mirror of https://github.com/torvalds/linux.git
593 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
1ec6574a3c |
This set of changes updates init and user mode helper tasks to be
ordinary user mode tasks. In commit |
|
|
|
bf9095424d |
S390:
* ultravisor communication device driver
* fix TEID on terminating storage key ops
RISC-V:
* Added Sv57x4 support for G-stage page table
* Added range based local HFENCE functions
* Added remote HFENCE functions based on VCPU requests
* Added ISA extension registers in ONE_REG interface
* Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
* Add support for the ARMv8.6 WFxT extension
* Guard pages for the EL2 stacks
* Trap and emulate AArch32 ID registers to hide unsupported features
* Ability to select and save/restore the set of hypercalls exposed
to the guest
* Support for PSCI-initiated suspend in collaboration with userspace
* GICv3 register-based LPI invalidation support
* Move host PMU event merging into the vcpu data structure
* GICv3 ITS save/restore fixes
* The usual set of small-scale cleanups and fixes
x86:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
* Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
* Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
* V_TSC_AUX support
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6
zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu
rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi
PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL
2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr
C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw==
=ozWx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- ultravisor communication device driver
- fix TEID on terminating storage key ops
RISC-V:
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed to
the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
x86:
- New ioctls to get/set TSC frequency for a whole VM
- Allow userspace to opt out of hypercall patching
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
- Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
- V_TSC_AUX support
Nested virtualization improvements for AMD:
- Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
- Allow AVIC to co-exist with a nested guest running
- Fixes for LBR virtualizations when a nested guest is running, and
nested LBR virtualization support
- PAUSE filtering for nested hypervisors
Guest support:
- Decoupling of vcpu_is_preempted from PV spinlocks"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
KVM: selftests: x86: Sync the new name of the test case to .gitignore
Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
x86, kvm: use correct GFP flags for preemption disabled
KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
x86/kvm: Alloc dummy async #PF token outside of raw spinlock
KVM: x86: avoid calling x86 emulator without a decoded instruction
KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
s390/uv_uapi: depend on CONFIG_S390
KVM: selftests: x86: Fix test failure on arch lbr capable platforms
KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
KVM: s390: selftest: Test suppression indication on key prot exception
KVM: s390: Don't indicate suppression on dirtying, failing memop
selftests: drivers/s390x: Add uvdevice tests
drivers/s390/char: Add Ultravisor io device
MAINTAINERS: Update KVM RISC-V entry to cover selftests support
RISC-V: KVM: Introduce ISA extension register
RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
...
|
|
|
|
d187ba5312 |
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
Set the starting uABI size of KVM's guest FPU to 'struct kvm_xsave', i.e. to KVM's historical uABI size. When saving FPU state for usersapce, KVM (well, now the FPU) sets the FP+SSE bits in the XSAVE header even if the host doesn't support XSAVE. Setting the XSAVE header allows the VM to be migrated to a host that does support XSAVE without the new host having to handle FPU state that may or may not be compatible with XSAVE. Setting the uABI size to the host's default size results in out-of-bounds writes (setting the FP+SSE bits) and data corruption (that is thankfully caught by KASAN) when running on hosts without XSAVE, e.g. on Core2 CPUs. WARN if the default size is larger than KVM's historical uABI size; all features that can push the FPU size beyond the historical size must be opt-in. ================================================================== BUG: KASAN: slab-out-of-bounds in fpu_copy_uabi_to_guest_fpstate+0x86/0x130 Read of size 8 at addr ffff888011e33a00 by task qemu-build/681 CPU: 1 PID: 681 Comm: qemu-build Not tainted 5.18.0-rc5-KASAN-amd64 #1 Hardware name: /DG35EC, BIOS ECG3510M.86A.0118.2010.0113.1426 01/13/2010 Call Trace: <TASK> dump_stack_lvl+0x34/0x45 print_report.cold+0x45/0x575 kasan_report+0x9b/0xd0 fpu_copy_uabi_to_guest_fpstate+0x86/0x130 kvm_arch_vcpu_ioctl+0x72a/0x1c50 [kvm] kvm_vcpu_ioctl+0x47f/0x7b0 [kvm] __x64_sys_ioctl+0x5de/0xc90 do_syscall_64+0x31/0x50 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK> Allocated by task 0: (stack is not available) The buggy address belongs to the object at ffff888011e33800 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 0 bytes to the right of 512-byte region [ffff888011e33800, ffff888011e33a00) The buggy address belongs to the physical page: page:0000000089cd4adb refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x11e30 head:0000000089cd4adb order:2 compound_mapcount:0 compound_pincount:0 flags: 0x4000000000010200(slab|head|zone=1) raw: 4000000000010200 dead000000000100 dead000000000122 ffff888001041c80 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888011e33900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888011e33980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff888011e33a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff888011e33a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888011e33b00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Disabling lock debugging due to kernel taint Fixes: |
|
|
|
e36ae2290f |
- Add support for XSAVEC - the Compacted XSTATE saving variant - and
thus allow for guests to use this compacted XSTATE variant when the hypervisor exports that support - A variable shadowing cleanup -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLsPQACgkQEsHwGGHe VUoA7hAAoAP6qWntADHcDcA8QMjX9fvOi3uFjiJyGeiYCRH2rmwAAg8Y0DdI/1UE Wq+7tzTPdyDPulqaEe9PV7f3HRY72cGA/2jdkMxkGG5mGZfVganb0OWgFXecdo6r CIWf9vMOPwULIT4XvcnaWF6fv+1ZbFZOks9NpxZQZTYA3WQhozgfQOWlkoFFSdC/ pIwWFCUOv/pBPWVSeizE/Y6Yfuaix3KiElwk9NMDTPCRhyBd6VmpkpcBer+n3JUA HoppbGLYonZEw1PkMmTlQJuFHKJzqwThGGoVY3FDtlAMD4+vmGt1vXNbLlfvtqup zYHAIG/hqql7Ai9bgXSC2ccYG9v1op+gIFzKTBhI7FkVwEc6R6JtV7uGF7GAr6SL KPnweo9GCoRmnc6Ju0+IuT0JIMXjO3iQIC0J3uLX8gCbsXVM29qdqhkYcLC75vOc sXjAUrdolkDIRXzwkJURTxWT/yeKaN9n8r1s7BCmZ7Pg6zZS3/K1nHQkFTWCjSfA oEy7GmEeI2uFgQX9qpF7NRlNj+D3AxV6W5IURCTI7GsP32e20jhOdU4AyrqsTy2N 8PgUVP9baioUpjY6BKsMc3JiR0ihb0OM3wX9fThu8lu5uHE9Oar+S4OOlFtxPXth kG7pIS0MqB4N6aKWDFxvLvlUVgAxSqSmnWL4rQSP+Ralu9CY4k0= =eDaz -----END PGP SIGNATURE----- Merge tag 'x86_fpu_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fpu updates from Borislav Petkov: - Add support for XSAVEC - the Compacted XSTATE saving variant - and thus allow for guests to use this compacted XSTATE variant when the hypervisor exports that support - A variable shadowing cleanup * tag 'x86_fpu_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Cleanup variable shadowing x86/fpu/xsave: Support XSAVEC in the kernel |
