Instead of exposing the powerpc-optimized SHA-1 code via
powerpc-specific crypto_shash algorithms, instead just implement the
sha1_blocks() library function. This is much simpler, it makes the
SHA-1 library functions be powerpc-optimized, and it fixes the
longstanding issue where the powerpc-optimized SHA-1 code was disabled
by default. SHA-1 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
Note: to see the diff from arch/powerpc/crypto/sha1-spe-glue.c to
lib/crypto/powerpc/sha1.h, view this commit with 'git show -M10'.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-11-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the mips-optimized SHA-1 code via mips-specific
crypto_shash algorithms, instead just implement the sha1_blocks()
library function. This is much simpler, it makes the SHA-1 library
functions be mips-optimized, and it fixes the longstanding issue where
the mips-optimized SHA-1 code was disabled by default. SHA-1 still
remains available through crypto_shash, but individual architectures no
longer need to handle it.
Note: to see the diff from arch/mips/cavium-octeon/crypto/octeon-sha1.c
to lib/crypto/mips/sha1.h, view this commit with 'git show -M10'.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the arm64-optimized SHA-1 code via arm64-specific
crypto_shash algorithms, instead just implement the sha1_blocks()
library function. This is much simpler, it makes the SHA-1 library
functions be arm64-optimized, and it fixes the longstanding issue where
the arm64-optimized SHA-1 code was disabled by default. SHA-1 still
remains available through crypto_shash, but individual architectures no
longer need to handle it.
Remove support for SHA-1 finalization from assembly code, since the
library does not yet support architecture-specific overrides of the
finalization. (Support for that has been omitted for now, for
simplicity and because usually it isn't performance-critical.)
To match sha1_blocks(), change the type of the nblocks parameter and the
return value of __sha1_ce_transform() from int to size_t. Update the
assembly code accordingly.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the arm-optimized SHA-1 code via arm-specific
crypto_shash algorithms, instead just implement the sha1_blocks()
library function. This is much simpler, it makes the SHA-1 library
functions be arm-optimized, and it fixes the longstanding issue where
the arm-optimized SHA-1 code was disabled by default. SHA-1 still
remains available through crypto_shash, but individual architectures no
longer need to handle it.
To match sha1_blocks(), change the type of the nblocks parameter of the
assembly functions from int to size_t. The assembly functions actually
already treated it as size_t.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Add HMAC support to the SHA-1 library, again following what was done for
SHA-2. Besides providing the basis for a more streamlined "hmac(sha1)"
shash, this will also be useful for multiple in-kernel users such as
net/sctp/auth.c, net/ipv6/seg6_hmac.c, and
security/keys/trusted-keys/trusted_tpm1.c. Those are currently using
crypto_shash, but using the library functions would be much simpler.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Add a library interface for SHA-1, following the SHA-2 one. As was the
case with SHA-2, this will be useful for various in-kernel users. The
crypto_shash interface will be reimplemented on top of it as well.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Rename the existing sha1_init() to sha1_init_raw(), since it conflicts
with the upcoming library function. This will later be removed, but
this keeps the kernel building for the introduction of the library.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
While the HMAC library functions support both incremental and one-shot
computation and both prepared and raw keys, the combination of raw key
+ incremental was missing. It turns out that several potential users of
the HMAC library functions (tpm2-sessions.c, smb2transport.c,
trusted_tpm1.c) want exactly that.
Therefore, add the missing functions hmac_sha*_init_usingrawkey().
Implement them in an optimized way that directly initializes the HMAC
context without a separate key preparation step.
Reimplement the one-shot raw key functions hmac_sha*_usingrawkey() on
top of the new functions, which makes them a bit more efficient.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250711215844.41715-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Fix poly1305-armv4.pl to not do '.globl poly1305_blocks_neon' when
poly1305_blocks_neon() is not defined. Then, remove the empty __weak
definition of poly1305_blocks_neon(), which was still needed only
because of that unnecessary globl statement. (It also used to be needed
because the compiler could generate calls to it when
CONFIG_KERNEL_MODE_NEON=n, but that has been fixed.)
Thanks to Arnd Bergmann for reporting that the globl statement in the
asm file was still depending on the weak symbol.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250711212822.6372-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Restore the len >= 288 condition on using the AVX implementation, which
was incidentally removed by commit 318c53ae02 ("crypto: x86/poly1305 -
Add block-only interface"). This check took into account the overhead
in key power computation, kernel-mode "FPU", and tail handling
associated with the AVX code. Indeed, restoring this check slightly
improves performance for len < 256 as measured using poly1305_kunit on
an "AMD Ryzen AI 9 365" (Zen 5) CPU:
Length Before After
====== ========== ==========
1 30 MB/s 36 MB/s
16 516 MB/s 598 MB/s
64 1700 MB/s 1882 MB/s
127 2265 MB/s 2651 MB/s
128 2457 MB/s 2827 MB/s
200 2702 MB/s 3238 MB/s
256 3841 MB/s 3768 MB/s
511 4580 MB/s 4585 MB/s
512 5430 MB/s 5398 MB/s
1024 7268 MB/s 7305 MB/s
3173 8999 MB/s 8948 MB/s
4096 9942 MB/s 9921 MB/s
16384 10557 MB/s 10545 MB/s
While the optimal threshold for this CPU might be slightly lower than
288 (see the len == 256 case), other CPUs would need to be tested too,
and these sorts of benchmarks can underestimate the true cost of
kernel-mode "FPU". Therefore, for now just restore the 288 threshold.
