u32 for things like extent length (the maximum length is 128MiB for non-hole extents), or stripe length (we have device number limit). This means if we don't have extra handling to convert u64 to u32, we will always have some questionable operations like "u32 = u64 >> sectorsize_bits" in the code. This patch will try to address the problem by reducing the width for the following members/parameters: - scrub_parity::stripe_len - @len of scrub_pages() - @extent_len of scrub_remap_extent() - @len of scrub_parity_mark_sectors_error() - @len of scrub_parity_mark_sectors_data() - @len of scrub_extent() - @len of scrub_pages_for_parity() - @len of scrub_extent_for_parity() For members extracted from on-disk structure, like map->stripe_len, they will be kept as is. Since that modification would require on-disk format change. There will be cases like "u32 = u64 - u64" or "u32 = u64", for such call sites, extra ASSERT() is added to be extra safe for debug builds. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
6275193ef1 |
btrfs: refactor btrfs_lookup_bio_sums to handle out-of-order bvecs
Refactor btrfs_lookup_bio_sums() by:
- Remove the @file_offset parameter
There are two factors making the @file_offset parameter useless:
* For csum lookup in csum tree, file offset makes no sense
We only need disk_bytenr, which is unrelated to file_offset
* page_offset (file offset) of each bvec is not contiguous.
Pages can be added to the same bio as long as their on-disk bytenr
is contiguous, meaning we could have pages at different file offsets
in the same bio.
Thus passing file_offset makes no sense any more.
The only user of file_offset is for data reloc inode, we will use
a new function, search_file_offset_in_bio(), to handle it.
- Extract the csum tree lookup into search_csum_tree()
The new function will handle the csum search in csum tree.
The return value is the same as btrfs_find_ordered_sum(), returning
the number of found sectors which have checksum.
- Change how we do the main loop
The only needed info from bio is:
* the on-disk bytenr
* the length
After extracting the above info, we can do the search without bio
at all, which makes the main loop much simpler:
for (cur_disk_bytenr = orig_disk_bytenr;
cur_disk_bytenr < orig_disk_bytenr + orig_len;
cur_disk_bytenr += count * sectorsize) {
/* Lookup csum tree */
count = search_csum_tree(fs_info, path, cur_disk_bytenr,
search_len, csum_dst);
if (!count) {
/* Csum hole handling */
}
}
- Use single variable as the source to calculate all other offsets
Instead of all different type of variables, we use only one main
variable, cur_disk_bytenr, which represents the current disk bytenr.
All involved values can be calculated from that variable, and
all those variable will only be visible in the inner loop.
The above refactoring makes btrfs_lookup_bio_sums() way more robust than
it used to be, especially related to the file offset lookup. Now
file_offset lookup is only related to data reloc inode, otherwise we
don't need to bother file_offset at all.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
9e46458a7c |
btrfs: remove btrfs_find_ordered_sum call from btrfs_lookup_bio_sums
The function btrfs_lookup_bio_sums() is only called for read bios. While btrfs_find_ordered_sum() is to search ordered extent sums, which is only for write path. This means to read a page we either: - Submit read bio if it's not uptodate This means we only need to search csum tree for checksums. - The page is already uptodate It can be marked uptodate for previous read, or being marked dirty. As we always mark page uptodate for dirty page. In that case, we don't need to submit read bio at all, thus no need to search any checksums. Remove the btrfs_find_ordered_sum() call in btrfs_lookup_bio_sums(). And since btrfs_lookup_bio_sums() is the only caller for btrfs_find_ordered_sum(), also remove the implementation. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
884b07d0f4 |
btrfs: handle sectorsize < PAGE_SIZE case for extent buffer accessors
To support sectorsize < PAGE_SIZE case, we need to take extra care of extent buffer accessors. Since sectorsize is smaller than PAGE_SIZE, one page can contain multiple tree blocks, we must use eb->start to determine the real offset to read/write for extent buffer accessors. This patch introduces two helpers to do this: - get_eb_page_index() This is to calculate the index to access extent_buffer::pages. It's just a simple wrapper around "start >> PAGE_SHIFT". For sectorsize == PAGE_SIZE case, nothing is changed. For sectorsize < PAGE_SIZE case, we always get index as 0, and the existing page shift also works. - get_eb_offset_in_page() This is to calculate the offset to access extent_buffer::pages. This needs to take extent_buffer::start into consideration. For sectorsize == PAGE_SIZE case, extent_buffer::start is always aligned to PAGE_SIZE, thus adding extent_buffer::start to offset_in_page() won't change the result. For sectorsize < PAGE_SIZE case, adding extent_buffer::start gives us the correct offset to access. This patch will touch the following parts to cover all extent buffer accessors: - BTRFS_SETGET_HEADER_FUNCS() - read_extent_buffer() - read_extent_buffer_to_user() - memcmp_extent_buffer() - write_extent_buffer_chunk_tree_uuid() - write_extent_buffer_fsid() - write_extent_buffer() - memzero_extent_buffer() - copy_extent_buffer_full() - copy_extent_buffer() - memcpy_extent_buffer() - memmove_extent_buffer() - btrfs_get_token_##bits() - btrfs_get_##bits() - btrfs_set_token_##bits() - btrfs_set_##bits() - generic_bin_search() Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
4a3dc93843 |
btrfs: update num_extent_pages to support subpage sized extent buffer
For subpage sized extent buffer, we have ensured no extent buffer will cross page boundary, thus we would only need one page for any extent buffer. Update function num_extent_pages to handle such case. Now num_extent_pages() returns 1 for subpage sized extent buffer. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1aaac38c83 |
btrfs: don't allow tree block to cross page boundary for subpage support
As a preparation for subpage sector size support (allowing filesystem with sector size smaller than page size to be mounted) if the sector size is smaller than page size, we don't allow tree block to be read if it crosses 64K(*) boundary. The 64K is selected because: - we are only going to support 64K page size for subpage for now - 64K is also the maximum supported node size This ensures that tree blocks are always contained in one page for a system with 64K page size, which can greatly simplify the handling. Otherwise we would have to do complex multi-page handling of tree blocks. Currently there is no way to create such tree blocks. In kernel we have avoided such tree blocks allocation even on 4K page size, as it can lead to RAID56 stripe scrubbing. While btrfs-progs have fixed its chunk allocator since 2016 for convert, and has extra checks to do the same behavior as the kernel. Just add such graceful checks in case of an ancient filesystem. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
deb6789553 |
btrfs: calculate inline extent buffer page size based on page size
Btrfs only support 64K as maximum node size, thus for 4K page system, we would have at most 16 pages for one extent buffer. For a system using 64K page size, we would really have just one page. While we always use 16 pages for extent_buffer::pages, this means for systems using 64K pages, we are wasting memory for 15 page pointers which will never be used. Calculate the array size based on page size and the node size maximum. - for systems using 4K page size, it will stay 16 pages - for systems using 64K page size, it will be 1 page Move the definition of BTRFS_MAX_METADATA_BLOCKSIZE to btrfs_tree.h, to avoid circular inclusion of ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f91e0d0c4c |
btrfs: factor out btree page submission code to a helper
In btree_write_cache_pages() we have a btree page submission routine buried deeply in a nested loop. This patch will extract that part of code into a helper function, submit_eb_page(), to do the same work. Since submit_eb_page() now can return >0 for successful extent buffer submission, remove the "ASSERT(ret <= 0);" line. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f44cf41075 |
btrfs: make btrfs_verify_data_csum follow sector size
