Commit Graph

1147 Commits

Author SHA1 Message Date
Paolo Bonzini ea9bd29a9c KVM x86 fixes for 6.14-rcN #2
- Set RFLAGS.IF in C code on SVM to get VMRUN out of the STI shadow.
 
  - Ensure DEBUGCTL is context switched on AMD to avoid running the guest with
    the host's value, which can lead to unexpected bus lock #DBs.
 
  - Suppress DEBUGCTL.BTF on AMD (to match Intel), as KVM doesn't properly
    emulate BTF.  KVM's lack of context switching has meant BTF has always been
    broken to some extent.
 
  - Always save DR masks for SNP vCPUs if DebugSwap is *supported*, as the guest
    can enable DebugSwap without KVM's knowledge.
 
  - Fix a bug in mmu_stress_tests where a vCPU could finish the "writes to RO
    memory" phase without actually generating a write-protection fault.
 
  - Fix a printf() goof in the SEV smoke test that causes build failures with
    -Werror.
 
  - Explicitly zero EAX and EBX in CPUID.0x8000_0022 output when PERFMON_V2
    isn't supported by KVM.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmfLlhUACgkQOlYIJqCj
 N/0x7w/+MhqJdHbshL7Gzw+rcXwCROiCkqsxFP+YoTXte8uaHS5CEfcMYjE8SuGp
 KBpgLo4Lj1dVTXiCjemlY5sn6CDiuSs74X8A88ksuu5hVsFByJUgyWU9iw8J/crZ
 B2vj8huhqa8OCEPe5JujWfnfyAkKE5tUA4GFi73vhHMcftTNj+ftxT33/Pfg7y7M
 xOvWFWS6ZshKrouRKzI7ZFEYLwp0lr4U3dzO5rCRAd5J4MSBWRx6Dx2um5dyEYKJ
 xgwl4ylM4S/+78u1+0nQnToM0UWHJ3e7x8nze6UXYTZIrBr/lSeKlbhOPnEWJcJB
 Eemnur9ORI2BRPUReqBKluCZsSK+E5B/HPCVt5cxtuRIuUOD+kW17LPgnPyE4Sso
 eVt+XAvQc7EjrpWDSHr3ZQZZM89l9zHhuSAQ0npO6y71s0FzEVZQoDamNmOLAPjH
 Qg+qhBV2l6pyfqhqiLzADasYLOl57cJsfiMjM331ALLqAn57jzd+B8c4hdB2Xg4s
 KPuy8w8uBaY9zpd9YDBLLr7JJVs35KexNZMjT2vqBYXcScyLgmAuSQXy3hub6Mzn
 gI5ZXIKG8eO9v2jejfClI6/OEdtEwgSGEVwuBKB16pMrIxqpguMTMTWLVRn5G+oo
 qA8anmKaac62GaB66JE/Wjy069OPIGYnHSU2nal0Tej6kG0xv6E=
 =as6u
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-fixes-6.14-rcN.2' of https://github.com/kvm-x86/linux into HEAD

KVM x86 fixes for 6.14-rcN #2

 - Set RFLAGS.IF in C code on SVM to get VMRUN out of the STI shadow.

 - Ensure DEBUGCTL is context switched on AMD to avoid running the guest with
   the host's value, which can lead to unexpected bus lock #DBs.

 - Suppress DEBUGCTL.BTF on AMD (to match Intel), as KVM doesn't properly
   emulate BTF.  KVM's lack of context switching has meant BTF has always been
   broken to some extent.

 - Always save DR masks for SNP vCPUs if DebugSwap is *supported*, as the guest
   can enable DebugSwap without KVM's knowledge.

 - Fix a bug in mmu_stress_tests where a vCPU could finish the "writes to RO
   memory" phase without actually generating a write-protection fault.

 - Fix a printf() goof in the SEV smoke test that causes build failures with
   -Werror.

 - Explicitly zero EAX and EBX in CPUID.0x8000_0022 output when PERFMON_V2
   isn't supported by KVM.
2025-03-09 03:44:06 -04:00
Sean Christopherson 807cb9ce2e KVM: SVM: Don't rely on DebugSwap to restore host DR0..DR3
Never rely on the CPU to restore/load host DR0..DR3 values, even if the
CPU supports DebugSwap, as there are no guarantees that SNP guests will
actually enable DebugSwap on APs.  E.g. if KVM were to rely on the CPU to
load DR0..DR3 and skipped them during hw_breakpoint_restore(), KVM would
run with clobbered-to-zero DRs if an SNP guest created APs without
DebugSwap enabled.

Update the comment to explain the dangers, and hopefully prevent breaking
KVM in the future.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20250227012541.3234589-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-03-03 07:26:39 -08:00
Sean Christopherson b2653cd3b7 KVM: SVM: Save host DR masks on CPUs with DebugSwap
When running SEV-SNP guests on a CPU that supports DebugSwap, always save
the host's DR0..DR3 mask MSR values irrespective of whether or not
DebugSwap is enabled, to ensure the host values aren't clobbered by the
CPU.  And for now, also save DR0..DR3, even though doing so isn't
necessary (see below).

SVM_VMGEXIT_AP_CREATE is deeply flawed in that it allows the *guest* to
create a VMSA with guest-controlled SEV_FEATURES.  A well behaved guest
can inform the hypervisor, i.e. KVM, of its "requested" features, but on
CPUs without ALLOWED_SEV_FEATURES support, nothing prevents the guest from
lying about which SEV features are being enabled (or not!).

If a misbehaving guest enables DebugSwap in a secondary vCPU's VMSA, the
CPU will load the DR0..DR3 mask MSRs on #VMEXIT, i.e. will clobber the
MSRs with '0' if KVM doesn't save its desired value.

Note, DR0..DR3 themselves are "ok", as DR7 is reset on #VMEXIT, and KVM
restores all DRs in common x86 code as needed via hw_breakpoint_restore().
I.e. there is no risk of host DR0..DR3 being clobbered (when it matters).
However, there is a flaw in the opposite direction; because the guest can
lie about enabling DebugSwap, i.e. can *disable* DebugSwap without KVM's
knowledge, KVM must not rely on the CPU to restore DRs.  Defer fixing
that wart, as it's more of a documentation issue than a bug in the code.

Note, KVM added support for DebugSwap on commit d1f85fbe83 ("KVM: SEV:
Enable data breakpoints in SEV-ES"), but that is not an appropriate Fixes,
as the underlying flaw exists in hardware, not in KVM.  I.e. all kernels
that support SEV-SNP need to be patched, not just kernels with KVM's full
support for DebugSwap (ignoring that DebugSwap support landed first).

Opportunistically fix an incorrect statement in the comment; on CPUs
without DebugSwap, the CPU does NOT save or load debug registers, i.e.

Fixes: e366f92ea9 ("KVM: SEV: Support SEV-SNP AP Creation NAE event")
Cc: stable@vger.kernel.org
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Kim Phillips <kim.phillips@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20250227012541.3234589-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-03-03 07:26:39 -08:00
Sean Christopherson 433265870a KVM: SVM: Manually context switch DEBUGCTL if LBR virtualization is disabled
Manually load the guest's DEBUGCTL prior to VMRUN (and restore the host's
value on #VMEXIT) if it diverges from the host's value and LBR
virtualization is disabled, as hardware only context switches DEBUGCTL if
LBR virtualization is fully enabled.  Running the guest with the host's
value has likely been mildly problematic for quite some time, e.g. it will
result in undesirable behavior if BTF diverges (with the caveat that KVM
now suppresses guest BTF due to lack of support).

But the bug became fatal with the introduction of Bus Lock Trap ("Detect"
in kernel paralance) support for AMD (commit 408eb7417a
("x86/bus_lock: Add support for AMD")), as a bus lock in the guest will
trigger an unexpected #DB.

Note, suppressing the bus lock #DB, i.e. simply resuming the guest without
injecting a #DB, is not an option.  It wouldn't address the general issue
with DEBUGCTL, e.g. for things like BTF, and there are other guest-visible
side effects if BusLockTrap is left enabled.

If BusLockTrap is disabled, then DR6.BLD is reserved-to-1; any attempts to
clear it by software are ignored.  But if BusLockTrap is enabled, software
can clear DR6.BLD:

  Software enables bus lock trap by setting DebugCtl MSR[BLCKDB] (bit 2)
  to 1.  When bus lock trap is enabled, ... The processor indicates that
  this #DB was caused by a bus lock by clearing DR6[BLD] (bit 11).  DR6[11]
  previously had been defined to be always 1.

and clearing DR6.BLD is "sticky" in that it's not set (i.e. lowered) by
other #DBs:

  All other #DB exceptions leave DR6[BLD] unmodified

E.g. leaving BusLockTrap enable can confuse a legacy guest that writes '0'
to reset DR6.

Reported-by: rangemachine@gmail.com
Reported-by: whanos@sergal.fun
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219787
Closes: https://lore.kernel.org/all/bug-219787-28872@https.bugzilla.kernel.org%2F
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28 09:17:45 -08:00
Sean Christopherson d0eac42f5c KVM: SVM: Suppress DEBUGCTL.BTF on AMD
Mark BTF as reserved in DEBUGCTL on AMD, as KVM doesn't actually support
BTF, and fully enabling BTF virtualization is non-trivial due to
interactions with the emulator, guest_debug, #DB interception, nested SVM,
etc.

Don't inject #GP if the guest attempts to set BTF, as there's no way to
communicate lack of support to the guest, and instead suppress the flag
and treat the WRMSR as (partially) unsupported.

In short, make KVM behave the same on AMD and Intel (VMX already squashes
BTF).

Note, due to other bugs in KVM's handling of DEBUGCTL, the only way BTF
has "worked" in any capacity is if the guest simultaneously enables LBRs.

Reported-by: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28 09:17:45 -08:00
Sean Christopherson ee89e80133 KVM: SVM: Drop DEBUGCTL[5:2] from guest's effective value
Drop bits 5:2 from the guest's effective DEBUGCTL value, as AMD changed
the architectural behavior of the bits and broke backwards compatibility.
On CPUs without BusLockTrap (or at least, in APMs from before ~2023),
bits 5:2 controlled the behavior of external pins:

  Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write.
  Software uses thesebits to control the type of information reported by
  the four external performance-monitoring/breakpoint pins on the
  processor. When a PBi bit is cleared to 0, the corresponding external pin
  (BPi) reports performance-monitor information. When a PBi bit is set to
  1, the corresponding external pin (BPi) reports breakpoint information.

With the introduction of BusLockTrap, presumably to be compatible with
Intel CPUs, AMD redefined bit 2 to be BLCKDB:

  Bus Lock #DB Trap (BLCKDB)—Bit 2, read/write. Software sets this bit to
  enable generation of a #DB trap following successful execution of a bus
  lock when CPL is > 0.

and redefined bits 5:3 (and bit 6) as "6:3 Reserved MBZ".

Ideally, KVM would treat bits 5:2 as reserved.  Defer that change to a
feature cleanup to avoid breaking existing guest in LTS kernels.  For now,
drop the bits to retain backwards compatibility (of a sort).

Note, dropping bits 5:2 is still a guest-visible change, e.g. if the guest
is enabling LBRs *and* the legacy PBi bits, then the state of the PBi bits
is visible to the guest, whereas now the guest will always see '0'.

Reported-by: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28 09:17:45 -08:00
Sean Christopherson be45bc4eff KVM: SVM: Set RFLAGS.IF=1 in C code, to get VMRUN out of the STI shadow
Enable/disable local IRQs, i.e. set/clear RFLAGS.IF, in the common
svm_vcpu_enter_exit() just after/before guest_state_{enter,exit}_irqoff()
so that VMRUN is not executed in an STI shadow.  AMD CPUs have a quirk
(some would say "bug"), where the STI shadow bleeds into the guest's
intr_state field if a #VMEXIT occurs during injection of an event, i.e. if
the VMRUN doesn't complete before the subsequent #VMEXIT.

The spurious "interrupts masked" state is relatively benign, as it only
occurs during event injection and is transient.  Because KVM is already
injecting an event, the guest can't be in HLT, and if KVM is querying IRQ
blocking for injection, then KVM would need to force an immediate exit
anyways since injecting multiple events is impossible.

However, because KVM copies int_state verbatim from vmcb02 to vmcb12, the
spurious STI shadow is visible to L1 when running a nested VM, which can
trip sanity checks, e.g. in VMware's VMM.

Hoist the STI+CLI all the way to C code, as the aforementioned calls to
guest_state_{enter,exit}_irqoff() already inform lockdep that IRQs are
enabled/disabled, and taking a fault on VMRUN with RFLAGS.IF=1 is already
possible.  I.e. if there's kernel code that is confused by running with
RFLAGS.IF=1, then it's already a problem.  In practice, since GIF=0 also
blocks NMIs, the only change in exposure to non-KVM code (relative to
surrounding VMRUN with STI+CLI) is exception handling code, and except for
the kvm_rebooting=1 case, all exception in the core VM-Enter/VM-Exit path
are fatal.

