mirror of https://github.com/torvalds/linux.git
559 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
457c899653 |
treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
|
|
fa4bff1650 |
Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MDS mitigations from Thomas Gleixner:
"Microarchitectural Data Sampling (MDS) is a hardware vulnerability
which allows unprivileged speculative access to data which is
available in various CPU internal buffers. This new set of misfeatures
has the following CVEs assigned:
CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling
CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling
CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling
CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory
MDS attacks target microarchitectural buffers which speculatively
forward data under certain conditions. Disclosure gadgets can expose
this data via cache side channels.
Contrary to other speculation based vulnerabilities the MDS
vulnerability does not allow the attacker to control the memory target
address. As a consequence the attacks are purely sampling based, but
as demonstrated with the TLBleed attack samples can be postprocessed
successfully.
The mitigation is to flush the microarchitectural buffers on return to
user space and before entering a VM. It's bolted on the VERW
instruction and requires a microcode update. As some of the attacks
exploit data structures shared between hyperthreads, full protection
requires to disable hyperthreading. The kernel does not do that by
default to avoid breaking unattended updates.
The mitigation set comes with documentation for administrators and a
deeper technical view"
* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/speculation/mds: Fix documentation typo
Documentation: Correct the possible MDS sysfs values
x86/mds: Add MDSUM variant to the MDS documentation
x86/speculation/mds: Add 'mitigations=' support for MDS
x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
x86/speculation/mds: Fix comment
x86/speculation/mds: Add SMT warning message
x86/speculation: Move arch_smt_update() call to after mitigation decisions
x86/speculation/mds: Add mds=full,nosmt cmdline option
Documentation: Add MDS vulnerability documentation
Documentation: Move L1TF to separate directory
x86/speculation/mds: Add mitigation mode VMWERV
x86/speculation/mds: Add sysfs reporting for MDS
x86/speculation/mds: Add mitigation control for MDS
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
x86/kvm/vmx: Add MDS protection when L1D Flush is not active
x86/speculation/mds: Clear CPU buffers on exit to user
x86/speculation/mds: Add mds_clear_cpu_buffers()
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
x86/speculation/mds: Add BUG_MSBDS_ONLY
...
|
|
|
|
8ff468c29e |
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU state handling updates from Borislav Petkov: "This contains work started by Rik van Riel and brought to fruition by Sebastian Andrzej Siewior with the main goal to optimize when to load FPU registers: only when returning to userspace and not on every context switch (while the task remains in the kernel). In addition, this optimization makes kernel_fpu_begin() cheaper by requiring registers saving only on the first invocation and skipping that in following ones. What is more, this series cleans up and streamlines many aspects of the already complex FPU code, hopefully making it more palatable for future improvements and simplifications. Finally, there's a __user annotations fix from Jann Horn" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits) x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails x86/pkeys: Add PKRU value to init_fpstate x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath x86/fpu: Add a fastpath to copy_fpstate_to_sigframe() x86/fpu: Add a fastpath to __fpu__restore_sig() x86/fpu: Defer FPU state load until return to userspace x86/fpu: Merge the two code paths in __fpu__restore_sig() x86/fpu: Restore from kernel memory on the 64-bit path too x86/fpu: Inline copy_user_to_fpregs_zeroing() x86/fpu: Update xstate's PKRU value on write_pkru() x86/fpu: Prepare copy_fpstate_to_sigframe() for TIF_NEED_FPU_LOAD x86/fpu: Always store the registers in copy_fpstate_to_sigframe() x86/entry: Add TIF_NEED_FPU_LOAD x86/fpu: Eager switch PKRU state x86/pkeys: Don't check if PKRU is zero before writing it x86/fpu: Only write PKRU if it is different from current x86/pkeys: Provide *pkru() helpers x86/fpu: Use a feature number instead of mask in two more helpers x86/fpu: Make __raw_xsave_addr() use a feature number instead of mask x86/fpu: Add an __fpregs_load_activate() internal helper ... |
|
|
|
8f5e823f91 |
Power management updates for 5.2-rc1
- Fix the handling of Performance and Energy Bias Hint (EPB) on
Intel processors and expose it to user space via sysfs to avoid
