Commit Graph

516 Commits

Author SHA1 Message Date
Ben Gardon 8283e36abf KVM: x86/mmu: Propagate memslot const qualifier
In preparation for implementing in-place hugepage promotion, various
functions will need to be called from zap_collapsible_spte_range, which
has the const qualifier on its memslot argument. Propagate the const
qualifier to the various functions which will be needed. This just serves
to simplify the following patch.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:43 -05:00
Ben Gardon 4d78d0b39a KVM: x86/mmu: Remove need for a vcpu from mmu_try_to_unsync_pages
The vCPU argument to mmu_try_to_unsync_pages is now only used to get a
pointer to the associated struct kvm, so pass in the kvm pointer from
the beginning to remove the need for a vCPU when calling the function.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:42 -05:00
Ben Gardon 9d395a0a7a KVM: x86/mmu: Remove need for a vcpu from kvm_slot_page_track_is_active
kvm_slot_page_track_is_active only uses its vCPU argument to get a
pointer to the assoicated struct kvm, so just pass in the struct KVM to
remove the need for a vCPU pointer.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:42 -05:00
Maciej S. Szmigiero f4209439b5 KVM: Optimize gfn lookup in kvm_zap_gfn_range()
Introduce a memslots gfn upper bound operation and use it to optimize
kvm_zap_gfn_range().
This way this handler can do a quick lookup for intersecting gfns and won't
have to do a linear scan of the whole memslot set.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <ef242146a87a335ee93b441dcf01665cb847c902.1638817641.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:35 -05:00
Maciej S. Szmigiero a54d806688 KVM: Keep memslots in tree-based structures instead of array-based ones
The current memslot code uses a (reverse gfn-ordered) memslot array for
keeping track of them.

Because the memslot array that is currently in use cannot be modified
every memslot management operation (create, delete, move, change flags)
has to make a copy of the whole array so it has a scratch copy to work on.

Strictly speaking, however, it is only necessary to make copy of the
memslot that is being modified, copying all the memslots currently present
is just a limitation of the array-based memslot implementation.

Two memslot sets, however, are still needed so the VM continues to run
on the currently active set while the requested operation is being
performed on the second, currently inactive one.

In order to have two memslot sets, but only one copy of actual memslots
it is necessary to split out the memslot data from the memslot sets.

The memslots themselves should be also kept independent of each other
so they can be individually added or deleted.

These two memslot sets should normally point to the same set of
memslots. They can, however, be desynchronized when performing a
memslot management operation by replacing the memslot to be modified
by its copy.  After the operation is complete, both memslot sets once
again point to the same, common set of memslot data.

This commit implements the aforementioned idea.

For tracking of gfns an ordinary rbtree is used since memslots cannot
overlap in the guest address space and so this data structure is
sufficient for ensuring that lookups are done quickly.

The "last used slot" mini-caches (both per-slot set one and per-vCPU one),
that keep track of the last found-by-gfn memslot, are still present in the
new code.

Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <17c0cf3663b760a0d3753d4ac08c0753e941b811.1638817641.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:34 -05:00
Maciej S. Szmigiero f5756029ee KVM: x86: Use nr_memslot_pages to avoid traversing the memslots array
There is no point in recalculating from scratch the total number of pages
in all memslots each time a memslot is created or deleted.  Use KVM's
cached nr_memslot_pages to compute the default max number of MMU pages.

Note that even with nr_memslot_pages capped at ULONG_MAX we can't safely
multiply it by KVM_PERMILLE_MMU_PAGES (20) since this operation can
possibly overflow an unsigned long variable.

Write this "* 20 / 1000" operation as "/ 50" instead to avoid such
overflow.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
[sean: use common KVM field and rework changelog accordingly]
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <d14c5a24535269606675437d5602b7dac4ad8c0e.1638817640.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:29 -05:00
Sean Christopherson a955cad84c KVM: x86/mmu: Retry page fault if root is invalidated by memslot update
Bail from the page fault handler if the root shadow page was obsoleted by
a memslot update.  Do the check _after_ acuiring mmu_lock, as the TDP MMU
doesn't rely on the memslot/MMU generation, and instead relies on the
root being explicit marked invalid by kvm_mmu_zap_all_fast(), which takes
mmu_lock for write.

For the TDP MMU, inserting a SPTE into an obsolete root can leak a SP if
kvm_tdp_mmu_zap_invalidated_roots() has already zapped the SP, i.e. has
moved past the gfn associated with the SP.

For other MMUs, the resulting behavior is far more convoluted, though
unlikely to be truly problematic.  Installing SPs/SPTEs into the obsolete
root isn't directly problematic, as the obsolete root will be unloaded
and dropped before the vCPU re-enters the guest.  But because the legacy
MMU tracks shadow pages by their role, any SP created by the fault can
can be reused in the new post-reload root.  Again, that _shouldn't_ be
problematic as any leaf child SPTEs will be created for the current/valid
memslot generation, and kvm_mmu_get_page() will not reuse child SPs from
the old generation as they will be flagged as obsolete.  But, given that
continuing with the fault is pointess (the root will be unloaded), apply
the check to all MMUs.

Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-02 04:12:12 -05:00
Sean Christopherson f47491d7f3 KVM: x86/mmu: Handle "default" period when selectively waking kthread
Account for the '0' being a default, "let KVM choose" period, when
determining whether or not the recovery worker needs to be awakened in
response to userspace reducing the period.  Failure to do so results in
the worker not being awakened properly, e.g. when changing the period
from '0' to any small-ish value.

Fixes: 4dfe4f40d8 ("kvm: x86: mmu: Make NX huge page recovery period configurable")
Cc: stable@vger.kernel.org
Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120015706.3830341-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:27 -05:00
Paolo Bonzini 28f091bc2f KVM: MMU: shadow nested paging does not have PKU
Initialize the mask for PKU permissions as if CR4.PKE=0, avoiding
incorrect interpretations of the nested hypervisor's page tables.

Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:26 -05:00
Sean Christopherson 4b85c921cd KVM: x86/mmu: Remove spurious TLB flushes in TDP MMU zap collapsible path
Drop the "flush" param and return values to/from the TDP MMU's helper for
zapping collapsible SPTEs.  Because the helper runs with mmu_lock held
for read, not write, it uses tdp_mmu_zap_spte_atomic(), and the atomic
zap handles the necessary remote TLB flush.

Similarly, because mmu_lock is dropped and re-acquired between zapping
legacy MMUs and zapping TDP MMUs, kvm_mmu_zap_collapsible_sptes() must
handle remote TLB flushes from the legacy MMU before calling into the TDP
MMU.

Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:09:25 -05:00
Lai Jiangshan 05b29633c7 KVM: X86: Use vcpu->arch.walk_mmu for kvm_mmu_invlpg()
INVLPG operates on guest virtual address, which are represented by
vcpu->arch.walk_mmu.  In nested virtualization scenarios,
kvm_mmu_invlpg() was using the wrong MMU structure; if L2's invlpg were
emulated by L0 (in practice, it hardly happen) when nested two-dimensional
paging is enabled, the call to ->tlb_flush_gva() would be skipped and
the hardware TLB entry would not be invalidated.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-5-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:21 -05:00
Lai Jiangshan 12ec33a705 KVM: X86: Fix when shadow_root_level=5 && guest root_level<4
If the is an L1 with nNPT in 32bit, the shadow walk starts with
pae_root.

Fixes: a717a780fc ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:20 -05:00
Vitaly Kuznetsov feb627e8d6 KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN
Commit 63f5a1909f ("KVM: x86: Alert userspace that KVM_SET_CPUID{,2}
after KVM_RUN is broken") officially deprecated KVM_SET_CPUID{,2} ioctls
after first successful KVM_RUN and promissed to make this sequence forbiden
in 5.16. It's time to fulfil the promise.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211122175818.608220-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-26 08:14:20 -05:00
Hou Wenlong 8ed716ca7d KVM: x86/mmu: Pass parameter flush as false in kvm_tdp_mmu_zap_collapsible_sptes()
Since tlb flush has been done for legacy MMU before
kvm_tdp_mmu_zap_collapsible_sptes(), so the parameter flush
should be false for kvm_tdp_mmu_zap_collapsible_sptes().

Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <21453a1d2533afb6e59fb6c729af89e771ff2e76.1637140154.git.houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 07:05:58 -05:00
Hou Wenlong c7785d85b6 KVM: x86/mmu: Skip tlb flush if it has been done in zap_gfn_range()
If the parameter flush is set, zap_gfn_range() would flush remote tlb
when yield, then tlb flush is not needed outside. So use the return
value of zap_gfn_range() directly instead of OR on it in
kvm_unmap_gfn_range() and kvm_tdp_mmu_unmap_gfn_range().

Fixes: 3039bcc744 ("KVM: Move x86's MMU notifier memslot walkers to generic code")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <5e16546e228877a4d974f8c0e448a93d52c7a5a9.1637140154.git.houwenlong93@linux.alibaba.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 07:05:57 -05:00
Paolo Bonzini 817506df9d Merge branch 'kvm-5.16-fixes' into kvm-master
* Fixes for Xen emulation

* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache

* Fixes for migration of 32-bit nested guests on 64-bit hypervisor

* Compilation fixes

* More SEV cleanups
2021-11-18 02:11:57 -05:00
Maxim Levitsky b8453cdcf2 KVM: x86/mmu: include EFER.LMA in extended mmu role
Incorporate EFER.LMA into kvm_mmu_extended_role, as it used to compute the
guest root level and is not reflected in kvm_mmu_page_role.level when TDP
is in use.  When simply running the guest, it is impossible for EFER.LMA
and kvm_mmu.root_level to get out of sync, as the guest cannot transition
from PAE paging to 64-bit paging without toggling CR0.PG, i.e. without
first bouncing through a different MMU context.  And stuffing guest state
via KVM_SET_SREGS{,2} also ensures a full MMU context reset.

However, if KVM_SET_SREGS{,2} is followed by KVM_SET_NESTED_STATE, e.g. to
set guest state when migrating the VM while L2 is active, the vCPU state
will reflect L2, not L1.  If L1 is using TDP for L2, then root_mmu will
have been configured using L2's state, despite not being used for L2.  If
L2.EFER.LMA != L1.EFER.LMA, and L2 is using PAE paging, then root_mmu will
be configured for guest PAE paging, but will match the mmu_role for 64-bit
paging and cause KVM to not reconfigure root_mmu on the next nested VM-Exit.

Alternatively, the root_mmu's role could be invalidated after a successful
KVM_SET_NESTED_STATE that yields vcpu->arch.mmu != vcpu->arch.root_mmu,
i.e. that switches the active mmu to guest_mmu, but doing so is unnecessarily
tricky, and not even needed if L1 and L2 do have the same role (e.g., they
are both 64-bit guests and run with the same CR4).