|
|
|
a13dc4d409 |
- Serious sanitization and cleanup of the whole APERF/MPERF and
frequency invariance code along with removing the need for unnecessary IPIs - Finally remove a.out support - The usual trivial cleanups and fixes all over x86 -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLn48ACgkQEsHwGGHe VUpbkg/+PELrc0y/qxLM/+dyftKYY16Rhk6ZVAXfwqlh5ldyVQcLMUgKwDqYyTn2 XmgdI3cTcFlH2K7j6ANWLu0I9NPaviimUcEdMVcXt7aY5mGWk/q4hIyCYM8d41sV qKx4OjNSdyoofG6MtwFLJDuoeVg99Bqgvm4nP9BuxL0dZJ2hfcUZ7MTxYCx9ZYjK /3trx0NV287Yg/wm91EU0nLQzy9xbGS7WCmMnse6uxiUdm2vXbBt8oNFF4f747Dj 0cArfNrMgYq4Cv5bgt/Ki0NU/n4EOGDpJUSyQwlnjDKeN81ESPy7IWtTQ6cE/rJK BZeUIPiGiYHwtqXv0UTAPGLG8cAqKeab8u0xAOyrFVDkTc0+WlPJRsUAOmRRGIGE M8ZjoxrLeuFgxw6vKpVjaA+mDRj3qEpSH+IrTcekS98PN7gmVzvq03GobgGbT7YB xmtbThJa+514FfUVckkyC0+A56BknUIgVxwFPqrthE2atzYTbH67hW4U0yVWXXr7 2VI7ttozBrYVgHCWhD9eoT0uhyD74Vl6pqHnqzY9ShIfKVUGvMgKHHg04nLLtF7W hm87xV3Q5UEmXhTmDzT1rUZ99mBUxGbWxk227I9raMugIh7pp9wIr57+7O0LRYfX TdnE2+tL8RMi7+XzRH5iLhnwkrvahBESeHSQ7GVI1Y2zMmmFN+0= =Dks/ -----END PGP SIGNATURE----- Merge tag 'x86_cleanups_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cleanups from Borislav Petkov: - Serious sanitization and cleanup of the whole APERF/MPERF and frequency invariance code along with removing the need for unnecessary IPIs - Finally remove a.out support - The usual trivial cleanups and fixes all over x86 * tag 'x86_cleanups_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) x86: Remove empty files x86/speculation: Add missing srbds=off to the mitigations= help text x86/prctl: Remove pointless task argument x86/aperfperf: Make it correct on 32bit and UP kernels x86/aperfmperf: Integrate the fallback code from show_cpuinfo() x86/aperfmperf: Replace arch_freq_get_on_cpu() x86/aperfmperf: Replace aperfmperf_get_khz() x86/aperfmperf: Store aperf/mperf data for cpu frequency reads x86/aperfmperf: Make parts of the frequency invariance code unconditional x86/aperfmperf: Restructure arch_scale_freq_tick() x86/aperfmperf: Put frequency invariance aperf/mperf data into a struct x86/aperfmperf: Untangle Intel and AMD frequency invariance init x86/aperfmperf: Separate AP/BP frequency invariance init x86/smp: Move APERF/MPERF code where it belongs x86/aperfmperf: Dont wake idle CPUs in arch_freq_get_on_cpu() x86/process: Fix kernel-doc warning due to a changed function name x86: Remove a.out support x86/mm: Replace nodes_weight() with nodes_empty() where appropriate x86: Replace cpumask_weight() with cpumask_empty() where appropriate x86/pkeys: Remove __arch_set_user_pkey_access() declaration ... |
|
|
|
f5c0b4f304 |
x86/prctl: Remove pointless task argument
The functions invoked via do_arch_prctl_common() can only operate on the current task and none of these function uses the task argument. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/87lev7vtxj.ffs@tglx |
|
|
|
5bd2e97c86 |
fork: Generalize PF_IO_WORKER handling
Add fn and fn_arg members into struct kernel_clone_args and test for them in copy_thread (instead of testing for PF_KTHREAD | PF_IO_WORKER). This allows any task that wants to be a user space task that only runs in kernel mode to use this functionality. The code on x86 is an exception and still retains a PF_KTHREAD test because x86 unlikely everything else handles kthreads slightly differently than user space tasks that start with a function. The functions that created tasks that start with a function have been updated to set ".fn" and ".fn_arg" instead of ".stack" and ".stack_size". These functions are fork_idle(), create_io_thread(), kernel_thread(), and user_mode_thread(). Link: https://lkml.kernel.org/r/20220506141512.516114-4-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
|
|
|
59f5ede3bc |
x86/fpu: Prevent FPU state corruption
The FPU usage related to task FPU management is either protected by
disabling interrupts (switch_to, return to user) or via fpregs_lock() which
is a wrapper around local_bh_disable(). When kernel code wants to use the
FPU then it has to check whether it is possible by calling irq_fpu_usable().
But the condition in irq_fpu_usable() is wrong. It allows FPU to be used
when:
!in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle()
The latter is checking whether some other context already uses FPU in the
kernel, but if that's not the case then it allows FPU to be used
unconditionally even if the calling context interrupted a fpregs_lock()
critical region. If that happens then the FPU state of the interrupted
context becomes corrupted.
Allow in kernel FPU usage only when no other context has in kernel FPU
usage and either the calling context is not hard interrupt context or the
hard interrupt did not interrupt a local bottomhalf disabled region.
It's hard to find a proper Fixes tag as the condition was broken in one way
or the other for a very long time and the eager/lazy FPU changes caused a
lot of churn. Picked something remotely connected from the history.
This survived undetected for quite some time as FPU usage in interrupt
context is rare, but the recent changes to the random code unearthed it at
least on a kernel which had FPU debugging enabled. There is probably a
higher rate of silent corruption as not all issues can be detected by the
FPU debugging code. This will be addressed in a subsequent change.
Fixes:
|
|
|
|
b91c0922bf |
x86/fpu: Cleanup variable shadowing
Addresses: warning: Local variable 'mask' shadows outer variable
Remove extra variable declaration and switch the bit mask assignment to use
BIT_ULL() while at it.
Fixes:
|
|
|
|
8ad7e8f696 |
x86/fpu/xsave: Support XSAVEC in the kernel
XSAVEC is the user space counterpart of XSAVES which cannot save supervisor state. In virtualization scenarios the hypervisor does not expose XSAVES but XSAVEC to the guest, though the kernel does not make use of it. That's unfortunate because XSAVEC uses the compacted format of saving the XSTATE. This is more efficient in terms of storage space vs. XSAVE[OPT] as it does not create holes for XSTATE components which are not supported or enabled by the kernel but are available in hardware. There is room for further optimizations when XSAVEC/S and XGETBV1 are supported. In order to support XSAVEC: - Define the XSAVEC ASM macro as it's not yet supported by the required minimal toolchain. - Create a software defined X86_FEATURE_XCOMPACTED to select the compacted XSTATE buffer format for both XSAVEC and XSAVES. - Make XSAVEC an option in the 'XSAVE' ASM alternatives Requested-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220404104820.598704095@linutronix.de |
|
|
|
d6d6d50f1e |
x86/fpu/xstate: Consolidate size calculations
Use the offset calculation to do the size calculation which avoids yet
another series of CPUID instructions for each invocation.