having to access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor
and rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to
some PM documentation files and unify copyright notices in
them (Rafael Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to
the rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAlzQEwUSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxxXwP/jrxikIXdCOV3CJVioV0NetyebwlOqYp
UsIA7lQBfZ/DY6dHw/oKuAT9LP01vcFg6XGe83Alkta9qczR5KZ/MYHFNSZXjXjL
kEvIMBCS/oykaBuW+Xn9am8Ke3Yq/rBSTKWVom3vzSQY0qvZ9GBwPDrzw+k63Zhz
P3afB4ThyY0e9ftgw4HvSSNm13Kn0ItUIQOdaLatXMMcPqP5aAdnUma5Ibinbtpp
rpTHuHKYx7MSjaCg6wl3kKTJeWbQP4wYO2ISZqH9zEwQgdvSHeFAvfPKTegUkmw9
uUsQnPD1JvdglOKovr2muehD1Ur+zsjKDf2OKERkWsWXHPyWzA/AqaVv1mkkU++b
KaWaJ9pE86kGlJ3EXwRbGfV0dM5rrl+dUUQW6nPI1XJnIOFlK61RzwAbqI26F0Mz
AlKxY4jyPLcM3SpQz9iILqyzHQqB67rm29XvId/9scoGGgoqEI4S+v6LYZqI3Vx6
aeSRu+Yof7p5w4Kg5fODX+HzrtMnMrPmLUTXhbExfsYZMi7hXURcN6s+tMpH0ckM
4yiIpnNGCKUSV4vxHBm8XJdAuUnR4Vcz++yFslszgDVVvw5tkvF7SYeHZ6HqcQVm
af9HdWzx3qajs/oyBwdRBedZYDnP1joC5donBI2ofLeF33NA7TEiPX8Zebw8XLkv
fNikssA7PGdv
=nY9p
-----END PGP SIGNATURE-----
Merge tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These fix the (Intel-specific) Performance and Energy Bias Hint (EPB)
handling and expose it to user space via sysfs, fix and clean up
several cpufreq drivers, add support for two new chips to the qoriq
cpufreq driver, fix, simplify and clean up the cpufreq core and the
schedutil governor, add support for "CPU" domains to the generic power
domains (genpd) framework and provide low-level PSCI firmware support
for that feature, fix the exynos cpuidle driver and fix a couple of
issues in the devfreq subsystem and clean it up.
Specifics:
- Fix the handling of Performance and Energy Bias Hint (EPB) on Intel
processors and expose it to user space via sysfs to avoid having to
access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor and
rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to some PM
documentation files and unify copyright notices in them (Rafael
Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to the
rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan)"
* tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (72 commits)
cpufreq: Fix kobject memleak
cpufreq: armada-37xx: fix frequency calculation for opp
cpufreq: centrino: Fix centrino_setpolicy() kerneldoc comment
cpufreq: qoriq: add support for lx2160a
x86: tsc: Rework time_cpufreq_notifier()
PM / Domains: Allow to attach a CPU via genpd_dev_pm_attach_by_id|name()
PM / Domains: Search for the CPU device outside the genpd lock
PM / Domains: Drop unused in-parameter to some genpd functions
PM / Domains: Use the base device for driver_deferred_probe_check_state()
cpufreq: qoriq: Add ls1028a chip support
PM / Domains: Enable genpd_dev_pm_attach_by_id|name() for single PM domain
PM / Domains: Allow OF lookup for multi PM domain case from ->attach_dev()
PM / Domains: Don't kfree() the virtual device in the error path
cpufreq: Move ->get callback check outside of __cpufreq_get()
PM / Domains: remove unnecessary unlikely()
cpufreq: Remove needless bios_limit check in show_bios_limit()
drivers/cpufreq/acpi-cpufreq.c: This fixes the following checkpatch warning
firmware/psci: add support for SYSTEM_RESET2
PM / devfreq: add tracing for scheduling work
trace: events: add devfreq trace event file
...
|
|
|
|
8f14772703 |
Merge branch 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq updates from Ingo Molnar:
"Here are the main changes in this tree:
- Introduce x86-64 IRQ/exception/debug stack guard pages to detect
stack overflows immediately and deterministically.
- Clean up over a decade worth of cruft accumulated.
The outcome of this should be more clear-cut faults/crashes when any
of the low level x86 CPU stacks overflow, instead of silent memory
corruption and sporadic failures much later on"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
x86/irq: Fix outdated comments
x86/irq/64: Remove stack overflow debug code
x86/irq/64: Remap the IRQ stack with guard pages
x86/irq/64: Split the IRQ stack into its own pages
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
x86/irq/32: Handle irq stack allocation failure proper
x86/irq/32: Invoke irq_ctx_init() from init_IRQ()
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr
x86/irq/32: Make irq stack a character array
x86/irq/32: Define IRQ_STACK_SIZE
x86/dumpstack/64: Speedup in_exception_stack()
x86/exceptions: Split debug IST stack
x86/exceptions: Enable IST guard pages
x86/exceptions: Disconnect IST index and stack order
x86/cpu: Remove orig_ist array
x86/cpu: Prepare TSS.IST setup for guard pages
x86/dumpstack/64: Use cpu_entry_area instead of orig_ist
x86/irq/64: Use cpu entry area instead of orig_ist
x86/traps: Use cpu_entry_area instead of orig_ist
...