Use the "raw" variants to enable/disable IRQs to avoid tracing in the
"no instrumentation" code; the guest state helpers also take care of
tracing IRQ state.

Oppurtunstically document why KVM needs to do STI in the first place.

Reported-by: Doug Covelli <doug.covelli@broadcom.com>
Closes: https://lore.kernel.org/all/CADH9ctBs1YPmE4aCfGPNBwA10cA8RuAk2gO7542DjMZgs4uzJQ@mail.gmail.com
Fixes: f14eec0a32 ("KVM: SVM: move more vmentry code to assembly")
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20250224165442.2338294-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28 09:15:23 -08:00
Paolo Bonzini d3d0b8dfe0 KVM fixes for 6.14 part 1
- Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being emulated
    by KVM to fix a NULL pointer dereference.
 
  - Enter guest mode (L2) from KVM's perspective before initializing the vCPU's
    nested NPT MMU so that the MMU is properly tagged for L2, not L1.
 
  - Load the guest's DR6 outside of the innermost .vcpu_run() loop, as the
    guest's value may be stale if a VM-Exit is handled in the fastpath.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmev2ekACgkQOlYIJqCj
 N/32Gg/7B2+oV9RaKB1VNv4G4vbQLiA+DxPM91U0sBqytkr9BfU5kciaVs068OVk
 2M3j007HHm51sWlsCB7VLeTmiNNi/RcJzh6mOCpJVGa70imNZl3/1cvbzx1hjOAn
 DbZSIqBfLpPnAmNUp4c++WsDPZR2vVVMXriVNWM+RLFRT8E2GavCKxGppoNf+FIS
 8aYYikiqIx+E6iYsZjEm4TXqOQ2CSLM+auq2/L24bFgkn/v6I5m70QfnnYgs7Y7R
 uZhv+x2O8DXuW2RxabiC4q302PDdNKtHYpEh/5+vmG34mouZEEPTVlSRU720frqU
 SnOwtiTKwDmAwMDSRXUAP4jc9FsD4JHSUUM7Sk0J/YaI55X3xV+YrJUBZ07bwunT
 TkKPr6TvlJW9s2bi+CEc0HHoMHqmejjKhq8fOeDgVkGYH1nhjrLQAFpxjI4iVmPQ
 vZLmCZXEMzJaqySMNVIPdSFJLLsKnD7mJT3XfbXG7dV5zmde2qYd7+TiRVb5dmst
 xTgSvhA1jLXpSYA4rmMjhweLEfQyljaPgb1GEZCQCBrV9clP0cb091rOWNbrcieG
 aMXFwHEyPjGDvlXlhjdfkNeHdP6Dq8y0aBoyeSnvdwvpAN256jswrzpYjBHWQqfv
 jsD3QHcbImUr+kH2CHFsZuXxsjh+woL+4crR1eQkL8oZWHEykzs=
 =aFcV
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-fixes-6.14-rcN' of https://github.com/kvm-x86/linux into HEAD

KVM fixes for 6.14 part 1

 - Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being emulated
   by KVM to fix a NULL pointer dereference.

 - Enter guest mode (L2) from KVM's perspective before initializing the vCPU's
   nested NPT MMU so that the MMU is properly tagged for L2, not L1.

 - Load the guest's DR6 outside of the innermost .vcpu_run() loop, as the
   guest's value may be stale if a VM-Exit is handled in the fastpath.
2025-02-14 19:08:35 -05:00
Sean Christopherson 44e70718df KVM: SVM: Ensure PSP module is initialized if KVM module is built-in
The kernel's initcall infrastructure lacks the ability to express
dependencies between initcalls, whereas the modules infrastructure
automatically handles dependencies via symbol loading.  Ensure the
PSP SEV driver is initialized before proceeding in sev_hardware_setup()
if KVM is built-in as the dependency isn't handled by the initcall
infrastructure.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <f78ddb64087df27e7bcb1ae0ab53f55aa0804fab.1739226950.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-14 18:39:19 -05:00
Sean Christopherson c2fee09fc1 KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.

When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit.  This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.

For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.

But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.

Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop.  If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.

The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup.  E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).

    L1's view:
    ==========
    <L1 disables DR interception>
           CPU 0/KVM-7289    [023] d....  2925.640961: kvm_entry: vcpu 0
 A:  L1 Writes DR6
           CPU 0/KVM-7289    [023] d....  2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1

 B:        CPU 0/KVM-7289    [023] d....  2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec

 D: L1 reads DR6, arch.dr6 = 0
           CPU 0/KVM-7289    [023] d....  2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0

           CPU 0/KVM-7289    [023] d....  2925.640976: kvm_entry: vcpu 0
    L2 reads DR6, L1 disables DR interception
           CPU 0/KVM-7289    [023] d....  2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
           CPU 0/KVM-7289    [023] d....  2925.640983: kvm_entry: vcpu 0

           CPU 0/KVM-7289    [023] d....  2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0

    L2 detects failure
           CPU 0/KVM-7289    [023] d....  2925.640987: kvm_exit: vcpu 0 reason HLT
    L1 reads DR6 (confirms failure)
           CPU 0/KVM-7289    [023] d....  2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0

    L0's view:
    ==========
    L2 reads DR6, arch.dr6 = 0
          CPU 23/KVM-5046    [001] d....  3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
          CPU 23/KVM-5046    [001] .....  3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216

    L2 => L1 nested VM-Exit
          CPU 23/KVM-5046    [001] .....  3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216

          CPU 23/KVM-5046    [001] d....  3410.005610: kvm_entry: vcpu 23
          CPU 23/KVM-5046    [001] d....  3410.005611: kvm_exit: vcpu 23 reason VMREAD
          CPU 23/KVM-5046    [001] d....  3410.005611: kvm_entry: vcpu 23
          CPU 23/KVM-5046    [001] d....  3410.005612: kvm_exit: vcpu 23 reason VMREAD
          CPU 23/KVM-5046    [001] d....  3410.005612: kvm_entry: vcpu 23

    L1 writes DR7, L0 disables DR interception
          CPU 23/KVM-5046    [001] d....  3410.005612: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000007
          CPU 23/KVM-5046    [001] d....  3410.005613: kvm_entry: vcpu 23

    L0 writes DR6 = 0 (arch.dr6)
          CPU 23/KVM-5046    [001] d....  3410.005613: <hack>: Set DRs, DR6 = 0xffff0ff0

 A: <L1 writes DR6 = 1, no interception, arch.dr6 is still '0'>

 B:       CPU 23/KVM-5046    [001] d....  3410.005614: kvm_exit: vcpu 23 reason PREEMPTION_TIMER
          CPU 23/KVM-5046    [001] d....  3410.005614: kvm_entry: vcpu 23

 C: L0 writes DR6 = 0 (arch.dr6)
          CPU 23/KVM-5046    [001] d....  3410.005614: <hack>: Set DRs, DR6 = 0xffff0ff0

    L1 => L2 nested VM-Enter
          CPU 23/KVM-5046    [001] d....  3410.005616: kvm_exit: vcpu 23 reason VMRESUME

    L0 reads DR6, arch.dr6 = 0

Reported-by: John Stultz <jstultz@google.com>
Closes: https://lkml.kernel.org/r/CANDhNCq5_F3HfFYABqFGCA1bPd_%2BxgNj-iDQhH4tDk%2Bwi8iZZg%40mail.gmail.com
Fixes: 375e28ffc0 ("KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT")
Fixes: d67668e9dd ("KVM: x86, SVM: isolate vcpu->arch.dr6 from vmcb->save.dr6")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Tested-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20250125011833.3644371-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12 08:59:38 -08:00
Sean Christopherson 46d6c6f3ef KVM: nSVM: Enter guest mode before initializing nested NPT MMU
When preparing vmcb02 for nested VMRUN (or state restore), "enter" guest
mode prior to initializing the MMU for nested NPT so that guest_mode is
set in the MMU's role.  KVM's model is that all L2 MMUs are tagged with
guest_mode, as the behavior of hypervisor MMUs tends to be significantly
different than kernel MMUs.

Practically speaking, the bug is relatively benign, as KVM only directly
queries role.guest_mode in kvm_mmu_free_guest_mode_roots() and
kvm_mmu_page_ad_need_write_protect(), which SVM doesn't use, and in paths
that are optimizations (mmu_page_zap_pte() and
shadow_mmu_try_split_huge_pages()).

And while the role is incorprated into shadow page usage, because nested
NPT requires KVM to be using NPT for L1, reusing shadow pages across L1
and L2 is impossible as L1 MMUs will always have direct=1, while L2 MMUs
will have direct=0.

Hoist the TLB processing and setting of HF_GUEST_MASK to the beginning
of the flow instead of forcing guest_mode in the MMU, as nothing in
nested_vmcb02_prepare_control() between the old and new locations touches
TLB flush requests or HF_GUEST_MASK, i.e. there's no reason to present
inconsistent vCPU state to the MMU.

Fixes: 69cb877487 ("KVM: nSVM: move MMU setup to nested_prepare_vmcb_control")
Cc: stable@vger.kernel.org
Reported-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Link: https://lore.kernel.org/r/20250130010825.220346-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-12 08:57:55 -08:00
Linus Torvalds 0f8e26b38d Loongarch:
* Clear LLBCTL if secondary mmu mapping changes.
 
 * Add hypercall service support for usermode VMM.
 
 x86:
 
 * Add a comment to kvm_mmu_do_page_fault() to explain why KVM performs a
   direct call to kvm_tdp_page_fault() when RETPOLINE is enabled.
 
 * Ensure that all SEV code is compiled out when disabled in Kconfig, even
   if building with less brilliant compilers.
 
 * Remove a redundant TLB flush on AMD processors when guest CR4.PGE changes.
 
 * Use str_enabled_disabled() to replace open coded strings.
 
 * Drop kvm_x86_ops.hwapic_irr_update() as KVM updates hardware's APICv cache
   prior to every VM-Enter.
 
 * Overhaul KVM's CPUID feature infrastructure to track all vCPU capabilities
   instead of just those where KVM needs to manage state and/or explicitly
   enable the feature in hardware.  Along the way, refactor the code to make
   it easier to add features, and to make it more self-documenting how KVM
   is handling each feature.
 
 * Rework KVM's handling of VM-Exits during event vectoring; this plugs holes
   where KVM unintentionally puts the vCPU into infinite loops in some scenarios
   (e.g. if emulation is triggered by the exit), and brings parity between VMX
   and SVM.
 
 * Add pending request and interrupt injection information to the kvm_exit and
   kvm_entry tracepoints respectively.
 
 * Fix a relatively benign flaw where KVM would end up redoing RDPKRU when
   loading guest/host PKRU, due to a refactoring of the kernel helpers that
   didn't account for KVM's pre-checking of the need to do WRPKRU.
 
 * Make the completion of hypercalls go through the complete_hypercall
   function pointer argument, no matter if the hypercall exits to
   userspace or not.  Previously, the code assumed that KVM_HC_MAP_GPA_RANGE
   specifically went to userspace, and all the others did not; the new code
   need not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
   all whether there was an exit to userspace or not.
 
 * As part of enabling TDX virtual machines, support support separation of
   private/shared EPT into separate roots.  When TDX will be enabled, operations
   on private pages will need to go through the privileged TDX Module via SEAMCALLs;
   as a result, they are limited and relatively slow compared to reading a PTE.
   The patches included in 6.14 allow KVM to keep a mirror of the private EPT in
   host memory, and define entries in kvm_x86_ops to operate on external page
   tables such as the TDX private EPT.
 
 * The recently introduced conversion of the NX-page reclamation kthread to
   vhost_task moved the task under the main process.  The task is created as
   soon as KVM_CREATE_VM was invoked and this, of course, broke userspace that
   didn't expect to see any child task of the VM process until it started
   creating its own userspace threads.  In particular crosvm refuses to fork()
   if procfs shows any child task, so unbreak it by creating the task lazily.
   This is arguably a userspace bug, as there can be other kinds of legitimate
   worker tasks and they wouldn't impede fork(); but it's not like userspace
   has a way to distinguish kernel worker tasks right now.  Should they show
   as "Kthread: 1" in proc/.../status?
 
 x86 - Intel:
 
 * Fix a bug where KVM updates hardware's APICv cache of the highest ISR bit
   while L2 is active, while ultimately results in a hardware-accelerated L1
   EOI effectively being lost.
 
 * Honor event priority when emulating Posted Interrupt delivery during nested
   VM-Enter by queueing KVM_REQ_EVENT instead of immediately handling the
   interrupt.
 