Currently btrfs_verify_data_csum() just passes the whole page to check_data_csum(), which is fine since we only support sectorsize == PAGE_SIZE. To support subpage, we need to properly honor per-sector checksum verification, just like what we did in dio read path. This patch will do the csum verification in a for loop, starts with pg_off == start - page_offset(page), with sectorsize increase for each loop. For sectorsize == PAGE_SIZE case, the pg_off will always be 0, and we will only loop once. For subpage case, we do the iterate over each sector and if we found any error, we return error. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7ffd27e378 |
btrfs: pass bio_offset to check_data_csum() directly
Parameter icsum for check_data_csum() is a little hard to understand. So is the phy_offset for btrfs_verify_data_csum(). Both parameters are calculated values for csum lookup. Instead of some calculated value, just pass bio_offset and let the final and only user, check_data_csum(), calculate whatever it needs. Since we are here, also make the bio_offset parameter and some related variables to be u32 (unsigned int). As bio size is limited by its bi_size, which is unsigned int, and has extra size limit check during various bio operations. Thus we are ensured that bio_offset won't overflow u32. Thus for all involved functions, not only rename the parameter from @phy_offset to @bio_offset, but also reduce its width to u32, so we won't have suspicious "u32 = u64 >> sector_bits;" lines anymore. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1941b64b08 |
btrfs: rename bio_offset of extent_submit_bio_start_t to dio_file_offset
The parameter bio_offset of extent_submit_bio_start_t is very confusing. If it's really bio_offset (offset to bio), then it should be u32. But in fact, it's only utilized by dio read, and that member is used as file offset, which must be u64. Rename it to dio_file_offset since the only user uses it as file offset, and add comment for who is using it. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8a6a87cd44 |
btrfs: fix lockdep warning when creating free space tree
A lock dependency loop exists between the root tree lock, the extent tree lock, and the free space tree lock. The root tree lock depends on the free space tree lock because btrfs_create_tree holds the new tree's lock while adding it to the root tree. The extent tree lock depends on the root tree lock because during umount, we write out space cache v1, which writes inodes in the root tree, which results in holding the root tree lock while doing a lookup in the extent tree. Finally, the free space tree depends on the extent tree because populate_free_space_tree holds a locked path in the extent tree and then does a lookup in the free space tree to add the new item. The simplest of the three to break is the one during tree creation: we unlock the leaf before inserting the tree node into the root tree, which fixes the lockdep warning. [30.480136] ====================================================== [30.480830] WARNING: possible circular locking dependency detected [30.481457] 5.9.0-rc8+ #76 Not tainted [30.481897] ------------------------------------------------------ [30.482500] mount/520 is trying to acquire lock: [30.483064] ffff9babebe03908 (btrfs-free-space-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.484054] but task is already holding lock: [30.484637] ffff9babebe24468 (btrfs-extent-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.485581] which lock already depends on the new lock. [30.486397] the existing dependency chain (in reverse order) is: [30.487205] -> #2 (btrfs-extent-01#2){++++}-{3:3}: [30.487825] down_read_nested+0x43/0x150 [30.488306] __btrfs_tree_read_lock+0x39/0x180 [30.488868] __btrfs_read_lock_root_node+0x3a/0x50 [30.489477] btrfs_search_slot+0x464/0x9b0 [30.490009] check_committed_ref+0x59/0x1d0 [30.490603] btrfs_cross_ref_exist+0x65/0xb0 [30.491108] run_delalloc_nocow+0x405/0x930 [30.491651] btrfs_run_delalloc_range+0x60/0x6b0 [30.492203] writepage_delalloc+0xd4/0x150 [30.492688] __extent_writepage+0x18d/0x3a0 [30.493199] extent_write_cache_pages+0x2af/0x450 [30.493743] extent_writepages+0x34/0x70 [30.494231] do_writepages+0x31/0xd0 [30.494642] __filemap_fdatawrite_range+0xad/0xe0 [30.495194] btrfs_fdatawrite_range+0x1b/0x50 [30.495677] __btrfs_write_out_cache+0x40d/0x460 [30.496227] btrfs_write_out_cache+0x8b/0x110 [30.496716] btrfs_start_dirty_block_groups+0x211/0x4e0 [30.497317] btrfs_commit_transaction+0xc0/0xba0 [30.497861] sync_filesystem+0x71/0x90 [30.498303] btrfs_remount+0x81/0x433 [30.498767] reconfigure_super+0x9f/0x210 [30.499261] path_mount+0x9d1/0xa30 [30.499722] do_mount+0x55/0x70 [30.500158] __x64_sys_mount+0xc4/0xe0 [30.500616] do_syscall_64+0x33/0x40 [30.501091] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.501629] -> #1 (btrfs-root-00){++++}-{3:3}: [30.502241] down_read_nested+0x43/0x150 [30.502727] __btrfs_tree_read_lock+0x39/0x180 [30.503291] __btrfs_read_lock_root_node+0x3a/0x50 [30.503903] btrfs_search_slot+0x464/0x9b0 [30.504405] btrfs_insert_empty_items+0x60/0xa0 [30.504973] btrfs_insert_item+0x60/0xd0 [30.505412] btrfs_create_tree+0x1b6/0x210 [30.505913] btrfs_create_free_space_tree+0x54/0x110 [30.506460] btrfs_mount_rw+0x15d/0x20f [30.506937] btrfs_remount+0x356/0x433 [30.507369] reconfigure_super+0x9f/0x210 [30.507868] path_mount+0x9d1/0xa30 [30.508264] do_mount+0x55/0x70 [30.508668] __x64_sys_mount+0xc4/0xe0 [30.509186] do_syscall_64+0x33/0x40 [30.509652] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.510271] -> #0 (btrfs-free-space-00){++++}-{3:3}: [30.510972] __lock_acquire+0x11ad/0x1b60 [30.511432] lock_acquire+0xa2/0x360 [30.511917] down_read_nested+0x43/0x150 [30.512383] __btrfs_tree_read_lock+0x39/0x180 [30.512947] __btrfs_read_lock_root_node+0x3a/0x50 [30.513455] btrfs_search_slot+0x464/0x9b0 [30.513947] search_free_space_info+0x45/0x90 [30.514465] __add_to_free_space_tree+0x92/0x39d [30.515010] btrfs_create_free_space_tree.cold.22+0x1ee/0x45d [30.515639] btrfs_mount_rw+0x15d/0x20f [30.516142] btrfs_remount+0x356/0x433 [30.516538] reconfigure_super+0x9f/0x210 [30.517065] path_mount+0x9d1/0xa30 [30.517438] do_mount+0x55/0x70 [30.517824] __x64_sys_mount+0xc4/0xe0 [30.518293] do_syscall_64+0x33/0x40 [30.518776] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.519335] other info that might help us debug this: [30.520210] Chain exists of: btrfs-free-space-00 --> btrfs-root-00 --> btrfs-extent-01#2 [30.521407] Possible unsafe locking scenario: [30.522037] CPU0 CPU1 [30.522456] ---- ---- [30.522941] lock(btrfs-extent-01#2); [30.523311] lock(btrfs-root-00); [30.523952] lock(btrfs-extent-01#2); [30.524620] lock(btrfs-free-space-00); [30.525068] *** DEADLOCK *** [30.525669] 5 locks held by mount/520: [30.526116] #0: ffff9babebc520e0 (&type->s_umount_key#37){+.+.}-{3:3}, at: path_mount+0x7ef/0xa30 [30.527056] #1: ffff9babebc52640 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x3d5/0x5c0 [30.527960] #2: ffff9babeae8f2e8 (&cache->free_space_lock#2){+.+.}-{3:3}, at: btrfs_create_free_space_tree.cold.22+0x101/0x45d [30.529118] #3: ffff9babebe24468 (btrfs-extent-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.530113] #4: ffff9babebd52eb8 (btrfs-extent-00){++++}-{3:3}, at: btrfs_try_tree_read_lock+0x16/0x100 [30.531124] stack backtrace: [30.531528] CPU: 0 PID: 520 Comm: mount Not tainted 5.9.0-rc8+ #76 [30.532166] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.1-4.module_el8.1.0+248+298dec18 04/01/2014 [30.533215] Call Trace: [30.533452] dump_stack+0x8d/0xc0 [30.533797] check_noncircular+0x13c/0x150 [30.534233] __lock_acquire+0x11ad/0x1b60 [30.534667] lock_acquire+0xa2/0x360 [30.535063] ? __btrfs_tree_read_lock+0x39/0x180 [30.535525] down_read_nested+0x43/0x150 [30.535939] ? __btrfs_tree_read_lock+0x39/0x180 [30.536400] __btrfs_tree_read_lock+0x39/0x180 [30.536862] __btrfs_read_lock_root_node+0x3a/0x50 [30.537304] btrfs_search_slot+0x464/0x9b0 [30.537713] ? trace_hardirqs_on+0x1c/0xf0 [30.538148] search_free_space_info+0x45/0x90 [30.538572] __add_to_free_space_tree+0x92/0x39d [30.539071] ? printk+0x48/0x4a [30.539367] btrfs_create_free_space_tree.cold.22+0x1ee/0x45d [30.539972] btrfs_mount_rw+0x15d/0x20f [30.540350] btrfs_remount+0x356/0x433 [30.540773] ? shrink_dcache_sb+0xd9/0x100 [30.541203] reconfigure_super+0x9f/0x210 [30.541642] path_mount+0x9d1/0xa30 [30.542040] do_mount+0x55/0x70 [30.542366] __x64_sys_mount+0xc4/0xe0 [30.542822] do_syscall_64+0x33/0x40 [30.543197] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.543691] RIP: 0033:0x7f109f7ab93a [30.546042] RSP: 002b:00007ffc47c4f858 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [30.546770] RAX: ffffffffffffffda RBX: 00007f109f8cf264 RCX: 00007f109f7ab93a [30.547485] RDX: 0000557e6fc10770 RSI: 0000557e6fc19cf0 RDI: 0000557e6fc19cd0 [30.548185] RBP: 0000557e6fc10520 R08: 0000557e6fc18e30 R09: 0000557e6fc18cb0 [30.548911] R10: 0000000000200020 R11: 0000000000000246 R12: 0000000000000000 [30.549606] R13: 0000557e6fc19cd0 R14: 0000557e6fc10770 R15: 0000557e6fc10520 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