[ Fix the FP/SSE only case which missed to take the xstate
header into account, as
Reported-by: kernel test robot <oliver.sang@intel.com> ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/87o81pgbp2.ffs@tglx
|
|
|
|
781c64bfcb |
x86/fpu/xstate: Handle supervisor states in XSTATE permissions
The size calculation in __xstate_request_perm() fails to take supervisor
states into account because the permission bitmap is only relevant for user
states.
Up to 5.17 this does not matter because there are no supervisor states
supported, but the (re-)enabling of ENQCMD makes them available.
Fixes:
|
|
|
|
7aa5128b5f |
x86/fpu/xsave: Handle compacted offsets correctly with supervisor states
So far the cached fixed compacted offsets worked, but with (re-)enabling
of ENQCMD this does no longer work with KVM fpstate.
KVM does not have supervisor features enabled for the guest FPU, which
means that KVM has then a different XSAVE area layout than the host FPU
state. This in turn breaks the copy from/to UABI functions when invoked for
a guest state.
Remove the pre-calculated compacted offsets and calculate the offset
of each component at runtime based on the XCOMP_BV field in the XSAVE
header.
The runtime overhead is not interesting because these copy from/to UABI
functions are not used in critical fast paths. KVM uses them to save and
restore FPU state during migration. The host uses them for ptrace and for
the slow path of 32bit signal handling.
Fixes:
|
|
|
|
6afbb58cc2 |
x86/fpu: Cache xfeature flags from CPUID
In preparation for runtime calculation of XSAVE offsets cache the feature
flags for each XSTATE component during feature enumeration via CPUID(0xD).
EDX has two relevant bits:
0 Supervisor component
1 Feature storage must be 64 byte aligned
These bits are currently only evaluated during init, but the alignment bit
must be cached to make runtime calculation of XSAVE offsets efficient.
Cache the full EDX content and use it for the existing alignment and
supervisor checks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220324134623.573656209@linutronix.de
|
|
|
|
35a77d4503 |
x86/fpu/xsave: Initialize offset/size cache early
Reading XSTATE feature information from CPUID over and over does not make sense. The information has to be cached anyway, so it can be done early. Prepare for runtime calculation of XSTATE offsets and allow consolidation of the size calculation functions in a later step. Rename the function while at it as it does not setup any features. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220324134623.519411939@linutronix.de |
|
|
|
d47f71f6de |
x86/fpu: Remove unused supervisor only offsets
No users. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220324134623.465066249@linutronix.de |
|
|
|
a9f84fb715 |
x86/fpu: Remove redundant XCOMP_BV initialization
fpu_copy_uabi_to_guest_fpstate() initializes the XCOMP_BV field in the
XSAVE header. That's a leftover from the old KVM FPU buffer handling code.
Since
|
|
|
|
063452fd94 |
x86/fpu/xstate: Fix the ARCH_REQ_XCOMP_PERM implementation
ARCH_REQ_XCOMP_PERM is supposed to add the requested feature to the
permission bitmap of thread_group_leader()->fpu. But the code overwrites
the bitmap with the requested feature bit only rather than adding it.
Fix the code to add the requested feature bit to the master bitmask.
Fixes:
|
|
|
|
3fd33273a4 |
Reenable ENQCMD/PASID support:
- Simplify the PASID handling to allocate the PASID once, associate it to
the mm of a process and free it on mm_exit(). The previous attempt of
refcounted PASIDs and dynamic alloc()/free() turned out to be error
prone and too complex. The PASID space is 20bits, so the case of
resource exhaustion is a pure academic concern.
- Populate the PASID MSR on demand via #GP to avoid racy updates via IPIs.
- Reenable ENQCMD and let objtool check for the forbidden usage of ENQCMD
in the kernel.
- Update the documentation for Shared Virtual Addressing accordingly.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmI4WpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUfnD/0bY94rgEX4Uuy/mFQ1W8X8XlcyKrha
0/cRATb+4QV/pwJgGr2nClKhGlFMYPdJLvKMC1TCUPCVrLD1RNmluIZoFzeqXwhm
jDdCcFOuGZ2D4ujDPWwOOpKBT1ytovnQa7+lH6QJyKkEqdcC2ncOvGJQoiRxRQIG
8wTVs/OUvQJ5ZhSZQMKQN4uMWMyHEjhbroYS30/uNi/598jTPgzlEoa14XocQ9Os
nS6ALvjuc9MsJ34F61etMaJU1ZMI3Wx75u9QjEvX6hmJs87YdvgwE7lzJUKFDEuh
gewM0wp2fTa8/azzP0eMiHTin56PqFdmllzRqXmilbZMEPOeI29dZVArCdpKcAn0
r9p1kJUT3Xl2G3Oir/OdCaaQHcznD1Y5ZFOyh12wgEucZ/rdeSr7nq7n5HoOL5Bw
Q2o6YvTkE9DOL0nTN1lSXGiPspou7fzX0uUcRBrbJUS3sBv4zGIlaJXUaTVnSdAt
VZj4LeOK7v2BjyeiOY0iaaIQd3xjmLUF0UjozXS5M13SoVcToZRbyWqhDzPvNuKA
imQb/dnFpXhABgmuqAiJLeqM0VtGMFNc780OURkcsBSPng+iSEdV4DzuhK0jpU8x
Uk1RuGMd/vgmrlDFBrw+orQQiiKR1ixpI0LiHfcOBycfJhqTwcnrNZvAN5/do28Z
E23+QzlUbZF0cw==
=Dy8V
-----END PGP SIGNATURE-----
Merge tag 'x86-pasid-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PASID support from Thomas Gleixner:
"Reenable ENQCMD/PASID support:
- Simplify the PASID handling to allocate the PASID once, associate
it to the mm of a process and free it on mm_exit().
The previous attempt of refcounted PASIDs and dynamic
alloc()/free() turned out to be error prone and too complex. The
PASID space is 20bits, so the case of resource exhaustion is a pure
academic concern.
- Populate the PASID MSR on demand via #GP to avoid racy updates via
IPIs.
- Reenable ENQCMD and let objtool check for the forbidden usage of
ENQCMD in the kernel.