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:03:42 -05:00
Paolo Bonzini f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Junaid Shahid 10c30de019 kvm: mmu: Use fast PF path for access tracking of huge pages when possible
The fast page fault path bails out on write faults to huge pages in
order to accommodate dirty logging. This change adds a check to do that
only when dirty logging is actually enabled, so that access tracking for
huge pages can still use the fast path for write faults in the common
case.

Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211104003359.2201967-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
Linus Torvalds d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Sean Christopherson 21fa324654 KVM: x86/mmu: Extract zapping of rmaps for gfn range to separate helper
Extract the zapping of rmaps, a.k.a. legacy MMU, for a gfn range to a
separate helper to clean up the unholy mess that kvm_zap_gfn_range() has
become.  In addition to deep nesting, the rmaps zapping spreads out the
declaration of several variables and is generally a mess.  Clean up the
mess now so that future work to improve the memslots implementation
doesn't need to deal with it.

Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:52 -04:00
Sean Christopherson e8be2a5ba8 KVM: x86/mmu: Drop a redundant remote TLB flush in kvm_zap_gfn_range()
Remove an unnecessary remote TLB flush in kvm_zap_gfn_range() now that
said function holds mmu_lock for write for its entire duration.  The
flush was added by the now-reverted commit to allow TDP MMU to flush while
holding mmu_lock for read, as the transition from write=>read required
dropping the lock and thus a pending flush needed to be serviced.

Fixes: 5a324c24b6 ("Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:46 -04:00
Sean Christopherson bc3b3c1002 KVM: x86/mmu: Drop a redundant, broken remote TLB flush
A recent commit to fix the calls to kvm_flush_remote_tlbs_with_address()
in kvm_zap_gfn_range() inadvertantly added yet another flush instead of
fixing the existing flush.  Drop the redundant flush, and fix the params
for the existing flush.

Cc: stable@vger.kernel.org
Fixes: 2822da4466 ("KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022010005.1454978-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:51:30 -04:00
Lai Jiangshan 61b05a9fd4 KVM: X86: Don't unload MMU in kvm_vcpu_flush_tlb_guest()
kvm_mmu_unload() destroys all the PGD caches.  Use the lighter
kvm_mmu_sync_roots() and kvm_mmu_sync_prev_roots() instead.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:44:43 -04:00
Lai Jiangshan 264d3dc1d3 KVM: X86: pair smp_wmb() of mmu_try_to_unsync_pages() with smp_rmb()
The commit 578e1c4db2 ("kvm: x86: Avoid taking MMU lock
in kvm_mmu_sync_roots if no sync is needed") added smp_wmb() in
mmu_try_to_unsync_pages(), but the corresponding smp_load_acquire() isn't
used on the load of SPTE.W.  smp_load_acquire() orders _subsequent_
loads after sp->is_unsync; it does not order _earlier_ loads before
the load of sp->is_unsync.

This has no functional change; smp_rmb() is a NOP on x86, and no
compiler barrier is required because there is a VMEXIT between the
load of SPTE.W and kvm_mmu_snc_roots.

Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:43:21 -04:00
Junaid Shahid 4dfe4f40d8 kvm: x86: mmu: Make NX huge page recovery period configurable
Currently, the NX huge page recovery thread wakes up every minute and
zaps 1/nx_huge_pages_recovery_ratio of the total number of split NX
huge pages at a time. This is intended to ensure that only a
relatively small number of pages get zapped at a time. But for very
large VMs (or more specifically, VMs with a large number of
executable pages), a period of 1 minute could still result in this
number being too high (unless the ratio is changed significantly,
but that can result in split pages lingering on for too long).

This change makes the period configurable instead of fixing it at
1 minute. Users of large VMs can then adjust the period and/or the
ratio to reduce the number of pages zapped at one time while still
maintaining the same overall duration for cycling through the
entire list. By default, KVM derives a period from the ratio such
that a page will remain on the list for 1 hour on average.

Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20211020010627.305925-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
David Matlack 610265ea3d KVM: x86/mmu: Rename slot_handle_leaf to slot_handle_level_4k
slot_handle_leaf is a misnomer because it only operates on 4K SPTEs
whereas "leaf" is used to describe any valid terminal SPTE (4K or
large page). Rename slot_handle_leaf to slot_handle_level_4k to
avoid confusion.

Making this change makes it more obvious there is a benign discrepency
between the legacy MMU and the TDP MMU when it comes to dirty logging.
The legacy MMU only iterates through 4K SPTEs when zapping for
collapsing and when clearing D-bits. The TDP MMU, on the other hand,
iterates through SPTEs on all levels.

The TDP MMU behavior of zapping SPTEs at all levels is technically
overkill for its current dirty logging implementation, which always
demotes to 4k SPTES, but both the TDP MMU and legacy MMU zap if and only
if the SPTE can be replaced by a larger page, i.e. will not spuriously
zap 2m (or larger) SPTEs. Opportunistically add comments to explain this
discrepency in the code.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20211019162223.3935109-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:27 -04:00
Paolo Bonzini 2839180ce5 KVM: x86/mmu: clean up prefetch/prefault/speculative naming
"prefetch", "prefault" and "speculative" are used throughout KVM to mean
the same thing.  Use a single name, standardizing on "prefetch" which
is already used by various functions such as direct_pte_prefetch,
FNAME(prefetch_gpte), FNAME(pte_prefetch), etc.

Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:26 -04:00
David Stevens 1e76a3ce0d KVM: cleanup allocation of rmaps and page tracking data
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots.  This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.

Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
 fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:25 -04:00
Chenyi Qiang a3ca5281bb KVM: MMU: Reset mmu->pkru_mask to avoid stale data
When updating mmu->pkru_mask, the value can only be added but it isn't
reset in advance. This will make mmu->pkru_mask keep the stale data.
Fix this issue.

Fixes: 2d344105f5 ("KVM, pkeys: introduce pkru_mask to cache conditions")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20211021071022.1140-1-chenyi.qiang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-21 11:09:29 -04:00
Andrei Vagin a7cc099f2e KVM: x86/mmu: kvm_faultin_pfn has to return false if pfh is returned
This looks like a typo in 8f32d5e563. This change didn't intend to do
any functional changes.

The problem was caught by gVisor tests.

Fixes: 8f32d5e563 ("KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Message-Id: <20211015163221.472508-1-avagin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 08:19:18 -04:00
David Stevens deae4a10f1 KVM: x86: only allocate gfn_track when necessary
Avoid allocating the gfn_track arrays if nothing needs them. If there
are no external to KVM users of the API (i.e. no GVT-g), then page
tracking is only needed for shadow page tables. This means that when tdp
is enabled and there are no external users, then the gfn_track arrays
can be lazily allocated when the shadow MMU is actually used. This avoid
allocations equal to .05% of guest memory when nested virtualization is
not used, if the kernel is compiled without GVT-g.

Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210922045859.2011227-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:58 -04:00
David Matlack 53597858db KVM: x86/mmu: Avoid memslot lookup in make_spte and mmu_try_to_unsync_pages
mmu_try_to_unsync_pages checks if page tracking is active for the given
gfn, which requires knowing the memslot. We can pass down the memslot
via make_spte to avoid this lookup.

The memslot is also handy for make_spte's marking of the gfn as dirty:
we can test whether dirty page tracking is enabled, and if so ensure that
pages are mapped as writable with 4K granularity.  Apart from the warning,
no functional change is intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
David Matlack 8a9f566ae4 KVM: x86/mmu: Avoid memslot lookup in rmap_add
Avoid the memslot lookup in rmap_add, by passing it down from the fault
handling code to mmu_set_spte and then to rmap_add.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
Paolo Bonzini a12f43818b KVM: MMU: pass struct kvm_page_fault to mmu_set_spte
mmu_set_spte is called for either PTE prefetching or page faults.  The
three boolean arguments write_fault, speculative and host_writable are
always respectively false/true/true for prefetching and coming from
a struct kvm_page_fault for page faults.

Let mmu_set_spte distinguish these two situation by accepting a
possibly NULL struct kvm_page_fault argument.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:56 -04:00
Paolo Bonzini 7158bee4b4 KVM: MMU: pass kvm_mmu_page struct to make_spte
The level and A/D bit support of the new SPTE can be found in the role,
which is stored in the kvm_mmu_page struct.  This merges two arguments
into one.

For the TDP MMU, the kvm_mmu_page was not used (kvm_tdp_mmu_map does
not use it if the SPTE is already present) so we fetch it just before
calling make_spte.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:55 -04:00
Paolo Bonzini eb5cd7ffe1 KVM: MMU: remove unnecessary argument to mmu_set_spte
The level of the new SPTE can be found in the kvm_mmu_page struct; there
is no need to pass it down.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:55 -04:00
Paolo Bonzini ad67e4806e KVM: MMU: clean up make_spte return value
Now that make_spte is called directly by the shadow MMU (rather than
wrapped by set_spte), it only has to return one boolean value.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
Paolo Bonzini 4758d47e0d KVM: MMU: inline set_spte in FNAME(sync_page)
Since the two callers of set_spte do different things with the results,
inlining it actually makes the code simpler to reason about.  For example,
FNAME(sync_page) already has a struct kvm_mmu_page *, but set_spte had to
fish it back out of sptep's private page data.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
Paolo Bonzini d786c7783b KVM: MMU: inline set_spte in mmu_set_spte
Since the two callers of set_spte do different things with the results,
inlining it actually makes the code simpler to reason about.  For example,
mmu_set_spte looks quite like tdp_mmu_map_handle_target_level, but the
similarity is hidden by set_spte.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:54 -04:00
David Matlack 888104138c KVM: x86/mmu: Avoid memslot lookup in page_fault_handle_page_track
Now that kvm_page_fault has a pointer to the memslot it can be passed
down to the page tracking code to avoid a redundant slot lookup.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
David Matlack e710c5f6be KVM: x86/mmu: Pass the memslot around via struct kvm_page_fault
The memslot for the faulting gfn is used throughout the page fault
handling code, so capture it in kvm_page_fault as soon as we know the
gfn and use it in the page fault handling code that has direct access
to the kvm_page_fault struct.  Replace various tests using is_noslot_pfn
with more direct tests on fault->slot being NULL.

This, in combination with the subsequent patch, improves "Populate
memory time" in dirty_log_perf_test by 5% when using the legacy MMU.
There is no discerable improvement to the performance of the TDP MMU.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
Paolo Bonzini bcc4f2bc50 KVM: MMU: mark page dirty in make_spte
This simplifies set_spte, which we want to remove, and unifies code
between the shadow MMU and the TDP MMU.  The warning will be added
back later to make_spte as well.