|
|
|
|
e6401c1309 |
x86/irq/64: Split the IRQ stack into its own pages
Currently, the IRQ stack is hardcoded as the first page of the percpu area, and the stack canary lives on the IRQ stack. The former gets in the way of adding an IRQ stack guard page, and the latter is a potential weakness in the stack canary mechanism. Split the IRQ stack into its own private percpu pages. [ tglx: Make 64 and 32 bit share struct irq_stack ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Feng Tang <feng.tang@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jordan Borgner <mail@jordan-borgner.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Maran Wilson <maran.wilson@oracle.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de |
|
|
|
0ac2610420 |
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
Preparatory change for disentangling the irq stack union as a prerequisite for irq stacks with guard pages. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: x86-ml <x86@kernel.org> Cc: Yi Wang <wang.yi59@zte.com.cn> Link: https://lkml.kernel.org/r/20190414160146.177558566@linutronix.de |
|
|
|
758a2e3122 |
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
Preparatory patch to share code with 32bit. No functional changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.912584074@linutronix.de |
|
|
|
2a594d4ccf |
x86/exceptions: Split debug IST stack
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
|
|
|
|
3207426925 |
x86/exceptions: Disconnect IST index and stack order
The entry order of the TSS.IST array and the order of the stack storage/mapping are not required to be the same. With the upcoming split of the debug stack this is going to fall apart as the number of TSS.IST array entries stays the same while the actual stacks are increasing. Make them separate so that code like dumpstack can just utilize the mapping order. The IST index is solely required for the actual TSS.IST array initialization. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qian Cai <cai@lca.pw> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.241588113@linutronix.de |
|
|
|
4d68c3d0ec |
x86/cpu: Remove orig_ist array
All users gone. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Pu Wen <puwen@hygon.cn> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.151435667@linutronix.de |
|
|
|
f6ef73224a |
x86/cpu: Prepare TSS.IST setup for guard pages
Convert the TSS.IST setup code to use the cpu entry area information directly instead of assuming a linear mapping of the IST stacks. The store to orig_ist[] is no longer required as there are no users anymore. This is the last preparatory step towards IST guard pages. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.061686012@linutronix.de |
|
|
|
019b17b3ff |
x86/exceptions: Add structs for exception stacks
At the moment everything assumes a full linear mapping of the various exception stacks. Adding guard pages to the cpu entry area mapping of the exception stacks will break that assumption. As a preparatory step convert both the real storage and the effective mapping in the cpu entry area from character arrays to structures. To ensure that both arrays have the same ordering and the same size of the individual stacks fill the members with a macro. The guard size is the only difference between the two resulting structures. For now both have guard size 0 until the preparation of all usage sites is done. Provide a couple of helper macros which are used in the following conversions. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de |
|
|
|
8f34c5b5af |
x86/exceptions: Make IST index zero based
The defines for the exception stack (IST) array in the TSS are using the SDM convention IST1 - IST7. That causes all sorts of code to subtract 1 for array indices related to IST. That's confusing at best and does not provide any value. Make the indices zero based and fixup the usage sites. The only code which needs to adjust the 0 based index is the interrupt descriptor setup which needs to add 1 now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: linux-doc@vger.kernel.org Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qian Cai <cai@lca.pw> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160144.331772825@linutronix.de |
|
|
|
a5eff72597 |
x86/pkeys: Add PKRU value to init_fpstate
The task's initial PKRU value is set partly for fpu__clear()/ copy_init_pkru_to_fpregs(). It is not part of init_fpstate.xsave and instead it is set explicitly. If the user removes the PKRU state from XSAVE in the signal handler then __fpu__restore_sig() will restore the missing bits from `init_fpstate' and initialize the PKRU value to 0. Add the `init_pkru_value' to `init_fpstate' so it is set to the init value in such a case. In theory copy_init_pkru_to_fpregs() could be removed because restoring the PKRU at return-to-userland should be enough. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190403164156.19645-28-bigeasy@linutronix.de |
|
|
|
67e87d43b7 |
x86: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
Using static_cpu_has() is pointless on those paths, convert them to the boot_cpu_has() variant. No functional changes. Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Juergen Gross <jgross@suse.com> # for paravirt Cc: Aubrey Li <aubrey.li@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Thomas Lendacky <Thomas.Lendacky@amd.com> Cc: linux-edac@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: virtualization@lists.linux-foundation.org Cc: x86@kernel.org Link: https://lkml.kernel.org/r/20190330112022.28888-3-bp@alien8.de |
|
|
|
5861381d48 |
PM / arch: x86: Rework the MSR_IA32_ENERGY_PERF_BIAS handling
The current handling of MSR_IA32_ENERGY_PERF_BIAS in the kernel is
problematic, because it may cause changes made by user space to that
MSR (with the help of the x86_energy_perf_policy tool, for example)
to be lost every time a CPU goes offline and then back online as well
as during system-wide power management transitions into sleep states
and back into the working state.
The first problem is that if the current EPB value for a CPU going
online is 0 ('performance'), the kernel will change it to 6 ('normal')
regardless of whether or not this is the first bring-up of that CPU.
That also happens during system-wide resume from sleep states
(including, but not limited to, hibernation). However, the EPB may
have been adjusted by user space this way and the kernel should not
blindly override that setting.