- Update the documentation for Shared Virtual Addressing accordingly"
* tag 'x86-pasid-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Update documentation for SVA (Shared Virtual Addressing)
tools/objtool: Check for use of the ENQCMD instruction in the kernel
x86/cpufeatures: Re-enable ENQCMD
x86/traps: Demand-populate PASID MSR via #GP
sched: Define and initialize a flag to identify valid PASID in the task
x86/fpu: Clear PASID when copying fpstate
iommu/sva: Assign a PASID to mm on PASID allocation and free it on mm exit
kernel/fork: Initialize mm's PASID
iommu/ioasid: Introduce a helper to check for valid PASIDs
mm: Change CONFIG option for mm->pasid field
iommu/sva: Rename CONFIG_IOMMU_SVA_LIB to CONFIG_IOMMU_SVA
|
|
|
|
1f840c0ef4 |
x86 host:
* Expose KVM_CAP_ENABLE_CAP since it is supported * Disable KVM_HC_CLOCK_PAIRING in TSC catchup mode * Ensure async page fault token is nonzero * Fix lockdep false negative * Fix FPU migration regression from the AMX changes x86 guest: * Don't use PV TLB/IPI/yield on uniprocessor guests PPC: * reserve capability id (topic branch for ppc/kvm) -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmIXyQAUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPKJQf/T9NeXOFIPIIlH4ZKM7155qlwX8dx NR2YV+RNYd27MDkaEm9w4ucXacGpPuBPPx9v7UiLlAqAN+NP7nF3rQKC0SpQMC6H EKFtm+8al8EzyDYP36fqnwDne/xWHlOeGXRRJMKPGhXBSoXoY5cK35IXmNZjfteQ hK7siBs2saJ2VFqMCbJ9Pqdu1NDO6OEt8HWz2Dnx6EUd90O0pHWZy5JvWOYfyLjL Y2pP0dZQxuB/PmqkpVj2gV9jK2Zhj33eerzDV4tVXPV7le8fgGeTaJ8ft+SUIizS YCcPR89+u5c9yzlwY2i7mvloayKnuqkECiGtRG6VHNlrPZTPijems8tH1w== =lWjy -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm fixes from Paolo Bonzini: "x86 host: - Expose KVM_CAP_ENABLE_CAP since it is supported - Disable KVM_HC_CLOCK_PAIRING in TSC catchup mode - Ensure async page fault token is nonzero - Fix lockdep false negative - Fix FPU migration regression from the AMX changes x86 guest: - Don't use PV TLB/IPI/yield on uniprocessor guests PPC: - reserve capability id (topic branch for ppc/kvm)" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: nSVM: disallow userspace setting of MSR_AMD64_TSC_RATIO to non default value when tsc scaling disabled KVM: x86/mmu: make apf token non-zero to fix bug KVM: PPC: reserve capability 210 for KVM_CAP_PPC_AIL_MODE_3 x86/kvm: Don't use pv tlb/ipi/sched_yield if on 1 vCPU x86/kvm: Fix compilation warning in non-x86_64 builds x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0 x86/kvm/fpu: Limit guest user_xfeatures to supported bits of XCR0 kvm: x86: Disable KVM_HC_CLOCK_PAIRING if tsc is in always catchup mode KVM: Fix lockdep false negative during host resume KVM: x86: Add KVM_CAP_ENABLE_CAP to x86 |
|
|
|
44cad52cc1 |
x86/ptrace: Fix xfpregs_set()'s incorrect xmm clearing
xfpregs_set() handles 32-bit REGSET_XFP and 64-bit REGSET_FP. The actual
code treats these regsets as modern FX state (i.e. the beginning part of
XSTATE). The declarations of the regsets thought they were the legacy
i387 format. The code thought they were the 32-bit (no xmm8..15) variant
of XSTATE and, for good measure, made the high bits disappear by zeroing
the wrong part of the buffer. The latter broke ptrace, and everything
else confused anyone trying to understand the code. In particular, the
nonsense definitions of the regsets confused me when I wrote this code.
Clean this all up. Change the declarations to match reality (which
shouldn't change the generated code, let alone the ABI) and fix
xfpregs_set() to clear the correct bits and to only do so for 32-bit
callers.
Fixes:
|
|
|
|
ad856280dd |
x86/kvm/fpu: Limit guest user_xfeatures to supported bits of XCR0
During host/guest switch (like in kvm_arch_vcpu_ioctl_run()), the kernel
swaps the fpu between host/guest contexts, by using fpu_swap_kvm_fpstate().
When xsave feature is available, the fpu swap is done by:
- xsave(s) instruction, with guest's fpstate->xfeatures as mask, is used
to store the current state of the fpu registers to a buffer.
- xrstor(s) instruction, with (fpu_kernel_cfg.max_features &
XFEATURE_MASK_FPSTATE) as mask, is used to put the buffer into fpu regs.
For xsave(s) the mask is used to limit what parts of the fpu regs will
be copied to the buffer. Likewise on xrstor(s), the mask is used to
limit what parts of the fpu regs will be changed.
The mask for xsave(s), the guest's fpstate->xfeatures, is defined on
kvm_arch_vcpu_create(), which (in summary) sets it to all features
supported by the cpu which are enabled on kernel config.
This means that xsave(s) will save to guest buffer all the fpu regs
contents the cpu has enabled when the guest is paused, even if they
are not used.
This would not be an issue, if xrstor(s) would also do that.
xrstor(s)'s mask for host/guest swap is basically every valid feature
contained in kernel config, except XFEATURE_MASK_PKRU.
Accordingto kernel src, it is instead switched in switch_to() and
flush_thread().
Then, the following happens with a host supporting PKRU starts a
guest that does not support it:
1 - Host has XFEATURE_MASK_PKRU set. 1st switch to guest,
2 - xsave(s) fpu regs to host fpustate (buffer has XFEATURE_MASK_PKRU)
3 - xrstor(s) guest fpustate to fpu regs (fpu regs have XFEATURE_MASK_PKRU)
4 - guest runs, then switch back to host,
5 - xsave(s) fpu regs to guest fpstate (buffer now have XFEATURE_MASK_PKRU)
6 - xrstor(s) host fpstate to fpu regs.
7 - kvm_vcpu_ioctl_x86_get_xsave() copy guest fpstate to userspace (with
XFEATURE_MASK_PKRU, which should not be supported by guest vcpu)
On 5, even though the guest does not support PKRU, it does have the flag
set on guest fpstate, which is transferred to userspace via vcpu ioctl
KVM_GET_XSAVE.
This becomes a problem when the user decides on migrating the above guest
to another machine that does not support PKRU: the new host restores
guest's fpu regs to as they were before (xrstor(s)), but since the new
host don't support PKRU, a general-protection exception ocurs in xrstor(s)
and that crashes the guest.
This can be solved by making the guest's fpstate->user_xfeatures hold
a copy of guest_supported_xcr0. This way, on 7 the only flags copied to
userspace will be the ones compatible to guest requirements, and thus
there will be no issue during migration.
As a bonus, it will also fail if userspace tries to set fpu features
(with the KVM_SET_XSAVE ioctl) that are not compatible to the guest
configuration. Such features will never be returned by KVM_GET_XSAVE
or KVM_GET_XSAVE2.