There is a small disadvantage in the TDP MMU; it may unnecessarily mark
a page as dirty twice if two vCPUs end up mapping the same page twice.
However, this is a very small cost for a case that is already rare.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:53 -04:00
David Matlack 68be1306ca KVM: x86/mmu: Fold rmap_recycle into rmap_add
Consolidate rmap_recycle and rmap_add into a single function since they
are only ever called together (and only from one place). This has a nice
side effect of eliminating an extra kvm_vcpu_gfn_to_memslot(). In
addition it makes mmu_set_spte(), which is a very long function, a
little shorter.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Sean Christopherson b1a429fb18 KVM: x86/mmu: Verify shadow walk doesn't terminate early in page faults
WARN and bail if the shadow walk for faulting in a SPTE terminates early,
i.e. doesn't reach the expected level because the walk encountered a
terminal SPTE.  The shadow walks for page faults are subtle in that they
install non-leaf SPTEs (zapping leaf SPTEs if necessary!) in the loop
body, and consume the newly created non-leaf SPTE in the loop control,
e.g. __shadow_walk_next().  In other words, the walks guarantee that the
walk will stop if and only if the target level is reached by installing
non-leaf SPTEs to guarantee the walk remains valid.

Opportunistically use fault->goal-level instead of it.level in
FNAME(fetch) to further clarify that KVM always installs the leaf SPTE at
the target level.

Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210906122547.263316-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Paolo Bonzini f0066d94c9 KVM: MMU: change tracepoints arguments to kvm_page_fault
Pass struct kvm_page_fault to tracepoints instead of extracting the
arguments from the struct.  This also lets the kvm_mmu_spte_requested
tracepoint pick the gfn directly from fault->gfn, instead of using
the address.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:52 -04:00
Paolo Bonzini 536f0e6ace KVM: MMU: change disallowed_hugepage_adjust() arguments to kvm_page_fault
Pass struct kvm_page_fault to disallowed_hugepage_adjust() instead of
extracting the arguments from the struct.  Tweak a bit the conditions
to avoid long lines.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini 73a3c65947 KVM: MMU: change kvm_mmu_hugepage_adjust() arguments to kvm_page_fault
Pass struct kvm_page_fault to kvm_mmu_hugepage_adjust() instead of
extracting the arguments from the struct; the results are also stored
in the struct, so the callers are adjusted consequently.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini 3c8ad5a675 KVM: MMU: change fast_page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to fast_page_fault() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:51 -04:00
Paolo Bonzini 2f6305dd56 KVM: MMU: change kvm_tdp_mmu_map() arguments to kvm_page_fault
Pass struct kvm_page_fault to kvm_tdp_mmu_map() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:50 -04:00
Paolo Bonzini 43b74355ef KVM: MMU: change __direct_map() arguments to kvm_page_fault
Pass struct kvm_page_fault to __direct_map() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:50 -04:00
Paolo Bonzini 3a13f4fea3 KVM: MMU: change handle_abnormal_pfn() arguments to kvm_page_fault
Pass struct kvm_page_fault to handle_abnormal_pfn() instead of
extracting the arguments from the struct.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini 3647cd04b7 KVM: MMU: change kvm_faultin_pfn() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to outputs of
kvm_faultin_pfn().  For now they have to be extracted again from struct
kvm_page_fault in the subsequent steps, but this is temporary until
other functions in the chain are switched over as well.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini b8a5d55115 KVM: MMU: change page_fault_handle_page_track() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to the arguments
of page_fault_handle_page_track().  The fields are initialized in the
callers, and page_fault_handle_page_track() receives a struct
kvm_page_fault instead of having to extract the arguments out of it.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini 4326e57ef4 KVM: MMU: change direct_page_fault() arguments to kvm_page_fault
Add fields to struct kvm_page_fault corresponding to
the arguments of direct_page_fault().  The fields are
initialized in the callers, and direct_page_fault()
receives a struct kvm_page_fault instead of having to
extract the arguments out of it.

Also adjust FNAME(page_fault) to store the max_level in
struct kvm_page_fault, to keep it similar to the direct
map path.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:49 -04:00
Paolo Bonzini c501040abc KVM: MMU: change mmu->page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to mmu->page_fault() instead of
extracting the arguments from the struct.  FNAME(page_fault) can use
the precomputed bools from the error code.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Paolo Bonzini d055f028a5 KVM: MMU: pass unadulterated gpa to direct_page_fault
Do not bother removing the low bits of the gpa.  This masking dates back
to the very first commit of KVM but it is unnecessary, as exemplified
by the other call in kvm_tdp_page_fault.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Lai Jiangshan 3e44dce4d0 KVM: X86: Move PTE present check from loop body to __shadow_walk_next()
So far, the loop bodies already ensure the PTE is present before calling
__shadow_walk_next():  Some loop bodies simply exit with a !PRESENT
directly and some other loop bodies, i.e. FNAME(fetch) and __direct_map()
do not currently guard their walks with is_shadow_present_pte, but only
because they install present non-leaf SPTEs in the loop itself.

But checking pte present in __shadow_walk_next() (which is called from
shadow_walk_okay()) is more prudent; walking past a !PRESENT SPTE
would lead to attempting to read a the next level SPTE from a garbage
iter->shadow_addr.  It also allows to remove the is_shadow_present_pte()
checks from the loop bodies.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210906122547.263316-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Lai Jiangshan f1c4a88c41 KVM: X86: Don't unsync pagetables when speculative
We'd better only unsync the pagetable when there just was a really
write fault on a level-1 pagetable.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:10 -04:00
Lai Jiangshan 5591c0694d KVM: X86: Zap the invalid list after remote tlb flushing
In mmu_sync_children(), it can zap the invalid list after remote tlb flushing.
Emptifying the invalid list ASAP might help reduce a remote tlb flushing
in some cases.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan c3e5e415bc KVM: X86: Change kvm_sync_page() to return true when remote flush is needed
Currently kvm_sync_page() returns true when there is any present spte.
But the return value is ignored in the callers.

Changing kvm_sync_page() to return true when remote flush is needed and
changing mmu->sync_page() not to directly flush can combine and reduce
remote flush requests.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan 06152b2dec KVM: X86: Remove kvm_mmu_flush_or_zap()
Because local_flush is useless, kvm_mmu_flush_or_zap() can be removed
and kvm_mmu_remote_flush_or_zap is used instead.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Lai Jiangshan bd047e5440 KVM: X86: Don't flush current tlb on shadow page modification
After any shadow page modification, flushing tlb only on current VCPU
is weird due to other VCPU's tlb might still be stale.

In other words, if there is any mandatory tlb-flushing after shadow page
modification, SET_SPTE_NEED_REMOTE_TLB_FLUSH or remote_flush should be
set and the tlbs of all VCPUs should be flushed.  There is not point to
only flush current tlb except when the request is from vCPU's or pCPU's
activities.

If there was any bug that mandatory tlb-flushing is required and
SET_SPTE_NEED_REMOTE_TLB_FLUSH/remote_flush is failed to set, this patch
would expose the bug in a more destructive way.  The related code paths
are checked and no missing SET_SPTE_NEED_REMOTE_TLB_FLUSH is found yet.

Currently, there is no optional tlb-flushing after sync page related code
is changed to flush tlb timely.  So we can just remove these local flushing
code.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:09 -04:00
Sean Christopherson c6cecc4b93 KVM: x86/mmu: Complete prefetch for trailing SPTEs for direct, legacy MMU
Make a final call to direct_pte_prefetch_many() if there are "trailing"
SPTEs to prefetch, i.e. SPTEs for GFNs following the faulting GFN.  The
call to direct_pte_prefetch_many() in the loop only handles the case
where there are !PRESENT SPTEs preceding a PRESENT SPTE.

E.g. if the faulting GFN is a multiple of 8 (the prefetch size) and all
SPTEs for the following GFNs are !PRESENT, the loop will terminate with
"start = sptep+1" and not prefetch any SPTEs.

Prefetching trailing SPTEs as intended can drastically reduce the number
of guest page faults, e.g. accessing the first byte of every 4kb page in
a 6gb chunk of virtual memory, in a VM with 8gb of preallocated memory,
the number of pf_fixed events observed in L0 drops from ~1.75M to <0.27M.

Note, this only affects memory that is backed by 4kb pages as KVM doesn't
prefetch when installing hugepages.  Shadow paging prefetching is not
affected as it does not batch the prefetches due to the need to process
the corresponding guest PTE.  The TDP MMU is not affected because it
doesn't have prefetching, yet...

Fixes: 957ed9effd ("KVM: MMU: prefetch ptes when intercepted guest #PF")
Cc: Sergey Senozhatsky <senozhatsky@google.com>
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210818235615.2047588-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:08 -04:00
Lai Jiangshan 65855ed8b0 KVM: X86: Synchronize the shadow pagetable before link it
If gpte is changed from non-present to present, the guest doesn't need
to flush tlb per SDM.  So the host must synchronze sp before
link it.  Otherwise the guest might use a wrong mapping.

For example: the guest first changes a level-1 pagetable, and then
links its parent to a new place where the original gpte is non-present.
Finally the guest can access the remapped area without flushing
the tlb.  The guest's behavior should be allowed per SDM, but the host
kvm mmu makes it wrong.

Fixes: 4731d4c7a0 ("KVM: MMU: out of sync shadow core")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 11:01:00 -04:00
Paolo Bonzini 4ac214574d KVM: MMU: mark role_regs and role accessors as maybe unused
It is reasonable for these functions to be used only in some configurations,
for example only if the host is 64-bits (and therefore supports 64-bit
guests).  It is also reasonable to keep the role_regs and role accessors
in sync even though some of the accessors may be used only for one of the
two sets (as is the case currently for CR4.LA57)..

Because clang reports warnings for unused inlines declared in a .c file,
mark both sets of accessors as __maybe_unused.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:56:38 -04:00
Sean Christopherson e7177339d7 Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
Revert a misguided illegal GPA check when "translating" a non-nested GPA.
The check is woefully incomplete as it does not fill in @exception as
expected by all callers, which leads to KVM attempting to inject a bogus
exception, potentially exposing kernel stack information in the process.