Fixes: 318c53ae02 ("crypto: x86/poly1305 - Add block-only interface")
Cc: stable@vger.kernel.org
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250706231100.176113-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Restore the SIMD usability check and base conversion that were removed
by commit 318c53ae02 ("crypto: x86/poly1305 - Add block-only
interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use irq_fpu_usable() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test.
Fixes: 318c53ae02 ("crypto: x86/poly1305 - Add block-only interface")
Cc: stable@vger.kernel.org
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250706231100.176113-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Restore the SIMD usability check that was removed by commit a59e5468a9
("crypto: arm64/poly1305 - Add block-only interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use may_use_simd() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test.
Fixes: a59e5468a9 ("crypto: arm64/poly1305 - Add block-only interface")
Cc: stable@vger.kernel.org
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250706231100.176113-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Restore the SIMD usability check that was removed by commit 773426f477
("crypto: arm/poly1305 - Add block-only interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use may_use_simd() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test.
Fixes: 773426f477 ("crypto: arm/poly1305 - Add block-only interface")
Cc: stable@vger.kernel.org
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250706231100.176113-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
crypto/hash_info.c just contains a couple of arrays that map HASH_ALGO_*
algorithm IDs to properties of those algorithms. It is compiled only
when CRYPTO_HASH_INFO=y, but currently CRYPTO_HASH_INFO depends on
CRYPTO. Since this can be useful without the old-school crypto API,
move it into lib/crypto/ so that it no longer depends on CRYPTO.
This eliminates the need for FS_VERITY to select CRYPTO after it's been
converted to use lib/crypto/.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630172224.46909-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Since sha256_blocks() is called only with nblocks >= 1, remove
unnecessary checks for nblocks == 0 from the x86 SHA-256 assembly code.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250704023958.73274-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
As I did for sha512_blocks(), reorganize x86's sha256_blocks() to be
just a static_call. To achieve that, for each assembly function add a C
function that handles the kernel-mode FPU section and fallback. While
this increases total code size slightly, the amount of code actually
executed on a given system does not increase, and it is slightly more
efficient since it eliminates the extra static_key. It also makes the
assembly functions be called with standard direct calls instead of
static calls, eliminating the need for ANNOTATE_NOENDBR.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250704023958.73274-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
The BLOCK_HASH_UPDATE_BLOCKS macro is difficult to read. For now, let's
just write the update explicitly in the straightforward way, mirroring
sha512_update(). It's possible that we'll bring back a macro for this
later, but it needs to be properly justified and hopefully a bit more
readable.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-14-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Consolidate the CPU-based SHA-256 code into a single module, following
what I did with SHA-512:
- Each arch now provides a header file lib/crypto/$(SRCARCH)/sha256.h,
replacing lib/crypto/$(SRCARCH)/sha256.c. The header defines
sha256_blocks() and optionally sha256_mod_init_arch(). It is included
by lib/crypto/sha256.c, and thus the code gets built into the single
libsha256 module, with proper inlining and dead code elimination.
- sha256_blocks_generic() is moved from lib/crypto/sha256-generic.c into
lib/crypto/sha256.c. It's now a static function marked with
__maybe_unused, so the compiler automatically eliminates it in any
cases where it's not used.
- Whether arch-optimized SHA-256 is buildable is now controlled
centrally by lib/crypto/Kconfig instead of by
lib/crypto/$(SRCARCH)/Kconfig. The conditions for enabling it remain
the same as before, and it remains enabled by default.
- Any additional arch-specific translation units for the optimized
SHA-256 code (such as assembly files) are now compiled by
lib/crypto/Makefile instead of lib/crypto/$(SRCARCH)/Makefile.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-13-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Since HMAC support is commonly needed and is fairly simple, include it
as a first-class citizen of the SHA-256 library.
The API supports both incremental and one-shot computation, and either
preparing the key ahead of time or just using a raw key. The
implementation is much more streamlined than crypto/hmac.c.
I've kept it consistent with the HMAC-SHA384 and HMAC-SHA512 code as
much as possible.
Testing of these functions will be via sha224_kunit and sha256_kunit,
added by a later commit.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
The previous commit made the SHA-256 compression function state be
strongly typed, but it wasn't propagated all the way down to the
implementations of it. Do that now.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Currently the SHA-224 and SHA-256 library functions can be mixed
arbitrarily, even in ways that are incorrect, for example using
sha224_init() and sha256_final(). This is because they operate on the
same structure, sha256_state.
Introduce stronger typing, as I did for SHA-384 and SHA-512.
Also as I did for SHA-384 and SHA-512, use the names *_ctx instead of
*_state. The *_ctx names have the following small benefits:
- They're shorter.
- They avoid an ambiguity with the compression function state.
- They're consistent with the well-known OpenSSL API.
- Users usually name the variable 'sctx' anyway, which suggests that
*_ctx would be the more natural name for the actual struct.
Therefore: update the SHA-224 and SHA-256 APIs, implementation, and
calling code accordingly.
In the new structs, also strongly-type the compression function state.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Add a one-shot SHA-224 computation function sha224(), for consistency
with sha256(), sha384(), and sha512() which all already exist.
Similarly, add sha224_update(). While for now it's identical to
sha256_update(), omitting it makes the API harder to use since users
have to "know" which functions are the same between SHA-224 and SHA-256.
Also, this is a prerequisite for using different context types for each.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of having both sha256_blocks_arch() and sha256_blocks_simd(),
instead have just sha256_blocks_arch() which uses the most efficient
implementation that is available in the calling context.