Also, since kvm_vcpu_after_set_cpuid() now sets fpstate->user_xfeatures,
there is not need to set it in kvm_check_cpuid(). So, change
fpstate_realloc() so it does not touch fpstate->user_xfeatures if a
non-NULL guest_fpu is passed, which is the case when kvm_check_cpuid()
calls it.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220217053028.96432-2-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
dc7507ddce |
x86/fpu: Clear PASID when copying fpstate
The kernel must allocate a Process Address Space ID (PASID) on behalf of each process which will use ENQCMD and program it into the new MSR to communicate the process identity to platform hardware. ENQCMD uses the PASID stored in this MSR to tag requests from this process. The PASID state must be cleared on fork() since fork creates a new address space. For clone(), it would be functionally OK to copy the PASID. However, clearing it is _also_ functionally OK since any PASID use will trigger the #GP handler to populate the MSR. Copying the PASID state has two main downsides: * It requires differentiating fork() and clone() in the code, both in the FPU code and keeping tsk->pasid_activated consistent. * It guarantees that the PASID is out of its init state, which incurs small but non-zero cost on every XSAVE/XRSTOR. The main downside of clearing the PASID at fpstate copy is the future, one-time #GP for the thread. Use the simplest approach: clear the PASID state both on clone() and fork(). Rely on the #GP handler for MSR population in children. Also, just clear the PASID bit from xfeatures if XSAVE is supported. This will have no effect on systems that do not have PASID support. It is virtually zero overhead because 'dst_fpu' was just written and the whole thing is cache hot. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220207230254.3342514-7-fenghua.yu@intel.com |
|
|
|
79e06c4c49 |
RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
=s73m
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
|
|
|
|
c862dcd199 |
x86/fpu: Fix inline prefix warnings
Fix sparse warnings in xstate and remove inline prefix.
Fixes:
|
|
|
|
5429cead01 |
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
KVM can disable the write emulation for the XFD MSR when the vCPU's fpstate is already correctly sized to reduce the overhead. When write emulation is disabled the XFD MSR state after a VMEXIT is unknown and therefore not in sync with the software states in fpstate and the per CPU XFD cache. Provide fpu_sync_guest_vmexit_xfd_state() which has to be invoked after a VMEXIT before enabling interrupts when write emulation is disabled for the XFD MSR. It could be invoked unconditionally even when write emulation is enabled for the price of a pointless MSR read. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jing Liu <jing2.liu@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20220105123532.12586-21-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
c60427dd50 |
x86/fpu: Add uabi_size to guest_fpu
Userspace needs to inquire KVM about the buffer size to work with the new KVM_SET_XSAVE and KVM_GET_XSAVE2. Add the size info to guest_fpu for KVM to access. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Wei Wang <wei.w.wang@intel.com> Signed-off-by: Jing Liu <jing2.liu@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20220105123532.12586-18-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
8eb9a48ac1 |
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
Guest XFD can be updated either in the emulation path or in the restore path. Provide a wrapper to update guest_fpu::fpstate::xfd. If the guest fpstate is currently in-use, also update the per-cpu xfd cache and the actual MSR. Signed-off-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jing Liu <jing2.liu@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20220105123532.12586-10-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
0781d60f65 |
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
Provide a wrapper for expanding the guest fpstate buffer according to requested xfeatures. KVM wants to call this wrapper to manage any dynamic xstate used by the guest. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20220105123532.12586-8-yang.zhong@intel.com> [Remove unnecessary 32-bit check. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
c270ce393d |
x86/fpu: Add guest support to xfd_enable_feature()
Guest support for dynamically enabled FPU features requires a few
modifications to the enablement function which is currently invoked from
the #NM handler:
1) Use guest permissions and sizes for the update
2) Update fpu_guest state accordingly
3) Take into account that the enabling can be triggered either from a
running guest via XSETBV and MSR_IA32_XFD write emulation or from
a guest restore. In the latter case the guests fpstate is not the
current tasks active fpstate.
Split the function and implement the guest mechanics throughout the
callchain.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-7-yang.zhong@intel.com>
[Add 32-bit stub for __xfd_enable_feature. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
b0237dad2d |
x86/fpu: Make XFD initialization in __fpstate_reset() a function argument
vCPU threads are different from native tasks regarding to the initial XFD value. While all native tasks follow a fixed value (init_fpstate::xfd) established by the FPU core at boot, vCPU threads need to obey the reset value (i.e. ZERO) defined by the specification, to meet the expectation of the guest. Let the caller supply an argument and adjust the host and guest related invocations accordingly. Signed-off-by: Jing Liu <jing2.liu@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jing Liu <jing2.liu@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20220105123532.12586-6-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
64ad946152 |
- Get rid of all the .fixup sections because this generates