 WARNING: CPU: 0 PID: 8469 at arch/x86/kvm/x86.c:525 exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 CPU: 1 PID: 8469 Comm: syz-executor531 Not tainted 5.14.0-rc7-syzkaller #0
 RIP: 0010:exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 Call Trace:
  x86_emulate_instruction+0xef6/0x1460 arch/x86/kvm/x86.c:7853
  kvm_mmu_page_fault+0x2f0/0x1810 arch/x86/kvm/mmu/mmu.c:5199
  handle_ept_misconfig+0xdf/0x3e0 arch/x86/kvm/vmx/vmx.c:5336
  __vmx_handle_exit arch/x86/kvm/vmx/vmx.c:6021 [inline]
  vmx_handle_exit+0x336/0x1800 arch/x86/kvm/vmx/vmx.c:6038
  vcpu_enter_guest+0x2a1c/0x4430 arch/x86/kvm/x86.c:9712
  vcpu_run arch/x86/kvm/x86.c:9779 [inline]
  kvm_arch_vcpu_ioctl_run+0x47d/0x1b20 arch/x86/kvm/x86.c:10010
  kvm_vcpu_ioctl+0x49e/0xe50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3652

The bug has escaped notice because practically speaking the GPA check is
useless.  The GPA check in question only comes into play when KVM is
walking guest page tables (or "translating" CR3), and KVM already handles
illegal GPA checks by setting reserved bits in rsvd_bits_mask for each
PxE, or in the case of CR3 for loading PTDPTRs, manually checks for an
illegal CR3.  This particular failure doesn't hit the existing reserved
bits checks because syzbot sets guest.MAXPHYADDR=1, and IA32 architecture
simply doesn't allow for such an absurd MAXPHYADDR, e.g. 32-bit paging
doesn't define any reserved PA bits checks, which KVM emulates by only
incorporating the reserved PA bits into the "high" bits, i.e. bits 63:32.

Simply remove the bogus check.  There is zero meaningful value and no
architectural justification for supporting guest.MAXPHYADDR < 32, and
properly filling the exception would introduce non-trivial complexity.

This reverts commit ec7771ab47.

Fixes: ec7771ab47 ("KVM: x86: mmu: Add guest physical address check in translate_gpa()")
Cc: stable@vger.kernel.org
Reported-by: syzbot+200c08e88ae818f849ce@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210831164224.1119728-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:18:02 -04:00
Sean Christopherson a717a780fc KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
Include pml5_root in the set of special roots if and only if the host,
and thus NPT, is using 5-level paging.  mmu_alloc_special_roots() expects
special roots to be allocated as a bundle, i.e. they're either all valid
or all NULL.  But for pml5_root, that expectation only holds true if the
host uses 5-level paging, which causes KVM to WARN about pml5_root being
NULL when the other special roots are valid.

The silver lining of 4-level vs. 5-level NPT being tied to the host
kernel's paging level is that KVM's shadow root level is constant; unlike
VMX's EPT, KVM can't choose 4-level NPT based on guest.MAXPHYADDR.  That
means KVM can still expect pml5_root to be bundled with the other special
roots, it just needs to be conditioned on the shadow root level.

Fixes: cb0f722aff ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210824005824.205536-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 05:56:38 -04:00
Wei Huang cb0f722aff KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host
When the 5-level page table CPU flag is set in the host, but the guest
has CR4.LA57=0 (including the case of a 32-bit guest), the top level of
the shadow NPT page tables will be fixed, consisting of one pointer to
a lower-level table and 511 non-present entries.  Extend the existing
code that creates the fixed PML4 or PDP table, to provide a fixed PML5
table if needed.

This is not needed on EPT because the number of layers in the tables
is specified in the EPTP instead of depending on the host CR4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-3-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:48 -04:00
Wei Huang 746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Paolo Bonzini ec607a564f KVM: x86: clamp host mapping level to max_level in kvm_mmu_max_mapping_level
This change started as a way to make kvm_mmu_hugepage_adjust a bit simpler,
but it does fix two bugs as well.

One bug is in zapping collapsible PTEs.  If a large page size is
disallowed but not all of them, kvm_mmu_max_mapping_level will return the
host mapping level and the small PTEs will be zapped up to that level.
However, if e.g. 1GB are prohibited, we can still zap 4KB mapping and
preserve the 2MB ones. This can happen for example when NX huge pages
are in use.

The second would happen when userspace backs guest memory
with a 1gb hugepage but only assign a subset of the page to
the guest.  1gb pages would be disallowed by the memslot, but
not 2mb.  kvm_mmu_max_mapping_level() would fall through to the
host_pfn_mapping_level() logic, see the 1gb hugepage, and map the whole
thing into the guest.

Fixes: 2f57b7051f ("KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:41 -04:00
Mingwei Zhang 71f51d2c32 KVM: x86/mmu: Add detailed page size stats
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.

So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Mingwei Zhang 4293ddb788 KVM: x86/mmu: Remove redundant spte present check in mmu_set_spte
Drop an unnecessary is_shadow_present_pte() check when updating the rmaps
after installing a non-MMIO SPTE.  set_spte() is used only to create
shadow-present SPTEs, e.g. MMIO SPTEs are handled early on, mmu_set_spte()
runs with mmu_lock held for write, i.e. the SPTE can't be zapped between
writing the SPTE and updating the rmaps.

Opportunistically combine the "new SPTE" logic for large pages and rmaps.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20210803044607.599629-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Maxim Levitsky 9cc13d60ba KVM: x86/mmu: allow APICv memslot to be enabled but invisible
on AMD, APIC virtualization needs to dynamicaly inhibit the AVIC in a
response to some events, and this is problematic and not efficient to do by
enabling/disabling the memslot that covers APIC's mmio range.

Plus due to SRCU locking, it makes it more complex to
request AVIC inhibition.

Instead, the APIC memslot will be always enabled, but be invisible
to the guest, such as the MMU code will not install a SPTE for it,
when it is inhibited and instead jump straight to emulating the access.

When inhibiting the AVIC, this SPTE will be zapped.

This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:22 -04:00
Maxim Levitsky 8f32d5e563 KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code
This will allow it to return RET_PF_EMULATE for APIC mmio
emulation.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky 33a5c0009d KVM: x86/mmu: rename try_async_pf to kvm_faultin_pfn
try_async_pf is a wrong name for this function, since this code
is used when asynchronous page fault is not enabled as well.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky edb298c663 KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range
This together with previous patch, ensures that
kvm_zap_gfn_range doesn't race with page fault
running on another vcpu, and will make this page fault code
retry instead.

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:19 -04:00
Maxim Levitsky 88f585358b KVM: x86/mmu: add comment explaining arguments to kvm_zap_gfn_range
This comment makes it clear that the range of gfns that this
function receives is non inclusive.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:18 -04:00
Maxim Levitsky 2822da4466 KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address
kvm_flush_remote_tlbs_with_address expects (start gfn, number of pages),
and not (start gfn, end gfn)

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:16 -04:00
Sean Christopherson 5a324c24b6 Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"
This together with the next patch will fix a future race between
kvm_zap_gfn_range and the page fault handler, which will happen
when AVIC memslot is going to be only partially disabled.

The performance impact is minimal since kvm_zap_gfn_range is only
called by users, update_mtrr() and kvm_post_set_cr0().

Both only use it if the guest has non-coherent DMA, in order to
honor the guest's UC memtype.

MTRR and CD setup only happens at boot, and generally in an area
where the page tables should be small (for CD) or should not
include the affected GFNs at all (for MTRRs).

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:15 -04:00
Peter Xu 3bcd0662d6 KVM: X86: Introduce mmu_rmaps_stat per-vm debugfs file
Use this file to dump rmap statistic information.  The statistic is done by
calculating the rmap count and the result is log-2-based.

An example output of this looks like (idle 6GB guest, right after boot linux):

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3086676 53045   12330   1272    502     121     76      2       0       0       0
Level=2M:       5947    231     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-5-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:11 -04:00
Paolo Bonzini 9a63b4517c Merge branch 'kvm-tdpmmu-fixes' into HEAD
Merge topic branch with fixes for 5.14-rc6 and 5.15 merge window.
2021-08-13 03:35:01 -04:00
Sean Christopherson ce25681d59 KVM: x86/mmu: Protect marking SPs unsync when using TDP MMU with spinlock
Add yet another spinlock for the TDP MMU and take it when marking indirect
shadow pages unsync.  When using the TDP MMU and L1 is running L2(s) with
nested TDP, KVM may encounter shadow pages for the TDP entries managed by
L1 (controlling L2) when handling a TDP MMU page fault.  The unsync logic
is not thread safe, e.g. the kvm_mmu_page fields are not atomic, and
misbehaves when a shadow page is marked unsync via a TDP MMU page fault,
which runs with mmu_lock held for read, not write.

Lack of a critical section manifests most visibly as an underflow of
unsync_children in clear_unsync_child_bit() due to unsync_children being
corrupted when multiple CPUs write it without a critical section and
without atomic operations.  But underflow is the best case scenario.  The
worst case scenario is that unsync_children prematurely hits '0' and
leads to guest memory corruption due to KVM neglecting to properly sync
shadow pages.

Use an entirely new spinlock even though piggybacking tdp_mmu_pages_lock
would functionally be ok.  Usurping the lock could degrade performance when
building upper level page tables on different vCPUs, especially since the
unsync flow could hold the lock for a comparatively long time depending on
the number of indirect shadow pages and the depth of the paging tree.

For simplicity, take the lock for all MMUs, even though KVM could fairly
easily know that mmu_lock is held for write.  If mmu_lock is held for
write, there cannot be contention for the inner spinlock, and marking
shadow pages unsync across multiple vCPUs will be slow enough that
bouncing the kvm_arch cacheline should be in the noise.

Note, even though L2 could theoretically be given access to its own EPT
entries, a nested MMU must hold mmu_lock for write and thus cannot race
against a TDP MMU page fault.  I.e. the additional spinlock only _needs_ to
be taken by the TDP MMU, as opposed to being taken by any MMU for a VM
that is running with the TDP MMU enabled.  Holding mmu_lock for read also
prevents the indirect shadow page from being freed.  But as above, keep
it simple and always take the lock.

Alternative #1, the TDP MMU could simply pass "false" for can_unsync and
effectively disable unsync behavior for nested TDP.  Write protecting leaf
shadow pages is unlikely to noticeably impact traditional L1 VMMs, as such
VMMs typically don't modify TDP entries, but the same may not hold true for
non-standard use cases and/or VMMs that are migrating physical pages (from
L1's perspective).

Alternative #2, the unsync logic could be made thread safe.  In theory,
simply converting all relevant kvm_mmu_page fields to atomics and using
atomic bitops for the bitmap would suffice.  However, (a) an in-depth audit
would be required, (b) the code churn would be substantial, and (c) legacy
shadow paging would incur additional atomic operations in performance
sensitive paths for no benefit (to legacy shadow paging).

Fixes: a2855afc7e ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181815.3378104-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:32:14 -04:00
Paolo Bonzini c3e9434c98 Merge branch 'kvm-vmx-secctl' into HEAD
Merge common topic branch for 5.14-rc6 and 5.15 merge window.
2021-08-10 13:45:26 -04:00
David Matlack 93e083d4f4 KVM: x86/mmu: Rename __gfn_to_rmap to gfn_to_rmap
gfn_to_rmap was removed in the previous patch so there is no need to
retain the double underscore on __gfn_to_rmap.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-06 07:52:58 -04:00
David Matlack 601f8af01e KVM: x86/mmu: Leverage vcpu->last_used_slot for rmap_add and rmap_recycle
rmap_add() and rmap_recycle() both run in the context of the vCPU and
thus we can use kvm_vcpu_gfn_to_memslot() to look up the memslot. This
enables rmap_add() and rmap_recycle() to take advantage of
vcpu->last_used_slot and avoid expensive memslot searching.