The second problem is that if the platform firmware resets the EPB
values for any CPUs during system-wide resume from a sleep state,
the kernel will not restore their previous EPB values that may
have been set by user space before the preceding system-wide
suspend transition. Again, that behavior may at least be confusing
from the user space perspective.
In order to address these issues, rework the handling of
MSR_IA32_ENERGY_PERF_BIAS so that the EPB value is saved on CPU
offline and restored on CPU online as well as (for the boot CPU)
during the syscore stages of system-wide suspend and resume
transitions, respectively.
However, retain the policy by which the EPB is set to 6 ('normal')
on the first bring-up of each CPU if its initial value is 0, based
on the observation that 0 may mean 'not initialized' just as well as
'performance' in that case.
While at it, move the MSR_IA32_ENERGY_PERF_BIAS handling code into
a separate file and document it in Documentation/admin-guide.
Fixes:
|
|
|
|
e261f209c3 |
x86/speculation/mds: Add BUG_MSBDS_ONLY
This bug bit is set on CPUs which are only affected by Microarchitectural Store Buffer Data Sampling (MSBDS) and not by any other MDS variant. This is important because the Store Buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. This transition can be mitigated. That means that for CPUs which are only affected by MSBDS SMT can be enabled, if the CPU is not affected by other SMT sensitive vulnerabilities, e.g. L1TF. The XEON PHI variants fall into that category. Also the Silvermont/Airmont ATOMs, but for them it's not really relevant as they do not support SMT, but mark them for completeness sake. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> |
|
|
|
ed5194c273 |
x86/speculation/mds: Add basic bug infrastructure for MDS
Microarchitectural Data Sampling (MDS), is a class of side channel attacks on internal buffers in Intel CPUs. The variants are: - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126) - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130) - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127) MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a dependent load (store-to-load forwarding) as an optimization. The forward can also happen to a faulting or assisting load operation for a different memory address, which can be exploited under certain conditions. Store buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage L1 miss situations and to hold data which is returned or sent in response to a memory or I/O operation. Fill buffers can forward data to a load operation and also write data to the cache. When the fill buffer is deallocated it can retain the stale data of the preceding operations which can then be forwarded to a faulting or assisting load operation, which can be exploited under certain conditions. Fill buffers are shared between Hyper-Threads so cross thread leakage is possible. MLDPS leaks Load Port Data. Load ports are used to perform load operations from memory or I/O. The received data is then forwarded to the register file or a subsequent operation. In some implementations the Load Port can contain stale data from a previous operation which can be forwarded to faulting or assisting loads under certain conditions, which again can be exploited eventually. Load ports are shared between Hyper-Threads so cross thread leakage is possible. All variants have the same mitigation for single CPU thread case (SMT off), so the kernel can treat them as one MDS issue. Add the basic infrastructure to detect if the current CPU is affected by MDS. [ tglx: Rewrote changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> |
|
|
|
36ad35131a |
x86/speculation: Consolidate CPU whitelists
The CPU vulnerability whitelists have some overlap and there are more whitelists coming along. Use the driver_data field in the x86_cpu_id struct to denote the whitelisted vulnerabilities and combine all whitelists into one. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> |
|
|
|
438cbf8871 |
x86/umip: Make the UMIP activated message generic
The User Mode Instruction Prevention (UMIP) feature is part of the x86_64 instruction set architecture and not specific to Intel. Make the message generic. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
0abbbc63d0 |
x86/umip: Print UMIP line only once
... instead of issuing it per CPU and flooding dmesg unnecessarily. Streamline the formulation, while at it. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20181127205936.30331-1-bp@alien8.de |
|
|
|
23a12ddee1 |
Merge branch 'core/urgent' into x86/urgent, to pick up objtool fix
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
57c8a661d9 |
mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
0e96f31ea4 |
x86: Clean up 'sizeof x' => 'sizeof(x)'
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time. Fix the few places that didn't follow the convention. (Also do some whitespace cleanups in a few places while at it.) [ mingo: Rewrote the changelog. ] Signed-off-by: Jordan Borgner <mail@jordan-borgner.de> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
d82924c3b8 |
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
|
|
|
|
f682a7920b |
Merge branch 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 paravirt updates from Ingo Molnar:
"Two main changes:
- Remove no longer used parts of the paravirt infrastructure and put
large quantities of paravirt ops under a new config option
PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
- Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Enable PV qspinlock for Hyper-V
x86/hyperv: Add GUEST_IDLE_MSR support
x86/paravirt: Clean up native_patch()
x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
x86/xen: Make xen_reservation_lock static
x86/paravirt: Remove unneeded mmu related paravirt ops bits
x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
x86/paravirt: Introduce new config option PARAVIRT_XXL
x86/paravirt: Remove unused paravirt bits
x86/paravirt: Use a single ops structure
x86/paravirt: Remove clobbers from struct paravirt_patch_site
x86/paravirt: Remove clobbers parameter from paravirt patch functions