 * Rework KVM's processing of the Page-Modification Logging buffer to reap
   entries in the same order they were created, i.e. to mark gfns dirty in the
   same order that hardware marked the page/PTE dirty.
 
 * Misc cleanups.
 
 Generic:
 
 * Cleanup and harden kvm_set_memory_region(); add proper lockdep assertions when
   setting memory regions and add a dedicated API for setting KVM-internal
   memory regions.  The API can then explicitly disallow all flags for
   KVM-internal memory regions.
 
 * Explicitly verify the target vCPU is online in kvm_get_vcpu() to fix a bug
   where KVM would return a pointer to a vCPU prior to it being fully online,
   and give kvm_for_each_vcpu() similar treatment to fix a similar flaw.
 
 * Wait for a vCPU to come online prior to executing a vCPU ioctl, to fix a
   bug where userspace could coerce KVM into handling the ioctl on a vCPU that
   isn't yet onlined.
 
 * Gracefully handle xarray insertion failures; even though such failures are
   impossible in practice after xa_reserve(), reserving an entry is always followed
   by xa_store() which does not know (or differentiate) whether there was an
   xa_reserve() before or not.
 
 RISC-V:
 
 * Zabha, Svvptc, and Ziccrse extension support for guests.  None of them
   require anything in KVM except for detecting them and marking them
   as supported; Zabha adds byte and halfword atomic operations, while the
   others are markers for specific operation of the TLB and of LL/SC
   instructions respectively.
 
 * Virtualize SBI system suspend extension for Guest/VM
 
 * Support firmware counters which can be used by the guests to collect
   statistics about traps that occur in the host.
 
 Selftests:
 
 * Rework vcpu_get_reg() to return a value instead of using an out-param, and
   update all affected arch code accordingly.
 
 * Convert the max_guest_memory_test into a more generic mmu_stress_test.
   The basic gist of the "conversion" is to have the test do mprotect() on
   guest memory while vCPUs are accessing said memory, e.g. to verify KVM
   and mmu_notifiers are working as intended.
 
 * Play nice with treewrite builds of unsupported architectures, e.g. arm
   (32-bit), as KVM selftests' Makefile doesn't do anything to ensure the
   target architecture is actually one KVM selftests supports.
 
 * Use the kernel's $(ARCH) definition instead of the target triple for arch
   specific directories, e.g. arm64 instead of aarch64, mainly so as not to
   be different from the rest of the kernel.
 
 * Ensure that format strings for logging statements are checked by the
   compiler even when the logging statement itself is disabled.
 
 * Attempt to whack the last LLC references/misses mole in the Intel PMU
   counters test by adding a data load and doing CLFLUSH{OPT} on the data
   instead of the code being executed.  It seems that modern Intel CPUs
   have learned new code prefetching tricks that bypass the PMU counters.
 
 * Fix a flaw in the Intel PMU counters test where it asserts that events
   are counting correctly without actually knowing what the events count
   given the underlying hardware; this can happen if Intel reuses a
   formerly microarchitecture-specific event encoding as an architectural
   event, as was the case for Top-Down Slots.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmeTuzoUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOkBwf8CRNExYaM3j9y2E7mmo6AiL2ug6+J
 Uy5Hai1poY48pPwKC6ke3EWT8WVsgj/Py5pCeHvLojQchWNjCCYNfSQluJdkRxwG
 DgP3QUljSxEJWBeSwyTRcKM+IySi5hZd1IFo3gePFRB829Jpnj05vjbvCyv8gIwU
 y3HXxSYDsViaaFoNg4OlZFsIGis7mtknsZzk++QjuCXmxNa6UCbv3qvE/UkVLhVg
 WH65RTRdjk+EsdwaOMHKuUvQoGa+iM4o39b6bqmw8+ZMK39+y33WeTX/y5RXsp1N
 tUUBRfS+MuuYgC/6LmTr66EkMzoChxk3Dp3kKUaCBcfqRC8PxQag5reZhw==
 =NEaO
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "Loongarch:

   - Clear LLBCTL if secondary mmu mapping changes

   - Add hypercall service support for usermode VMM

  x86:

   - Add a comment to kvm_mmu_do_page_fault() to explain why KVM
     performs a direct call to kvm_tdp_page_fault() when RETPOLINE is
     enabled

   - Ensure that all SEV code is compiled out when disabled in Kconfig,
     even if building with less brilliant compilers

   - Remove a redundant TLB flush on AMD processors when guest CR4.PGE
     changes

   - Use str_enabled_disabled() to replace open coded strings

   - Drop kvm_x86_ops.hwapic_irr_update() as KVM updates hardware's
     APICv cache prior to every VM-Enter

   - Overhaul KVM's CPUID feature infrastructure to track all vCPU
     capabilities instead of just those where KVM needs to manage state
     and/or explicitly enable the feature in hardware. Along the way,
     refactor the code to make it easier to add features, and to make it
     more self-documenting how KVM is handling each feature

   - Rework KVM's handling of VM-Exits during event vectoring; this
     plugs holes where KVM unintentionally puts the vCPU into infinite
     loops in some scenarios (e.g. if emulation is triggered by the
     exit), and brings parity between VMX and SVM

   - Add pending request and interrupt injection information to the
     kvm_exit and kvm_entry tracepoints respectively

   - Fix a relatively benign flaw where KVM would end up redoing RDPKRU
     when loading guest/host PKRU, due to a refactoring of the kernel
     helpers that didn't account for KVM's pre-checking of the need to
     do WRPKRU

   - Make the completion of hypercalls go through the complete_hypercall
     function pointer argument, no matter if the hypercall exits to
     userspace or not.

     Previously, the code assumed that KVM_HC_MAP_GPA_RANGE specifically
     went to userspace, and all the others did not; the new code need
     not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
     all whether there was an exit to userspace or not

   - As part of enabling TDX virtual machines, support support
     separation of private/shared EPT into separate roots.

     When TDX will be enabled, operations on private pages will need to
     go through the privileged TDX Module via SEAMCALLs; as a result,
     they are limited and relatively slow compared to reading a PTE.

     The patches included in 6.14 allow KVM to keep a mirror of the
     private EPT in host memory, and define entries in kvm_x86_ops to
     operate on external page tables such as the TDX private EPT

   - The recently introduced conversion of the NX-page reclamation
     kthread to vhost_task moved the task under the main process. The
     task is created as soon as KVM_CREATE_VM was invoked and this, of
     course, broke userspace that didn't expect to see any child task of
     the VM process until it started creating its own userspace threads.

     In particular crosvm refuses to fork() if procfs shows any child
     task, so unbreak it by creating the task lazily. This is arguably a
     userspace bug, as there can be other kinds of legitimate worker
     tasks and they wouldn't impede fork(); but it's not like userspace
     has a way to distinguish kernel worker tasks right now. Should they
     show as "Kthread: 1" in proc/.../status?

  x86 - Intel:

   - Fix a bug where KVM updates hardware's APICv cache of the highest
     ISR bit while L2 is active, while ultimately results in a
     hardware-accelerated L1 EOI effectively being lost

   - Honor event priority when emulating Posted Interrupt delivery
     during nested VM-Enter by queueing KVM_REQ_EVENT instead of
     immediately handling the interrupt

   - Rework KVM's processing of the Page-Modification Logging buffer to
     reap entries in the same order they were created, i.e. to mark gfns
     dirty in the same order that hardware marked the page/PTE dirty

   - Misc cleanups

  Generic:

   - Cleanup and harden kvm_set_memory_region(); add proper lockdep
     assertions when setting memory regions and add a dedicated API for
     setting KVM-internal memory regions. The API can then explicitly
     disallow all flags for KVM-internal memory regions

   - Explicitly verify the target vCPU is online in kvm_get_vcpu() to
     fix a bug where KVM would return a pointer to a vCPU prior to it
     being fully online, and give kvm_for_each_vcpu() similar treatment
     to fix a similar flaw

   - Wait for a vCPU to come online prior to executing a vCPU ioctl, to
     fix a bug where userspace could coerce KVM into handling the ioctl
     on a vCPU that isn't yet onlined

   - Gracefully handle xarray insertion failures; even though such
     failures are impossible in practice after xa_reserve(), reserving
     an entry is always followed by xa_store() which does not know (or
     differentiate) whether there was an xa_reserve() before or not

  RISC-V:

   - Zabha, Svvptc, and Ziccrse extension support for guests. None of
     them require anything in KVM except for detecting them and marking
     them as supported; Zabha adds byte and halfword atomic operations,
     while the others are markers for specific operation of the TLB and
     of LL/SC instructions respectively

   - Virtualize SBI system suspend extension for Guest/VM

   - Support firmware counters which can be used by the guests to
     collect statistics about traps that occur in the host

  Selftests:

   - Rework vcpu_get_reg() to return a value instead of using an
     out-param, and update all affected arch code accordingly

   - Convert the max_guest_memory_test into a more generic
     mmu_stress_test. The basic gist of the "conversion" is to have the
     test do mprotect() on guest memory while vCPUs are accessing said
     memory, e.g. to verify KVM and mmu_notifiers are working as
     intended

   - Play nice with treewrite builds of unsupported architectures, e.g.
     arm (32-bit), as KVM selftests' Makefile doesn't do anything to
     ensure the target architecture is actually one KVM selftests
     supports

   - Use the kernel's $(ARCH) definition instead of the target triple
     for arch specific directories, e.g. arm64 instead of aarch64,
     mainly so as not to be different from the rest of the kernel

   - Ensure that format strings for logging statements are checked by
     the compiler even when the logging statement itself is disabled

   - Attempt to whack the last LLC references/misses mole in the Intel
     PMU counters test by adding a data load and doing CLFLUSH{OPT} on
     the data instead of the code being executed. It seems that modern
     Intel CPUs have learned new code prefetching tricks that bypass the
     PMU counters

   - Fix a flaw in the Intel PMU counters test where it asserts that
     events are counting correctly without actually knowing what the
     events count given the underlying hardware; this can happen if
     Intel reuses a formerly microarchitecture-specific event encoding
     as an architectural event, as was the case for Top-Down Slots"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (151 commits)
  kvm: defer huge page recovery vhost task to later
  KVM: x86/mmu: Return RET_PF* instead of 1 in kvm_mmu_page_fault()
  KVM: Disallow all flags for KVM-internal memslots
  KVM: x86: Drop double-underscores from __kvm_set_memory_region()
  KVM: Add a dedicated API for setting KVM-internal memslots
  KVM: Assert slots_lock is held when setting memory regions
  KVM: Open code kvm_set_memory_region() into its sole caller (ioctl() API)
  LoongArch: KVM: Add hypercall service support for usermode VMM
  LoongArch: KVM: Clear LLBCTL if secondary mmu mapping is changed
  KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup()
  KVM: VMX: read the PML log in the same order as it was written
  KVM: VMX: refactor PML terminology
  KVM: VMX: Fix comment of handle_vmx_instruction()
  KVM: VMX: Reinstate __exit attribute for vmx_exit()
  KVM: SVM: Use str_enabled_disabled() helper in sev_hardware_setup()
  KVM: x86: Avoid double RDPKRU when loading host/guest PKRU
  KVM: x86: Use LVT_TIMER instead of an open coded literal
  RISC-V: KVM: Add new exit statstics for redirected traps
  RISC-V: KVM: Update firmware counters for various events
  RISC-V: KVM: Redirect instruction access fault trap to guest
  ...
2025-01-25 09:55:09 -08:00
Linus Torvalds a6640c8c2f Objtool changes for v6.14:
- Introduce the generic section-based annotation
    infrastructure a.k.a. ASM_ANNOTATE/ANNOTATE (Peter Zijlstra)
 
  - Convert various facilities to ASM_ANNOTATE/ANNOTATE: (Peter Zijlstra)
 
     - ANNOTATE_NOENDBR
     - ANNOTATE_RETPOLINE_SAFE
     - instrumentation_{begin,end}()
     - VALIDATE_UNRET_BEGIN
     - ANNOTATE_IGNORE_ALTERNATIVE
     - ANNOTATE_INTRA_FUNCTION_CALL
     - {.UN}REACHABLE
 
  - Optimize the annotation-sections parsing code (Peter Zijlstra)
 
  - Centralize annotation definitions in <linux/objtool.h>
 
  - Unify & simplify the barrier_before_unreachable()/unreachable()
    definitions (Peter Zijlstra)
 
  - Convert unreachable() calls to BUG() in x86 code, as
    unreachable() has unreliable code generation (Peter Zijlstra)
 
  - Remove annotate_reachable() and annotate_unreachable(), as it's
    unreliable against compiler optimizations (Peter Zijlstra)
 
  - Fix non-standard ANNOTATE_REACHABLE annotation order (Peter Zijlstra)
 
  - Robustify the annotation code by warning about unknown annotation
    types (Peter Zijlstra)
 