This is simpler, as it reduces the API surface. It's also safer, since
sha256_blocks_arch() just works in all contexts, including contexts
where the FPU/SIMD/vector registers cannot be used. This doesn't mean
that SHA-256 computations *should* be done in such contexts, but rather
we should just do the right thing instead of corrupting a random task's
registers. Eliminating this footgun and simplifying the code is well
worth the very small performance cost of doing the check.
Note: in the case of arm and arm64, what used to be sha256_blocks_arch()
is renamed back to its original name of sha256_block_data_order().
sha256_blocks_arch() is now used for the higher-level dispatch function.
This renaming also required an update to lib/crypto/arm64/sha512.h,
since sha2-armv8.pl is shared by both SHA-256 and SHA-512.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
First, move the declarations of sha224_init/update/final to be just
above the corresponding SHA-256 code, matching the order that I used for
SHA-384 and SHA-512. In sha2.h, the end result is that SHA-224,
SHA-256, SHA-384, and SHA-512 are all in the logical order.
Second, move sha224_block_init() and sha256_block_init() to be just
below crypto_sha256_state. In later changes, these functions as well as
struct crypto_sha256_state will no longer be used by the library
functions. They'll remain just for some legacy offload drivers. This
gets them into a logical place in the file for that.
No code changes other than reordering.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
The MIPS32r2 ChaCha code has never been buildable with the clang
assembler. First, clang doesn't support the 'rotl' pseudo-instruction:
error: unknown instruction, did you mean: rol, rotr?
Second, clang requires that both operands of the 'wsbh' instruction be
explicitly given:
error: too few operands for instruction
To fix this, align the code with the real instruction set by (1) using
the real instruction 'rotr' instead of the nonstandard pseudo-
instruction 'rotl', and (2) explicitly giving both operands to 'wsbh'.
To make removing the use of 'rotl' a bit easier, also remove the
unnecessary special-casing for big endian CPUs at
.Lchacha_mips_xor_bytes. The tail handling is actually
endian-independent since it processes one byte at a time. On big endian
CPUs the old code byte-swapped SAVED_X, then iterated through it in
reverse order. But the byteswap and reverse iteration canceled out.
Tested with chacha20poly1305-selftest in QEMU using "-M malta" with both
little endian and big endian mips32r2 kernels.
Fixes: 49aa7c00ed ("crypto: mips/chacha - import 32r2 ChaCha code from Zinc")
Cc: stable@vger.kernel.org
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202505080409.EujEBwA0-lkp@intel.com/
Link: https://lore.kernel.org/r/20250619225535.679301-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/x86/lib/crypto/ into lib/crypto/x86/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Add a gitignore entry for the removed directory arch/x86/lib/crypto/ so
that people don't accidentally commit leftover generated files.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/sparc/lib/crypto/ into lib/crypto/sparc/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/s390/lib/crypto/ into lib/crypto/s390/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/riscv/lib/crypto/ into lib/crypto/riscv/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Palmer Dabbelt <palmer@dabbelt.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/powerpc/lib/crypto/ into lib/crypto/powerpc/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/mips/lib/crypto/ into lib/crypto/mips/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Add a gitignore entry for the removed directory arch/mips/lib/crypto/ so
that people don't accidentally commit leftover generated files.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/arm64/lib/crypto/ into lib/crypto/arm64/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Add a gitignore entry for the removed directory arch/arm64/lib/crypto/
so that people don't accidentally commit leftover generated files.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Move the contents of arch/arm/lib/crypto/ into lib/crypto/arm/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Add a gitignore entry for the removed directory arch/arm/lib/crypto/ so
that people don't accidentally commit leftover generated files.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the x86-optimized SHA-512 code via x86-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be x86-optimized, and it fixes the
longstanding issue where the x86-optimized SHA-512 code was disabled by
default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
To match sha512_blocks(), change the type of the nblocks parameter of
the assembly functions from int to size_t. The assembly functions
actually already treated it as size_t.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-15-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the sparc-optimized SHA-512 code via sparc-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be sparc-optimized, and it fixes the
longstanding issue where the sparc-optimized SHA-512 code was disabled
by default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
To match sha512_blocks(), change the type of the nblocks parameter of
the assembly function from int to size_t. The assembly function
actually already treated it as size_t.
Note: to see the diff from arch/sparc/crypto/sha512_glue.c to
lib/crypto/sparc/sha512.h, view this commit with 'git show -M10'.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-14-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the s390-optimized SHA-512 code via s390-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be s390-optimized, and it fixes the
longstanding issue where the s390-optimized SHA-512 code was disabled by
default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-13-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the riscv-optimized SHA-512 code via riscv-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be riscv-optimized, and it fixes the
longstanding issue where the riscv-optimized SHA-512 code was disabled
by default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
To match sha512_blocks(), change the type of the nblocks parameter of
the assembly function from int to size_t. The assembly function
actually already treated it as size_t.