af456a2c0a |
btrfs: skip space_cache v1 setup when not using it
If we are not using space cache v1, we should not create the free space object or free space inodes. This comes up when we delete the existing free space objects/inodes when migrating to v2, only to see them get recreated for every dirtied block group. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
36b216c85e |
btrfs: remove free space items when disabling space cache v1
When the filesystem transitions from space cache v1 to v2 or to nospace_cache, it removes the old cached data, but does not remove the FREE_SPACE items nor the free space inodes they point to. This doesn't cause any issues besides being a bit inefficient, since these items no longer do anything useful. To fix it, when we are mounting, and plan to disable the space cache, destroy each block group's free space item and free space inode. The code to remove the items is lifted from the existing use case of removing the block group, with a light adaptation to handle whether or not we have already looked up the free space inode. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2838d255cb |
btrfs: warn when remount will not change the free space tree
If the remount is ro->ro, rw->ro, or rw->rw, we will not create or clear the free space tree. This can be surprising, so print a warning to dmesg to make the failure more visible. It is also important to ensure that the space cache options (SPACE_CACHE, FREE_SPACE_TREE) are consistent, so ensure those are set to properly match the current on disk state (which won't be changing). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
04c4155969 |
btrfs: use superblock state to print space_cache mount option
To make the contents of /proc/mounts better match the actual state of the filesystem, base the display of the space cache mount options off the contents of the super block rather than the last mount options passed in. Since there are many scenarios where the mount will ignore a space cache option, simply showing the passed in option is misleading. For example, if we mount with -o remount,space_cache=v2 on a read-write file system without an existing free space tree, we won't build a free space tree, but /proc/mounts will read space_cache=v2 (until we mount again and it goes away) cache_generation is set iff space_cache=v1, FREE_SPACE_TREE is set iff space_cache=v2, and if neither is the case, we print nospace_cache. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9484622945 |
btrfs: keep sb cache_generation consistent with space_cache
When mounting, btrfs uses the cache_generation in the super block to determine if space cache v1 is in use. However, by mounting with nospace_cache or space_cache=v2, it is possible to disable space cache v1, which does not result in un-setting cache_generation back to 0. In order to base some logic, like mount option printing in /proc/mounts, on the current state of the space cache rather than just the values of the mount option, keep the value of cache_generation consistent with the status of space cache v1. We ensure that cache_generation > 0 iff the file system is using space_cache v1. This requires committing a transaction on any mount which changes whether we are using v1. (v1->nospace_cache, v1->v2, nospace_cache->v1, v2->v1). Since the mechanism for writing out the cache generation is transaction commit, but we want some finer grained control over when we un-set it, we can't just rely on the SPACE_CACHE mount option, and introduce an fs_info flag that mount can use when it wants to unset the generation. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8b228324a8 |
btrfs: clear free space tree on ro->rw remount
A user might want to revert to v1 or nospace_cache on a root filesystem, and much like turning on the free space tree, that can only be done remounting from ro->rw. Support clearing the free space tree on such mounts by moving it into the shared remount logic. Since the CLEAR_CACHE option sticks around across remounts, this change would result in clearing the tree for ever on every remount, which is not desirable. To fix that, add CLEAR_CACHE to the oneshot options we clear at mount end, which has the other bonus of not cluttering the /proc/mounts output with clear_cache. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8cd2908846 |
btrfs: clear oneshot options on mount and remount
Some options only apply during mount time and are cleared at the end of mount. For now, the example is USEBACKUPROOT, but CLEAR_CACHE also fits the bill, and this is a preparation patch for also clearing that option. One subtlety is that the current code only resets USEBACKUPROOT on rw mounts, but the option is meaningfully "consumed" by a ro mount, so it feels appropriate to clear in that case as well. A subsequent read-write remount would not go through open_ctree, which is the only place that checks the option, so the change should be benign. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5011139a47 |
btrfs: create free space tree on ro->rw remount
When a user attempts to remount a btrfs filesystem with 'mount -o remount,space_cache=v2', that operation silently succeeds. Unfortunately, this is misleading, because the remount does not create the free space tree. /proc/mounts will incorrectly show space_cache=v2, but on the next mount, the file system will revert to the old space_cache. For now, we handle only the easier case, where the existing mount is read-only and the new mount is read-write. In that case, we can create the free space tree without contending with the block groups changing as we go. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
997e3e2e71 |
btrfs: only mark bg->needs_free_space if free space tree is on
If we attempt to create a free space tree while any block groups have needs_free_space set, we will double add the new free space item and hit EEXIST. Previously, we only created the free space tree on a new mount, so we never hit the case, but if we try to create it on a remount, such block groups could exist and trip us up. We don't do anything with this field unless the free space tree is enabled, so there is no harm in not setting it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8f1c21d749 |
btrfs: start orphan cleanup on ro->rw remount
When we mount a rw filesystem, we start the orphan cleanup process in tree root and filesystem tree. However, when we remount a ro file system rw, we only clean the former. Move the calls to btrfs_orphan_cleanup() on tree_root and fs_root to the shared rw mount routine to effectively add them on ro->rw remount. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
44c0ca211a |
btrfs: lift read-write mount setup from mount and remount
Mounting rw and remounting from ro to rw naturally share invariants and functionality which result in a correctly setup rw filesystem. Luckily, there is even a strong unity in the code which implements them. In mount's open_ctree, these operations mostly happen after an early return for ro file systems, and in remount, they happen in a section devoted to remounting ro->rw, after some remount specific validation passes. However, there are unfortunately a few differences. There are small deviations in the order of some of the operations, remount does not start orphan cleanup in root_tree or fs_tree, remount does not create the free space tree, and remount does not handle "one-shot" mount options like clear_cache and uuid tree rescan. Since we want to add building the free space tree to remount, and also to start the same orphan cleanup process on a filesystem mounted as ro then remounted rw, we would benefit from unifying the logic between the two code paths. This patch only lifts the existing common functionality, and leaves a natural path for fixing the discrepancies. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
47876f7cef |
btrfs: do not block inode logging for so long during transaction commit
Early on during a transaction commit we acquire the tree_log_mutex and
hold it until after we write the super blocks. But before writing the
extent buffers dirtied by the transaction and the super blocks we unblock
the transaction by setting its state to TRANS_STATE_UNBLOCKED and setting
fs_info->running_transaction to NULL.
This means that after that and before writing the super blocks, new
transactions can start. However if any transaction wants to log an inode,
it will block waiting for the transaction commit to write its dirty
extent buffers and the super blocks because the tree_log_mutex is only
released after those operations are complete, and starting a new log
transaction blocks on that mutex (at start_log_trans()).