  - Allow arch code to discover jump table size, in preparation of
    annotated jump table support (Ard Biesheuvel)
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmeOHiARHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gATw/7Bn4A+Isqk9bKo6QgYEnKRoyf760ALQl6
 av/toEy1qCHT/CXCiEn1Hut1JEy4YyD6lIarC1scRl5xy7amRDEcCL0i2CKz3orn
 pf6Fk8/Pi68G2K50o4LTiq8t3uPBJXPlGyDlngh2hFTYRfPRT4m+cig784hmJEXG
 Xq2YzzUNG++U/4Uwe3JH7bX/vcZTYkZfM62FWfp3I4V0OqKU4c+Pkiv4u3Rs7L7b
 c3xk5/PktKZWV5TDsz0wU4SAGxYFGV47hhYM6cxdSYD3la7RVO+qZcqxsJByjpcL
 bvOmGKQ1SAXr08rV7TB+Fh8icaNE8Rbbmxf6slB0hdXBQb8STAZ810mZJFey6pnm
 kXgfhhfBOK5Sq+UbTfzF2JgquCGAbKK75bmNGgf2HaLnVLkFIw3AyMsuFqnxhI4X
 vXRHGnHCYpYUHTxzRYTFYR8XL8twA2kgjWkSe7hYrX/RQZV3XfyKOc2jyoJFMXeX
 LecfGJCE/pziZyj60SXT9WaUTvKc8gjWOEuAnW1pJQRM0zJqB9kjLh1cDYUseuwv
 gGkH59KEu0kcfOb5t/jWoqW3PTENJjEAhOmjun6Jv8wgbOxU88TMmSCWppj54O2X
 c2ibO407535u1SKBWZuaKFBLYftS2GM4WaGsdyTyh+ta48C8An90HMfYNKTHM9Nz
 F61Q7Zbn65E=
 =9nGt
 -----END PGP SIGNATURE-----

Merge tag 'objtool-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull objtool updates from Ingo Molnar:

 - Introduce the generic section-based annotation infrastructure a.k.a.
   ASM_ANNOTATE/ANNOTATE (Peter Zijlstra)

 - Convert various facilities to ASM_ANNOTATE/ANNOTATE: (Peter Zijlstra)
    - ANNOTATE_NOENDBR
    - ANNOTATE_RETPOLINE_SAFE
    - instrumentation_{begin,end}()
    - VALIDATE_UNRET_BEGIN
    - ANNOTATE_IGNORE_ALTERNATIVE
    - ANNOTATE_INTRA_FUNCTION_CALL
    - {.UN}REACHABLE

 - Optimize the annotation-sections parsing code (Peter Zijlstra)

 - Centralize annotation definitions in <linux/objtool.h>

 - Unify & simplify the barrier_before_unreachable()/unreachable()
   definitions (Peter Zijlstra)

 - Convert unreachable() calls to BUG() in x86 code, as unreachable()
   has unreliable code generation (Peter Zijlstra)

 - Remove annotate_reachable() and annotate_unreachable(), as it's
   unreliable against compiler optimizations (Peter Zijlstra)

 - Fix non-standard ANNOTATE_REACHABLE annotation order (Peter Zijlstra)

 - Robustify the annotation code by warning about unknown annotation
   types (Peter Zijlstra)

 - Allow arch code to discover jump table size, in preparation of
   annotated jump table support (Ard Biesheuvel)

* tag 'objtool-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm: Convert unreachable() to BUG()
  objtool: Allow arch code to discover jump table size
  objtool: Warn about unknown annotation types
  objtool: Fix ANNOTATE_REACHABLE to be a normal annotation
  objtool: Convert {.UN}REACHABLE to ANNOTATE
  objtool: Remove annotate_{,un}reachable()
  loongarch: Use ASM_REACHABLE
  x86: Convert unreachable() to BUG()
  unreachable: Unify
  objtool: Collect more annotations in objtool.h
  objtool: Collapse annotate sequences
  objtool: Convert ANNOTATE_INTRA_FUNCTION_CALL to ANNOTATE
  objtool: Convert ANNOTATE_IGNORE_ALTERNATIVE to ANNOTATE
  objtool: Convert VALIDATE_UNRET_BEGIN to ANNOTATE
  objtool: Convert instrumentation_{begin,end}() to ANNOTATE
  objtool: Convert ANNOTATE_RETPOLINE_SAFE to ANNOTATE
  objtool: Convert ANNOTATE_NOENDBR to ANNOTATE
  objtool: Generic annotation infrastructure
2025-01-21 10:13:11 -08:00
Paolo Bonzini 3eba032bb7 Merge branch 'kvm-userspace-hypercall' into HEAD
Make the completion of hypercalls go through the complete_hypercall
function pointer argument, no matter if the hypercall exits to
userspace or not.  Previously, the code assumed that KVM_HC_MAP_GPA_RANGE
specifically went to userspace, and all the others did not; the new code
need not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
all whether there was an exit to userspace or not.
2025-01-20 07:03:06 -05:00
Paolo Bonzini 4f7ff70c05 KVM x86 misc changes for 6.14:
- Overhaul KVM's CPUID feature infrastructure to replace "governed" features
    with per-vCPU tracking of the vCPU's capabailities for all features.  Along
    the way, refactor the code to make it easier to add/modify features, and
    add a variety of self-documenting macro types to again simplify adding new
    features and to help readers understand KVM's handling of existing features.
 
  - Rework KVM's handling of VM-Exits during event vectoring to plug holes where
    KVM unintentionally puts the vCPU into infinite loops in some scenarios,
    e.g. if emulation is triggered by the exit, and to bring parity between VMX
    and SVM.
 
  - Add pending request and interrupt injection information to the kvm_exit and
    kvm_entry tracepoints respectively.
 
  - Fix a relatively benign flaw where KVM would end up redoing RDPKRU when
    loading guest/host PKRU due to a refactoring of the kernel helpers that
    didn't account for KVM's pre-checking of the need to do WRPKRU.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmeJngsACgkQOlYIJqCj
 N/1dfA/+NIZmnd8OV9Zvc6HGxrzgt4QsM9pmsUmrfkDWefxMYIAMeaW8Vn4CJfRf
 zY/UcqyNI7JYxSiuVTckz+Tf54HhqYaLrUwILGCQ49koirZx+aQT1OUfjLroVMlh
 ffX1i6GOoLNtxjb9MXM/heLVdUbvmzQMSFkd/AkOH+nrOtDNOiPlZfjHsewj9zrf
 BNJGhzvT4M6vc/AsScC7tc0yFD5KKFRv8tVwJ6Zf1nWKyUDOSpMTWkVnq6geKJPZ
 iGBZPPNg55Oy1g6uj6VYWmqYTD8Qioz5jtEJ/8pPHdAyIFo21s81bfJc548d+QLh
 KfrL1K7TrCOhSAGC3Cb3lTLeq2immmGHaiTBLwGABG4MhpiX4NVpMMdOyFbVLMOS
 HIYuwXwDckm1pfU7/w+PgPaakCyPrXQntm+3Y2pvDOoY6e2JbwodK4j8BvvQda35
 8TrYKEGFvq5aij7Iw1O9TUoLAocDM/sHIHE6BCazHyzKBIv9xLRFeabiCQ+A1pwv
 gZk5u0+j+DPpLdeLhbMYhIXUtr3bvyMYvc+tRkG716f8ubAE3+Kn5BEDo4Ot2DcT
 vc+NTRYYWN6zavHiJH3Ddt153yj256JCZhLwCdfbryCQdz3Mpy16m36tgkDRd3lR
 QT4IkPQo1Vl/aU0yiE/dhnJgh1rTO26YQjZoHs5Oj16d0HRrKyc=
 =32mM
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.14' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.14:

 - Overhaul KVM's CPUID feature infrastructure to track all vCPU capabilities
   instead of just those where KVM needs to manage state and/or explicitly
   enable the feature in hardware.  Along the way, refactor the code to make
   it easier to add features, and to make it more self-documenting how KVM
   is handling each feature.

 - Rework KVM's handling of VM-Exits during event vectoring; this plugs holes
   where KVM unintentionally puts the vCPU into infinite loops in some scenarios
   (e.g. if emulation is triggered by the exit), and brings parity between VMX
   and SVM.

 - Add pending request and interrupt injection information to the kvm_exit and
   kvm_entry tracepoints respectively.

 - Fix a relatively benign flaw where KVM would end up redoing RDPKRU when
   loading guest/host PKRU, due to a refactoring of the kernel helpers that
   didn't account for KVM's pre-checking of the need to do WRPKRU.
2025-01-20 06:49:39 -05:00
Paolo Bonzini 672162a0d3 KVM SVM changes for 6.14:
- Macrofy the SEV=n version of the sev_xxx_guest() helpers so that the code is
    optimized away when building with less than brilliant compilers.
 
  - Remove a now-redundant TLB flush when guest CR4.PGE changes.
 
  - Use str_enabled_disabled() to replace open coded strings.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmeJoesACgkQOlYIJqCj
 N/1FuQ//bKhTrPVvMhCZB7cxS7wcpb82LA15Gc73hXBTjsik896O6fAN0MyvYWvp
 eLmvhRWloVspIAkLj4pYF7PB6Tl0VAtpGOIdZp9TXOkbGcWg7jFFBrF3Udr2kDig
 3YyinqGhwPN6oSkrJMGuk79EKhuRVGcb7utE/T8MCV5ct9kayQAogGYMLwfnpYvX
 02SRYj++PUz5rk/gVUA2RA/EFSe57JE2VrzQlT34ttqqMZ2JKtysl5ytONGpEW/u
 ZJQ4naztY+vRCLHm+n8ZWE5TCQ3ZZVR5WVcnMqx1MQQEVSZJT5SxveLGVu9tVV4c
 Fv5fTvxa6iKfsUYl4o6tX1E0s388mwEast6uY40q4GysgkpsRRQR1KOLMGTQTMiz
 7hagYbc9gGY3Pr6pn1+qf3hgVogcDX0wnQlFe6PYkHiMc7woIhUCGJ3LND7Y11O+
 cPnbdK+0ZZhsOzYQ6SGeXIv326wvZacqKzXkkWt9pf8abbwaUXVqjYe+Y0yEHsuJ
 e1gPnTdtzzim3Jq5qDRhPEHthHLm+na4O+6vjYlFVoUN4XnbNGhVzUJvQX70WX8a
 6vrQ6gM768dwkyzdpRAGuWv+OWXHBe8UYKp4HQKpWGjRcKiwcXWDwQeIbfE7JkS+
 L/Ck0oQ72sWoBoH4noM/5ehVB4ZY/bEp+GbVbd/ny6nDP1fmApM=
 =MhtD
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-svm-6.14' of https://github.com/kvm-x86/linux into HEAD

KVM SVM changes for 6.14:

 - Macrofy the SEV=n version of the sev_xxx_guest() helpers so that the code is
   optimized away when building with less than brilliant compilers.

 - Remove a now-redundant TLB flush when guest CR4.PGE changes.

 - Use str_enabled_disabled() to replace open coded strings.
2025-01-20 06:48:35 -05:00
Thorsten Blum 4c334c6880 KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup()
Remove hard-coded strings by using the str_enabled_disabled() helper
function.

Suggested-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Link: https://lore.kernel.org/r/20250110101100.272312-2-thorsten.blum@linux.dev
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-10 06:56:20 -08:00
Thorsten Blum 800173cf75 KVM: SVM: Use str_enabled_disabled() helper in sev_hardware_setup()
Remove hard-coded strings by using the str_enabled_disabled() helper
function.

Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Reviewed-by: Pavan Kumar Paluri <papaluri@amd.com>
Reviewed-by: Nikunj A Dadhania <nikunj@amd.com>
Link: https://lore.kernel.org/r/20241227094450.674104-2-thorsten.blum@linux.dev
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-01-08 14:08:41 -08:00
Binbin Wu c4c083d951 KVM: x86: Add a helper to check for user interception of KVM hypercalls
Add and use user_exit_on_hypercall() to check if userspace wants to handle
a KVM hypercall instead of open-coding the logic everywhere.

No functional change intended.

Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
[sean: squash into one patch, keep explicit KVM_HC_MAP_GPA_RANGE check]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-ID: <20241128004344.4072099-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22 13:00:25 -05:00
Paolo Bonzini 9a1dfeff44 KVM: x86: clear vcpu->run->hypercall.ret before exiting for KVM_EXIT_HYPERCALL
QEMU up to 9.2.0 is assuming that vcpu->run->hypercall.ret is 0 on exit and
it never modifies it when processing KVM_EXIT_HYPERCALL.  Make this explicit
in the code, to avoid breakage when KVM starts modifying that field.

This in principle is not a good idea... It would have been much better if
KVM had set the field to -KVM_ENOSYS from the beginning, so that a dumb
userspace that does nothing on KVM_EXIT_HYPERCALL would tell the guest it
does not support KVM_HC_MAP_GPA_RANGE.  However, breaking userspace is
a Very Bad Thing, as everybody should know.