Note: to see the diff from arch/riscv/crypto/sha512-riscv64-glue.c to
lib/crypto/riscv/sha512.h, view this commit with 'git show -M10'.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-12-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the mips-optimized SHA-512 code via mips-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be mips-optimized, and it fixes the
longstanding issue where the mips-optimized SHA-512 code was disabled by
default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
Note: to see the diff from
arch/mips/cavium-octeon/crypto/octeon-sha512.c to
lib/crypto/mips/sha512.h, view this commit with 'git show -M10'.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-11-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the arm64-optimized SHA-512 code via arm64-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be arm64-optimized, and it fixes the
longstanding issue where the arm64-optimized SHA-512 code was disabled
by default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
To match sha512_blocks(), change the type of the nblocks parameter of
the assembly functions from int or 'unsigned int' to size_t. Update the
ARMv8 CE assembly function accordingly. The scalar assembly function
actually already treated it as size_t.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Instead of exposing the arm-optimized SHA-512 code via arm-specific
crypto_shash algorithms, instead just implement the sha512_blocks()
library function. This is much simpler, it makes the SHA-512 (and
SHA-384) library functions be arm-optimized, and it fixes the
longstanding issue where the arm-optimized SHA-512 code was disabled by
default. SHA-512 still remains available through crypto_shash, but
individual architectures no longer need to handle it.
To match sha512_blocks(), change the type of the nblocks parameter of
the assembly functions from int to size_t. The assembly functions
actually already treated it as size_t.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Since HMAC support is commonly needed and is fairly simple, include it
as a first-class citizen of the SHA-512 library.
The API supports both incremental and one-shot computation, and either
preparing the key ahead of time or just using a raw key. The
implementation is much more streamlined than crypto/hmac.c.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Add basic support for SHA-384 and SHA-512 to lib/crypto/.
Various in-kernel users will be able to use this instead of the
old-school crypto API, which is harder to use and has more overhead.
The basic support added by this commit consists of the API and its
documentation, backed by a C implementation of the algorithms.
sha512_block_generic() is derived from crypto/sha512_generic.c.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Fix build warnings with W=1 that started appearing after
commit a934a57a42 ("scripts/misc-check: check missing #include
<linux/export.h> when W=1").
While at it, also sort the include lists alphabetically. (Keep
asm/irqflags.h last, as otherwise it doesn't build on alpha.)
This handles all of lib/crypto/, but not arch/*/lib/crypto/. The
exports in arch/*/lib/crypto/ will go away when the code is properly
integrated into lib/crypto/ as planned.
Link: https://lore.kernel.org/r/20250613184814.50173-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
and reinstates a Kconfig option to control the extra self-tests.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn51F/lCuNhUwmDeSxycdCkmxi6cFAmhSgQIACgkQxycdCkmx
i6eWig//aNg4YL30eTh41eTWTCiA1PLZpyOE2/Wz7q/Yg4M0Refn85A+tREm18q+
uwuZKAoFz8VaF0trqSQQ3PFzZaJWWRn0yLqeToxGyd7sY9kBh93FdQLub8wTxO0F
qDPLnAR+Gt7VAGcYSjhyB/TCsJ5h6oRN87qMIr8g807SiIB6mHiuXxJAAKy1U7OD
cXafp3HTkzUjgk/wbj7qSK6HJR3Cq3o/3JmsE/D7yvJRH1Bx7mNoiRpEX17CkgQX
qVZmLj8lE4HzFpTLKBAY8sXlzxscN+rHnS5WUhTqWL1hAI2b52p1moJPzT9QM/Zb
yI+x1DbO21Pvr4mZJ/hX18Y9VvTbea0hkD/wFD+hKJyQ9j70B8/bBeT/sOxKqDZn
0G1o9UyVTNdw4m2m/6lYJBgG0yiuD3hZID+Wjgq6lOsfoVBThU3CWq11NW98HQKz
0VUWztcG7JTqM1wUwwjlMXnm8+WKwiuYqYZCwBl8o0Ii29/Sm0pGMXtiDqmWFWLA
a4FJNFxiKEfVA95yRuRPfEM7KMwRWdw2C9YGe6hk3kcUbfDYSJykUme/USFzz8X8
5lmwWESNggggQEw9BxUAILIzRZwsDhCakgRjd11JRbNjrNTwXIbP9+nv+LH91mPK
zm5DJqyqSUVr2iXeQYYH/etyRsMX+dAuWPrFvvjuDBb8/fgEce4=
=6/TP
-----END PGP SIGNATURE-----
Merge tag 'v6.16-p5' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fixes from Herbert Xu:
"This fixes a regression in ahash (broken fallback finup) and
reinstates a Kconfig option to control the extra self-tests"
* tag 'v6.16-p5' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: ahash - Fix infinite recursion in ahash_def_finup
crypto: testmgr - reinstate kconfig control over full self-tests
After commit 6f110a5e4f ("Disable SLUB_TINY for build testing"), which
causes CONFIG_KASAN to be enabled in allmodconfig again, arm64
allmodconfig builds with clang-17 and older show an instance of
-Wframe-larger-than (which breaks the build with CONFIG_WERROR=y):
lib/crypto/curve25519-hacl64.c:757:6: error: stack frame size (2336) exceeds limit (2048) in 'curve25519_generic' [-Werror,-Wframe-larger-than]
757 | void curve25519_generic(u8 mypublic[CURVE25519_KEY_SIZE],
| ^
When KASAN is disabled, the stack usage is roughly quartered:
lib/crypto/curve25519-hacl64.c:757:6: error: stack frame size (608) exceeds limit (128) in 'curve25519_generic' [-Werror,-Wframe-larger-than]
757 | void curve25519_generic(u8 mypublic[CURVE25519_KEY_SIZE],
| ^
Using '-Rpass-analysis=stack-frame-layout' shows the following variables
and many, many 8-byte spills when KASAN is enabled:
Offset: [SP-144], Type: Variable, Align: 8, Size: 40
Offset: [SP-464], Type: Variable, Align: 8, Size: 320
Offset: [SP-784], Type: Variable, Align: 8, Size: 320
Offset: [SP-864], Type: Variable, Align: 32, Size: 80
Offset: [SP-896], Type: Variable, Align: 32, Size: 32
Offset: [SP-1016], Type: Variable, Align: 8, Size: 120
When KASAN is disabled, there are still spills but not at many and the
variables list is smaller:
Offset: [SP-192], Type: Variable, Align: 32, Size: 80
Offset: [SP-224], Type: Variable, Align: 32, Size: 32
Offset: [SP-344], Type: Variable, Align: 8, Size: 120
Disable KASAN for this file when using clang-17 or older to avoid
blowing out the stack, clearing up the warning.