This change improves the performance of "Populate memory time" in
dirty_log_perf_test with tdp_mmu=N. In addition to improving the
performance, "Populate memory time" no longer scales with the number
of memslots in the VM.

Command                         | Before           | After
------------------------------- | ---------------- | -------------
./dirty_log_perf_test -v64 -x1  | 15.18001570s     | 14.99469366s
./dirty_log_perf_test -v64 -x64 | 18.71336392s     | 14.98675076s

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-06 07:52:29 -04:00
Sean Christopherson d5aaad6f83 KVM: x86/mmu: Fix per-cpu counter corruption on 32-bit builds
Take a signed 'long' instead of an 'unsigned long' for the number of
pages to add/subtract to the total number of pages used by the MMU.  This
fixes a zero-extension bug on 32-bit kernels that effectively corrupts
the per-cpu counter used by the shrinker.

Per-cpu counters take a signed 64-bit value on both 32-bit and 64-bit
kernels, whereas kvm_mod_used_mmu_pages() takes an unsigned long and thus
an unsigned 32-bit value on 32-bit kernels.  As a result, the value used
to adjust the per-cpu counter is zero-extended (unsigned -> signed), not
sign-extended (signed -> signed), and so KVM's intended -1 gets morphed to
4294967295 and effectively corrupts the counter.

This was found by a staggering amount of sheer dumb luck when running
kvm-unit-tests on a 32-bit KVM build.  The shrinker just happened to kick
in while running tests and do_shrink_slab() logged an error about trying
to free a negative number of objects.  The truly lucky part is that the
kernel just happened to be a slightly stale build, as the shrinker no
longer yells about negative objects as of commit 18bb473e50 ("mm:
vmscan: shrink deferred objects proportional to priority").

 vmscan: shrink_slab: mmu_shrink_scan+0x0/0x210 [kvm] negative objects to delete nr=-858993460

Fixes: bc8a3d8925 ("kvm: mmu: Fix overflow on kvm mmu page limit calculation")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210804214609.1096003-1-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-05 03:33:56 -04:00
Peter Xu a75b540451 KVM: X86: Optimize zapping rmap
Using rmap_get_first() and rmap_remove() for zapping a huge rmap list could be
slow.  The easy way is to travers the rmap list, collecting the a/d bits and
free the slots along the way.

Provide a pte_list_destroy() and do exactly that.

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220605.26377-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Peter Xu 13236e25eb KVM: X86: Optimize pte_list_desc with per-array counter
Add a counter field into pte_list_desc, so as to simplify the add/remove/loop
logic.  E.g., we don't need to loop over the array any more for most reasons.

This will make more sense after we've switched the array size to be larger
otherwise the counter will be a waste.

Initially I wanted to store a tail pointer at the head of the array list so we
don't need to traverse the list at least for pushing new ones (if without the
counter we traverse both the list and the array).  However that'll need
slightly more change without a huge lot benefit, e.g., after we grow entry
numbers per array the list traversing is not so expensive.

So let's be simple but still try to get as much benefit as we can with just
these extra few lines of changes (not to mention the code looks easier too
without looping over arrays).

I used the same a test case to fork 500 child and recycle them ("./rmap_fork
500" [1]), this patch further speeds up the total fork time of about 4%, which
is a total of 33% of vanilla kernel:

        Vanilla:      473.90 (+-5.93%)
        3->15 slots:  366.10 (+-4.94%)
        Add counter:  351.00 (+-3.70%)

[1] 825436f825

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220602.26327-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Peter Xu dc1cff9691 KVM: X86: MMU: Tune PTE_LIST_EXT to be bigger
Currently rmap array element only contains 3 entries.  However for EPT=N there
could have a lot of guest pages that got tens of even hundreds of rmap entry.

A normal distribution of a 6G guest (even if idle) shows this with rmap count
statistics:

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3089171 49005   14016   1363    235     212     15      7       0       0       0
Level=2M:       5951    227     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

If we do some more fork some pages will grow even larger rmap counts.

This patch makes PTE_LIST_EXT bigger so it'll be more efficient for the general
use case of EPT=N as we do list reference less and the loops over PTE_LIST_EXT
will be slightly more efficient; but still not too large so less waste when
array not full.

It should not affecting EPT=Y since EPT normally only has zero or one rmap
entry for each page, so no array is even allocated.

With a test case to fork 500 child and recycle them ("./rmap_fork 500" [1]),
this patch speeds up fork time of about 29%.

    Before: 473.90 (+-5.93%)
    After:  366.10 (+-4.94%)

[1] 825436f825

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-6-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 05:55:56 -04:00
Hamza Mahfooz 269e9552d2 KVM: const-ify all relevant uses of struct kvm_memory_slot
As alluded to in commit f36f3f2846 ("KVM: add "new" argument to
kvm_arch_commit_memory_region"), a bunch of other places where struct
kvm_memory_slot is used, needs to be refactored to preserve the
"const"ness of struct kvm_memory_slot across-the-board.

Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Message-Id: <20210713023338.57108-1-someguy@effective-light.com>
[Do not touch body of slot_rmap_walk_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-03 06:04:24 -04:00
David Matlack 6e8eb2060c KVM: x86/mmu: fast_page_fault support for the TDP MMU
Make fast_page_fault interoperate with the TDP MMU by leveraging
walk_shadow_page_lockless_{begin,end} to acquire the RCU read lock and
introducing a new helper function kvm_tdp_mmu_fast_pf_get_last_sptep to
grab the lowest level sptep.

Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:47 -04:00
David Matlack c5c8c7c530 KVM: x86/mmu: Make walk_shadow_page_lockless_{begin,end} interoperate with the TDP MMU
Acquire the RCU read lock in walk_shadow_page_lockless_begin and release
it in walk_shadow_page_lockless_end when the TDP MMU is enabled.  This
should not introduce any functional changes but is used in the following
commit to make fast_page_fault interoperate with the TDP MMU.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-4-dmatlack@google.com>
[Use if...else instead of if(){return;}]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:47 -04:00
David Matlack 76cd325ea7 KVM: x86/mmu: Rename cr2_or_gpa to gpa in fast_page_fault
fast_page_fault is only called from direct_page_fault where we know the
address is a gpa.

Fixes: 736c291c9f ("KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:46 -04:00
Peter Xu ec1cf69c37 KVM: X86: Add per-vm stat for max rmap list size
Add a new statistic max_mmu_rmap_size, which stores the maximum size of rmap
for the vm.

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210625153214.43106-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson 7fa2a34751 KVM: x86/mmu: Return old SPTE from mmu_spte_clear_track_bits()
Return the old SPTE when clearing a SPTE and push the "old SPTE present"
check to the caller.  Private shadow page support will use the old SPTE
in rmap_remove() to determine whether or not there is a linked private
shadow page.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <b16bac1fd1357aaf39e425aab2177d3f89ee8318.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson 03fffc5493 KVM: x86/mmu: Refactor shadow walk in __direct_map() to reduce indentation
Employ a 'continue' to reduce the indentation for linking a new shadow
page during __direct_map() in preparation for linking private pages.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <702419686d5700373123f6ea84e7a946c2cad8b4.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:37 -04:00
Sean Christopherson 19025e7bc5 KVM: x86/mmu: Mark VM as bugged if page fault returns RET_PF_INVALID
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <298980aa5fc5707184ac082287d13a800cd9c25f.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 09:36:36 -04:00
Linus Torvalds 405386b021 * Allow again loading KVM on 32-bit non-PAE builds
* Fixes for host SMIs on AMD
 
 * Fixes for guest SMIs on AMD
 
 * Fixes for selftests on s390 and ARM
 
 * Fix memory leak
 
 * Enforce no-instrumentation area on vmentry when hardware
   breakpoints are in use.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDwRi4UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOt4AgAl6xEkMwDC74d/QFIOA7s2GD3ugfa
 z5XqGN1qz/nmEMnuIg6/tjTXDPmn/dfLMqy8RGZfyUv6xbgPcv/7JuFMRILvwGTb
 SbOVrGnR/QOhMdlfWH34qDkXeEsthTXSgQgVm/iiED0TttvQYVcZ/E9mgzaWQXor
 T1yTug2uAUXJ1EBxY0ZBo2kbh+BvvdmhEF0pksZOuwqZdH3zn3QCXwAwkL/OtUYE
 M6nNn3j1LU38C4OK1niXOZZVOuMIdk/l7LyFpjUQTFlIqitQAPtBE5MD+K+A9oC2
 Yocxyj2tId1e6o8bLic/oN8/LpdORTvA/wDMj5M1DcMzvxQuQIpGYkcVGg==
 =gjVA
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Allow again loading KVM on 32-bit non-PAE builds

 - Fixes for host SMIs on AMD

 - Fixes for guest SMIs on AMD

 - Fixes for selftests on s390 and ARM

 - Fix memory leak

 - Enforce no-instrumentation area on vmentry when hardware breakpoints
   are in use.

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
  KVM: selftests: smm_test: Test SMM enter from L2
  KVM: nSVM: Restore nested control upon leaving SMM
  KVM: nSVM: Fix L1 state corruption upon return from SMM
  KVM: nSVM: Introduce svm_copy_vmrun_state()
  KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN
  KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA
  KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities
  KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails
  KVM: SVM: add module param to control the #SMI interception
  KVM: SVM: remove INIT intercept handler
  KVM: SVM: #SMI interception must not skip the instruction
  KVM: VMX: Remove vmx_msr_index from vmx.h
  KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
  KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc
  kvm: debugfs: fix memory leak in kvm_create_vm_debugfs
  KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM
  KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
  KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
  KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
  KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR
  ...
2021-07-15 11:56:07 -07:00
Sean Christopherson fc9bf2e087 KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks.  The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".

For non-SEV guests, not dropping bits is the correct behavior.  Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits.  And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.

For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted.  Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM.  The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.

Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-5-seanjc@google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-14 12:17:56 -04:00
Linus Torvalds 36824f198c ARM:
- Add MTE support in guests, complete with tag save/restore interface
 
 - Reduce the impact of CMOs by moving them in the page-table code
 
 - Allow device block mappings at stage-2
 
 - Reduce the footprint of the vmemmap in protected mode
 
 - Support the vGIC on dumb systems such as the Apple M1
 
 - Add selftest infrastructure to support multiple configuration
   and apply that to PMU/non-PMU setups
 
 - Add selftests for the debug architecture
 
 - The usual crop of PMU fixes
 
 PPC:
 
 - Support for the H_RPT_INVALIDATE hypercall
 
 - Conversion of Book3S entry/exit to C
 
 - Bug fixes
 
 S390:
 
 - new HW facilities for guests
 
 - make inline assembly more robust with KASAN and co
 
 x86:
 
 - Allow userspace to handle emulation errors (unknown instructions)
 
 - Lazy allocation of the rmap (host physical -> guest physical address)
 
 - Support for virtualizing TSC scaling on VMX machines
 
 - Optimizations to avoid shattering huge pages at the beginning of live migration
 
 - Support for initializing the PDPTRs without loading them from memory
 
 - Many TLB flushing cleanups
 
 - Refuse to load if two-stage paging is available but NX is not (this has
   been a requirement in practice for over a year)
 
 - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
   CR0/CR4/EFER, using the MMU mode everywhere once it is computed
   from the CPU registers
 
 - Use PM notifier to notify the guest about host suspend or hibernate
 
 - Support for passing arguments to Hyper-V hypercalls using XMM registers
 
 - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
   AMD processors
 
 - Hide Hyper-V hypercalls that are not included in the guest CPUID
 
 - Fixes for live migration of virtual machines that use the Hyper-V
   "enlightened VMCS" optimization of nested virtualization
 
 - Bugfixes (not many)
 
 Generic:
 
 - Support for retrieving statistics without debugfs
 
 - Cleanups for the KVM selftests API
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
 QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
 iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
 h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
 +/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
 QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
 =NcRh
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This covers all architectures (except MIPS) so I don't expect any
  other feature pull requests this merge window.

  ARM:

   - Add MTE support in guests, complete with tag save/restore interface

   - Reduce the impact of CMOs by moving them in the page-table code

   - Allow device block mappings at stage-2

   - Reduce the footprint of the vmemmap in protected mode

   - Support the vGIC on dumb systems such as the Apple M1

   - Add selftest infrastructure to support multiple configuration and
     apply that to PMU/non-PMU setups

   - Add selftests for the debug architecture

   - The usual crop of PMU fixes

  PPC:

   - Support for the H_RPT_INVALIDATE hypercall

   - Conversion of Book3S entry/exit to C

   - Bug fixes

  S390:

   - new HW facilities for guests

   - make inline assembly more robust with KASAN and co

  x86:

   - Allow userspace to handle emulation errors (unknown instructions)

   - Lazy allocation of the rmap (host physical -> guest physical
     address)

   - Support for virtualizing TSC scaling on VMX machines

   - Optimizations to avoid shattering huge pages at the beginning of
     live migration

   - Support for initializing the PDPTRs without loading them from
     memory

   - Many TLB flushing cleanups

   - Refuse to load if two-stage paging is available but NX is not (this
     has been a requirement in practice for over a year)

   - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
     CR0/CR4/EFER, using the MMU mode everywhere once it is computed
     from the CPU registers

   - Use PM notifier to notify the guest about host suspend or hibernate

   - Support for passing arguments to Hyper-V hypercalls using XMM
     registers

   - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
     on AMD processors

   - Hide Hyper-V hypercalls that are not included in the guest CPUID

   - Fixes for live migration of virtual machines that use the Hyper-V
     "enlightened VMCS" optimization of nested virtualization

   - Bugfixes (not many)

  Generic:

   - Support for retrieving statistics without debugfs

   - Cleanups for the KVM selftests API"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
  KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
  kvm: x86: disable the narrow guest module parameter on unload
  selftests: kvm: Allows userspace to handle emulation errors.
  kvm: x86: Allow userspace to handle emulation errors
  KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
  KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
  KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
  KVM: x86: Enhance comments for MMU roles and nested transition trickiness
  KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
  KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
  KVM: x86/mmu: Use MMU's role to determine PTTYPE
  KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
  KVM: x86/mmu: Add a helper to calculate root from role_regs
  KVM: x86/mmu: Add helper to update paging metadata
  KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
  KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
  KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
  KVM: x86/mmu: Get nested MMU's root level from the MMU's role
  ...
2021-06-28 15:40:51 -07:00
Linus Torvalds 8e4d7a78f0 Misc cleanups & removal of obsolete code.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZejQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hKCg//a0wiOyJBiWLAW0uiOucF2ICVQZj5rKgi
 M4HRJZ9jNkFUFVQ/eXYI7uedSqJ6B4hwoUqU6Yp6e05CF/Jgxe2OQXnknearjtDp
 xs8yBsnLolCrtHzWvuJAZL8InXwvUYrsxu1A8kWKd1ezZQ2V2aFEI4KtYcPVoBBi
 hRNMy1JVJbUoCG5s/CbsMpTKH0ehQFGsG46rCLQJ4s9H3rcYaCv9NY2q1EYKBrha
 ZiZjPSFBKaTAVEoc3tUbqsNZAqgyuwRcBQL0K5VDI9p92fudvKgsTI7erbmp+Lij
 mLhjjoPQK1C07kj0HpCPyoGMiTbJ2piag/jZnxSEiQnNxmZjqjRUhDuDhp6uc/SE
 98CEYWPoVbU7N6QLEurHVRAfaQ/ZC7PfiR7lhkoJHizaszFY1NFRxplsU1rzTwGq
 YZdr+y49tJTCU1wIvWF2eFBZHBEgfA6fP4TRGgVsQ7r8IhugR1nCLcnTfMLYXt2t
 9Fe57M7cBgZMgNf5AgvraowugJrTLX7240YPKxHnv5yLjIBt4bulm8X4Lq/MKgc+
 UbRfB7Trd2c9T4EVDy26rQ7qk+VC8rIbzEp4kvlDpV8u7BtLYhVonxVz6qPong5b
 NxOczaFsfL5gWJmfGU+vfc+RFl2lNhQQMLo/gdEn89qZL8nxL/4byejwfCs0YfC2
 wgDXNwRJb+g=
 =YqZp
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups & removal of obsolete code"

* tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sgx: Correct kernel-doc's arg name in sgx_encl_release()
  doc: Remove references to IBM Calgary
  x86/setup: Document that Windows reserves the first MiB
  x86/crash: Remove crash_reserve_low_1M()
  x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
  x86/alternative: Align insn bytes vertically
  x86: Fix leftover comment typos
  x86/asm: Simplify __smp_mb() definition
  x86/alternatives: Make the x86nops[] symbol static
2021-06-28 13:10:25 -07:00
Sean Christopherson 27de925044 KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
Let the guest use 1g hugepages if TDP is enabled and the host supports
GBPAGES, KVM can't actively prevent the guest from using 1g pages in this
case since they can't be disabled in the hardware page walker.  While
injecting a page fault if a bogus 1g page is encountered during a
software page walk is perfectly reasonable since KVM is simply honoring
userspace's vCPU model, doing so arguably doesn't provide any meaningful
value, and at worst will be horribly confusing as the guest will see
inconsistent behavior and seemingly spurious page faults.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-55-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:48 -04:00
Sean Christopherson f82fdaf536 KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
Drop the extra reset of shadow_zero_bits in the nested NPT flow now
that shadow_mmu_init_context computes the correct level for nested NPT.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-52-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:47 -04:00
Sean Christopherson 7cd138db5c KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
Drop the pre-computed last_nonleaf_level, which is arguably wrong and at
best confusing.  Per the comment:

  Can have large pages at levels 2..last_nonleaf_level-1.

the intent of the variable would appear to be to track what levels can
_legally_ have large pages, but that intent doesn't align with reality.
The computed value will be wrong for 5-level paging, or if 1gb pages are
not supported.

The flawed code is not a problem in practice, because except for 32-bit
PSE paging, bit 7 is reserved if large pages aren't supported at the
level.  Take advantage of this invariant and simply omit the level magic
math for 64-bit page tables (including PAE).

For 32-bit paging (non-PAE), the adjustments are needed purely because
bit 7 is ignored if PSE=0.  Retain that logic as is, but make
is_last_gpte() unique per PTTYPE so that the PSE check is avoided for
PAE and EPT paging.  In the spirit of avoiding branches, bump the "last
nonleaf level" for 32-bit PSE paging by adding the PSE bit itself.

Note, bit 7 is ignored or has other meaning in CR3/EPTP, but despite
FNAME(walk_addr_generic) briefly grabbing CR3/EPTP in "pte", they are
not PTEs and will blow up all the other gpte helpers.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-51-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:47 -04:00
Sean Christopherson 961f84457c KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
Extract the reserved SPTE check and print helpers in get_mmio_spte() to
new helpers so that KVM can also WARN on reserved badness when making a
SPTE.

Tag the checking helper with __always_inline to improve the probability
of the compiler generating optimal code for the checking loop, e.g. gcc
appears to avoid using %rbp when the helper is tagged with a vanilla
"inline".

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-48-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson 36f267871e KVM: x86/mmu: Use MMU's role to determine PTTYPE
Use the MMU's role instead of vCPU state or role_regs to determine the
PTTYPE, i.e. which helpers to wire up.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-47-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson fe660f7244 KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
Skip paging32E_init_context() and paging64_init_context_common() and go
directly to paging64_init_context() (was the common version) now that
the relevant flows don't need to distinguish between 64-bit PAE and
32-bit PAE for other reasons.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:46 -04:00
Sean Christopherson f4bd6f7376 KVM: x86/mmu: Add a helper to calculate root from role_regs
Add a helper to calculate the level for non-EPT page tables from the
MMU's role_regs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson 533f9a4b38 KVM: x86/mmu: Add helper to update paging metadata
Consolidate MMU guest metadata updates into a common helper for TDP,
shadow, and nested MMUs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson af0eb17e99 KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
Don't bother updating the bitmasks and last-leaf information if paging is
disabled as the metadata will never be used.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson fa4b558802 KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
Move calls to reset_rsvds_bits_mask() out of the various mode statements
and under a more generic CR0.PG=1 check.  This will allow for additional
code consolidation in the future.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson 87e99d7d70 KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
Get LA57 from the role_regs, which are initialized from the vCPU even
though TDP is enabled, instead of pulling the value directly from the
vCPU when computing the guest's root_level for TDP MMUs.  Note, the check
is inside an is_long_mode() statement, so that requirement is not lost.

Use role_regs even though the MMU's role is available and arguably
"better".  A future commit will consolidate the guest root level logic,
and it needs access to EFER.LMA, which is not tracked in the role (it
can't be toggled on VM-Exit, unlike LA57).