Writing the dirty extent buffers and the super blocks can take a very
significant amount of time to complete, but we could allow the tasks
wanting to log an inode to proceed with most of their steps:
1) create the log trees
2) log metadata in the trees
3) write their dirty extent buffers
They only need to wait for the previous transaction commit to complete
(write its super blocks) before they attempt to write their super blocks,
otherwise we could end up with a corrupt filesystem after a crash.
So change start_log_trans() to use the root tree's log_mutex to serialize
for the creation of the log root tree instead of using the tree_log_mutex,
and make btrfs_sync_log() acquire the tree_log_mutex before writing the
super blocks. This allows for inode logging to wait much less time when
there is a previous transaction that is still committing, often not having
to wait at all, as by the time when we try to sync the log the previous
transaction already wrote its super blocks.
This patch belongs to a patch set that is comprised of the following
patches:
btrfs: fix race causing unnecessary inode logging during link and rename
btrfs: fix race that results in logging old extents during a fast fsync
btrfs: fix race that causes unnecessary logging of ancestor inodes
btrfs: fix race that makes inode logging fallback to transaction commit
btrfs: fix race leading to unnecessary transaction commit when logging inode
btrfs: do not block inode logging for so long during transaction commit
The following script that uses dbench was used to measure the impact of
the whole patchset:
$ cat test-dbench.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/btrfs
MOUNT_OPTIONS="-o ssd"
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f -m single -d single $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT -t 300 64
umount $MNT
The test was run on a machine with 12 cores, 64G of ram, using a NVMe
device and a non-debug kernel configuration (Debian's default).
Before patch set:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 11277211 0.250 85.340
Close 8283172 0.002 6.479
Rename 477515 1.935 86.026
Unlink 2277936 0.770 87.071
Deltree 256 15.732 81.379
Mkdir 128 0.003 0.009
Qpathinfo 10221180 0.056 44.404
Qfileinfo 1789967 0.002 4.066
Qfsinfo 1874399 0.003 9.176
Sfileinfo 918589 0.061 10.247
Find 3951758 0.341 54.040
WriteX 5616547 0.047 85.079
ReadX 17676028 0.005 9.704
LockX 36704 0.003 1.800
UnlockX 36704 0.002 0.687
Flush 790541 14.115 676.236
Throughput 1179.19 MB/sec 64 clients 64 procs max_latency=676.240 ms
After patch set:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 12687926 0.171 86.526
Close 9320780 0.002 8.063
Rename 537253 1.444 78.576
Unlink 2561827 0.559 87.228
Deltree 374 11.499 73.549
Mkdir 187 0.003 0.005
Qpathinfo 11500300 0.061 36.801
Qfileinfo 2017118 0.002 7.189
Qfsinfo 2108641 0.003 4.825
Sfileinfo 1033574 0.008 8.065
Find 4446553 0.408 47.835
WriteX 6335667 0.045 84.388
ReadX 19887312 0.003 9.215
LockX 41312 0.003 1.394
UnlockX 41312 0.002 1.425
Flush 889233 13.014 623.259
Throughput 1339.32 MB/sec 64 clients 64 procs max_latency=623.265 ms
+12.7% throughput, -8.2% max latency
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
639bd575b7 |
btrfs: fix race leading to unnecessary transaction commit when logging inode
When logging an inode we may often have to fallback to a full transaction
commit, either because a new block group was allocated, there is some case
we can not deal with without a transaction commit or some error like an
ENOMEM happened. However after we fallback to a transaction commit, we
have a time window where we can make the next attempt to log any inode
commit the next transaction unnecessarily, adding additional overhead and
increasing latency.
A sequence of steps that leads to this issue is the following:
1) The current open transaction has a generation of 1000;
2) A new block group is allocated, and as a consequence we must make sure
any attempts to commit a log fallback to a transaction commit, so
btrfs_set_log_full_commit() is called from btrfs_make_block_group().
This sets fs_info->last_trans_log_full_commit to 1000;
3) Task A is holding a handle on transaction 1000 and tries to log inode X.
Once it gets to start_log_trans(), it calls btrfs_need_log_full_commit()
which returns true, since fs_info->last_trans_log_full_commit has a
value of 1000. So we end up returning EAGAIN and propagating it up to
btrfs_sync_file(), where we commit transaction 1000;
4) The transaction commit task (task A) sets the transaction state to
unblocked (TRANS_STATE_UNBLOCKED);
5) Some other task, task B, starts a new transaction with a generation of
1001;
6) Some stuff is done with transaction 1001, some btree blocks COWed, etc;
7) Transaction 1000 has not fully committed yet, we are still writing all
the extent buffers it created;
8) Some new task, task C, starts an fsync of inode Y, gets a handle for
transaction 1001, and it gets to btrfs_log_inode_parent() which does
the following check:
if (fs_info->last_trans_log_full_commit > last_committed) {
ret = 1;
goto end_no_trans;
}
At that point last_trans_log_full_commit has a value of 1000 and
last_committed (value of fs_info->last_trans_committed) has a value of
999, since transaction 1000 has not yet committed - it is either still
writing out dirty extent buffers, its super blocks or unpinning
extents.
As a consequence we return 1, which gets propagated up to
btrfs_sync_file(), which will then call btrfs_commit_transaction()
for transaction 1001.
As a consequence we have an unnecessary second transaction commit, we
previously committed transaction 1000 and now commit transaction 1001
as well, resulting in more overhead and increased latency.
So fix this double transaction commit issue simply by removing that check,
because all we need to do is wait for the previous transaction to finish
its commit, which we already do later when starting the log transaction at
start_log_trans(), because there we acquire the tree_log_mutex lock, which
is held by a transaction commit and only released after the transaction
commits its super blocks.
Another issue that check has is that it reads last_trans_log_full_commit
without using READ_ONCE(), which is incorrect since that member of
struct btrfs_fs_info is always updated with WRITE_ONCE() through the
helper btrfs_set_log_full_commit().
This double transaction commit issue can actually be triggered quite often
in long runs of dbench, since besides the creation of new block groups
that force inode logging to fallback to a transaction commit, there are
cases where dbench asks to fsync a directory which had files in it that
were previously renamed or subdirectories that were removed, resulting in
the inode logging to fallback to a full transaction commit.
This patch belongs to a patch set that is comprised of the following
patches:
btrfs: fix race causing unnecessary inode logging during link and rename
btrfs: fix race that results in logging old extents during a fast fsync
btrfs: fix race that causes unnecessary logging of ancestor inodes
btrfs: fix race that makes inode logging fallback to transaction commit
btrfs: fix race leading to unnecessary transaction commit when logging inode
btrfs: do not block inode logging for so long during transaction commit
Performance results are mentioned in the change log of the last patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
47d3db41e1 |
btrfs: fix race that makes inode logging fallback to transaction commit
When logging an inode and the previous transaction is still committing, we
have a time window where we can end up incorrectly think an inode has its
last_unlink_trans field with a value greater than the last transaction
committed, which results in the logging to fallback to a full transaction
commit, which is usually much more expensive than doing a log commit.
The race is described by the following steps:
1) We are at transaction 1000;
2) We modify an inode X (a directory) using transaction 1000 and set its
last_unlink_trans field to 1000, because for example we removed one
of its subdirectories;
3) We create a new inode Y with a dentry in inode X using transaction 1000,
so its generation field is set to 1000;
4) The commit for transaction 1000 is started by task A;
5) The task committing transaction 1000 sets the transaction state to
unblocked, writes the dirty extent buffers and the super blocks, then
unlocks tree_log_mutex;
6) Some task starts a new transaction with a generation of 1001;
7) We do some modification to inode Y (using transaction 1001);
8) The transaction 1000 commit starts unpinning extents. At this point
fs_info->last_trans_committed still has a value of 999;
9) Task B starts an fsync on inode Y, and gets a handle for transaction
1001. When it gets to check_parent_dirs_for_sync() it does the checking
of the ancestor dentries because the following check does not evaluate
to true:
if (S_ISREG(inode->vfs_inode.i_mode) &&
inode->generation <= last_committed &&
inode->last_unlink_trans <= last_committed)
goto out;
The generation value for inode Y is 1000 and last_committed, which has
the value read from fs_info->last_trans_committed, has a value of 999,
so that check evaluates to false and we proceed to check the ancestor
inodes.