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: "Jason A. Donenfeld" <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250609-curve25519-hacl64-disable-kasan-clang-v1-1-08ea0ac5ccff@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Annotate various keys, ivs, and other byte arrays with __nonstring so
that static initializers will not complain about truncating the trailing
NUL byte under GCC 15 with -Wunterminated-string-initialization enabled.
Silences many warnings like:
../lib/crypto/aesgcm.c:642:27: warning: initializer-string for array of 'unsigned char' truncates NUL terminator but destination lacks 'nonstring' attribute (13 chars into 12 available) [-Wunterminated-string-initialization]
642 | .iv = "\xca\xfe\xba\xbe\xfa\xce\xdb\xad"
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Kees Cook <kees@kernel.org>
Link: https://lore.kernel.org/r/20250529173113.work.760-kees@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Commit 698de82278 ("crypto: testmgr - make it easier to enable the
full set of tests") removed support for building kernels that run only
the "fast" set of crypto self-tests by default. This assumed that
nearly everyone actually wanted the full set of tests, *if* they had
already chosen to enable the tests at all.
Unfortunately, it turns out that both Debian and Fedora intentionally
have the crypto self-tests enabled in their production kernels. And for
production kernels we do need to keep the testing time down, which
implies just running the "fast" tests, not the full set of tests.
For Fedora, a reason for enabling the tests in production is that they
are being (mis)used to meet the FIPS 140-3 pre-operational testing
requirement.
However, the other reason for enabling the tests in production, which
applies to both distros, is that they provide some value in protecting
users from buggy drivers. Unfortunately, the crypto/ subsystem has many
buggy and untested drivers for off-CPU hardware accelerators on rare
platforms. These broken drivers get shipped to users, and there have
been multiple examples of the tests preventing these buggy drivers from
being used. So effectively, the tests are being relied on in production
kernels. I think this is kind of crazy (untested drivers should just
not be enabled at all), but that seems to be how things work currently.
Thus, reintroduce a kconfig option that controls the level of testing.
Call it CRYPTO_SELFTESTS_FULL instead of the original name
CRYPTO_MANAGER_EXTRA_TESTS, which was slightly misleading.
Moreover, given the "production kernel" use case, make CRYPTO_SELFTESTS
depend on EXPERT instead of DEBUG_KERNEL.
I also haven't reinstated all the #ifdefs in crypto/testmgr.c. Instead,
just rely on the compiler to optimize out unused code.
Fixes: 40b9969796 ("crypto: testmgr - replace CRYPTO_MANAGER_DISABLE_TESTS with CRYPTO_SELFTESTS")
Fixes: 698de82278 ("crypto: testmgr - make it easier to enable the full set of tests")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently the full set of crypto self-tests requires
CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y. This is problematic in two ways.
First, developers regularly overlook this option. Second, the
description of the tests as "extra" sometimes gives the impression that
it is not required that all algorithms pass these tests.
Given that the main use case for the crypto self-tests is for
developers, make enabling CONFIG_CRYPTO_SELFTESTS=y just enable the full
set of crypto self-tests by default.
The slow tests can still be disabled by adding the command-line
parameter cryptomgr.noextratests=1, soon to be renamed to
cryptomgr.noslowtests=1. The only known use case for doing this is for
people trying to use the crypto self-tests to satisfy the FIPS 140-3
pre-operational self-testing requirements when the kernel is being
validated as a FIPS 140-3 cryptographic module.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The negative-sense of CRYPTO_MANAGER_DISABLE_TESTS is a longstanding
mistake that regularly causes confusion. Especially bad is that you can
have CRYPTO=n && CRYPTO_MANAGER_DISABLE_TESTS=n, which is ambiguous.
Replace CRYPTO_MANAGER_DISABLE_TESTS with CRYPTO_SELFTESTS which has the
expected behavior.
The tests continue to be disabled by default.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add explicit array bounds to the function prototypes for the parameters
that didn't already get handled by the conversion to use chacha_state:
- chacha_block_*():
Change 'u8 *out' or 'u8 *stream' to u8 out[CHACHA_BLOCK_SIZE].
- hchacha_block_*():
Change 'u32 *out' or 'u32 *stream' to u32 out[HCHACHA_OUT_WORDS].
- chacha_init():
Change 'const u32 *key' to 'const u32 key[CHACHA_KEY_WORDS]'.
Change 'const u8 *iv' to 'const u8 iv[CHACHA_IV_SIZE]'.
No functional changes. This just makes it clear when fixed-size arrays
are expected.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the ChaCha state matrix is strongly-typed, add a helper
function chacha_zeroize_state() which zeroizes it. Then convert all
applicable callers to use it instead of direct memzero_explicit. No
functional changes.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use struct assignment instead of memcpy() in lib/crypto/chacha.c where
appropriate. No functional change.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The ChaCha state matrix is 16 32-bit words. Currently it is represented
in the code as a raw u32 array, or even just a pointer to u32. This
weak typing is error-prone. Instead, introduce struct chacha_state:
struct chacha_state {
u32 x[16];
};
Convert all ChaCha and HChaCha functions to use struct chacha_state.