Reported-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22 13:00:25 -05:00
Sean Christopherson 4d5163cba4 KVM: SVM: Allow guest writes to set MSR_AMD64_DE_CFG bits
Drop KVM's arbitrary behavior of making DE_CFG.LFENCE_SERIALIZE read-only
for the guest, as rejecting writes can lead to guest crashes, e.g. Windows
in particular doesn't gracefully handle unexpected #GPs on the WRMSR, and
nothing in the AMD manuals suggests that LFENCE_SERIALIZE is read-only _if
it exists_.

KVM only allows LFENCE_SERIALIZE to be set, by the guest or host, if the
underlying CPU has X86_FEATURE_LFENCE_RDTSC, i.e. if LFENCE is guaranteed
to be serializing.  So if the guest sets LFENCE_SERIALIZE, KVM will provide
the desired/correct behavior without any additional action (the guest's
value is never stuffed into hardware).  And having LFENCE be serializing
even when it's not _required_ to be is a-ok from a functional perspective.

Fixes: 74a0e79df6 ("KVM: SVM: Disallow guest from changing userspace's MSR_AMD64_DE_CFG value")
Fixes: d1d93fa90f ("KVM: SVM: Add MSR-based feature support for serializing LFENCE")
Reported-by: Simon Pilkington <simonp.git@mailbox.org>
Closes: https://lore.kernel.org/all/52914da7-a97b-45ad-86a0-affdf8266c61@mailbox.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20241211172952.1477605-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-19 17:47:52 -08:00
Suravee Suthikulpanit d81cadbe16 KVM: SVM: Disable AVIC on SNP-enabled system without HvInUseWrAllowed feature
On SNP-enabled system, VMRUN marks AVIC Backing Page as in-use while
the guest is running for both secure and non-secure guest. Any hypervisor
write to the in-use vCPU's AVIC backing page (e.g. to inject an interrupt)
will generate unexpected #PF in the host.

Currently, attempt to run AVIC guest would result in the following error:

    BUG: unable to handle page fault for address: ff3a442e549cc270
    #PF: supervisor write access in kernel mode
    #PF: error_code(0x80000003) - RMP violation
    PGD b6ee01067 P4D b6ee02067 PUD 10096d063 PMD 11c540063 PTE 80000001149cc163
    SEV-SNP: PFN 0x1149cc unassigned, dumping non-zero entries in 2M PFN region: [0x114800 - 0x114a00]
    ...

Newer AMD system is enhanced to allow hypervisor to modify the backing page
for non-secure guest on SNP-enabled system. This enhancement is available
when the CPUID Fn8000_001F_EAX bit 30 is set (HvInUseWrAllowed).

This table describes AVIC support matrix w.r.t. SNP enablement:

               | Non-SNP system |     SNP system
-----------------------------------------------------
 Non-SNP guest |  AVIC Activate | AVIC Activate iff
               |                | HvInuseWrAllowed=1
-----------------------------------------------------
     SNP guest |      N/A       |    Secure AVIC

Therefore, check and disable AVIC in kvm_amd driver when the feature is not
available on SNP-enabled system.

See the AMD64 Architecture Programmer’s Manual (APM) Volume 2 for detail.
(https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/
programmer-references/40332.pdf)

Fixes: 216d106c7f ("x86/sev: Add SEV-SNP host initialization support")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/20241104075845.7583-1-suravee.suthikulpanit@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-19 17:47:51 -08:00
Maxim Levitsky 3e633e7e7d KVM: x86: Add interrupt injection information to the kvm_entry tracepoint
Add VMX/SVM specific interrupt injection info the kvm_entry tracepoint.
As is done with kvm_exit, gather the information via a kvm_x86_ops hook
to avoid the moderately costly VMREADs on VMX when the tracepoint isn't
enabled.

Opportunistically rename the parameters in the get_exit_info()
declaration to match the names used by both SVM and VMX.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240910200350.264245-2-mlevitsk@redhat.com
[sean: drop is_guest_mode() change, use intr_info/error_code for names]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 15:14:48 -08:00
Ivan Orlov 7bd7ff9911 KVM: SVM: Handle event vectoring error in check_emulate_instruction()
Detect unhandleable vectoring in check_emulate_instruction() to prevent
infinite retry loops on SVM, and to eliminate the main differences in how
VM-Exits during event vectoring are handled on SVM versus VMX.  E.g. if
the vCPU puts its IDT in emulated MMIO memory and generates an event,
without the check_emulate_instruction() change, SVM will re-inject the
event and resume the guest, and effectively put the vCPU into an infinite
loop.

Signed-off-by: Ivan Orlov <iorlov@amazon.com>
Link: https://lore.kernel.org/r/20241217181458.68690-6-iorlov@amazon.com
[sean: grab "svm" locally, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 15:14:45 -08:00
Sean Christopherson cbdeea032b KVM: x86: Drop superfluous host XSAVE check when adjusting guest XSAVES caps
Drop the manual boot_cpu_has() checks on XSAVE when adjusting the guest's
XSAVES capabilities now that guest cpu_caps incorporates KVM's support.
The guest's cpu_caps are initialized from kvm_cpu_caps, which are in turn
initialized from boot_cpu_data, i.e. checking guest_cpu_cap_has() also
checks host/KVM capabilities (which is the entire point of cpu_caps).

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-52-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 14:20:17 -08:00
Sean Christopherson 8f2a27752e KVM: x86: Replace (almost) all guest CPUID feature queries with cpu_caps
Switch all queries (except XSAVES) of guest features from guest CPUID to
guest capabilities, i.e. replace all calls to guest_cpuid_has() with calls
to guest_cpu_cap_has().

Keep guest_cpuid_has() around for XSAVES, but subsume its helper
guest_cpuid_get_register() and add a compile-time assertion to prevent
using guest_cpuid_has() for any other feature.  Add yet another comment
for XSAVE to explain why KVM is allowed to query its raw guest CPUID.

Opportunistically drop the unused guest_cpuid_clear(), as there should be
no circumstance in which KVM needs to _clear_ a guest CPUID feature now
that everything is tracked via cpu_caps.  E.g. KVM may need to _change_
a feature to emulate dynamic CPUID flags, but KVM should never need to
clear a feature in guest CPUID to prevent it from being used by the guest.

Delete the last remnants of the governed features framework, as the lone
holdout was vmx_adjust_secondary_exec_control()'s divergent behavior for
governed vs. ungoverned features.

Note, replacing guest_cpuid_has() checks with guest_cpu_cap_has() when
computing reserved CR4 bits is a nop when viewed as a whole, as KVM's
capabilities are already incorporated into the calculation, i.e. if a
feature is present in guest CPUID but unsupported by KVM, its CR4 bit
was already being marked as reserved, checking guest_cpu_cap_has() simply
double-stamps that it's a reserved bit.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-51-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 14:20:15 -08:00
Sean Christopherson e592ec657d KVM: x86: Initialize guest cpu_caps based on KVM support
Constrain all guest cpu_caps based on KVM support instead of constraining
only the few features that KVM _currently_ needs to verify are actually
supported by KVM.  The intent of cpu_caps is to track what the guest is
actually capable of using, not the raw, unfiltered CPUID values that the
guest sees.

I.e. KVM should always consult it's only support when making decisions
based on guest CPUID, and the only reason KVM has historically made the
checks opt-in was due to lack of centralized tracking.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-45-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 14:20:09 -08:00
Sean Christopherson a7a308f863 KVM: x86: Initialize guest cpu_caps based on guest CPUID
Initialize a vCPU's capabilities based on the guest CPUID provided by
userspace instead of simply zeroing the entire array.  This is the first
step toward using cpu_caps to query *all* CPUID-based guest capabilities,
i.e. will allow converting all usage of guest_cpuid_has() to
guest_cpu_cap_has().

Zeroing the array was the logical choice when using cpu_caps was opt-in,
e.g. "unsupported" was generally a safer default, and the whole point of
governed features is that KVM would need to check host and guest support,
i.e. making everything unsupported by default didn't require more code.

But requiring KVM to manually "enable" every CPUID-based feature in
cpu_caps would require an absurd amount of boilerplate code.

Follow existing CPUID/kvm_cpu_caps nomenclature where possible, e.g. for
the change() and clear() APIs.  Replace check_and_set() with constrain()
to try and capture that KVM is constraining userspace's desired guest
feature set based on KVM's capabilities.

This is intended to be gigantic nop, i.e. should not have any impact on
guest or KVM functionality.

This is also an intermediate step; a future commit will also incorporate
KVM support into the vCPU's cpu_caps before converting guest_cpuid_has()
to guest_cpu_cap_has().

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-42-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 14:20:06 -08:00
Sean Christopherson 2c5e168e5c KVM: x86: Rename "governed features" helpers to use "guest_cpu_cap"
As the first step toward replacing KVM's so-called "governed features"
framework with a more comprehensive, less poorly named implementation,
replace the "kvm_governed_feature" function prefix with "guest_cpu_cap"
and rename guest_can_use() to guest_cpu_cap_has().

The "guest_cpu_cap" naming scheme mirrors that of "kvm_cpu_cap", and
provides a more clear distinction between guest capabilities, which are
KVM controlled (heh, or one might say "governed"), and guest CPUID, which
with few exceptions is fully userspace controlled.

Opportunistically rewrite the comment about XSS passthrough for SEV-ES
guests to avoid referencing so many functions, as such comments are prone
to becoming stale (case in point...).

No functional change intended.

Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20241128013424.4096668-40-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18 14:20:03 -08:00
Sean Christopherson 036e78a942 KVM: SVM: Remove redundant TLB flush on guest CR4.PGE change
Drop SVM's direct TLB flush when CR4.PGE is toggled and NPT is enabled, as
KVM already guarantees TLBs are flushed appropriately.

For the call from cr_trap(), kvm_post_set_cr4() requests TLB_FLUSH_GUEST
(which is a superset of TLB_FLUSH_CURRENT) when CR4.PGE is toggled,
regardless of whether or not KVM is using TDP.

The calls from nested_vmcb02_prepare_save() and nested_svm_vmexit() are
checking guest (L2) vs. host (L1) CR4, and so a flush is unnecessary as L2
is defined to use a different ASID (from L1's perspective).

Lastly, the call from svm_set_cr0() passes in the current CR4 value, i.e.
can't toggle PGE.

Link: https://lore.kernel.org/r/20241127235312.4048445-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-16 16:15:28 -08:00
Sean Christopherson 45d522d3ee KVM: SVM: Macrofy SEV=n versions of sev_xxx_guest()
Define sev_{,es_,snp_}guest() as "false" when SEV is disabled via Kconfig,
i.e. when CONFIG_KVM_AMD_SEV=n.  Despite the helpers being __always_inline,
gcc-12 is somehow incapable of realizing that the return value is a
compile-time constant and generates sub-optimal code.

Opportunistically clump the paths together to reduce the amount of
ifdeffery.

No functional change intended.

Link: https://lore.kernel.org/r/20241127234659.4046347-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-16 16:15:27 -08:00
Peter Zijlstra 2190966fbc x86: Convert unreachable() to BUG()
Avoid unreachable() as it can (and will in the absence of UBSAN)
generate fallthrough code. Use BUG() so we get a UD2 trap (with
unreachable annotation).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20241128094312.028316261@infradead.org
2024-12-02 12:01:43 +01:00
Linus Torvalds 9f16d5e6f2 The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages.  The reason to
 do so was that KVM needs to map both non-refcounted pages (for example
 BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain
 refcounted pages.  However, the result was security issues in the past,
 and more recently the inability to map VM_IO and VM_PFNMAP memory
 that _is_ backed by struct page but is not refcounted.  In particular
 this broke virtio-gpu blob resources (which directly map host graphics
 buffers into the guest as "vram" for the virtio-gpu device) with the
 amdgpu driver, because amdgpu allocates non-compound higher order pages
 and the tail pages could not be mapped into KVM.
 
 This requires adjusting all uses of struct page in the per-architecture
 code, to always work on the pfn whenever possible.  The large series that
 did this, from David Stevens and Sean Christopherson, also cleaned up
 substantially the set of functions that provided arch code with the
 pfn for a host virtual addresses.  The previous maze of twisty little
 passages, all different, is replaced by five functions (__gfn_to_page,
 __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages)
 saving almost 200 lines of code.
 