Once we get to the first ancestor, inode X, we call
btrfs_must_commit_transaction() on it, which evaluates to true:
static bool btrfs_must_commit_transaction(...)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
bool ret = false;
mutex_lock(&inode->log_mutex);
if (inode->last_unlink_trans > fs_info->last_trans_committed) {
/*
* Make sure any commits to the log are forced to be full
* commits.
*/
btrfs_set_log_full_commit(trans);
ret = true;
}
(...)
because inode's X last_unlink_trans has a value of 1000 and
fs_info->last_trans_committed still has a value of 999, it returns
true to check_parent_dirs_for_sync(), making it return 1 which is
propagated up to btrfs_sync_file(), causing it to fallback to a full
transaction commit of transaction 1001.
We should have not fallen back to commit transaction 1001, since inode
X had last_unlink_trans set to 1000 and the super blocks for
transaction 1000 were already written. So while not resulting in a
functional problem, it leads to a lot more work and higher latencies
for a fsync since committing a transaction is usually more expensive
than committing a log (if other filesystem changes happened under that
transaction).
Similar problem happens when logging directories, for the same reason as
btrfs_must_commit_transaction() returns true on an inode with its
last_unlink_trans having the generation of the previous transaction and
that transaction is still committing, unpinning its freed extents.
So fix this by comparing last_unlink_trans with the id of the current
transaction instead of fs_info->last_trans_committed.
This case is often hit when running dbench for a long enough duration, as
it does lots of rename and rmdir operations (both update the field
last_unlink_trans of an inode) and fsyncs of files and directories.
This patch belongs to a patch set that is comprised of the following
patches:
btrfs: fix race causing unnecessary inode logging during link and rename
btrfs: fix race that results in logging old extents during a fast fsync
btrfs: fix race that causes unnecessary logging of ancestor inodes
btrfs: fix race that makes inode logging fallback to transaction commit
btrfs: fix race leading to unnecessary transaction commit when logging inode
btrfs: do not block inode logging for so long during transaction commit
Performance results are mentioned in the change log of the last patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
4d6221d7d8 |
btrfs: fix race that causes unnecessary logging of ancestor inodes
When logging an inode and we are checking if we need to log ancestors that
are new, if the previous transaction is still committing we have a time
window where we can unnecessarily log ancestor inodes that were created in
the previous transaction.
The race is described by the following steps:
1) We are at transaction 1000;
2) Directory inode X is created, its generation is set to 1000;
3) The commit for transaction 1000 is started by task A;
4) The task committing transaction 1000 sets the transaction state to
unblocked, writes the dirty extent buffers and the super blocks, then
unlocks tree_log_mutex;
5) Inode Y, a regular file, is created under directory inode X, this
results in starting a new transaction with a generation of 1001;
6) The transaction 1000 commit is unpinning extents. At this point
fs_info->last_trans_committed still has a value of 999;
7) Task B calls fsync on inode Y and gets a handle for transaction 1001;
8) Task B ends up at log_all_new_ancestors() and then because inode Y has
only one hard link, ends up at log_new_ancestors_fast(). There it reads
a value of 999 from fs_info->last_trans_committed, and sees that the
parent inode X has a generation of 1000, so we end up logging inode X:
if (inode->generation > fs_info->last_trans_committed) {
ret = btrfs_log_inode(trans, root, inode,
LOG_INODE_EXISTS, ctx);
(...)
which is not necessary since it was created in the past transaction,
with a generation of 1000, and that transaction has already committed
its super blocks - it's still unpinning extents so it has not yet
updated fs_info->last_trans_committed from 999 to 1000.
So this just causes us to spend more time logging and allocating and
writing more tree blocks for the log tree.
So fix this by comparing an inode's generation with the generation of the
transaction our transaction handle refers to - if the inode's generation
matches the generation of the current transaction than we know it is a
new inode we need to log, otherwise don't log it.
This case is often hit when running dbench for a long enough duration.
This patch belongs to a patch set that is comprised of the following
patches:
btrfs: fix race causing unnecessary inode logging during link and rename
btrfs: fix race that results in logging old extents during a fast fsync
btrfs: fix race that causes unnecessary logging of ancestor inodes
btrfs: fix race that makes inode logging fallback to transaction commit
btrfs: fix race leading to unnecessary transaction commit when logging inode
btrfs: do not block inode logging for so long during transaction commit
Performance results are mentioned in the change log of the last patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
5f96bfb763 |
btrfs: fix race that results in logging old extents during a fast fsync
When logging the extents of an inode during a fast fsync, we have a time window where we can log extents that are from the previous transaction and already persisted. This only makes us waste time unnecessarily. The following sequence of steps shows how this can happen: 1) We are at transaction 1000; 2) An ordered extent E from inode I completes, that is it has gone through btrfs_finish_ordered_io(), and it set the extent maps' generation to 1000 when we unpin the extent, which is the generation of the current transaction; 3) The commit for transaction 1000 starts by task A; 4) The task committing transaction 1000 sets the transaction state to unblocked, writes the dirty extent buffers and the super blocks, then unlocks tree_log_mutex; 5) Some change is made to inode I, resulting in creation of a new transaction with a generation of 1001; 6) The transaction 1000 commit starts unpinning extents. At this point fs_info->last_trans_committed still has a value of 999; 7) Task B starts an fsync on inode I, and when it gets to btrfs_log_changed_extents() sees the extent map for extent E in the list of modified extents. It sees the extent map has a generation of 1000 and fs_info->last_trans_committed has a value of 999, so it proceeds to logging the respective file extent item and all the checksums covering its range. So we end up wasting time since the extent was already persisted and is reachable through the trees pointed to by the super block committed by transaction 1000. So just fix this by comparing the extent maps generation against the generation of the transaction handle - if it is smaller then the id in the handle, we know the extent was already persisted and we do not need to log it. This patch belongs to a patch set that is comprised of the following patches: btrfs: fix race causing unnecessary inode logging during link and rename btrfs: fix race that results in logging old extents during a fast fsync btrfs: fix race that causes unnecessary logging of ancestor inodes btrfs: fix race that makes inode logging fallback to transaction commit btrfs: fix race leading to unnecessary transaction commit when logging inode btrfs: do not block inode logging for so long during transaction commit Performance results are mentioned in the change log of the last patch. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
de53d892e5 |
btrfs: fix race causing unnecessary inode logging during link and rename
When we are doing a rename or a link operation for an inode that was logged in the previous transaction and that transaction is still committing, we have a time window where we incorrectly consider that the inode was logged previously in the current transaction and therefore decide to log it to update it in the log. The following steps give an example on how this happens during a link operation: 1) Inode X is logged in transaction 1000, so its logged_trans field is set to 1000; 2) Task A starts to commit transaction 1000; 3) The state of transaction 1000 is changed to TRANS_STATE_UNBLOCKED; 4) Task B starts a link operation for inode X, and as a consequence it starts transaction 1001; 5) Task A is still committing transaction 1000, therefore the value stored at fs_info->last_trans_committed is still 999; 6) Task B calls btrfs_log_new_name(), it reads a value of 999 from fs_info->last_trans_committed and because the logged_trans field of inode X has a value of 1000, the function does not return immediately, instead it proceeds to logging the inode, which should not happen because the inode was logged in the previous transaction (1000) and not in the current one (1001). This is not a functional problem, just wasted time and space logging an inode that does not need to be logged, contributing to higher latency for link and rename operations. So fix this by comparing the inodes' logged_trans field with the generation of the current transaction instead of comparing with the value stored in fs_info->last_trans_committed. This case is often hit when running dbench for a long enough duration, as it does lots of rename operations. This patch belongs to a patch set that is comprised of the following patches: btrfs: fix race causing unnecessary inode logging during link and rename btrfs: fix race that results in logging old extents during a fast fsync btrfs: fix race that causes unnecessary logging of ancestor inodes btrfs: fix race that makes inode logging fallback to transaction commit btrfs: fix race leading to unnecessary transaction commit when logging inode btrfs: do not block inode logging for so long during transaction commit Performance results are mentioned in the change log of the last patch. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fa598b0696 |
btrfs: remove recalc_thresholds from free space ops
After removing the inode number cache that was using the free space cache code, we can remove at least the recalc_thresholds callback from the ops. Both code and tests use the same callback function. It's moved before its first use. The use_bitmaps callback is still needed by tests to create some extents/bitmap setup. Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f0d1219def |
btrfs: always set NODATASUM/NODATACOW in __create_free_space_inode
Since it's being used solely for the freespace cache unconditionally set the flags required for it. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7dbdb443a7 |
btrfs: remove crc_check logic from free space
Following removal of the ino cache io_ctl_init will be called only on behalf of the freespace inode. In this case we always want to check CRCs so conditional code that depended on io_ctl::check_crc can be removed. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5297199a8b |
btrfs: remove inode number cache feature
It's been deprecated since commit
|
|
|
|