No functional changes.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Split the lib poly1305 code just as was done with sha256. Make
the main library code conditional on LIB_POLY1305 instead of
LIB_POLY1305_GENERIC.
Reported-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Fixes: 10a6d72ea3 ("crypto: lib/poly1305 - Use block-only interface")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use the BLOCK_HASH_UPDATE_BLOCKS helper instead of duplicating
partial block handling.
Also remove the unused lib/sha256 force-generic interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add an internal sha256_finup helper and move the finalisation code
from __sha256_final into it.
Also add sha256_choose_blocks and CRYPTO_ARCH_HAVE_LIB_SHA256_SIMD
so that the Crypto API can use the SIMD block function unconditionally.
The Crypto API must not be used in hard IRQs and there is no reason
to have a fallback path for hardirqs.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Follow best practices by changing the length parameters to size_t and
explicitly specifying the length of the output digest arrays.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of providing crypto_shash algorithms for the arch-optimized
SHA-256 code, instead implement the SHA-256 library. This is much
simpler, it makes the SHA-256 library functions be arch-optimized, and
it fixes the longstanding issue where the arch-optimized SHA-256 was
disabled by default. SHA-256 still remains available through
crypto_shash, but individual architectures no longer need to handle it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As has been done for various other algorithms, rework the design of the
SHA-256 library to support arch-optimized implementations, and make
crypto/sha256.c expose both generic and arch-optimized shash algorithms
that wrap the library functions.
This allows users of the SHA-256 library functions to take advantage of
the arch-optimized code, and this makes it much simpler to integrate
SHA-256 for each architecture.
Note that sha256_base.h is not used in the new design. It will be
removed once all the architecture-specific code has been updated.
Move the generic block function into its own module to avoid a circular
dependency from libsha256.ko => sha256-$ARCH.ko => libsha256.ko.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add export and import functions to maintain existing export format.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that every architecture provides a block function, use that
to implement the lib/poly1305 and remove the old per-arch code.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a block-only interface for poly1305. Implement the generic
code first.
Also use the generic partial block helper.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the architecture-optimized Poly1305 kconfig symbols are defined
regardless of CRYPTO, there is no need for CRYPTO_LIB_POLY1305 to select
CRYPTO. So, remove that. This makes the indirection through the
CRYPTO_LIB_POLY1305_INTERNAL symbol unnecessary, so get rid of that and
just use CRYPTO_LIB_POLY1305 directly. Finally, make the fallback to
the generic implementation use a default value instead of a select; this
makes it consistent with how the arch-optimized code gets enabled and
also with how CRYPTO_LIB_BLAKE2S_GENERIC gets enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the architecture-optimized ChaCha kconfig symbols are defined
regardless of CRYPTO, there is no need for CRYPTO_LIB_CHACHA to select
CRYPTO. So, remove that. This makes the indirection through the
CRYPTO_LIB_CHACHA_INTERNAL symbol unnecessary, so get rid of that and
just use CRYPTO_LIB_CHACHA directly. Finally, make the fallback to the
generic implementation use a default value instead of a select; this
makes it consistent with how the arch-optimized code gets enabled and
also with how CRYPTO_LIB_BLAKE2S_GENERIC gets enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the x86 BLAKE2s, ChaCha, and Poly1305
library functions into a new directory arch/x86/lib/crypto/ that does
not depend on CRYPTO. This mirrors the distinction between crypto/ and
lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the s390 ChaCha library functions into a
new directory arch/s390/lib/crypto/ that does not depend on CRYPTO.
This mirrors the distinction between crypto/ and lib/crypto/.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the riscv ChaCha library functions into
a new directory arch/riscv/lib/crypto/ that does not depend on CRYPTO.
This mirrors the distinction between crypto/ and lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the powerpc ChaCha and Poly1305 library
functions into a new directory arch/powerpc/lib/crypto/ that does not
depend on CRYPTO. This mirrors the distinction between crypto/ and
lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the mips ChaCha and Poly1305 library
functions into a new directory arch/mips/lib/crypto/ that does not
depend on CRYPTO. This mirrors the distinction between crypto/ and
lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the arm64 ChaCha and Poly1305 library
functions into a new directory arch/arm64/lib/crypto/ that does not
depend on CRYPTO. This mirrors the distinction between crypto/ and
lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the arm BLAKE2s, ChaCha, and Poly1305
library functions into a new directory arch/arm/lib/crypto/ that does
not depend on CRYPTO. This mirrors the distinction between crypto/ and
lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that all sm3_base users have been converted to use the API
partial block handling, remove the partial block helpers as well
as the lib/crypto functions.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that all sha256_base users have been converted to use the API
partial block handling, remove the partial block helpers.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These fields are no longer needed, so remove them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Any driver that needs these library functions should already be selecting
the corresponding Kconfig symbols, so there is no real point in making
these visible.
The original patch that made these user selectable described problems
with drivers failing to select the code they use, but for consistency
it's better to always use 'select' on a symbol than to mix it with
'depends on'.
Fixes: e56e189855 ("lib/crypto: add prompts back to crypto libraries")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The ChaCha20-Poly1305 library code uses the sg_miter API to process
input presented via scatterlists, except for the special case where the
digest buffer is not covered entirely by the same scatterlist entry as
the last byte of input. In that case, it uses scatterwalk_map_and_copy()
to access the memory in the input scatterlist where the digest is stored.