 ARM:
 
 * Support for stage-1 permission indirection (FEAT_S1PIE) and
   permission overlays (FEAT_S1POE), including nested virt + the
   emulated page table walker
 
 * Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call
   was introduced in PSCIv1.3 as a mechanism to request hibernation,
   similar to the S4 state in ACPI
 
 * Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
   part of it, introduce trivial initialization of the host's MPAM
   context so KVM can use the corresponding traps
 
 * PMU support under nested virtualization, honoring the guest
   hypervisor's trap configuration and event filtering when running a
   nested guest
 
 * Fixes to vgic ITS serialization where stale device/interrupt table
   entries are not zeroed when the mapping is invalidated by the VM
 
 * Avoid emulated MMIO completion if userspace has requested synchronous
   external abort injection
 
 * Various fixes and cleanups affecting pKVM, vCPU initialization, and
   selftests
 
 LoongArch:
 
 * Add iocsr and mmio bus simulation in kernel.
 
 * Add in-kernel interrupt controller emulation.
 
 * Add support for virtualization extensions to the eiointc irqchip.
 
 PPC:
 
 * Drop lingering and utterly obsolete references to PPC970 KVM, which was
   removed 10 years ago.
 
 * Fix incorrect documentation references to non-existing ioctls
 
 RISC-V:
 
 * Accelerate KVM RISC-V when running as a guest
 
 * Perf support to collect KVM guest statistics from host side
 
 s390:
 
 * New selftests: more ucontrol selftests and CPU model sanity checks
 
 * Support for the gen17 CPU model
 
 * List registers supported by KVM_GET/SET_ONE_REG in the documentation
 
 x86:
 
 * Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
   documentation, harden against unexpected changes.  Even if the hardware
   A/D tracking is disabled, it is possible to use the hardware-defined A/D
   bits to track if a PFN is Accessed and/or Dirty, and that removes a lot
   of special cases.
 
 * Elide TLB flushes when aging secondary PTEs, as has been done in x86's
   primary MMU for over 10 years.
 
 * Recover huge pages in-place in the TDP MMU when dirty page logging is
   toggled off, instead of zapping them and waiting until the page is
   re-accessed to create a huge mapping.  This reduces vCPU jitter.
 
 * Batch TLB flushes when dirty page logging is toggled off.  This reduces
   the time it takes to disable dirty logging by ~3x.
 
 * Remove the shrinker that was (poorly) attempting to reclaim shadow page
   tables in low-memory situations.
 
 * Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
 
 * Advertise CPUIDs for new instructions in Clearwater Forest
 
 * Quirk KVM's misguided behavior of initialized certain feature MSRs to
   their maximum supported feature set, which can result in KVM creating
   invalid vCPU state.  E.g. initializing PERF_CAPABILITIES to a non-zero
   value results in the vCPU having invalid state if userspace hides PDCM
   from the guest, which in turn can lead to save/restore failures.
 
 * Fix KVM's handling of non-canonical checks for vCPUs that support LA57
   to better follow the "architecture", in quotes because the actual
   behavior is poorly documented.  E.g. most MSR writes and descriptor
   table loads ignore CR4.LA57 and operate purely on whether the CPU
   supports LA57.
 
 * Bypass the register cache when querying CPL from kvm_sched_out(), as
   filling the cache from IRQ context is generally unsafe; harden the
   cache accessors to try to prevent similar issues from occuring in the
   future.  The issue that triggered this change was already fixed in 6.12,
   but was still kinda latent.
 
 * Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
   over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
 
 * Minor cleanups
 
 * Switch hugepage recovery thread to use vhost_task.  These kthreads can
   consume significant amounts of CPU time on behalf of a VM or in response
   to how the VM behaves (for example how it accesses its memory); therefore
   KVM tried to place the thread in the VM's cgroups and charge the CPU
   time consumed by that work to the VM's container.  However the kthreads
   did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM
   instances inside could not complete freezing.  Fix this by replacing the
   kthread with a PF_USER_WORKER thread, via the vhost_task abstraction.
   Another 100+ lines removed, with generally better behavior too like
   having these threads properly parented in the process tree.
 
 * Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't
   really work; there was really nothing to work around anyway: the broken
   patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL
   MSR is virtualized and therefore unaffected by the erratum.
 
 * Fix 6.12 regression where CONFIG_KVM will be built as a module even
   if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'.
 
 x86 selftests:
 
 * x86 selftests can now use AVX.
 
 Documentation:
 
 * Use rST internal links
 
 * Reorganize the introduction to the API document
 
 Generic:
 
 * Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
   of RCU, so that running a vCPU on a different task doesn't encounter long
   due to having to wait for all CPUs become quiescent.  In general both reads
   and writes are rare, but userspace that supports confidential computing is
   introducing the use of "helper" vCPUs that may jump from one host processor
   to another.  Those will be very happy to trigger a synchronize_rcu(), and
   the effect on performance is quite the disaster.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4
 dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS
 letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI
 1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+
 t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW
 ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig==
 =lWpE
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "The biggest change here is eliminating the awful idea that KVM had of
  essentially guessing which pfns are refcounted pages.

  The reason to do so was that KVM needs to map both non-refcounted
  pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
  VMAs that contain refcounted pages.

  However, the result was security issues in the past, and more recently
  the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
  struct page but is not refcounted. In particular this broke virtio-gpu
  blob resources (which directly map host graphics buffers into the
  guest as "vram" for the virtio-gpu device) with the amdgpu driver,
  because amdgpu allocates non-compound higher order pages and the tail
  pages could not be mapped into KVM.

  This requires adjusting all uses of struct page in the
  per-architecture code, to always work on the pfn whenever possible.
  The large series that did this, from David Stevens and Sean
  Christopherson, also cleaned up substantially the set of functions
  that provided arch code with the pfn for a host virtual addresses.

  The previous maze of twisty little passages, all different, is
  replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
  non-__ versions of these two, and kvm_prefetch_pages) saving almost
  200 lines of code.

  ARM:

   - Support for stage-1 permission indirection (FEAT_S1PIE) and
     permission overlays (FEAT_S1POE), including nested virt + the
     emulated page table walker

   - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
     call was introduced in PSCIv1.3 as a mechanism to request
     hibernation, similar to the S4 state in ACPI

   - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
     part of it, introduce trivial initialization of the host's MPAM
     context so KVM can use the corresponding traps

   - PMU support under nested virtualization, honoring the guest
     hypervisor's trap configuration and event filtering when running a
     nested guest

   - Fixes to vgic ITS serialization where stale device/interrupt table
     entries are not zeroed when the mapping is invalidated by the VM

   - Avoid emulated MMIO completion if userspace has requested
     synchronous external abort injection

   - Various fixes and cleanups affecting pKVM, vCPU initialization, and
     selftests

  LoongArch:

   - Add iocsr and mmio bus simulation in kernel.

   - Add in-kernel interrupt controller emulation.

   - Add support for virtualization extensions to the eiointc irqchip.

  PPC:

   - Drop lingering and utterly obsolete references to PPC970 KVM, which
     was removed 10 years ago.

   - Fix incorrect documentation references to non-existing ioctls

  RISC-V:

   - Accelerate KVM RISC-V when running as a guest

   - Perf support to collect KVM guest statistics from host side

  s390:

   - New selftests: more ucontrol selftests and CPU model sanity checks

   - Support for the gen17 CPU model

   - List registers supported by KVM_GET/SET_ONE_REG in the
     documentation

  x86:

   - Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
     improve documentation, harden against unexpected changes.

     Even if the hardware A/D tracking is disabled, it is possible to
     use the hardware-defined A/D bits to track if a PFN is Accessed
     and/or Dirty, and that removes a lot of special cases.

   - Elide TLB flushes when aging secondary PTEs, as has been done in
     x86's primary MMU for over 10 years.

   - Recover huge pages in-place in the TDP MMU when dirty page logging
     is toggled off, instead of zapping them and waiting until the page
     is re-accessed to create a huge mapping. This reduces vCPU jitter.

   - Batch TLB flushes when dirty page logging is toggled off. This
     reduces the time it takes to disable dirty logging by ~3x.

   - Remove the shrinker that was (poorly) attempting to reclaim shadow
     page tables in low-memory situations.

   - Clean up and optimize KVM's handling of writes to
     MSR_IA32_APICBASE.

   - Advertise CPUIDs for new instructions in Clearwater Forest

   - Quirk KVM's misguided behavior of initialized certain feature MSRs
     to their maximum supported feature set, which can result in KVM
     creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
     a non-zero value results in the vCPU having invalid state if
     userspace hides PDCM from the guest, which in turn can lead to
     save/restore failures.

   - Fix KVM's handling of non-canonical checks for vCPUs that support
     LA57 to better follow the "architecture", in quotes because the
     actual behavior is poorly documented. E.g. most MSR writes and
     descriptor table loads ignore CR4.LA57 and operate purely on
     whether the CPU supports LA57.

   - Bypass the register cache when querying CPL from kvm_sched_out(),
     as filling the cache from IRQ context is generally unsafe; harden
     the cache accessors to try to prevent similar issues from occuring
     in the future. The issue that triggered this change was already
     fixed in 6.12, but was still kinda latent.

   - Advertise AMD_IBPB_RET to userspace, and fix a related bug where
     KVM over-advertises SPEC_CTRL when trying to support cross-vendor
     VMs.

   - Minor cleanups

   - Switch hugepage recovery thread to use vhost_task.

     These kthreads can consume significant amounts of CPU time on
     behalf of a VM or in response to how the VM behaves (for example
     how it accesses its memory); therefore KVM tried to place the
     thread in the VM's cgroups and charge the CPU time consumed by that
     work to the VM's container.

     However the kthreads did not process SIGSTOP/SIGCONT, and therefore
     cgroups which had KVM instances inside could not complete freezing.

     Fix this by replacing the kthread with a PF_USER_WORKER thread, via
     the vhost_task abstraction. Another 100+ lines removed, with
     generally better behavior too like having these threads properly
     parented in the process tree.

   - Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
     didn't really work; there was really nothing to work around anyway:
     the broken patch was meant to fix nested virtualization, but the
     PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
     erratum.

   - Fix 6.12 regression where CONFIG_KVM will be built as a module even
     if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
     'y'.

  x86 selftests:

   - x86 selftests can now use AVX.

  Documentation:

   - Use rST internal links

   - Reorganize the introduction to the API document

  Generic:

   - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
     instead of RCU, so that running a vCPU on a different task doesn't
     encounter long due to having to wait for all CPUs become quiescent.

     In general both reads and writes are rare, but userspace that
     supports confidential computing is introducing the use of "helper"
     vCPUs that may jump from one host processor to another. Those will
     be very happy to trigger a synchronize_rcu(), and the effect on
     performance is quite the disaster"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
  KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
  KVM: x86: add back X86_LOCAL_APIC dependency
  Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
  KVM: x86: switch hugepage recovery thread to vhost_task
  KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
  x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
  Documentation: KVM: fix malformed table
  irqchip/loongson-eiointc: Add virt extension support
  LoongArch: KVM: Add irqfd support
  LoongArch: KVM: Add PCHPIC user mode read and write functions
  LoongArch: KVM: Add PCHPIC read and write functions
  LoongArch: KVM: Add PCHPIC device support
  LoongArch: KVM: Add EIOINTC user mode read and write functions
  LoongArch: KVM: Add EIOINTC read and write functions
  LoongArch: KVM: Add EIOINTC device support
  LoongArch: KVM: Add IPI user mode read and write function
  LoongArch: KVM: Add IPI read and write function
  LoongArch: KVM: Add IPI device support
  LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
  KVM: arm64: Pass on SVE mapping failures
  ...
2024-11-23 16:00:50 -08:00
Linus Torvalds 0f25f0e4ef the bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same
 scope where they'd been created, getting rid of reassignments
 and passing them by reference, converting to CLASS(fd{,_pos,_raw}).
 
 We are getting very close to having the memory safety of that stuff
 trivial to verify.
 
 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ
 69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9
 CN18glYmD3wRyU6Bwl4vGODouSJvDgA=
 =gVH3
 -----END PGP SIGNATURE-----

Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull 'struct fd' class updates from Al Viro:
 "The bulk of struct fd memory safety stuff

  Making sure that struct fd instances are destroyed in the same scope
  where they'd been created, getting rid of reassignments and passing
  them by reference, converting to CLASS(fd{,_pos,_raw}).

  We are getting very close to having the memory safety of that stuff
  trivial to verify"

* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits)
  deal with the last remaing boolean uses of fd_file()
  css_set_fork(): switch to CLASS(fd_raw, ...)
  memcg_write_event_control(): switch to CLASS(fd)
  assorted variants of irqfd setup: convert to CLASS(fd)
  do_pollfd(): convert to CLASS(fd)
  convert do_select()
  convert vfs_dedupe_file_range().
  convert cifs_ioctl_copychunk()
  convert media_request_get_by_fd()
  convert spu_run(2)
  switch spufs_calls_{get,put}() to CLASS() use
  convert cachestat(2)
  convert do_preadv()/do_pwritev()
  fdget(), more trivial conversions
  fdget(), trivial conversions
  privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget()
  o2hb_region_dev_store(): avoid goto around fdget()/fdput()
  introduce "fd_pos" class, convert fdget_pos() users to it.
  fdget_raw() users: switch to CLASS(fd_raw)
  convert vmsplice() to CLASS(fd)
  ...
2024-11-18 12:24:06 -08:00
Paolo Bonzini 2e9a2c624e Merge branch 'kvm-docs-6.13' into HEAD
- Drop obsolete references to PPC970 KVM, which was removed 10 years ago.