abadc1fcd7 |
btrfs: replace calls to btrfs_find_free_ino with btrfs_find_free_objectid
The former is going away as part of the inode map removal so switch callers to btrfs_find_free_objectid. No functional changes since with INODE_MAP disabled (default) find_free_objectid was called anyway. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ec7d6dfd73 |
btrfs: move btrfs_find_highest_objectid/btrfs_find_free_objectid to disk-io.c
Those functions are going to be used even after inode cache is removed so moved them to a more appropriate place. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1201b58b67 |
btrfs: drop casts of bio bi_sector
Since commit
|
|
|
|
12659251ca |
btrfs: implement log-structured superblock for ZONED mode
Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a589dde0bc |
btrfs: disallow mixed-bg in ZONED mode
Placing both data and metadata in a block group is impossible in ZONED mode. For data, we can allocate a space for it and write it immediately after the allocation. For metadata, however, we cannot do that, because the logical addresses are recorded in other metadata buffers to build up the trees. As a result, a data buffer can be placed after a metadata buffer, which is not written yet. Writing out the data buffer will break the sequential write rule. Check and disallow MIXED_BG with ZONED mode. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f1569c4c10 |
btrfs: disable fallocate in ZONED mode
fallocate() is implemented by reserving actual extent instead of reservations. This can result in exposing the sequential write constraint of host-managed zoned block devices to the application, which would break the POSIX semantic for the fallocated file. To avoid this, report fallocate() as not supported when in ZONED mode for now. In the future, we may be able to implement "in-memory" fallocate() in ZONED mode by utilizing space_info->bytes_may_use or similar, so this returns EOPNOTSUPP. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d206e9c9c5 |
btrfs: disallow NODATACOW in ZONED mode
NODATACOW implies overwriting the file data on a device, which is impossible in sequential required zones. Disable NODATACOW globally with mount option and per-file NODATACOW attribute by masking FS_NOCOW_FL. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5d1ab66c56 |
btrfs: disallow space_cache in ZONED mode
As updates to the space cache v1 are in-place, the space cache cannot be located over sequential zones and there is no guarantees that the device will have enough conventional zones to store this cache. Resolve this problem by disabling completely the space cache v1. This does not introduce any problems with sequential block groups: all the free space is located after the allocation pointer and no free space before the pointer. There is no need to have such cache. Note: we can technically use free-space-tree (space cache v2) on ZONED mode. But, since ZONED mode now always allocates extents in a block group sequentially regardless of underlying device zone type, it's no use to enable and maintain the tree. For the same reason, NODATACOW is also disabled. In summary, ZONED will disable: | Disabled features | Reason | |-------------------+-----------------------------------------------------| | RAID/DUP | Cannot handle two zone append writes to different | | | zones | |-------------------+-----------------------------------------------------| | space_cache (v1) | In-place updating | | NODATACOW | In-place updating | |-------------------+-----------------------------------------------------| | fallocate | Reserved extent will be a write hole | |-------------------+-----------------------------------------------------| | MIXED_BG | Allocated metadata region will be write holes for | | | data writes | Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
862931c763 |
btrfs: introduce max_zone_append_size
The zone append write command has a maximum IO size restriction it accepts. This is because a zone append write command cannot be split, as we ask the device to place the data into a specific target zone and the device responds with the actual written location of the data. Introduce max_zone_append_size to zone_info and fs_info to track the value, so we can limit all I/O to a zoned block device that we want to write using the zone append command to the device's limits. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b70f509774 |
btrfs: check and enable ZONED mode
Introduce function btrfs_check_zoned_mode() to check if ZONED flag is enabled on the file system and if the file system consists of zoned devices with equal zone size. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
5b31646898 |
btrfs: get zone information of zoned block devices
If a zoned block device is found, get its zone information (number of zones and zone size). To avoid costly run-time zone report commands to test the device zones type during block allocation, attach the seq_zones bitmap to the device structure to indicate if a zone is sequential or accept random writes. Also it attaches the empty_zones bitmap to indicate if a zone is empty or not. This patch also introduces the helper function btrfs_dev_is_sequential() to test if the zone storing a block is a sequential write required zone and btrfs_dev_is_empty_zone() to test if the zone is a empty zone. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
7b3d5a90cb |
btrfs: introduce ZONED feature flag
This patch introduces the ZONED incompat flag. The flag indicates that the volume management will satisfy the constraints imposed by host-managed zoned block devices (aligned chunk allocation, append-only updates, reset zone after filled). As the zoned support will happen incrementally due to enhancing some core infrastructure like super block writes, tree-log, raid support, the feature will appear in sysfs only on debug builds. It will be enabled once the support is feature complete and applications can reliably check whether zoned support is present or not. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a2633b6a29 |
btrfs: return bool from btrfs_should_end_transaction
Results in slightly smaller code. add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-11 (-11) Function old new delta btrfs_should_end_transaction 96 85 -11 Total: Before=20070, After=20059, chg -0.05% Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8a8f4deaba |
btrfs: return bool from should_end_transaction
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8df01fddb7 |
btrfs: remove err variable from do_relocation
It simply gets assigned to 'ret' in case of errors. The flow of the while loop is not changed by this commit since the few call sites that 'goto next' will simply break from the loop. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c6a592f2e2 |
btrfs: eliminate err variable from merge_reloc_root
In most cases when an error is returned from a function 'ret' is simply assigned to 'err'. There is only one case where walk_up_reloc_tree can return a positive value - in this case the code breaks from the loop and ret is going to get its return value from btrfs_cow_block - either 0 or negative. This retains the old logic of how 'err' used to be set at this call site. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
ee0d904fd9 |
btrfs: remove err variable from btrfs_delete_subvolume
Use only a single 'ret' to control whether we should abort the transaction or not. That's fine, because if we abort a transaction then btrfs_end_transaction will return the same value as passed to btrfs_abort_transaction. No semantic changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
c65ca98f9e |
btrfs: unlock path before checking if extent is shared during nocow writeback
When we are attempting to start writeback for an existing extent in NOCOW mode, at run_delalloc_nocow(), we must check if the extent is shared, and if it is, fallback to a COW write. However we do such check while still holding a read lock on the leaf that contains the file extent item, and that check, the call to btrfs_cross_ref_exist(), can take some time because: 1) It needs to do a search on the extent tree, which obviously takes some time, specially if delayed references are being run at the moment, as we can block when trying to lock currently write locked btree nodes; 2) It needs to check the delayed references for any existing reference for our data extent, this requires acquiring the delayed references' spinlock and maybe block on the mutex of a delayed reference head in the case where there is a delayed reference for our data extent, in the worst case it makes us release the path on the extent tree and retry the whole process again (going back to step 1). There are other operations we do while holding the leaf locked that can take some significant time as well (specially all together): * btrfs_extent_readonly() - to check if the block group containing the extent is currently in RO mode. This requires taking a spinlock and searching for the block group in a rbtree that can be big on large filesystems; * csum_exist_in_range() - to search if there are any checksums in the csum tree for the extent. Like before, this can take some time if we are in a filesystem that has both COW and NOCOW files, in which case the csum tree is not empty; * btrfs_inc_nocow_writers() - increment the number of nocow writers in the block group that contains the data extent. Needs to acquire a spinlock and search for the block group in a rbtree that can be big on large filesystems. So just unlock the leaf (release the path) before doing all those checks, since we do not need it anymore. In case we can not do a NOCOW write for the extent, due to any of those checks failing, and the writeback range goes beyond that extents' length, we will do another btree search for the next file extent item. The following script that calls dbench was used to measure the impact of this change on a VM with 8 CPUs, 16Gb of ram, using a raw NVMe device directly (no intermediary filesystem on the host) and using a non-debug kernel (default configuration on Debian): $ cat test-dbench.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd -o nodatacow" MKFS_OPTIONS="-m single -d single" mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 300 64 umount $MNT Before this change: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 9326331 0.317 399.957 Close 6851198 0.002 6.402 Rename 394894 2.621 402.819 Unlink 1883131 0.931 398.082 Deltree 256 19.160 303.580 Mkdir 128 0.003 0.016 Qpathinfo 8452314 0.068 116.133 Qfileinfo 1481921 0.001 5.081 Qfsinfo 1549963 0.002 4.444 Sfileinfo 759679 0.084 17.079 Find |
|
|
|
c7c01a4a25 |
btrfs: tree-checker: annotate all error branches as unlikely
The tree checker is called many times as it verifies metadata at
read/write time. The checks follow a simple pattern:
if (error_condition) {
report_error();
return -EUCLEAN;
}
All the error reporting functions are annotated as __cold that is
supposed to hint the compiler to move the statement block out of the hot
path. This does not seem to happen that often.