This results in a dependency on crypto/scatterwalk.c and therefore on
CONFIG_CRYPTO_ALGAPI, which is unnecessary, as the sg_miter API already
provides this functionality via sg_copy_to_buffer(). So use that
instead, and drop the dependencies on CONFIG_CRYPTO_ALGAPI and
CONFIG_CRYPTO.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The ARCH_MAY_HAVE patch missed arm64, mips and s390. But it may
also lead to arch options being enabled but ineffective because
of modular/built-in conflicts.
As the primary user of all these options wireguard is selecting
the arch options anyway, make the same selections at the lib/crypto
option level and hide the arch options from the user.
Instead of selecting them centrally from lib/crypto, simply set
the default of each arch option as suggested by Eric Biggers.
Change the Crypto API generic algorithms to select the top-level
lib/crypto options instead of the generic one as otherwise there
is no way to enable the arch options (Eric Biggers). Introduce a
set of INTERNAL options to work around dependency cycles on the
CONFIG_CRYPTO symbol.
Fixes: 1047e21aec ("crypto: lib/Kconfig - Fix lib built-in failure when arch is modular")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Closes: https://lore.kernel.org/oe-kbuild-all/202502232152.JC84YDLp-lkp@intel.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The HAVE_ARCH Kconfig options in lib/crypto try to solve the
modular versus built-in problem, but it still fails when the
the LIB option (e.g., CRYPTO_LIB_CURVE25519) is selected externally.
Fix this by introducing a level of indirection with ARCH_MAY_HAVE
Kconfig options, these then go on to select the ARCH_HAVE options
if the ARCH Kconfig options matches that of the LIB option.
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202501230223.ikroNDr1-lkp@intel.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The stack frame in libaesgcm_init triggers a size warning on x86-64.
Reduce it by making buf static.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
gf128mul_4k_bbe(), gf128mul_bbe() and gf128mul_init_4k_bbe()
are part of the library originally added in 2006 by
commit c494e0705d ("[CRYPTO] lib: table driven multiplications in
GF(2^128)")
but have never been used.
Remove them.
(BBE is Big endian Byte/Big endian bits
Note the 64k table version is used and I've left that in)
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
API:
- Add sig driver API.
- Remove signing/verification from akcipher API.
- Move crypto_simd_disabled_for_test to lib/crypto.
- Add WARN_ON for return values from driver that indicates memory corruption.
Algorithms:
- Provide crc32-arch and crc32c-arch through Crypto API.
- Optimise crc32c code size on x86.
- Optimise crct10dif on arm/arm64.
- Optimise p10-aes-gcm on powerpc.
- Optimise aegis128 on x86.
- Output full sample from test interface in jitter RNG.
- Retry without padata when it fails in pcrypt.
Drivers:
- Add support for Airoha EN7581 TRNG.
- Add support for STM32MP25x platforms in stm32.
- Enable iproc-r200 RNG driver on BCMBCA.
- Add Broadcom BCM74110 RNG driver.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn51F/lCuNhUwmDeSxycdCkmxi6cFAmc6sQsACgkQxycdCkmx
i6dfHxAAnkI65TE6agZq9DlkEU4ZqOsxxdk0MsGIhbCUTxW3KENzu9vtKjnvg9T/
Ou0d2J49ny87Y4zaA59Wf/Q1+gg5YSQR5kelonpfrPLkCkJjr72HZpyCHv8TTzEC
uHHoVj9cnPIF5/yfiqQsrWT1ACip9vn+slyVPaMJV1qR6gnvnSALtsg4e/vKHkn7
ZMaf2pZ2ROYXdB02nMK5KQcCrxD64MQle/yQepY44eYjnT+XclkqPdi6o1nUSpj/
RFAeY0jFSTu0pj3DqT48TnU/LiiNLlFOZrGjCdEySoac63vmTtKqfYDmrRaFz4hB
sucxbgJ3xnnYseRijtfXnxaD/IkDJln+ipGNQKAZLfOVMDCTxPdYGmOpobMTXMS+
0sY0eAHgqr23P9pOp+sOzcAEFIqg6llAYQVWx3Zl4vpXBUuxzg6AqmHnPicnck7y
Lw1cJhQxij2De3dG2ZL/0dgQxMjGN/YfCM8SSg6l+Xn3j4j47rqJNH2ZsmXtbJ2n
kTkmemmWdgRR1IvgQQGsvyKs9ThkcEDW+IzW26SUv3Clvru2NSkX4ZPHbezZQf+D
R0wMZsW3Fw7Zymerz1GIBSqdLnsyFWtIAjukDpOR6ordPgOBeDt76v6tw5vL2/II
KYoeN1pdEEecwuhAsEvCryT5ZG4noBeNirf/ElWAfEybgcXiTks=
=T8pa
-----END PGP SIGNATURE-----
Merge tag 'v6.13-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Add sig driver API
- Remove signing/verification from akcipher API
- Move crypto_simd_disabled_for_test to lib/crypto
- Add WARN_ON for return values from driver that indicates memory
corruption
Algorithms:
- Provide crc32-arch and crc32c-arch through Crypto API
- Optimise crc32c code size on x86
- Optimise crct10dif on arm/arm64
- Optimise p10-aes-gcm on powerpc
- Optimise aegis128 on x86
- Output full sample from test interface in jitter RNG
- Retry without padata when it fails in pcrypt
Drivers:
- Add support for Airoha EN7581 TRNG
- Add support for STM32MP25x platforms in stm32
- Enable iproc-r200 RNG driver on BCMBCA
- Add Broadcom BCM74110 RNG driver"
* tag 'v6.13-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (112 commits)
crypto: marvell/cesa - fix uninit value for struct mv_cesa_op_ctx
crypto: cavium - Fix an error handling path in cpt_ucode_load_fw()
crypto: aesni - Move back to module_init
crypto: lib/mpi - Export mpi_set_bit
crypto: aes-gcm-p10 - Use the correct bit to test for P10
hwrng: amd - remove reference to removed PPC_MAPLE config
crypto: arm/crct10dif - Implement plain NEON variant
crypto: arm/crct10dif - Macroify PMULL asm code
crypto: arm/crct10dif - Use existing mov_l macro instead of __adrl
crypto: arm64/crct10dif - Remove remaining 64x64 PMULL fallback code
crypto: arm64/crct10dif - Use faster 16x64 bit polynomial multiply
crypto: arm64/crct10dif - Remove obsolete chunking logic
crypto: bcm - add error check in the ahash_hmac_init function
crypto: caam - add error check to caam_rsa_set_priv_key_form
hwrng: bcm74110 - Add Broadcom BCM74110 RNG driver
dt-bindings: rng: add binding for BCM74110 RNG
padata: Clean up in padata_do_multithreaded()
crypto: inside-secure - Fix the return value of safexcel_xcbcmac_cra_init()
crypto: qat - Fix missing destroy_workqueue in adf_init_aer()
crypto: rsassa-pkcs1 - Reinstate support for legacy protocols
...