x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
x86/xen: Add SPDX identifier in arch/x86/xen files
x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
|
|
|
|
fec98069fb |
Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
"The main changes in this cycle were:
- Add support for the "Dhyana" x86 CPUs by Hygon: these are licensed
based on the AMD Zen architecture, and are built and sold in China,
for domestic datacenter use. The code is pretty close to AMD
support, mostly with a few quirks and enumeration differences. (Pu
Wen)
- Enable CPUID support on Cyrix 6x86/6x86L processors"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/cpupower: Add Hygon Dhyana support
cpufreq: Add Hygon Dhyana support
ACPI: Add Hygon Dhyana support
x86/xen: Add Hygon Dhyana support to Xen
x86/kvm: Add Hygon Dhyana support to KVM
x86/mce: Add Hygon Dhyana support to the MCA infrastructure
x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
x86/apic: Add Hygon Dhyana support
x86/pci, x86/amd_nb: Add Hygon Dhyana support to PCI and northbridge
x86/amd_nb: Check vendor in AMD-only functions
x86/alternative: Init ideal_nops for Hygon Dhyana
x86/events: Add Hygon Dhyana support to PMU infrastructure
x86/smpboot: Do not use BSP INIT delay and MWAIT to idle on Dhyana
x86/cpu/mtrr: Support TOP_MEM2 and get MTRR number
x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
x86/cpu: Create Hygon Dhyana architecture support file
x86/CPU: Change query logic so CPUID is enabled before testing
x86/CPU: Use correct macros for Cyrix calls
|
|
|
|
e1d20beae7 |
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar: "The main changes in this cycle were the fsgsbase related preparatory patches from Chang S. Bae - but there's also an optimized memcpy_flushcache() and a cleanup for the __cmpxchg_double() assembly glue" * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fsgsbase/64: Clean up various details x86/segments: Introduce the 'CPUNODE' naming to better document the segment limit CPU/node NR trick x86/vdso: Initialize the CPU/node NR segment descriptor earlier x86/vdso: Introduce helper functions for CPU and node number x86/segments/64: Rename the GDT PER_CPU entry to CPU_NUMBER x86/fsgsbase/64: Factor out FS/GS segment loading from __switch_to() x86/fsgsbase/64: Convert the ELF core dump code to the new FSGSBASE helpers x86/fsgsbase/64: Make ptrace use the new FS/GS base helpers x86/fsgsbase/64: Introduce FS/GS base helper functions x86/fsgsbase/64: Fix ptrace() to read the FS/GS base accurately x86/asm: Use CC_SET()/CC_OUT() in __cmpxchg_double() x86/asm: Optimize memcpy_flushcache() |
|
|
|
22245bdf0a |
x86/segments: Introduce the 'CPUNODE' naming to better document the segment limit CPU/node NR trick
We have a special segment descriptor entry in the GDT, whose sole purpose is to encode the CPU and node numbers in its limit (size) field. There are user-space instructions that allow the reading of the limit field, which gives us a really fast way to read the CPU and node IDs from the vDSO for example. But the naming of related functionality does not make this clear, at all: VDSO_CPU_SIZE VDSO_CPU_MASK __CPU_NUMBER_SEG GDT_ENTRY_CPU_NUMBER vdso_encode_cpu_node vdso_read_cpu_node There's a number of problems: - The 'VDSO_CPU_SIZE' doesn't really make it clear that these are number of bits, nor does it make it clear which 'CPU' this refers to, i.e. that this is about a GDT entry whose limit encodes the CPU and node number. - Furthermore, the 'CPU_NUMBER' naming is actively misleading as well, because the segment limit encodes not just the CPU number but the node ID as well ... So use a better nomenclature all around: name everything related to this trick as 'CPUNODE', to make it clear that this is something special, and add _BITS to make it clear that these are number of bits, and propagate this to every affected name: VDSO_CPU_SIZE => VDSO_CPUNODE_BITS VDSO_CPU_MASK => VDSO_CPUNODE_MASK __CPU_NUMBER_SEG => __CPUNODE_SEG GDT_ENTRY_CPU_NUMBER => GDT_ENTRY_CPUNODE vdso_encode_cpu_node => vdso_encode_cpunode vdso_read_cpu_node => vdso_read_cpunode This, beyond being less confusing, also makes it easier to grep for all related functionality: $ git grep -i cpunode arch/x86 Also, while at it, fix "return is not a function" style sloppiness in vdso_encode_cpunode(). Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chang S. Bae <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Markus T Metzger <markus.t.metzger@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b2e2ba578e |
x86/vdso: Initialize the CPU/node NR segment descriptor earlier
Currently the CPU/node NR segment descriptor (GDT_ENTRY_CPU_NUMBER) is initialized relatively late during CPU init, from the vCPU code, which has a number of disadvantages, such as hotplug CPU notifiers and SMP cross-calls. Instead just initialize it much earlier, directly in cpu_init(). This reduces complexity and increases robustness. [ mingo: Wrote new changelog. ] Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Markus T Metzger <markus.t.metzger@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537312139-5580-9-git-send-email-chang.seok.bae@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f2c4db1bd8 |
x86/cpu: Sanitize FAM6_ATOM naming
Going primarily by: https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors with additional information gleaned from other related pages; notably: - Bonnell shrink was called Saltwell - Moorefield is the Merriefield refresh which makes it Airmont The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE for i in `git grep -l FAM6_ATOM` ; do sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \ -e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \ -e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \ -e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \ -e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \ -e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \ -e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \ -e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \ -e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \ -e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \ -e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i} done Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: dave.hansen@linux.intel.com Cc: len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1a576b23d6 |