misleading/wrong stacktraces and confuse RELIABLE_STACKTRACE and LIVEPATCH as the backtrace misses the function which is being fixed up. - Add Straight Light Speculation mitigation support which uses a new compiler switch -mharden-sls= which sticks an INT3 after a RET or an indirect branch in order to block speculation after them. Reportedly, CPUs do speculate behind such insns. - The usual set of cleanups and improvements -----BEGIN PGP SIGNATURE----- iQIyBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHfKA0ACgkQEsHwGGHe VUqLJg/2I2X2xXr5filJVaK+sQgmvDzk67DKnbxRBW2xcPF+B5sSW5yhe3G5UPW7 SJVdhQ3gHcTiliGGlBf/VE7KXbqxFN0vO4/VFHZm78r43g7OrXTxz6WXXQRJ1n67 U3YwRH3b6cqXZNFMs+X4bJt6qsGJM1kdTTZ2as4aERnaFr5AOAfQvfKbyhxLe/XA 3SakfYISVKCBQ2RkTfpMpwmqlsatGFhTC5IrvuDQ83dDsM7O+Dx1J6Gu3fwjKmie iVzPOjCh+xTpZQp/SIZmt7MzoduZvpSym4YVyHvEnMiexQT4AmyaRthWqrhnEXY/ qOvj8/XIqxmix8EaooGqRIK0Y2ZegxkPckNFzaeC3lsWohwMIGIhNXwHNEeuhNyH yvNGAW9Cq6NeDRgz5MRUXcimYw4P4oQKYLObS1WqFZhNMqm4sNtoEAYpai/lPYfs zUDckgXF2AoPOsSqy3hFAVaGovAgzfDaJVzkt0Lk4kzzjX2WQiNLhmiior460w+K 0l2Iej58IajSp3MkWmFH368Jo8YfUVmkjbbpsmjsBppA08e1xamJB7RmswI/Ezj6 s5re6UioCD+UYdjWx41kgbvYdvIkkZ2RLrktoZd/hqHrOLWEIiwEbyFO2nRFJIAh YjvPkB1p7iNuAeYcP1x9Ft9GNYVIsUlJ+hK86wtFCqy+abV+zQ== =R52z -----END PGP SIGNATURE----- Merge tag 'x86_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Borislav Petkov: - Get rid of all the .fixup sections because this generates misleading/wrong stacktraces and confuse RELIABLE_STACKTRACE and LIVEPATCH as the backtrace misses the function which is being fixed up. - Add Straight Line Speculation mitigation support which uses a new compiler switch -mharden-sls= which sticks an INT3 after a RET or an indirect branch in order to block speculation after them. Reportedly, CPUs do speculate behind such insns. - The usual set of cleanups and improvements * tag 'x86_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) x86/entry_32: Fix segment exceptions objtool: Remove .fixup handling x86: Remove .fixup section x86/word-at-a-time: Remove .fixup usage x86/usercopy: Remove .fixup usage x86/usercopy_32: Simplify __copy_user_intel_nocache() x86/sgx: Remove .fixup usage x86/checksum_32: Remove .fixup usage x86/vmx: Remove .fixup usage x86/kvm: Remove .fixup usage x86/segment: Remove .fixup usage x86/fpu: Remove .fixup usage x86/xen: Remove .fixup usage x86/uaccess: Remove .fixup usage x86/futex: Remove .fixup usage x86/msr: Remove .fixup usage x86/extable: Extend extable functionality x86/entry_32: Remove .fixup usage x86/entry_64: Remove .fixup usage x86/copy_mc_64: Remove .fixup usage ... |
|
|
|
191cf7fab9 |
- Exclude AVX opmask registers use from AVX512 state tracking as they
don't contribute to frequency throttling
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcAjYACgkQEsHwGGHe
VUqgkw//RixgjMiu/YH50mqrpYCtk6WPtecssMeVMth4ATWD/JoDzyh+r4ZqfYXI
owSQ3tZA+bByXT7TRhI8XONYQhj1+45UvG6bI6LNJN0CVzw64g7MkHsh0f1tfjft
Tt2SsKDWYQibMmHLZ01aLi7/ibTevkdKeEIvtbJSTW/qyjXYKKzpcFDBQeoPcP8R
qfUwfLm/YbWR0wCoeaR2WCGwgXwV+6rUk+mHMK0sxws8/jrtz+OQWnTHsmvUg1Re
pJqRSQvwkeXU+j2JMOntz//66Cw00fOrbe1sQ6VWf0+VbHGKdhXXiWjMBXj+Ye8d
53CSsQzkIeNwD505W+Yx+Ju2irxk2H2NgCN7HXokohYYLy8rGpy5jK8AinCHWflU
3HD9ee1nF9laiyDZczu8yL6tD5gWWuHJRgDr3jm5juOPaYVEAbZMEc747JOPpi8V
4HBlQSzXh179vNEEBBiTOuJN7t9PkJD7SHfW9sHo6tQ7wyd42qDCw0gGGAqh+upp
1p+2IoGM9r2fL8aAWlV2HALf0E+ugywIfmb2O5HpKgk+3z+fb/DwaZ6T7posM+gr
r6JwXNOCUFcyJzVeTokmRzWO079qHyxmL+pWF1S5y7mHiVHoCpjM1olDsCkDdsKI
Sp4iZ70soqDSOq4EO6twVyyrt0GsoshNd/p9GHWA2rRQKyJFRhs=
=aPgM
-----END PGP SIGNATURE-----
Merge tag 'x86_fpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu update from Borislav Petkov:
"A single x86/fpu update for 5.17:
- Exclude AVX opmask registers use from AVX512 state tracking as they
don't contribute to frequency throttling"
* tag 'x86_fpu_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Correct AVX512 state tracking
|
|
|
|
36487e6228 |
x86/fpu: Prepare guest FPU for dynamically enabled FPU features
To support dynamically enabled FPU features for guests prepare the guest pseudo FPU container to keep track of the currently enabled xfeatures and the guest permissions. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jing Liu <jing2.liu@intel.com> Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <20220105123532.12586-3-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
980fe2fddc |
x86/fpu: Extend fpu_xstate_prctl() with guest permissions
KVM requires a clear separation of host user space and guest permissions
for dynamic XSTATE components.
Add a guest permissions member to struct fpu and a separate set of prctl()
arguments: ARCH_GET_XCOMP_GUEST_PERM and ARCH_REQ_XCOMP_GUEST_PERM.
The semantics are equivalent to the host user space permission control
except for the following constraints:
1) Permissions have to be requested before the first vCPU is created
2) Permissions are frozen when the first vCPU is created to ensure
consistency. Any attempt to expand permissions via the prctl() after
that point is rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-2-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
1c3b9091d0 |
x86/fpu: Remove .fixup usage
Employ EX_TYPE_EFAULT_REG to store '-EFAULT' into the %[err] register on exception. All the callers only ever test for 0, so the change from -1 to -EFAULT is immaterial. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20211110101325.604494664@infradead.org |
|
|
|
52d0b8b187 |
x86/fpu/signal: Initialize sw_bytes in save_xstate_epilog()
save_sw_bytes() did not fully initialize sw_bytes, which caused KMSAN
to report an infoleak (see below).
Initialize sw_bytes explicitly to avoid this.
KMSAN report follows:
=====================================================
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user ./include/linux/instrumented.h:121
BUG: KMSAN: kernel-infoleak in __copy_to_user ./include/linux/uaccess.h:154
BUG: KMSAN: kernel-infoleak in save_xstate_epilog+0x2df/0x510 arch/x86/kernel/fpu/signal.c:127
instrument_copy_to_user ./include/linux/instrumented.h:121
__copy_to_user ./include/linux/uaccess.h:154
save_xstate_epilog+0x2df/0x510 arch/x86/kernel/fpu/signal.c:127
copy_fpstate_to_sigframe+0x861/0xb60 arch/x86/kernel/fpu/signal.c:245
get_sigframe+0x656/0x7e0 arch/x86/kernel/signal.c:296
__setup_rt_frame+0x14d/0x2a60 arch/x86/kernel/signal.c:471
setup_rt_frame arch/x86/kernel/signal.c:781
handle_signal arch/x86/kernel/signal.c:825
arch_do_signal_or_restart+0x417/0xdd0 arch/x86/kernel/signal.c:870
handle_signal_work kernel/entry/common.c:149
exit_to_user_mode_loop+0x1f6/0x490 kernel/entry/common.c:173
exit_to_user_mode_prepare kernel/entry/common.c:208
__syscall_exit_to_user_mode_work kernel/entry/common.c:290
syscall_exit_to_user_mode+0x7e/0xc0 kernel/entry/common.c:302
do_syscall_64+0x60/0xd0 arch/x86/entry/common.c:88
entry_SYSCALL_64_after_hwframe+0x44/0xae ??:?