Drop is_la57_mode() as there are no remaining users, and to discourage
pulling MMU state from the vCPU (in the future).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:45 -04:00
Sean Christopherson 5472fcd4c6 KVM: x86/mmu: Get nested MMU's root level from the MMU's role
Initialize the MMU's (guest) root_level using its mmu_role instead of
redoing the calculations.  The role_regs used to calculate the mmu_role
are initialized from the vCPU, i.e. this should be a complete nop.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson a4c93252fe KVM: x86/mmu: Drop "nx" from MMU context now that there are no readers
Drop kvm_mmu.nx as there no consumers left.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson 90599c2801 KVM: x86/mmu: Use MMU's role to get EFER.NX during MMU configuration
Get the MMU's effective EFER.NX from its role instead of using the
one-off, dedicated flag.  This will allow dropping said flag in a
future commit.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson 84a1622604 KVM: x86/mmu: Use MMU's role/role_regs to compute context's metadata
Use the MMU's role and role_regs to calculate the MMU's guest root level
and NX bit.  For some flows, the vCPU state may not be correct (or
relevant), e.g. EPT doesn't interact with EFER.NX and nested NPT will
configure the guest_mmu with possibly-stale vCPU state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:44 -04:00
Sean Christopherson b67a93a87e KVM: x86/mmu: Use MMU's roles to compute last non-leaf level
Use the MMU's role to get CR4.PSE when determining the last level at
which the guest _cannot_ create a non-leaf PTE, i.e. cannot create a
huge page.

Note, the existing logic is arguably wrong when considering 5-level
paging and the case where 1gb pages aren't supported.  In practice, the
logic is confusing but not broken, because except for 32-bit non-PAE
paging, bit 7 (_PAGE_PSE) bit is reserved when a huge page isn't supported at
that level.  I.e. setting bit 7 will terminate the guest walk one way or
another.  Furthermore, last_nonleaf_level is only consulted after KVM has
verified there are no reserved bits set.

All that confusion will be addressed in a future patch by dropping
last_nonleaf_level entirely.  For now, massage the code to continue the
march toward using mmu_role for (almost) all MMU computations.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson 2e4c06618d KVM: x86/mmu: Use MMU's role to compute PKRU bitmask
Use the MMU's role to calculate the Protection Keys (Restrict Userspace)
bitmask instead of pulling bits from current vCPU state.  For some flows,
the vCPU state may not be correct (or relevant), e.g. EPT doesn't
interact with PKRU.  Case in point, the "ept" param simply disappears.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson c596f1470a KVM: x86/mmu: Use MMU's role to compute permission bitmask
Use the MMU's role to generate the permission bitmasks for the MMU.
For some flows, the vCPU state may not be correct (or relevant), e.g.
the nested NPT MMU can be initialized with incoherent vCPU state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:43 -04:00
Sean Christopherson b705a277b7 KVM: x86/mmu: Drop vCPU param from reserved bits calculator
Drop the vCPU param from __reset_rsvds_bits_mask() as it's now unused,
and ideally will remain unused in the future.  Any information that's
needed by the low level helper should be explicitly provided as it's used
for both shadow/host MMUs and guest MMUs, i.e. vCPU state may be
meaningless or simply wrong.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson 4e9c0d80db KVM: x86/mmu: Use MMU's role to get CR4.PSE for computing rsvd bits
Use the MMU's role to get CR4.PSE when calculating reserved bits for the
guest's PTEs.  Practically speaking, this is a glorified nop as the role
always come from vCPU state for the relevant flows, but converting to
the roles will provide consistency once everything else is converted, and
will Just Work if the "always comes from vCPU" behavior were ever to
change (unlikely).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson 8c985b2d8e KVM: x86/mmu: Don't grab CR4.PSE for calculating shadow reserved bits
Unconditionally pass pse=false when calculating reserved bits for shadow
PTEs.  CR4.PSE is only relevant for 32-bit non-PAE paging, which KVM does
not use for shadow paging (including nested NPT).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson 18db1b1790 KVM: x86/mmu: Always set new mmu_role immediately after checking old role
Refactor shadow MMU initialization to immediately set its new mmu_role
after verifying it differs from the old role, and so that all flavors
of MMU initialization share the same check-and-set pattern.  Immediately
setting the role will allow future commits to use mmu_role to configure
the MMU without consuming stale state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:42 -04:00
Sean Christopherson 84c679f5f5 KVM: x86/mmu: Set CR4.PKE/LA57 in MMU role iff long mode is active
Don't set cr4_pke or cr4_la57 in the MMU role if long mode isn't active,
which is required for protection keys and 5-level paging to be fully
enabled.  Ignoring the bit avoids unnecessary reconfiguration on reuse,
and also means consumers of mmu_role don't need to manually check for
long mode.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson ca8d664f50 KVM: x86/mmu: Do not set paging-related bits in MMU role if CR0.PG=0
Don't set CR0/CR4/EFER bits in the MMU role if paging is disabled, paging
modifiers are irrelevant if there is no paging in the first place.
Somewhat arbitrarily clear gpte_is_8_bytes for shadow paging if paging is
disabled in the guest.  Again, there are no guest PTEs to process, so the
size is meaningless.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson 6066772455 KVM: x86/mmu: Add accessors to query mmu_role bits
Add accessors via a builder macro for all mmu_role bits that track a CR0,
CR4, or EFER bit, abstracting whether the bits are in the base or the
extended role.

Future commits will switch to using mmu_role instead of vCPU state to
configure the MMU, i.e. there are about to be a large number of users.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson 167f8a5cae KVM: x86/mmu: Rename "nxe" role bit to "efer_nx" for macro shenanigans
Rename "nxe" to "efer_nx" so that future macro magic can use the pattern
<reg>_<bit> for all CR0, CR4, and EFER bits that included in the role.
Using "efer_nx" also makes it clear that the role bit reflects EFER.NX,
not the NX bit in the corresponding PTE.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson 8626c120ba KVM: x86/mmu: Use MMU's role_regs, not vCPU state, to compute mmu_role
Use the provided role_regs to calculate the mmu_role instead of pulling
bits from current vCPU state.  For some flows, e.g. nested TDP, the vCPU
state may not be correct (or relevant).

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson cd6767c334 KVM: x86/mmu: Ignore CR0 and CR4 bits in nested EPT MMU role
Do not incorporate CR0/CR4 bits into the role for the nested EPT MMU, as
EPT behavior is not influenced by CR0/CR4.  Note, this is the guest_mmu,
(L1's EPT), not nested_mmu (L2's IA32 paging); the nested_mmu does need
CR0/CR4, and is initialized in a separate flow.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson af09897229 KVM: x86/mmu: Consolidate misc updates into shadow_mmu_init_context()
Consolidate the MMU metadata update calls to deduplicate code, and to
prep for future cleanup.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson 594e91a100 KVM: x86/mmu: Add struct and helpers to retrieve MMU role bits from regs
Introduce "struct kvm_mmu_role_regs" to hold the register state that is
incorporated into the mmu_role.  For nested TDP, the register state that
is factored into the MMU isn't vCPU state; the dedicated struct will be
used to propagate the correct state throughout the flows without having
to pass multiple params, and also provides helpers for the various flag
accessors.

Intentionally make the new helpers cumbersome/ugly by prepending four
underscores.  In the not-too-distant future, it will be preferable to use
the mmu_role to query bits as the mmu_role can drop irrelevant bits
without creating contradictions, e.g. clearing CR4 bits when CR0.PG=0.
Reserve the clean helper names (no underscores) for the mmu_role.

Add a helper for vCPU conversion, which is the common case.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson d555f7057e KVM: x86/mmu: Grab shadow root level from mmu_role for shadow MMUs
Use the mmu_role to initialize shadow root level instead of assuming the
level of KVM's shadow root (host) is the same as that of the guest root,
or in the case of 32-bit non-PAE paging where KVM forces PAE paging.
For nested NPT, the shadow root level cannot be adapted to L1's NPT root
level and is instead always the TDP root level because NPT uses the
current host CR0/CR4/EFER, e.g. 64-bit KVM can't drop into 32-bit PAE to
shadow L1's NPT.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson 16be1d1292 KVM: x86/mmu: Move nested NPT reserved bit calculation into MMU proper
Move nested NPT's invocation of reset_shadow_zero_bits_mask() into the
MMU proper and unexport said function.  Aside from dropping an export,
this is a baby step toward eliminating the call entirely by fixing the
shadow_root_level confusion.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson 20f632bd00 KVM: x86: Read and pass all CR0/CR4 role bits to shadow MMU helper
Grab all CR0/CR4 MMU role bits from current vCPU state when initializing
a non-nested shadow MMU.  Extract the masks from kvm_post_set_cr{0,4}(),
as the CR0/CR4 update masks must exactly match the mmu_role bits, with
one exception (see below).  The "full" CR0/CR4 will be used by future
commits to initialize the MMU and its role, as opposed to the current
approach of pulling everything from vCPU, which is incorrect for certain
flows, e.g. nested NPT.

CR4.LA57 is an exception, as it can be toggled on VM-Exit (for L1's MMU)
but can't be toggled via MOV CR4 while long mode is active.  I.e. LA57
needs to be in the mmu_role, but technically doesn't need to be checked
by kvm_post_set_cr4().  However, the extra check is completely benign as
the hardware restrictions simply mean LA57 will never be _the_ cause of
a MMU reset during MOV CR4.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson 18feaad3c6 KVM: x86/mmu: Drop smep_andnot_wp check from "uses NX" for shadow MMUs
Drop the smep_andnot_wp role check from the "uses NX" calculation now
that all non-nested shadow MMUs treat NX as used via the !TDP check.

The shadow MMU for nested NPT, which shares the helper, does not need to
deal with SMEP (or WP) as NPT walks are always "user" accesses and WP is
explicitly noted as being ignored:

  Table walks for guest page tables are always treated as user writes at
  the nested page table level.

  A table walk for the guest page itself is always treated as a user
  access at the nested page table level

  The host hCR0.WP bit is ignored under nested paging.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson dbc4739b6b KVM: x86: Fix sizes used to pass around CR0, CR4, and EFER
When configuring KVM's MMU, pass CR0 and CR4 as unsigned longs, and EFER
as a u64 in various flows (mostly MMU).  Passing the params as u32s is
functionally ok since all of the affected registers reserve bits 63:32 to
zero (enforced by KVM), but it's technically wrong.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson 0337f585f5 KVM: x86/mmu: Rename unsync helper and update related comments
Rename mmu_need_write_protect() to mmu_try_to_unsync_pages() and update
a variety of related, stale comments.  Add several new comments to call
out subtle details, e.g. that upper-level shadow pages are write-tracked,
and that can_unsync is false iff KVM is in the process of synchronizing
pages.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson 479a1efc81 KVM: x86/mmu: Drop the intermediate "transient" __kvm_sync_page()
Nove the kvm_unlink_unsync_page() call out of kvm_sync_page() and into
it's sole caller, and fold __kvm_sync_page() into kvm_sync_page() since
the latter becomes a pure pass-through.  There really should be no reason
for code to do a complete sync of a shadow page outside of the full
kvm_mmu_sync_roots(), e.g. the one use case that creeped in turned out to
be flawed and counter-productive.