- Fix incorrect references to non-existing ioctls

- List registers supported by KVM_GET/SET_ONE_REG on s390

- Use rST internal links

- Reorganize the introduction to the API document
2024-11-13 07:18:12 -05:00
Paolo Bonzini bb4409a9e7 KVM x86 misc changes for 6.13
- Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
 
  - Quirk KVM's misguided behavior of initialized certain feature MSRs to
    their maximum supported feature set, which can result in KVM creating
    invalid vCPU state.  E.g. initializing PERF_CAPABILITIES to a non-zero
    value results in the vCPU having invalid state if userspace hides PDCM
    from the guest, which can lead to save/restore failures.
 
  - Fix KVM's handling of non-canonical checks for vCPUs that support LA57
    to better follow the "architecture", in quotes because the actual
    behavior is poorly documented.  E.g. most MSR writes and descriptor
    table loads ignore CR4.LA57 and operate purely on whether the CPU
    supports LA57.
 
  - Bypass the register cache when querying CPL from kvm_sched_out(), as
    filling the cache from IRQ context is generally unsafe, and harden the
    cache accessors to try to prevent similar issues from occuring in the
    future.
 
  - Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
    over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
 
  - Minor cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmczowUACgkQOlYIJqCj
 N/3G8w//RYIslQkHXZXovQvhHKM9RBxdg6FjU0Do2KLN/xnR+JdjrBAI3HnG0TVu
 TEsA6slaTdvAFudSBZ27rORPARJ3XCSnDT+NflDR2UqtmGYFXxixcs4LQRUC3I2L
 tS/e847Qfp7/+kXFYQuH6YmMftCf7SQNbUPU3EwSXY8seUJB6ZhO89WXgrBtaMH+
 94b7EdkP86L4dqiEMGr/q/46/ewFpPlB4WWFNIAY+SoZebQ+C8gcAsGDzfG6giNV
 HxdehWNp5nJ34k9Tudt2FseL/IclA3nXZZIl2dU6PWLkjgvDqL2kXLHpAQTpKuXf
 ZzBM4wjdVqZRQHscLgX6+0/uOJDf9/iJs/dwD9PbzLhAJnHF3SWRAy/grzpChLFR
 Yil5zagtdhjqSKDf2FsUCJ7lwaST0fhHvmZZx4loIhcmN0/rvvrhhfLsJgCWv/Kf
 RWMkiSQGhxAZUXjOJDQB+wTHv7ZoJy51ov7/rYjr49jCJrCVO6I6yQ6lNKDCYClR
 vDS3yK6fiEXbC09iudm74FBl2KO+BwJKhnidekzzKGv34RHRAux5Oo54J5jJMhBA
 tXFxALGwKr1KAI7vLK8ByZzwZjN5pDmKHUuOAlJNy9XQi+b4zbbREkXlcqZ5VgxA
 xCibpnLzJFoHS8y7c76wfz4mCkWSWzuC9Rzy4sTkHMzgJESmZiE=
 =dESL
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.13' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.13

 - Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.

 - Quirk KVM's misguided behavior of initialized certain feature MSRs to
   their maximum supported feature set, which can result in KVM creating
   invalid vCPU state.  E.g. initializing PERF_CAPABILITIES to a non-zero
   value results in the vCPU having invalid state if userspace hides PDCM
   from the guest, which can lead to save/restore failures.

 - Fix KVM's handling of non-canonical checks for vCPUs that support LA57
   to better follow the "architecture", in quotes because the actual
   behavior is poorly documented.  E.g. most MSR writes and descriptor
   table loads ignore CR4.LA57 and operate purely on whether the CPU
   supports LA57.

 - Bypass the register cache when querying CPL from kvm_sched_out(), as
   filling the cache from IRQ context is generally unsafe, and harden the
   cache accessors to try to prevent similar issues from occuring in the
   future.

 - Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
   over-advertises SPEC_CTRL when trying to support cross-vendor VMs.

 - Minor cleanups
2024-11-13 06:33:00 -05:00
Dionna Glaze e3a7792d96 kvm: svm: Fix gctx page leak on invalid inputs
Ensure that snp gctx page allocation is adequately deallocated on
failure during snp_launch_start.

Fixes: 136d8bc931 ("KVM: SEV: Add KVM_SEV_SNP_LAUNCH_START command")

CC: Sean Christopherson <seanjc@google.com>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Ingo Molnar <mingo@redhat.com>
CC: Borislav Petkov <bp@alien8.de>
CC: Dave Hansen <dave.hansen@linux.intel.com>
CC: Ashish Kalra <ashish.kalra@amd.com>
CC: Tom Lendacky <thomas.lendacky@amd.com>
CC: John Allen <john.allen@amd.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: "David S. Miller" <davem@davemloft.net>
CC: Michael Roth <michael.roth@amd.com>
CC: Luis Chamberlain <mcgrof@kernel.org>
CC: Russ Weight <russ.weight@linux.dev>
CC: Danilo Krummrich <dakr@redhat.com>
CC: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CC: "Rafael J. Wysocki" <rafael@kernel.org>
CC: Tianfei zhang <tianfei.zhang@intel.com>
CC: Alexey Kardashevskiy <aik@amd.com>

Signed-off-by: Dionna Glaze <dionnaglaze@google.com>
Message-ID: <20241105010558.1266699-2-dionnaglaze@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-11-08 05:57:13 -05:00
Sean Christopherson e5d253c60e KVM: SVM: Propagate error from snp_guest_req_init() to userspace
If snp_guest_req_init() fails, return the provided error code up the
stack to userspace, e.g. so that userspace can log that KVM_SEV_INIT2
failed, as opposed to some random operation later in VM setup failing
because SNP wasn't actually enabled for the VM.

Note, KVM itself doesn't consult the return value from __sev_guest_init(),
i.e. the fallout is purely that userspace may be confused.

Fixes: 88caf544c9 ("KVM: SEV: Provide support for SNP_GUEST_REQUEST NAE event")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202410192220.MeTyHPxI-lkp@intel.com
Link: https://lore.kernel.org/r/20241031203214.1585751-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-04 22:03:04 -08:00
Al Viro 6348be02ee fdget(), trivial conversions
fdget() is the first thing done in scope, all matching fdput() are
immediately followed by leaving the scope.

Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-11-03 01:28:06 -05:00
Sean Christopherson dcb988cdac KVM: x86: Quirk initialization of feature MSRs to KVM's max configuration
Add a quirk to control KVM's misguided initialization of select feature
MSRs to KVM's max configuration, as enabling features by default violates
KVM's approach of letting userspace own the vCPU model, and is actively
problematic for MSRs that are conditionally supported, as the vCPU will
end up with an MSR value that userspace can't restore.  E.g. if the vCPU
is configured with PDCM=0, userspace will save and attempt to restore a
non-zero PERF_CAPABILITIES, thanks to KVM's meddling.

Link: https://lore.kernel.org/r/20240802185511.305849-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01 09:22:31 -07:00
Sean Christopherson f0e7012c4b KVM: x86: Bypass register cache when querying CPL from kvm_sched_out()
When querying guest CPL to determine if a vCPU was preempted while in
kernel mode, bypass the register cache, i.e. always read SS.AR_BYTES from
the VMCS on Intel CPUs.  If the kernel is running with full preemption
enabled, using the register cache in the preemption path can result in
stale and/or uninitialized data being cached in the segment cache.

In particular the following scenario is currently possible:

 - vCPU is just created, and the vCPU thread is preempted before
   SS.AR_BYTES is written in vmx_vcpu_reset().

 - When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() =>
   vmx_get_cpl() reads and caches '0' for SS.AR_BYTES.

 - vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't
   invoke vmx_segment_cache_clear() to invalidate the cache.

As a result, KVM retains a stale value in the cache, which can be read,
e.g. via KVM_GET_SREGS.  Usually this is not a problem because the VMX
segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM
selftests) reads and writes system registers just after the vCPU was
created, _without_ modifying SS.AR_BYTES, userspace will write back the
stale '0' value and ultimately will trigger a VM-Entry failure due to
incorrect SS segment type.

Note, the VM-Enter failure can also be avoided by moving the call to
vmx_segment_cache_clear() until after the vmx_vcpu_reset() initializes all
segments.  However, while that change is correct and desirable (and will
come along shortly), it does not address the underlying problem that
accessing KVM's register caches from !task context is generally unsafe.

In addition to fixing the immediate bug, bypassing the cache for this
particular case will allow hardening KVM register caching log to assert
that the caches are accessed only when KVM _knows_ it is safe to do so.

Fixes: de63ad4cf4 ("KVM: X86: implement the logic for spinlock optimization")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Closes: https://lore.kernel.org/all/20240716022014.240960-3-mlevitsk@redhat.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20241009175002.1118178-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-11-01 09:22:21 -07:00
Sean Christopherson 1fbee5b01a KVM: guest_memfd: Provide "struct page" as output from kvm_gmem_get_pfn()
Provide the "struct page" associated with a guest_memfd pfn as an output
from __kvm_gmem_get_pfn() so that KVM guest page fault handlers can
directly put the page instead of having to rely on
kvm_pfn_to_refcounted_page().

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-47-seanjc@google.com>
2024-10-25 13:00:47 -04:00
Sean Christopherson 365e319208 KVM: Pass in write/dirty to kvm_vcpu_map(), not kvm_vcpu_unmap()
Now that all kvm_vcpu_{,un}map() users pass "true" for @dirty, have them
pass "true" as a @writable param to kvm_vcpu_map(), and thus create a
read-only mapping when possible.

Note, creating read-only mappings can be theoretically slower, as they
don't play nice with fast GUP due to the need to break CoW before mapping
the underlying PFN.  But practically speaking, creating a mapping isn't
a super hot path, and getting a writable mapping for reading is weird and
confusing.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-34-seanjc@google.com>
2024-10-25 12:59:07 -04:00
Sean Christopherson f559b2e9c5 KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.

In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.

Per the APM:

  The CR3 register points to the base address of the page-directory-pointer
  table. The page-directory-pointer table is aligned on a 32-byte boundary,
  with the low 5 address bits 4:0 assumed to be 0.

And the SDM's much more explicit:

  4:0    Ignored

Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken.

Fixes: e4e517b4be ("KVM: MMU: Do not unconditionally read PDPTE from guest memory")
Reported-by: Kirk Swidowski <swidowski@google.com>
Cc: Andy Nguyen <theflow@google.com>
Cc: 3pvd <3pvd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009140838.1036226-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-20 07:31:06 -04:00
Linus Torvalds 3efc57369a x86:
* KVM currently invalidates the entirety of the page tables, not just
   those for the memslot being touched, when a memslot is moved or deleted.
   The former does not have particularly noticeable overhead, but Intel's
   TDX will require the guest to re-accept private pages if they are
   dropped from the secure EPT, which is a non starter.  Actually,
   the only reason why this is not already being done is a bug which
   was never fully investigated and caused VM instability with assigned
   GeForce GPUs, so allow userspace to opt into the new behavior.
 
 * Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
   functionality that is on the horizon).
 
 * Rework common MSR handling code to suppress errors on userspace accesses to
   unsupported-but-advertised MSRs.  This will allow removing (almost?) all of
   KVM's exemptions for userspace access to MSRs that shouldn't exist based on
   the vCPU model (the actual cleanup is non-trivial future work).
 
 * Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
   64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
   stores the entire 64-bit value at the ICR offset.
 
 * Fix a bug where KVM would fail to exit to userspace if one was triggered by
   a fastpath exit handler.
 
 * Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
   there's already a pending wake event at the time of the exit.
 
 * Fix a WARN caused by RSM entering a nested guest from SMM with invalid guest
   state, by forcing the vCPU out of guest mode prior to signalling SHUTDOWN
   (the SHUTDOWN hits the VM altogether, not the nested guest)
 
 * Overhaul the "unprotect and retry" logic to more precisely identify cases
   where retrying is actually helpful, and to harden all retry paths against
   putting the guest into an infinite retry loop.
 
 * Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in
   the shadow MMU.
 
 * Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for
   adding multi generation LRU support in KVM.
 
 * Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled,
   i.e. when the CPU has already flushed the RSB.
 
 * Trace the per-CPU host save area as a VMCB pointer to improve readability
   and cleanup the retrieval of the SEV-ES host save area.
 
 * Remove unnecessary accounting of temporary nested VMCB related allocations.
 