This function is part of the exposed API and should be exported.
Otherwise a modular user would fail to build, e.g., crypto/rsa.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move crypto_simd_disabled_for_test to lib/ so that crypto_simd_usable()
can be used by library code.
This was discussed previously
(https://lore.kernel.org/linux-crypto/20220716062920.210381-4-ebiggers@kernel.org/)
but was not done because there was no use case yet. However, this is
now needed for the arm64 CRC32 library code.
Tested with:
export ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-
echo CONFIG_CRC32=y > .config
echo CONFIG_MODULES=y >> .config
echo CONFIG_CRYPTO=m >> .config
echo CONFIG_DEBUG_KERNEL=y >> .config
echo CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n >> .config
echo CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y >> .config
make olddefconfig
make -j$(nproc)
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The "err" variable may be returned without an initialized value.
Fixes: 8e3a67f2de ("crypto: lib/mpi - Add error checks to extension")
Signed-off-by: Qianqiang Liu <qianqiang.liu@163.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The "err" variable may be returned without an initialized value.
Fixes: 8e3a67f2de ("crypto: lib/mpi - Add error checks to extension")
Signed-off-by: Qianqiang Liu <qianqiang.liu@163.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.
auto-generated by the following:
for i in `git grep -l -w asm/unaligned.h`; do
sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
The remaining functions added by commit
a8ea8bdd9d did not check for memory
allocation errors. Add the checks and change the API to allow errors
to be returned.
Fixes: a8ea8bdd9d ("lib/mpi: Extend the MPI library")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This partially reverts commit a8ea8bdd9d.
Most of it is no longer needed since sm2 has been removed. However,
the following functions have been kept as they have developed other
uses:
mpi_copy
mpi_mod
mpi_test_bit
mpi_set_bit
mpi_rshift
mpi_add
mpi_sub
mpi_addm
mpi_subm
mpi_mul
mpi_mulm
mpi_tdiv_r
mpi_fdiv_r
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We checked that "nlimbs" is non-zero in the outside if statement so delete
the duplicate check here.
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
With ARCH=arm, make allmodconfig && make W=1 C=1 reports:
WARNING: modpost: missing MODULE_DESCRIPTION() in lib/crypto/libsha256.o
Add the missing invocation of the MODULE_DESCRIPTION() macro to all
files which have a MODULE_LICENSE().
This includes sha1.c and utils.c which, although they did not produce
a warning with the arm allmodconfig configuration, may cause this
warning with other configurations.
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use existing swap() function rather than duplicating its implementation.
./lib/crypto/mpi/mpi-pow.c:211:11-12: WARNING opportunity for swap().
./lib/crypto/mpi/mpi-pow.c:239:12-13: WARNING opportunity for swap().
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=9327
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use existing swap() function rather than duplicating its implementation.
./lib/crypto/mpi/ec.c:1291:20-21: WARNING opportunity for swap().
./lib/crypto/mpi/ec.c:1292:20-21: WARNING opportunity for swap().
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=9328
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fix the allmodconfig 'make W=1' warnings:
WARNING: modpost: missing MODULE_DESCRIPTION() in lib/crypto/libchacha.o
WARNING: modpost: missing MODULE_DESCRIPTION() in lib/crypto/libarc4.o
WARNING: modpost: missing MODULE_DESCRIPTION() in lib/crypto/libdes.o
WARNING: modpost: missing MODULE_DESCRIPTION() in lib/crypto/libpoly1305.o
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implement AES in CFB mode using the existing, mostly constant-time
generic AES library implementation. This will be used by the TPM code
to encrypt communications with TPM hardware, which is often a discrete
component connected using sniffable wires or traces.
While a CFB template does exist, using a skcipher is a major pain for
non-performance critical synchronous crypto where the algorithm is known
at compile time and the data is in contiguous buffers with valid kernel
virtual addresses.
Tested-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lore.kernel.org/all/20230216201410.15010-1-James.Bottomley@HansenPartnership.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>