Local variable sw_bytes created at:
save_xstate_epilog+0x80/0x510 arch/x86/kernel/fpu/signal.c:121
copy_fpstate_to_sigframe+0x861/0xb60 arch/x86/kernel/fpu/signal.c:245
Bytes 20-47 of 48 are uninitialized
Memory access of size 48 starts at ffff8880801d3a18
Data copied to user address 00007ffd90e2ef50
=====================================================
Link: https://lore.kernel.org/all/CAG_fn=V9T6OKPonSjsi9PmWB0hMHFC=yawozdft8i1-MSxrv=w@mail.gmail.com/
Fixes:
|
|
|
|
0fe4ff885f |
x86/fpu: Correct AVX512 state tracking
Add a separate, local mask for tracking AVX512 usage which does not include the opmask xfeature set. Opmask registers usage does not cause frequency throttling so it is a completely unnecessary false positive. While at it, carve it out into a separate function to keep that abomination extracted out. [ bp: Rediff and cleanup ontop of 5.16-rc1. ] Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20210920053951.4093668-1-goldstein.w.n@gmail.com |
|
|
|
1654e95ee3 |
- Add the model number of a new, Raptor Lake CPU, to intel-family.h
- Do not log spurious corrected MCEs on SKL too, due to an erratum - Clarify the path of paravirt ops patches upstream - Add an optimization to avoid writing out AMX components to sigframes when former are in init state -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmGQ3CgACgkQEsHwGGHe VUoLAA/+NXRvcBHYkLaByT9f4OI6B79HzyguIBSfipYiw8ir0H7uEdV5FUCCUgCz egBRVFpOsXWt1teeuu6ViO+WBHncUxG/ryZ0ka35lri/3kuVYnugZExWDs4MrGR5 vehRXehOxYNRaYc3oLYjubSbxqF1nWz3WWfGfhiBKk0jT/S1T9tX6lsRXlKsJCgj M4x5aqBWP8HTbFQfqjdHwagNitmSKzgjZvMcC4UWcql33ZCycbjvRdrAzBtw7WRI UBvgxWVmeMoagu5fqEOoph1oSoFxWuFrweFUjnxJmT6uZrTsfF7BVgXkxdG6eYUy 2Xogcd4bPDBiRgbs0vPEog1tyyrKHOQ6p1pvksySKMPq6ULcSZ6hBpEZRpgr6Y9u 0jB3P6weQgCckx5Hd+iwvX1a+GvEuHSEqAE+j160wFyrsBS5Cir3P1WqthWaPd5I 3nH3h955PokUHPUioUhdf+8cfuP6h6K0nz1gdYI8GR8+fJHhEceT+pLLeyIxj/VM yr+bq+V7D6Cg62w3z3s9Dzg2XKpxStu1R9L1N/K8MtIGf6Uc7paL6xR27XxhmBp5 Y6bGZw0mxxFhp6AEsFWo3rwLL9Dl5DmFcfgUHHpPK5VP0pVWp48Uapx2Hi2/JzAo c1o4UkPQa/EZJBPTklmGkS1JNp/2TsEL4Fw7sew+j7DWtsJpCfk= =Ge2T -----END PGP SIGNATURE----- Merge tag 'x86_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: - Add the model number of a new, Raptor Lake CPU, to intel-family.h - Do not log spurious corrected MCEs on SKL too, due to an erratum - Clarify the path of paravirt ops patches upstream - Add an optimization to avoid writing out AMX components to sigframes when former are in init state * tag 'x86_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Add Raptor Lake to Intel family x86/mce: Add errata workaround for Skylake SKX37 MAINTAINERS: Add some information to PARAVIRT_OPS entry x86/fpu: Optimize out sigframe xfeatures when in init state |
|
|
|
30d02551ba |
x86/fpu: Optimize out sigframe xfeatures when in init state
tl;dr: AMX state is ~8k. Signal frames can have space for this
~8k and each signal entry writes out all 8k even if it is zeros.
Skip writing zeros for AMX to speed up signal delivery by about
4% overall when AMX is in its init state.
This is a user-visible change to the sigframe ABI.
== Hardware XSAVE Background ==
XSAVE state components may be tracked by the processor as being
in their initial configuration. Software can detect which
features are in this configuration by looking at the XSTATE_BV
field in an XSAVE buffer or with the XGETBV(1) instruction.
Both the XSAVE and XSAVEOPT instructions enumerate features s
being in the initial configuration via the XSTATE_BV field in the
XSAVE header, However, XSAVEOPT declines to actually write
features in their initial configuration to the buffer. XSAVE
writes the feature unconditionally, regardless of whether it is
in the initial configuration or not.
Basically, XSAVE users never need to inspect XSTATE_BV to
determine if the feature has been written to the buffer.
XSAVEOPT users *do* need to inspect XSTATE_BV. They might also
need to clear out the buffer if they want to make an isolated
change to the state, like modifying one register.
== Software Signal / XSAVE Background ==
Signal frames have historically been written with XSAVE itself.
Each state is written in its entirety, regardless of being in its
initial configuration.
In other words, the signal frame ABI uses the XSAVE behavior, not
the XSAVEOPT behavior.
== Problem ==
This means that any application which has acquired permission to
use AMX via ARCH_REQ_XCOMP_PERM will write 8k of state to the
signal frame. This 8k write will occur even when AMX was in its
initial configuration and software *knows* this because of
XSTATE_BV.
This problem also exists to a lesser degree with AVX-512 and its
2k of state. However, AVX-512 use does not require
ARCH_REQ_XCOMP_PERM and is more likely to have existing users
which would be impacted by any change in behavior.
== Solution ==
Stop writing out AMX xfeatures which are in their initial state
to the signal frame. This effectively makes the signal frame
XSAVE buffer look as if it were written with a combination of
XSAVEOPT and XSAVE behavior. Userspace which handles XSAVEOPT-
style buffers should be able to handle this naturally.
For now, include only the AMX xfeatures: XTILE and XTILEDATA in
this new behavior. These require new ABI to use anyway, which
makes their users very unlikely to be broken. This XSAVEOPT-like
behavior should be expected for all future dynamic xfeatures. It
may also be extended to legacy features like AVX-512 in the
future.
Only attempt this optimization on systems with dynamic features.
Disable dynamic feature support (XFD) if XGETBV1 is unavailable
by adding a CPUID dependency.
This has been measured to reduce the *overall* cycle cost of
signal delivery by about 4%.
Fixes:
|
|
|
|
c03098d4b9 |
gfs2: Fix mmap + page fault deadlocks
Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock. In the most basic scenario, that buffer will not be
resident and it will be mapped to the same file. Accessing the buffer
will trigger a page fault, and gfs2 will deadlock trying to take the
same inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled.
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEJZs3krPW0xkhLMTc1b+f6wMTZToFAmGBPisUHGFncnVlbmJh
QHJlZGhhdC5jb20ACgkQ1b+f6wMTZTpE6A/7BezUnGuNJxJrR8pC+vcLYA7xAgUU
6STQ6IN7w5UHRlSkNzZxZ2XPxW4uVQ4SxSEeaLqBsHZihepjcLNFZ/8MhQ6UPSD0
8noHOi7CoIcp6IuWQtCpxRM/xjjm2SlMt2XbVJZaiJcdzCV9gB6TU9EkBRq7Zm/X
9WFBbv1xZF0skn9ISCJvNtiiI+VyWKgMDUKxJUiTQjmJcklyyqHcVGmQi9BjqPz4
4s3F+WH6CoGbDKlmNk/6Y9wZ/2+sbvGswVscUxPwJVPoZWsR1xBBUdAeAmEMD1P4
BgE/Y1J8JXyVPYtyvZKq70XUhKdQkxB7RfX87YasOk9mY4Kjd5rIIGEykh+o2vC9
kDhCHvf2Mnw5I6Rum3B7UXyB1vemY+fECIHsXhgBnS+ztabRtcAdpCuWoqb43ymw
yEX1KwXyU4FpRYbrRvdZT42Fmh6ty8TW+N4swg8S2TrffirvgAi5yrcHZ4mPupYv
lyzvsCW7Wv8hPXn/twNObX+okRgJnsxcCdBXARdCnRXfA8tH23xmu88u8RA1Vdxh
nzTvv6Dx2EowwojuDWMx29Mw3fA2IqIfbOV+4FaRU7NZ2ZKtknL8yGl27qQUsMoJ
vYsHTmagasjQr+NDJ3vQRLCw+JQ6B1hENpdkmixFD9moo7X1ZFW3HBi/UL973Bv6
5CmgeXto8FRUFjI=
=WeNd
-----END PGP SIGNATURE-----
Merge tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher:
"Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock.