x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
The Hygon Dhyana CPU has the same speculative execution as AMD family 17h, so share AMD spectre mitigation code with Hygon Dhyana. Also Hygon Dhyana is not affected by meltdown, so add exception for it. Signed-off-by: Pu Wen <puwen@hygon.cn> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: tglx@linutronix.de Cc: mingo@redhat.com Cc: hpa@zytor.com Cc: x86@kernel.org Cc: thomas.lendacky@amd.com Link: https://lkml.kernel.org/r/0861d39c8a103fc0deca15bafbc85d403666d9ef.1537533369.git.puwen@hygon.cn |
|
|
|
2893cc8ff8 |
x86/CPU: Change query logic so CPUID is enabled before testing
Presently we check first if CPUID is enabled. If it is not already enabled, then we next call identify_cpu_without_cpuid() and clear X86_FEATURE_CPUID. Unfortunately, identify_cpu_without_cpuid() is the function where CPUID becomes _enabled_ on Cyrix 6x86/6x86L CPUs. Reverse the calling sequence so that CPUID is first enabled, and then check a second time to see if the feature has now been activated. [ bp: Massage commit message and remove trailing whitespace. ] Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Matthew Whitehead <tedheadster@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Andy Lutomirski <luto@amacapital.net> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180921212041.13096-3-tedheadster@gmail.com |
|
|
|
8e6b65a1b6 |
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
Get rid of local @cpu variable which is unused in the !CONFIG_IA32_EMULATION case. Signed-off-by: zhong jiang <zhongjiang@huawei.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/1536806985-24197-1-git-send-email-zhongjiang@huawei.com [ Clean up commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de> |
|
|
|
bf904d2762 |
x86/pti/64: Remove the SYSCALL64 entry trampoline
The SYSCALL64 trampoline has a couple of nice properties: - The usual sequence of SWAPGS followed by two GS-relative accesses to set up RSP is somewhat slow because the GS-relative accesses need to wait for SWAPGS to finish. The trampoline approach allows RIP-relative accesses to set up RSP, which avoids the stall. - The trampoline avoids any percpu access before CR3 is set up, which means that no percpu memory needs to be mapped in the user page tables. This prevents using Meltdown to read any percpu memory outside the cpu_entry_area and prevents using timing leaks to directly locate the percpu areas. The downsides of using a trampoline may outweigh the upsides, however. It adds an extra non-contiguous I$ cache line to system calls, and it forces an indirect jump to transfer control back to the normal kernel text after CR3 is set up. The latter is because x86 lacks a 64-bit direct jump instruction that could jump from the trampoline to the entry text. With retpolines enabled, the indirect jump is extremely slow. Change the code to map the percpu TSS into the user page tables to allow the non-trampoline SYSCALL64 path to work under PTI. This does not add a new direct information leak, since the TSS is readable by Meltdown from the cpu_entry_area alias regardless. It does allow a timing attack to locate the percpu area, but KASLR is more or less a lost cause against local attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned, on current hardware, KASLR is only useful to mitigate remote attacks that try to attack the kernel without first gaining RCE against a vulnerable user process. On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall overhead from ~237ns to ~228ns. There is a possible alternative approach: Move the trampoline within 2G of the entry text and make a separate copy for each CPU. This would allow a direct jump to rejoin the normal entry path. There are pro's and con's for this approach: + It avoids a pipeline stall - It executes from an extra page and read from another extra page during the syscall. The latter is because it needs to use a relative addressing mode to find sp1 -- it's the same *cacheline*, but accessed using an alias, so it's an extra TLB entry. - Slightly more memory. This would be one page per CPU for a simple implementation and 64-ish bytes per CPU or one page per node for a more complex implementation. - More code complexity. The current approach is chosen for simplicity and because the alternative does not provide a significant benefit, which makes it worth. [ tglx: Added the alternative discussion to the changelog ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org |
|
|
|
9bad5658ea |
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
Most of the paravirt ops defined in pv_cpu_ops are for Xen PV guests only. Define them only if CONFIG_PARAVIRT_XXL is set. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: virtualization@lists.linux-foundation.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: boris.ostrovsky@oracle.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180828074026.820-13-jgross@suse.com |
|
|
|
5c83511bdb |
x86/paravirt: Use a single ops structure
Instead of using six globally visible paravirt ops structures combine them in a single structure, keeping the original structures as sub-structures. This avoids the need to assemble struct paravirt_patch_template at runtime on the stack each time apply_paravirt() is being called (i.e. when loading a module). [ tglx: Made the struct and the initializer tabular for readability sake ] Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: virtualization@lists.linux-foundation.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: boris.ostrovsky@oracle.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180828074026.820-9-jgross@suse.com |
|
|
|
cc51e5428e |
x86/speculation/l1tf: Increase l1tf memory limit for Nehalem+
On Nehalem and newer core CPUs the CPU cache internally uses 44 bits
physical address space. The L1TF workaround is limited by this internal
cache address width, and needs to have one bit free there for the
mitigation to work.