As the error condition is expected to be false almost always, we can
annotate it with 'unlikely' as this satisfies one of the few use cases
for the annotation. The expected outcome is a stronger hint to compiler
to reorder the checks
test
jump to exit
test
jump to exit
...
which can be observed in asm of eg. check_dir_item,
btrfs_check_chunk_valid, check_root_item or check_leaf.
There's a measurable run time improvement reported by Josef, the testing
workload went from 655 MiB/s to 677 MiB/s, which is about +3%.
There should be no functional changes but some of the conditions have
been rewritten to produce more readable result, some lines are longer
than 80, for the sake of readability.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
a0f6d924ca |
btrfs: remove stub device info from messages when we have no fs_info
Without a NULL fs_info the helpers will print something like BTRFS error (device <unknown>): ... This can happen in contexts where fs_info is not available at all or it's potentially unsafe due to object lifetime. The <unknown> stub does not bring much information and with the prefix makes the message unnecessarily longer. Remove it for the NULL fs_info case. BTRFS error: ... Callers can add the device information to the message itself if needed. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fb22e9c4cd |
btrfs: use detach_page_private() in alloc_extent_buffer()
In alloc_extent_buffer(), after we got a page from btree inode, we check if that page has private pointer attached. If attached, we check if the existing extent buffer has proper refs. If not (the eb is being freed), we will detach that private eb pointer. The point here is, we are detaching that eb pointer by calling: - ClearPagePrivate() - put_page() The put_page() here is especially confusing, as it's decreasing the ref from attach_page_private(). Without knowing that, it looks like the put_page() is for the find_or_create_page() call, confusing the reader. Since we're always modifying page private with attach_page_private() and detach_page_private(), the only open-coded detach_page_private() here is really confusing. Fix it by calling detach_page_private(). Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
35478d053a |
btrfs: use nodesize to determine if we need readahead in btrfs_lookup_bio_sums
In btrfs_lookup_bio_sums() if the bio is pretty large, we want to start readahead in the csum tree. However the threshold is an immediate number, (PAGE_SIZE * 8), from the initial btrfs merge. The meaning of the value is pretty hard to guess, especially when the immediate number is from the times when 4K sectorsize was the default and only CRC32C was supported. For the most common btrfs setup, CRC32 csum and 4K sectorsize, it means just 32K read would kick readahead, while the csum itself is only 32 bytes in size. Now let's be more reasonable by taking both csum size and node size into consideration. If the csum size for the bio is larger than one leaf, then we kick the readahead. This means for current default btrfs, the threshold will be 16M. This change should not change performance observably, thus this is mostly a readability enhancement. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
829ddec922 |
btrfs: only clear EXTENT_LOCK bit in extent_invalidatepage
extent_invalidatepage() will try to clear all possible bits since it's calling clear_extent_bit() with delete == 1. This is currently fine, since for btree io tree, it only utilizes EXTENT_LOCK bit. But this could be a problem for later subpage support, which will utilize extra io tree bit to represent additional info. This patch will just convert that clear_extent_bit() to unlock_extent_cached(). For current code since only EXTENT_LOCKED bit is utilized, this doesn't change the behavior, but provides a much cleaner basis for incoming subpage support. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
8e1dc982ed |
btrfs: remove unused parameter phy_offset from btrfs_validate_metadata_buffer
Parameter @phy_offset is the offset against the bio->bi_iter.bi_sector. @phy_offset is mostly for data io to lookup the csum in btrfs_io_bio. But for metadata, it's completely useless as metadata stores their own csum in its header, so we can remove it. Note: parameters @start and @end, they are not utilized at all for current sectorsize == PAGE_SIZE case, as we can grab eb directly from page. But those two parameters are very important for later subpage support, thus @start/@len are not touched here. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
2c36395430 |
btrfs: scrub: remove the anonymous structure from scrub_page
That anonymous structure serve no special purpose, just replace it with regular members. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f97e27e91d |
btrfs: use fixed width int type for extent_state::state
Currently the type is unsigned int which could change its width depending on the architecture. We need up to 32 bits so make it explicit. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
e09caaf913 |
btrfs: introduce helper to handle page status update in end_bio_extent_readpage()
Introduce a new helper to handle update page status in end_bio_extent_readpage(). This will be later used for subpage support where the page status update can be more complex than now. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
94e8c95ccb |
btrfs: add structure to keep track of extent range in end_bio_extent_readpage
In end_bio_extent_readpage() we had a strange dance around
extent_start/extent_len.
Hidden behind the strange dance is, it's just calling
endio_readpage_release_extent() on each bvec range.
Here is an example to explain the original work flow:
Bio is for inode 257, containing 2 pages, for range [1M, 1M+8K)
end_bio_extent_extent_readpage() entered
|- extent_start = 0;
|- extent_end = 0;
|- bio_for_each_segment_all() {
| |- /* Got the 1st bvec */
| |- start = SZ_1M;
| |- end = SZ_1M + SZ_4K - 1;
| |- update = 1;
| |- if (extent_len == 0) {
| | |- extent_start = start; /* SZ_1M */
| | |- extent_len = end + 1 - start; /* SZ_1M */
| | }
| |
| |- /* Got the 2nd bvec */
| |- start = SZ_1M + 4K;
| |- end = SZ_1M + 4K - 1;
| |- update = 1;
| |- if (extent_start + extent_len == start) {
| | |- extent_len += end + 1 - start; /* SZ_8K */
| | }
| } /* All bio vec iterated */
|
|- if (extent_len) {
|- endio_readpage_release_extent(tree, extent_start, extent_len,
update);
/* extent_start == SZ_1M, extent_len == SZ_8K, uptodate = 1 */
As the above flow shows, the existing code in end_bio_extent_readpage()
is accumulates extent_start/extent_len, and when the contiguous range
stops, calls endio_readpage_release_extent() for the range.
However current behavior has something not really considered:
- The inode can change
For bio, its pages don't need to have contiguous page_offset.
This means, even pages from different inodes can be packed into one
bio.
- bvec cross page boundary
There is a feature called multi-page bvec, where bvec->bv_len can go
beyond bvec->bv_page boundary.
- Poor readability
This patch will address the problem:
- Introduce a proper structure, processed_extent, to record processed
extent range
- Integrate inode/start/end/uptodate check into
endio_readpage_release_extent()
- Add more comment on each step.
This should greatly improve the readability, now in
end_bio_extent_readpage() there are only two
endio_readpage_release_extent() calls.