In the most basic deadlock scenario, that buffer will not be resident
and it will be mapped to the same file. Accessing the buffer will
trigger a page fault, and gfs2 will deadlock trying to take the same
inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled"
* tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: Fix mmap + page fault deadlocks for direct I/O
iov_iter: Introduce nofault flag to disable page faults
gup: Introduce FOLL_NOFAULT flag to disable page faults
iomap: Add done_before argument to iomap_dio_rw
iomap: Support partial direct I/O on user copy failures
iomap: Fix iomap_dio_rw return value for user copies
gfs2: Fix mmap + page fault deadlocks for buffered I/O
gfs2: Eliminate ip->i_gh
gfs2: Move the inode glock locking to gfs2_file_buffered_write
gfs2: Introduce flag for glock holder auto-demotion
gfs2: Clean up function may_grant
gfs2: Add wrapper for iomap_file_buffered_write
iov_iter: Introduce fault_in_iov_iter_writeable
iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
powerpc/kvm: Fix kvm_use_magic_page
iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
|
|
|
|
868c250bb4 |
x86/fpu: Include vmalloc.h for vzalloc()
Explicitly include that header to avoid build errors when vzalloc()
becomes "invisible" to the compiler due to header reorganizations.
This is not a problem in the tip tree but occurred when integrating
linux-next.
[ bp: Commit message. ]
Link: https://lore.kernel.org/r/20211025151144.552c60ca@canb.auug.org.au
Fixes:
|
|
|
|
2308ee57d9 |
x86/fpu/amx: Enable the AMX feature in 64-bit mode
Add the AMX state components in XFEATURE_MASK_USER_SUPPORTED and the TILE_DATA component to the dynamic states and update the permission check table accordingly. This is only effective on 64 bit kernels as for 32bit kernels XFEATURE_MASK_TILE is defined as 0. TILE_DATA is caller-saved state and the only dynamic state. Add build time sanity check to ensure the assumption that every dynamic feature is caller- saved. Make AMX state depend on XFD as it is dynamic feature. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-24-chang.seok.bae@intel.com |
|
|
|
db3e7321b4 |
x86/fpu: Add XFD handling for dynamic states
To handle the dynamic sizing of buffers on first use the XFD MSR has to be armed. Store the delta between the maximum available and the default feature bits in init_fpstate where it can be retrieved for task creation. If the delta is non zero then dynamic features are enabled. This needs also to enable the static key which guards the XFD updates. This is delayed to an initcall because the FPU setup runs before jump labels are initialized. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-23-chang.seok.bae@intel.com |
|
|
|
2ae996e0c1 |
x86/fpu: Calculate the default sizes independently
When dynamically enabled states are supported the maximum and default sizes for the kernel buffers and user space interfaces are not longer identical. Put the necessary calculations in place which only take the default enabled features into account. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-22-chang.seok.bae@intel.com |
|
|
|
eec2113eab |
x86/fpu/amx: Define AMX state components and have it used for boot-time checks
The XSTATE initialization uses check_xstate_against_struct() to sanity check the size of XSTATE-enabled features. AMX is a XSAVE-enabled feature, and its size is not hard-coded but discoverable at run-time via CPUID. The AMX state is composed of state components 17 and 18, which are all user state components. The first component is the XTILECFG state of a 64-byte tile-related control register. The state component 18, called XTILEDATA, contains the actual tile data, and the state size varies on implementations. The architectural maximum, as defined in the CPUID(0x1d, 1): EAX[15:0], is a byte less than 64KB. The first implementation supports 8KB. Check the XTILEDATA state size dynamically. The feature introduces the new tile register, TMM. Define one register struct only and read the number of registers from CPUID. Cross-check the overall size with CPUID again. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-21-chang.seok.bae@intel.com |
|
|
|
70c3f1671b |
x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
The kernel checks at boot time which features are available by walking a XSAVE feature table which contains the CPUID feature bit numbers which need to be checked whether a feature is available on a CPU or not. So far the feature numbers have been linear, but AMX will create a gap which the current code cannot handle. Make the table entries explicitly indexed and adjust the loop code accordingly to prepare for that. No functional change. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Len Brown <len.brown@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-20-chang.seok.bae@intel.com |
|
|
|
500afbf645 |
x86/fpu/xstate: Add fpstate_realloc()/free()
The fpstate embedded in struct fpu is the default state for storing the FPU registers. It's sized so that the default supported features can be stored. For dynamically enabled features the register buffer is too small. The #NM handler detects first use of a feature which is disabled in the XFD MSR. After handling permission checks it recalculates the size for kernel space and user space state and invokes fpstate_realloc() which tries to reallocate fpstate and install it. Provide the allocator function which checks whether the current buffer size is sufficient and if not allocates one. If allocation is successful the new fpstate is initialized with the new features and sizes and the now enabled features is removed from the task's XFD mask. realloc_fpstate() uses vzalloc(). If use of this mechanism grows to re-allocate buffers larger than 64KB, a more sophisticated allocation scheme that includes purpose-built reclaim capability might be justified. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-19-chang.seok.bae@intel.com |
|
|
|
783e87b404 |
x86/fpu/xstate: Add XFD #NM handler
If the XFD MSR has feature bits set then #NM will be raised when user space attempts to use an instruction related to one of these features. When the task has no permissions to use that feature, raise SIGILL, which is the same behavior as #UD. If the task has permissions, calculate the new buffer size for the extended feature set and allocate a larger fpstate. In the unlikely case that vzalloc() fails, SIGSEGV is raised. The allocation function will be added in the next step. Provide a stub which fails for now. [ tglx: Updated serialization ] Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-18-chang.seok.bae@intel.com |
|
|
|
672365477a |
x86/fpu: Update XFD state where required
The IA32_XFD_MSR allows to arm #NM traps for XSTATE components which are enabled in XCR0. The register has to be restored before the tasks XSTATE is restored. The life time rules are the same as for FPU state. XFD is updated on return to userspace only when the FPU state of the task is not up to date in the registers. It's updated before the XRSTORS so that eventually enabled dynamic features are restored as well and not brought into init state. Also in signal handling for restoring FPU state from user space the correctness of the XFD state has to be ensured. Add it to CPU initialization and resume as well. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211021225527.10184-17-chang.seok.bae@intel.com |