Older client systems report only 36bit physical address space so the range
check decides that L1TF is not mitigated for a 36bit phys/32GB system with
some memory holes.
But since these actually have the larger internal cache width this warning
is bogus because it would only really be needed if the system had more than
43bits of memory.
Add a new internal x86_cache_bits field. Normally it is the same as the
physical bits field reported by CPUID, but for Nehalem and newerforce it to
be at least 44bits.
Change the L1TF memory size warning to use the new cache_bits field to
avoid bogus warnings and remove the bogus comment about memory size.
Fixes:
|
|
|
|
31130a16d4 |
xen: features and fixes for 4.19-rc1
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW3LkCgAKCRCAXGG7T9hj vtyfAQDTMUqfBlpz9XqFyTBTFRkP3aVtnEeE7BijYec+RXPOxwEAsiXwZPsmW/AN up+NEHqPvMOcZC8zJZ9THCiBgOxligY= =F51X -----END PGP SIGNATURE----- Merge tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen updates from Juergen Gross: - add dma-buf functionality to Xen grant table handling - fix for booting the kernel as Xen PVH dom0 - fix for booting the kernel as a Xen PV guest with CONFIG_DEBUG_VIRTUAL enabled - other minor performance and style fixes * tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: xen/balloon: fix balloon initialization for PVH Dom0 xen: don't use privcmd_call() from xen_mc_flush() xen/pv: Call get_cpu_address_sizes to set x86_virt/phys_bits xen/biomerge: Use true and false for boolean values xen/gntdev: don't dereference a null gntdev_dmabuf on allocation failure xen/spinlock: Don't use pvqspinlock if only 1 vCPU xen/gntdev: Implement dma-buf import functionality xen/gntdev: Implement dma-buf export functionality xen/gntdev: Add initial support for dma-buf UAPI xen/gntdev: Make private routines/structures accessible xen/gntdev: Allow mappings for DMA buffers xen/grant-table: Allow allocating buffers suitable for DMA xen/balloon: Share common memory reservation routines xen/grant-table: Make set/clear page private code shared |
|
|
|
958f338e96 |
Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
|
|
|
|
13e091b6dd |
Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 timer updates from Thomas Gleixner: "Early TSC based time stamping to allow better boot time analysis. This comes with a general cleanup of the TSC calibration code which grew warts and duct taping over the years and removes 250 lines of code. Initiated and mostly implemented by Pavel with help from various folks" * 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits) x86/kvmclock: Mark kvm_get_preset_lpj() as __init x86/tsc: Consolidate init code sched/clock: Disable interrupts when calling generic_sched_clock_init() timekeeping: Prevent false warning when persistent clock is not available sched/clock: Close a hole in sched_clock_init() x86/tsc: Make use of tsc_calibrate_cpu_early() x86/tsc: Split native_calibrate_cpu() into early and late parts sched/clock: Use static key for sched_clock_running sched/clock: Enable sched clock early sched/clock: Move sched clock initialization and merge with generic clock x86/tsc: Use TSC as sched clock early x86/tsc: Initialize cyc2ns when tsc frequency is determined x86/tsc: Calibrate tsc only once ARM/time: Remove read_boot_clock64() s390/time: Remove read_boot_clock64() timekeeping: Default boot time offset to local_clock() timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset() s390/time: Add read_persistent_wall_and_boot_offset() x86/xen/time: Output xen sched_clock time from 0 x86/xen/time: Initialize pv xen time in init_hypervisor_platform() ... |
|
|
|
405c018a25 |
xen/pv: Call get_cpu_address_sizes to set x86_virt/phys_bits
Commit |
|
|
|
f2701b77bb |
Merge 4.18-rc7 into master to pick up the KVM dependcy
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
|
|
706d51681d |
x86/speculation: Support Enhanced IBRS on future CPUs
Future Intel processors will support "Enhanced IBRS" which is an "always on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never disabled. From the specification [1]: "With enhanced IBRS, the predicted targets of indirect branches executed cannot be controlled by software that was executed in a less privileged predictor mode or on another logical processor. As a result, software operating on a processor with enhanced IBRS need not use WRMSR to set IA32_SPEC_CTRL.IBRS after every transition to a more privileged predictor mode. Software can isolate predictor modes effectively simply by setting the bit once. Software need not disable enhanced IBRS prior to entering a sleep state such as MWAIT or HLT." If Enhanced IBRS is supported by the processor then use it as the preferred spectre v2 mitigation mechanism instead of Retpoline. Intel's Retpoline white paper [2] states: "Retpoline is known to be an effective branch target injection (Spectre variant 2) mitigation on Intel processors belonging to family 6 (enumerated by the CPUID