 * Set FINAL/PAGE in the page fault error code for EPT violations if and only
   if the GVA is valid.  If the GVA is NOT valid, there is no guest-side page
   table walk and so stuffing paging related metadata is nonsensical.
 
 * Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
   emulating posted interrupt delivery to L2.
 
 * Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.
 
 * Harden eVMCS loading against an impossible NULL pointer deref (really truly
   should be impossible).
 
 * Minor SGX fix and a cleanup.
 
 * Misc cleanups
 
 Generic:
 
 * Register KVM's cpuhp and syscore callbacks when enabling virtualization in
   hardware, as the sole purpose of said callbacks is to disable and re-enable
   virtualization as needed.
 
 * Enable virtualization when KVM is loaded, not right before the first VM
   is created.  Together with the previous change, this simplifies a
   lot the logic of the callbacks, because their very existence implies
   virtualization is enabled.
 
 * Fix a bug that results in KVM prematurely exiting to userspace for coalesced
   MMIO/PIO in many cases, clean up the related code, and add a testcase.
 
 * Fix a bug in kvm_clear_guest() where it would trigger a buffer overflow _if_
   the gpa+len crosses a page boundary, which thankfully is guaranteed to not
   happen in the current code base.  Add WARNs in more helpers that read/write
   guest memory to detect similar bugs.
 
 Selftests:
 
 * Fix a goof that caused some Hyper-V tests to be skipped when run on bare
   metal, i.e. NOT in a VM.
 
 * Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES guest.
 
 * Explicitly include one-off assets in .gitignore.  Past Sean was completely
   wrong about not being able to detect missing .gitignore entries.
 
 * Verify userspace single-stepping works when KVM happens to handle a VM-Exit
   in its fastpath.
 
 * Misc cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmb201AUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOM1gf+Ij7dpCh0KwoNYlHfW2aCHAv3PqQd
 cKMDSGxoCernbJEyPO/3qXNUK+p4zKedk3d92snW3mKa+cwxMdfthJ3i9d7uoNiw
 7hAgcfKNHDZGqAQXhx8QcVF3wgp+diXSyirR+h1IKrGtCCmjMdNC8ftSYe6voEkw
 VTVbLL+tER5H0Xo5UKaXbnXKDbQvWLXkdIqM8dtLGFGLQ2PnF/DdMP0p6HYrKf1w
 B7LBu0rvqYDL8/pS82mtR3brHJXxAr9m72fOezRLEUbfUdzkTUi/b1vEe6nDCl0Q
 i/PuFlARDLWuetlR0VVWKNbop/C/l4EmwCcKzFHa+gfNH3L9361Oz+NzBw==
 =Q7kz
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull x86 kvm updates from Paolo Bonzini:
 "x86:

   - KVM currently invalidates the entirety of the page tables, not just
     those for the memslot being touched, when a memslot is moved or
     deleted.

     This does not traditionally have particularly noticeable overhead,
     but Intel's TDX will require the guest to re-accept private pages
     if they are dropped from the secure EPT, which is a non starter.

     Actually, the only reason why this is not already being done is a
     bug which was never fully investigated and caused VM instability
     with assigned GeForce GPUs, so allow userspace to opt into the new
     behavior.

   - Advertise AVX10.1 to userspace (effectively prep work for the
     "real" AVX10 functionality that is on the horizon)

   - Rework common MSR handling code to suppress errors on userspace
     accesses to unsupported-but-advertised MSRs

     This will allow removing (almost?) all of KVM's exemptions for
     userspace access to MSRs that shouldn't exist based on the vCPU
     model (the actual cleanup is non-trivial future work)

   - Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC)
     splits the 64-bit value into the legacy ICR and ICR2 storage,
     whereas Intel (APICv) stores the entire 64-bit value at the ICR
     offset

   - Fix a bug where KVM would fail to exit to userspace if one was
     triggered by a fastpath exit handler

   - Add fastpath handling of HLT VM-Exit to expedite re-entering the
     guest when there's already a pending wake event at the time of the
     exit

   - Fix a WARN caused by RSM entering a nested guest from SMM with
     invalid guest state, by forcing the vCPU out of guest mode prior to
     signalling SHUTDOWN (the SHUTDOWN hits the VM altogether, not the
     nested guest)

   - Overhaul the "unprotect and retry" logic to more precisely identify
     cases where retrying is actually helpful, and to harden all retry
     paths against putting the guest into an infinite retry loop

   - Add support for yielding, e.g. to honor NEED_RESCHED, when zapping
     rmaps in the shadow MMU

   - Refactor pieces of the shadow MMU related to aging SPTEs in
     prepartion for adding multi generation LRU support in KVM

   - Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is
     enabled, i.e. when the CPU has already flushed the RSB

   - Trace the per-CPU host save area as a VMCB pointer to improve
     readability and cleanup the retrieval of the SEV-ES host save area

   - Remove unnecessary accounting of temporary nested VMCB related
     allocations

   - Set FINAL/PAGE in the page fault error code for EPT violations if
     and only if the GVA is valid. If the GVA is NOT valid, there is no
     guest-side page table walk and so stuffing paging related metadata
     is nonsensical

   - Fix a bug where KVM would incorrectly synthesize a nested VM-Exit
     instead of emulating posted interrupt delivery to L2

   - Add a lockdep assertion to detect unsafe accesses of vmcs12
     structures

   - Harden eVMCS loading against an impossible NULL pointer deref
     (really truly should be impossible)

   - Minor SGX fix and a cleanup

   - Misc cleanups

  Generic:

   - Register KVM's cpuhp and syscore callbacks when enabling
     virtualization in hardware, as the sole purpose of said callbacks
     is to disable and re-enable virtualization as needed

   - Enable virtualization when KVM is loaded, not right before the
     first VM is created

     Together with the previous change, this simplifies a lot the logic
     of the callbacks, because their very existence implies
     virtualization is enabled

   - Fix a bug that results in KVM prematurely exiting to userspace for
     coalesced MMIO/PIO in many cases, clean up the related code, and
     add a testcase

   - Fix a bug in kvm_clear_guest() where it would trigger a buffer
     overflow _if_ the gpa+len crosses a page boundary, which thankfully
     is guaranteed to not happen in the current code base. Add WARNs in
     more helpers that read/write guest memory to detect similar bugs

  Selftests:

   - Fix a goof that caused some Hyper-V tests to be skipped when run on
     bare metal, i.e. NOT in a VM

   - Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES
     guest

   - Explicitly include one-off assets in .gitignore. Past Sean was
     completely wrong about not being able to detect missing .gitignore
     entries

   - Verify userspace single-stepping works when KVM happens to handle a
     VM-Exit in its fastpath

   - Misc cleanups"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
  Documentation: KVM: fix warning in "make htmldocs"
  s390: Enable KVM_S390_UCONTROL config in debug_defconfig
  selftests: kvm: s390: Add VM run test case
  KVM: SVM: let alternatives handle the cases when RSB filling is required
  KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is valid
  KVM: x86/mmu: Use KVM_PAGES_PER_HPAGE() instead of an open coded equivalent
  KVM: x86/mmu: Add KVM_RMAP_MANY to replace open coded '1' and '1ul' literals
  KVM: x86/mmu: Fold mmu_spte_age() into kvm_rmap_age_gfn_range()
  KVM: x86/mmu: Morph kvm_handle_gfn_range() into an aging specific helper
  KVM: x86/mmu: Honor NEED_RESCHED when zapping rmaps and blocking is allowed
  KVM: x86/mmu: Add a helper to walk and zap rmaps for a memslot
  KVM: x86/mmu: Plumb a @can_yield parameter into __walk_slot_rmaps()
  KVM: x86/mmu: Move walk_slot_rmaps() up near for_each_slot_rmap_range()
  KVM: x86/mmu: WARN on MMIO cache hit when emulating write-protected gfn
  KVM: x86/mmu: Detect if unprotect will do anything based on invalid_list
  KVM: x86/mmu: Subsume kvm_mmu_unprotect_page() into the and_retry() version
  KVM: x86: Rename reexecute_instruction()=>kvm_unprotect_and_retry_on_failure()
  KVM: x86: Update retry protection fields when forcing retry on emulation failure
  KVM: x86: Apply retry protection to "unprotect on failure" path
  KVM: x86: Check EMULTYPE_WRITE_PF_TO_SP before unprotecting gfn
  ...
2024-09-28 09:20:14 -07:00
Linus Torvalds f8ffbc365f struct fd layout change (and conversion to accessor helpers)
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZvDNmgAKCRBZ7Krx/gZQ
 63zrAP9vI0rf55v27twiabe9LnI7aSx5ckoqXxFIFxyT3dOYpQD/bPmoApnWDD3d
 592+iDgLsema/H/0/CqfqlaNtDNY8Q0=
 =HUl5
 -----END PGP SIGNATURE-----

Merge tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull 'struct fd' updates from Al Viro:
 "Just the 'struct fd' layout change, with conversion to accessor
  helpers"

* tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  add struct fd constructors, get rid of __to_fd()
  struct fd: representation change
  introduce fd_file(), convert all accessors to it.
2024-09-23 09:35:36 -07:00
Paolo Bonzini 55e6f8f29d Merge tag 'kvm-x86-svm-6.12' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.12:

 - Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled,
   i.e. when the CPU has already flushed the RSB.

 - Trace the per-CPU host save area as a VMCB pointer to improve readability
   and cleanup the retrieval of the SEV-ES host save area.

 - Remove unnecessary accounting of temporary nested VMCB related allocations.
2024-09-17 12:41:13 -04:00
Paolo Bonzini 41786cc5ea Merge tag 'kvm-x86-misc-6.12' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.12

 - Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
   functionality that is on the horizon).

 - Rework common MSR handling code to suppress errors on userspace accesses to
   unsupported-but-advertised MSRs.  This will allow removing (almost?) all of
   KVM's exemptions for userspace access to MSRs that shouldn't exist based on
   the vCPU model (the actual cleanup is non-trivial future work).

 - Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
   64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
   stores the entire 64-bit value a the ICR offset.

 - Fix a bug where KVM would fail to exit to userspace if one was triggered by
   a fastpath exit handler.

 - Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
   there's already a pending wake event at the time of the exit.

 - Finally fix the RSM vs. nested VM-Enter WARN by forcing the vCPU out of
   guest mode prior to signalling SHUTDOWN (architecturally, the SHUTDOWN is
   supposed to hit L1, not L2).
2024-09-17 11:38:23 -04:00
Paolo Bonzini c09dd2bb57 Merge branch 'kvm-redo-enable-virt' into HEAD
Register KVM's cpuhp and syscore callbacks when enabling virtualization in
hardware, as the sole purpose of said callbacks is to disable and re-enable
virtualization as needed.

The primary motivation for this series is to simplify dealing with enabling
virtualization for Intel's TDX, which needs to enable virtualization
when kvm-intel.ko is loaded, i.e. long before the first VM is created.

That said, this is a nice cleanup on its own.  By registering the callbacks
on-demand, the callbacks themselves don't need to check kvm_usage_count,
because their very existence implies a non-zero count.

Patch 1 (re)adds a dedicated lock for kvm_usage_count.  This avoids a
lock ordering issue between cpus_read_lock() and kvm_lock.  The lock
ordering issue still exist in very rare cases, and will be fixed for
good by switching vm_list to an (S)RCU-protected list.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-17 11:38:20 -04:00
Amit Shah 4440337af4 KVM: SVM: let alternatives handle the cases when RSB filling is required
Remove superfluous RSB filling after a VMEXIT when the CPU already has
flushed the RSB after a VMEXIT when AutoIBRS is enabled.

The initial implementation for adding RETPOLINES added an ALTERNATIVES
implementation for filling the RSB after a VMEXIT in commit 117cc7a908
("x86/retpoline: Fill return stack buffer on vmexit").

Later, X86_FEATURE_RSB_VMEXIT was added in commit 9756bba284
("x86/speculation: Fill RSB on vmexit for IBRS") to handle stuffing the
RSB if RETPOLINE=y *or* KERNEL_IBRS=y, i.e. to also stuff the RSB if the
kernel is configured to do IBRS mitigations on entry/exit.

The AutoIBRS (on AMD) feature implementation added in commit e7862eda30
("x86/cpu: Support AMD Automatic IBRS") used the already-implemented logic
for EIBRS in spectre_v2_determine_rsb_fill_type_on_vmexit() -- but did not
update the code at VMEXIT to act on the mode selected in that function --
resulting in VMEXITs continuing to clear the RSB when RETPOLINES are
enabled, despite the presence of AutoIBRS.

Signed-off-by: Amit Shah <amit.shah@amd.com>
Link: https://lore.kernel.org/r/20240807123531.69677-1-amit@kernel.org
[sean: massage changeloge, drop comment about AMD not needing RSB_VMEXIT_LITE]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-10 10:27:53 -07:00