Drop the stale comment about @sp->gfn needing to be write-protected, as
it directly contradicts the kvm_mmu_get_page() usage.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson 07dc4f35a4 KVM: x86/mmu: comment on kvm_mmu_get_page's syncing of pages
Explain the usage of sync_page() in kvm_mmu_get_page(), which is
subtle in how and why it differs from mmu_sync_children().

Signed-off-by: Sean Christopherson <seanjc@google.com>
[Split out of a different patch by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson 2640b08653 KVM: x86/mmu: WARN and zap SP when sync'ing if MMU role mismatches
When synchronizing a shadow page, WARN and zap the page if its mmu role
isn't compatible with the current MMU context, where "compatible" is an
exact match sans the bits that have no meaning in the overall MMU context
or will be explicitly overwritten during the sync.  Many of the helpers
used by sync_page() are specific to the current context, updating a SMM
vs. non-SMM shadow page would use the wrong memslots, updating L1 vs. L2
PTEs might work but would be extremely bizaree, and so on and so forth.

Drop the guard with respect to 8-byte vs. 4-byte PTEs in
__kvm_sync_page(), it was made useless when kvm_mmu_get_page() stopped
trying to sync shadow pages irrespective of the current MMU context.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson 00a669780f KVM: x86/mmu: Use MMU role to check for matching guest page sizes
Originally, __kvm_sync_page used to check the cr4_pae bit in the role
to avoid zapping 4-byte kvm_mmu_pages when guest page size are 8-byte
or the other way round.  However, in commit 47c42e6b41 ("KVM: x86: fix
handling of role.cr4_pae and rename it to 'gpte_size'", 2019-03-28) it
was observed that this did not work for nested EPT, where the page table
size would be 8 bytes even if CR4.PAE=0.  (Note that the check still
has to be done for nested *NPT*, so it is not possible to use tdp_enabled
or similar).

Therefore, a hack was introduced to identify nested EPT shadow pages
and unconditionally call __kvm_sync_page() on them.  However, it is
possible to do without the hack to identify nested EPT shadow pages:
if EPT is active, there will be no shadow pages in non-EPT format,
and all of them will have gpte_is_8_bytes set to true; we can just
check the MMU role directly, and the test will always be true.

Even for non-EPT shadow MMUs, this test should really always be true
now that __kvm_sync_page() is called if and only if the role is an
exact match (kvm_mmu_get_page()) or is part of the current MMU context
(kvm_mmu_sync_roots()).  A future commit will convert the likely-pointless
check into a meaningful WARN to enforce that the mmu_roles of the current
context and the shadow page are compatible.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson ddc16abbba KVM: x86/mmu: Unconditionally zap unsync SPs when creating >4k SP at GFN
When creating a new upper-level shadow page, zap unsync shadow pages at
the same target gfn instead of attempting to sync the pages.  This fixes
a bug where an unsync shadow page could be sync'd with an incompatible
context, e.g. wrong smm, is_guest, etc... flags.  In practice, the bug is
relatively benign as sync_page() is all but guaranteed to fail its check
that the guest's desired gfn (for the to-be-sync'd page) matches the
current gfn associated with the shadow page.  I.e. kvm_sync_page() would
end up zapping the page anyways.

Alternatively, __kvm_sync_page() could be modified to explicitly verify
the mmu_role of the unsync shadow page is compatible with the current MMU
context.  But, except for this specific case, __kvm_sync_page() is called
iff the page is compatible, e.g. the transient sync in kvm_mmu_get_page()
requires an exact role match, and the call from kvm_sync_mmu_roots() is
only synchronizing shadow pages from the current MMU (which better be
compatible or KVM has problems).  And as described above, attempting to
sync shadow pages when creating an upper-level shadow page is unlikely
to succeed, e.g. zero successful syncs were observed when running Linux
guests despite over a million attempts.

Fixes: 9f1a122f97 ("KVM: MMU: allow more page become unsync at getting sp time")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-10-seanjc@google.com>
[Remove WARN_ON after __kvm_sync_page. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson 6c032f12dd Revert "KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"
Drop MAXPHYADDR from mmu_role now that all MMUs have their role
invalidated after a CPUID update.  Invalidating the role forces all MMUs
to re-evaluate the guest's MAXPHYADDR, and the guest's MAXPHYADDR can
only be changed only through a CPUID update.

This reverts commit de3ccd26fa.

Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson 63f5a1909f KVM: x86: Alert userspace that KVM_SET_CPUID{,2} after KVM_RUN is broken
Warn userspace that KVM_SET_CPUID{,2} after KVM_RUN "may" cause guest
instability.  Initialize last_vmentry_cpu to -1 and use it to detect if
the vCPU has been run at least once when its CPUID model is changed.

KVM does not correctly handle changes to paging related settings in the
guest's vCPU model after KVM_RUN, e.g. MAXPHYADDR, GBPAGES, etc...  KVM
could theoretically zap all shadow pages, but actually making that happen
is a mess due to lock inversion (vcpu->mutex is held).  And even then,
updating paging settings on the fly would only work if all vCPUs are
stopped, updated in concert with identical settings, then restarted.

To support running vCPUs with different vCPU models (that affect paging),
KVM would need to track all relevant information in kvm_mmu_page_role.
Note, that's the _page_ role, not the full mmu_role.  Updating mmu_role
isn't sufficient as a vCPU can reuse a shadow page translation that was
created by a vCPU with different settings and thus completely skip the
reserved bit checks (that are tied to CPUID).

Tracking CPUID state in kvm_mmu_page_role is _extremely_ undesirable as
it would require doubling gfn_track from a u16 to a u32, i.e. would
increase KVM's memory footprint by 2 bytes for every 4kb of guest memory.
E.g. MAXPHYADDR (6 bits), GBPAGES, AMD vs. INTEL = 1 bit, and SEV C-BIT
would all need to be tracked.

In practice, there is no remotely sane use case for changing any paging
related CPUID entries on the fly, so just sweep it under the rug (after
yelling at userspace).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson 49c6f8756c KVM: x86: Force all MMUs to reinitialize if guest CPUID is modified
Invalidate all MMUs' roles after a CPUID update to force reinitizliation
of the MMU context/helpers.  Despite the efforts of commit de3ccd26fa
("KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"),
there are still a handful of CPUID-based properties that affect MMU
behavior but are not incorporated into mmu_role.  E.g. 1gb hugepage
support, AMD vs. Intel handling of bit 8, and SEV's C-Bit location all
factor into the guest's reserved PTE bits.

The obvious alternative would be to add all such properties to mmu_role,
but doing so provides no benefit over simply forcing a reinitialization
on every CPUID update, as setting guest CPUID is a rare operation.

Note, reinitializing all MMUs after a CPUID update does not fix all of
KVM's woes.  Specifically, kvm_mmu_page_role doesn't track the CPUID
properties, which means that a vCPU can reuse shadow pages that should
not exist for the new vCPU model, e.g. that map GPAs that are now illegal
(due to MAXPHYADDR changes) or that set bits that are now reserved
(PAGE_SIZE for 1gb pages), etc...

Tracking the relevant CPUID properties in kvm_mmu_page_role would address
the majority of problems, but fully tracking that much state in the
shadow page role comes with an unpalatable cost as it would require a
non-trivial increase in KVM's memory footprint.  The GBPAGES case is even
worse, as neither Intel nor AMD provides a way to disable 1gb hugepage
support in the hardware page walker, i.e. it's a virtualization hole that
can't be closed when using TDP.

In other words, resetting the MMU after a CPUID update is largely a
superficial fix.  But, it will allow reverting the tracking of MAXPHYADDR
in the mmu_role, and that case in particular needs to mostly work because
KVM's shadow_root_level depends on guest MAXPHYADDR when 5-level paging
is supported.  For cases where KVM botches guest behavior, the damage is
limited to that guest.  But for the shadow_root_level, a misconfigured
MMU can cause KVM to incorrectly access memory, e.g. due to walking off
the end of its shadow page tables.

Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson f71a53d118 Revert "KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack"
Restore CR4.LA57 to the mmu_role to fix an amusing edge case with nested
virtualization.  When KVM (L0) is using TDP, CR4.LA57 is not reflected in
mmu_role.base.level because that tracks the shadow root level, i.e. TDP
level.  Normally, this is not an issue because LA57 can't be toggled
while long mode is active, i.e. the guest has to first disable paging,
then toggle LA57, then re-enable paging, thus ensuring an MMU
reinitialization.

But if L1 is crafty, it can load a new CR4 on VM-Exit and toggle LA57
without having to bounce through an unpaged section.  L1 can also load a
new CR3 on exit, i.e. it doesn't even need to play crazy paging games, a
single entry PML5 is sufficient.  Such shenanigans are only problematic
if L0 and L1 use TDP, otherwise L1 and L2 share an MMU that gets
reinitialized on nested VM-Enter/VM-Exit due to mmu_role.base.guest_mode.

Note, in the L2 case with nested TDP, even though L1 can switch between
L2s with different LA57 settings, thus bypassing the paging requirement,
in that case KVM's nested_mmu will track LA57 in base.level.

This reverts commit 8053f924ca.

Fixes: 8053f924ca ("KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson 112022bdb5 KVM: x86/mmu: Treat NX as used (not reserved) for all !TDP shadow MMUs
Mark NX as being used for all non-nested shadow MMUs, as KVM will set the
NX bit for huge SPTEs if the iTLB mutli-hit mitigation is enabled.
Checking the mitigation itself is not sufficient as it can be toggled on
at any time and KVM doesn't reset MMU contexts when that happens.  KVM
could reset the contexts, but that would require purging all SPTEs in all
MMUs, for no real benefit.  And, KVM already forces EFER.NX=1 when TDP is
disabled (for WP=0, SMEP=1, NX=0), so technically NX is never reserved
for shadow MMUs.

Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:35 -04:00
Colin Ian King 31c6565700 KVM: x86/mmu: Fix uninitialized boolean variable flush
In the case where kvm_memslots_have_rmaps(kvm) is false the boolean
variable flush is not set and is uninitialized.  If is_tdp_mmu_enabled(kvm)
is true then the call to kvm_tdp_mmu_zap_collapsible_sptes passes the
uninitialized value of flush into the call. Fix this by initializing
flush to false.

Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622150912.23429-1-colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 04:31:16 -04:00
David Matlack 0485cf8dbe KVM: x86/mmu: Remove redundant root_hpa checks
The root_hpa checks below the top-level check in kvm_mmu_page_fault are
theoretically redundant since there is no longer a way for the root_hpa
to be reset during a page fault. The details of why are described in
commit ddce620821 ("KVM: x86/mmu: Move root_hpa validity checks to top
of page fault handler")

__direct_map, kvm_tdp_mmu_map, and get_mmio_spte are all only reachable
through kvm_mmu_page_fault, therefore their root_hpa checks are
redundant.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:47 -04:00