instruction) that do not have support for enhanced IBRS. On processors that support enhanced IBRS, it should be used for mitigation instead of retpoline." The reason why Enhanced IBRS is the recommended mitigation on processors which support it is that these processors also support CET which provides a defense against ROP attacks. Retpoline is very similar to ROP techniques and might trigger false positives in the CET defense. If Enhanced IBRS is selected as the mitigation technique for spectre v2, the IBRS bit in SPEC_CTRL MSR is set once at boot time and never cleared. Kernel also has to make sure that IBRS bit remains set after VMEXIT because the guest might have cleared the bit. This is already covered by the existing x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() speculation control functions. Enhanced IBRS still requires IBPB for full mitigation. [1] Speculative-Execution-Side-Channel-Mitigations.pdf [2] Retpoline-A-Branch-Target-Injection-Mitigation.pdf Both documents are available at: https://bugzilla.kernel.org/show_bug.cgi?id=199511 Originally-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Tim C Chen <tim.c.chen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Link: https://lkml.kernel.org/r/1533148945-24095-1-git-send-email-sai.praneeth.prakhya@intel.com |
|
|
|
45d7b25574 |
x86/entry/32: Enter the kernel via trampoline stack
Use the entry-stack as a trampoline to enter the kernel. The entry-stack is already in the cpu_entry_area and will be mapped to userspace when PTI is enabled. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Pavel Machek <pavel@ucw.cz> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: linux-mm@kvack.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Waiman Long <llong@redhat.com> Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca> Cc: joro@8bytes.org Link: https://lkml.kernel.org/r/1531906876-13451-8-git-send-email-joro@8bytes.org |
|
|
|
9b3661cd7e |
x86/CPU: Call detect_nopl() only on the BSP
Make it use the setup_* variants and have it be called only on the BSP and drop the call in generic_identify() - X86_FEATURE_NOPL will be replicated to the APs through the forced caps. Helps to keep the mess at a manageable level. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: steven.sistare@oracle.com Cc: daniel.m.jordan@oracle.com Cc: linux@armlinux.org.uk Cc: schwidefsky@de.ibm.com Cc: heiko.carstens@de.ibm.com Cc: john.stultz@linaro.org Cc: sboyd@codeaurora.org Cc: hpa@zytor.com Cc: douly.fnst@cn.fujitsu.com Cc: peterz@infradead.org Cc: prarit@redhat.com Cc: feng.tang@intel.com Cc: pmladek@suse.com Cc: gnomes@lxorguk.ukuu.org.uk Cc: linux-s390@vger.kernel.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: pbonzini@redhat.com Link: https://lkml.kernel.org/r/20180719205545.16512-11-pasha.tatashin@oracle.com |
|
|
|
8990cac6e5 |
x86/jump_label: Initialize static branching early
Static branching is useful to runtime patch branches that are used in hot path, but are infrequently changed. The x86 clock framework is one example that uses static branches to setup the best clock during boot and never changes it again. It is desired to enable the TSC based sched clock early to allow fine grained boot time analysis early on. That requires the static branching functionality to be functional early as well. Static branching requires patching nop instructions, thus, arch_init_ideal_nops() must be called prior to jump_label_init(). Do all the necessary steps to call arch_init_ideal_nops() right after early_cpu_init(), which also allows to insert a call to jump_label_init() right after that. jump_label_init() will be called again from the generic init code, but the code is protected against reinitialization already. [ tglx: Massaged changelog ] Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: steven.sistare@oracle.com Cc: daniel.m.jordan@oracle.com Cc: linux@armlinux.org.uk Cc: schwidefsky@de.ibm.com Cc: heiko.carstens@de.ibm.com Cc: john.stultz@linaro.org Cc: sboyd@codeaurora.org Cc: hpa@zytor.com Cc: douly.fnst@cn.fujitsu.com Cc: prarit@redhat.com Cc: feng.tang@intel.com Cc: pmladek@suse.com Cc: gnomes@lxorguk.ukuu.org.uk Cc: linux-s390@vger.kernel.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: pbonzini@redhat.com Link: https://lkml.kernel.org/r/20180719205545.16512-10-pasha.tatashin@oracle.com |
|
|
|
2458e53ff7 |
x86/mm: Fix 'no5lvl' handling
early_identify_cpu() has to use early version of pgtable_l5_enabled()
that doesn't rely on cpu_feature_enabled().
Defining USE_EARLY_PGTABLE_L5 before all includes does the trick.
I lost the define in one of reworks of the original patch.
Fixes:
|
|
|
|
545401f444 |
x86/cpu/common: Provide detect_ht_early()
To support force disabling of SMT it's required to know the number of thread siblings early. detect_ht() cannot be called before the APIC driver is selected, so split out the part which initializes smp_num_siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> |