- Add inode check for contiguity
Now we also ensure the inode is the same one before checking if the
range is contiguous.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
b1d51f67c9 |
btrfs: tests: remove invalid extent-io test
In extent-io-test, there are two invalid tests: - Invalid nodesize for test_eb_bitmaps() Instead of the sectorsize and nodesize combination passed in, we're always using hand-crafted nodesize, e.g: len = (sectorsize < BTRFS_MAX_METADATA_BLOCKSIZE) ? sectorsize * 4 : sectorsize; In above case, if we have 32K page size, then we will get a length of 128K, which is beyond max node size, and obviously invalid. The common page size goes up to 64K so we haven't hit that - Invalid extent buffer bytenr For 64K page size, the only combination we're going to test is sectorsize = nodesize = 64K. However, in that case we will try to test an eb which bytenr is not sectorsize aligned: /* Do it over again with an extent buffer which isn't page-aligned. */ eb = __alloc_dummy_extent_buffer(fs_info, nodesize / 2, len); Sector alignment is a hard requirement for any sector size. The only exception is superblock. But anything else should follow sector size alignment. This is definitely an invalid test case. This patch will fix both problems by: - Honor the sectorsize/nodesize combination Now we won't bother to hand-craft the length and use it as nodesize. - Use sectorsize as the 2nd run extent buffer start This would test the case where extent buffer is aligned to sectorsize but not always aligned to nodesize. Please note that, later subpage related cleanup will reduce extent_buffer::pages[] to exactly what we need, making the sector unaligned extent buffer operations cause problems. Since only extent_io self tests utilize this, this patch is required for all later cleanup/refactoring. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
445d8ab53f |
btrfs: sysfs: remove unneeded semicolon
A semicolon is not needed after a switch statement. Signed-off-by: Tom Rix <trix@redhat.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
95b982de37 |
btrfs: simplify return values in setup_nodes_for_search
The function is needlessly convoluted. Fix that by: * removing redundant sret variable definition in both if arms * replace the again/done labels with direct return statements, the function is short enough and doesn't do anything special upon exit * remove BUG_ON on split_node returning a positive number - it can't happen as split_node returns either 0 or a negative error code. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
d5286a92ea |
btrfs: remove useless return value statement in split_node
At the point when we set 'ret = 0' it's guaranteed that the function is going to return 0 so directly return 0. No functional changes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f30bed8342 |
btrfs: remove unnecessary attempt to drop extent maps after adding inline extent
At inode.c:cow_file_range_inline(), after we insert the inline extent
in the fs/subvolume btree, we call btrfs_drop_extent_cache() to drop
all extent maps in the file range, however that is not necessary because
we have already done it in the call to btrfs_drop_extents(), which calls
btrfs_drop_extent_cache() for us, and since at this point we have the file
range locked in the inode's iotree (we are in the writeback path), we know
no other task can come in and read stale file extent items or find none
and therefore create either stale extent maps or an extent map that
represents a hole.
So just remove that unnecessary call to btrfs_drop_extent_cache(), as it's
doing nothing and only wasting time. This call has been around since 2008,
introduced in commit
|
|
|
|
bc5b5b1e51 |
btrfs: stop incrementing log batch when joining log transaction
When joining a log transaction we acquire the root's log mutex, then increment the root's log batch and log writers counters while holding the mutex. However we don't need to increment the log batch there, because we are holding the mutex and incremented the log writers counter as well, so any other task trying to sync log will wait for the current task to finish its logging and still achieve the desired log batching. Since the log batch counter is an atomic counter and is incremented twice at the very beginning of the fsync callback (btrfs_sync_file()), once before flushing delalloc and once again after waiting for writeback to complete, eliminating its increment when joining the log transaction may provide some performance gains in case we have multiple concurrent tasks doing fsyncs against different files in the same subvolume, as it reduces contention on the atomic (locking the cacheline and bouncing it). When testing fio with 32 jobs, on a 8 cores VM, doing fsyncs against different files of the same subvolume, on top of a zram device, I could consistently see gains (higher throughput) between 1% to 2%, which is a very low value and possibly hard to be observed with a real device (I couldn't observe consistent gains with my low/mid end NVMe device). So this change is mostly motivated to just simplify the logic, as updating the log batch counter is only relevant when an fsync starts and while not holding the root's log mutex. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f2f121ab50 |
btrfs: skip unnecessary searches for xattrs when logging an inode
Every time we log an inode we lookup in the fs/subvol tree for xattrs and if we have any, log them into the log tree. However it is very common to have inodes without any xattrs, so doing the search wastes times, but more importantly it adds contention on the fs/subvol tree locks, either making the logging code block and wait for tree locks or making the logging code making other concurrent operations block and wait. The most typical use cases where xattrs are used are when capabilities or ACLs are defined for an inode, or when SELinux is enabled. This change makes the logging code detect when an inode does not have xattrs and skip the xattrs search the next time the inode is logged, unless the inode is evicted and loaded again or a xattr is added to the inode. Therefore skipping the search for xattrs on inodes that don't ever have xattrs and are fsynced with some frequency. The following script that calls dbench was used to measure the impact of this change on a VM with 8 CPUs, 16Gb of ram, using a raw NVMe device directly (no intermediary filesystem on the host) and using a non-debug kernel (default configuration on Debian distributions): $ cat test.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd" mkfs.btrfs -f -m single -d single $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 200 40 umount $MNT The results before this change: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 5761605 0.172 312.057 Close 4232452 0.002 10.927 Rename 243937 1.406 277.344 Unlink 1163456 0.631 298.402 Deltree 160 11.581 221.107 Mkdir 80 0.003 0.005 Qpathinfo 5221410 0.065 122.309 Qfileinfo 915432 0.001 3.333 Qfsinfo 957555 0.003 3.992 Sfileinfo 469244 0.023 20.494 Find 2018865 0.448 123.659 WriteX 2874851 0.049 118.529 ReadX 9030579 0.004 21.654 LockX 18754 0.003 4.423 UnlockX 18754 0.002 0.331 Flush 403792 10.944 359.494 Throughput 908.444 MB/sec 40 clients 40 procs max_latency=359.500 ms The results after this change: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 6442521 0.159 230.693 Close 4732357 0.002 10.972 Rename 272809 1.293 227.398 Unlink 1301059 0.563 218.500 Deltree 160 7.796 54.887 Mkdir 80 0.008 0.478 Qpathinfo 5839452 0.047 124.330 Qfileinfo 1023199 0.001 4.996 Qfsinfo 1070760 0.003 5.709 Sfileinfo 524790 0.033 21.765 Find 2257658 0.314 125.611 WriteX 3211520 0.040 232.135 ReadX 10098969 0.004 25.340 LockX 20974 0.003 1.569 UnlockX 20974 0.002 3.475 Flush 451553 10.287 331.037 Throughput 1011.77 MB/sec 40 clients 40 procs max_latency=331.045 ms +10.8% throughput, -8.2% max latency Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
1cab5e7283 |
btrfs: merge __set_extent_bit and set_extent_bit
There are only 2 direct calls to set_extent_bit outside of extent-io - in btrfs_find_new_delalloc_bytes and btrfs_truncate_block, the rest are thin wrappers around __set_extent_bit. This adds unnecessary indirection and just makes it more annoying when looking at the various extent bit manipulation functions. This patch renames __set_extent_bit to set_extent_bit effectively removing a level of indirection. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat and remove __must_check ] Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
729f796172 |
btrfs: make btrfs_update_inode_fallback take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
b06359a325 |
btrfs: make btrfs_cont_expand take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
217f42eb3d |
btrfs: make btrfs_truncate_block take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
03fcb1ab6f |
btrfs: make btrfs_insert_replace_extent take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
dea46d84a3 |
btrfs: make find_first_non_hole take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a4ba6cc03e |
btrfs: make maybe_insert_hole take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
9a56fcd15a |
btrfs: make btrfs_update_inode take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
dfeb9e7cc3 |
btrfs: make btrfs_update_inode_item take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
f3fbcaef59 |
btrfs: make btrfs_delayed_update_inode take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
72e7e6edd3 |
btrfs: make btrfs_finish_ordered_io btrfs_inode-centric
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
507433985c |
btrfs: make btrfs_truncate_inode_items take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
90dffd0cff |
btrfs: make insert_prealloc_file_extent take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
76aea53796 |
btrfs: make btrfs_inode_safe_disk_i_size_write take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
a55463c9f0 |
btrfs: remove extent_buffer::recursed
It is unused everywhere now, it can be removed. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
0ecae6fffe |
btrfs: remove the recurse parameter from __btrfs_tree_read_lock
It is completely unused now, remove it. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
|
|
|
fe596ca3d3 |
btrfs: use btrfs_tree_read_lock in btrfs_search_slot
We no longer use recursion, so __btrfs_tree_read_lock(BTRFS_NESTING_NORMAL) == btrfs_tree_read_lock. Replace this call with the simple helper. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |