mirror of https://github.com/torvalds/linux.git
1147 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
ea9bd29a9c |
KVM x86 fixes for 6.14-rcN #2
- Set RFLAGS.IF in C code on SVM to get VMRUN out of the STI shadow.
- Ensure DEBUGCTL is context switched on AMD to avoid running the guest with
the host's value, which can lead to unexpected bus lock #DBs.
- Suppress DEBUGCTL.BTF on AMD (to match Intel), as KVM doesn't properly
emulate BTF. KVM's lack of context switching has meant BTF has always been
broken to some extent.
- Always save DR masks for SNP vCPUs if DebugSwap is *supported*, as the guest
can enable DebugSwap without KVM's knowledge.
- Fix a bug in mmu_stress_tests where a vCPU could finish the "writes to RO
memory" phase without actually generating a write-protection fault.
- Fix a printf() goof in the SEV smoke test that causes build failures with
-Werror.
- Explicitly zero EAX and EBX in CPUID.0x8000_0022 output when PERFMON_V2
isn't supported by KVM.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmfLlhUACgkQOlYIJqCj
N/0x7w/+MhqJdHbshL7Gzw+rcXwCROiCkqsxFP+YoTXte8uaHS5CEfcMYjE8SuGp
KBpgLo4Lj1dVTXiCjemlY5sn6CDiuSs74X8A88ksuu5hVsFByJUgyWU9iw8J/crZ
B2vj8huhqa8OCEPe5JujWfnfyAkKE5tUA4GFi73vhHMcftTNj+ftxT33/Pfg7y7M
xOvWFWS6ZshKrouRKzI7ZFEYLwp0lr4U3dzO5rCRAd5J4MSBWRx6Dx2um5dyEYKJ
xgwl4ylM4S/+78u1+0nQnToM0UWHJ3e7x8nze6UXYTZIrBr/lSeKlbhOPnEWJcJB
Eemnur9ORI2BRPUReqBKluCZsSK+E5B/HPCVt5cxtuRIuUOD+kW17LPgnPyE4Sso
eVt+XAvQc7EjrpWDSHr3ZQZZM89l9zHhuSAQ0npO6y71s0FzEVZQoDamNmOLAPjH
Qg+qhBV2l6pyfqhqiLzADasYLOl57cJsfiMjM331ALLqAn57jzd+B8c4hdB2Xg4s
KPuy8w8uBaY9zpd9YDBLLr7JJVs35KexNZMjT2vqBYXcScyLgmAuSQXy3hub6Mzn
gI5ZXIKG8eO9v2jejfClI6/OEdtEwgSGEVwuBKB16pMrIxqpguMTMTWLVRn5G+oo
qA8anmKaac62GaB66JE/Wjy069OPIGYnHSU2nal0Tej6kG0xv6E=
=as6u
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.14-rcN.2' of https://github.com/kvm-x86/linux into HEAD
KVM x86 fixes for 6.14-rcN #2
- Set RFLAGS.IF in C code on SVM to get VMRUN out of the STI shadow.
- Ensure DEBUGCTL is context switched on AMD to avoid running the guest with
the host's value, which can lead to unexpected bus lock #DBs.
- Suppress DEBUGCTL.BTF on AMD (to match Intel), as KVM doesn't properly
emulate BTF. KVM's lack of context switching has meant BTF has always been
broken to some extent.
- Always save DR masks for SNP vCPUs if DebugSwap is *supported*, as the guest
can enable DebugSwap without KVM's knowledge.
- Fix a bug in mmu_stress_tests where a vCPU could finish the "writes to RO
memory" phase without actually generating a write-protection fault.
- Fix a printf() goof in the SEV smoke test that causes build failures with
-Werror.
- Explicitly zero EAX and EBX in CPUID.0x8000_0022 output when PERFMON_V2
isn't supported by KVM.
|
|
|
|
807cb9ce2e |
KVM: SVM: Don't rely on DebugSwap to restore host DR0..DR3
Never rely on the CPU to restore/load host DR0..DR3 values, even if the CPU supports DebugSwap, as there are no guarantees that SNP guests will actually enable DebugSwap on APs. E.g. if KVM were to rely on the CPU to load DR0..DR3 and skipped them during hw_breakpoint_restore(), KVM would run with clobbered-to-zero DRs if an SNP guest created APs without DebugSwap enabled. Update the comment to explain the dangers, and hopefully prevent breaking KVM in the future. Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20250227012541.3234589-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
b2653cd3b7 |
KVM: SVM: Save host DR masks on CPUs with DebugSwap
When running SEV-SNP guests on a CPU that supports DebugSwap, always save the host's DR0..DR3 mask MSR values irrespective of whether or not DebugSwap is enabled, to ensure the host values aren't clobbered by the CPU. And for now, also save DR0..DR3, even though doing so isn't necessary (see below). SVM_VMGEXIT_AP_CREATE is deeply flawed in that it allows the *guest* to create a VMSA with guest-controlled SEV_FEATURES. A well behaved guest can inform the hypervisor, i.e. KVM, of its "requested" features, but on CPUs without ALLOWED_SEV_FEATURES support, nothing prevents the guest from lying about which SEV features are being enabled (or not!). If a misbehaving guest enables DebugSwap in a secondary vCPU's VMSA, the CPU will load the DR0..DR3 mask MSRs on #VMEXIT, i.e. will clobber the MSRs with '0' if KVM doesn't save its desired value. Note, DR0..DR3 themselves are "ok", as DR7 is reset on #VMEXIT, and KVM restores all DRs in common x86 code as needed via hw_breakpoint_restore(). I.e. there is no risk of host DR0..DR3 being clobbered (when it matters). However, there is a flaw in the opposite direction; because the guest can lie about enabling DebugSwap, i.e. can *disable* DebugSwap without KVM's knowledge, KVM must not rely on the CPU to restore DRs. Defer fixing that wart, as it's more of a documentation issue than a bug in the code. Note, KVM added support for DebugSwap on commit |
|
|
|
433265870a |
KVM: SVM: Manually context switch DEBUGCTL if LBR virtualization is disabled
Manually load the guest's DEBUGCTL prior to VMRUN (and restore the host's
value on #VMEXIT) if it diverges from the host's value and LBR
virtualization is disabled, as hardware only context switches DEBUGCTL if
LBR virtualization is fully enabled. Running the guest with the host's
value has likely been mildly problematic for quite some time, e.g. it will
result in undesirable behavior if BTF diverges (with the caveat that KVM
now suppresses guest BTF due to lack of support).
But the bug became fatal with the introduction of Bus Lock Trap ("Detect"
in kernel paralance) support for AMD (commit
|
|
|
|
d0eac42f5c |
KVM: SVM: Suppress DEBUGCTL.BTF on AMD
Mark BTF as reserved in DEBUGCTL on AMD, as KVM doesn't actually support BTF, and fully enabling BTF virtualization is non-trivial due to interactions with the emulator, guest_debug, #DB interception, nested SVM, etc. Don't inject #GP if the guest attempts to set BTF, as there's no way to communicate lack of support to the guest, and instead suppress the flag and treat the WRMSR as (partially) unsupported. In short, make KVM behave the same on AMD and Intel (VMX already squashes BTF). Note, due to other bugs in KVM's handling of DEBUGCTL, the only way BTF has "worked" in any capacity is if the guest simultaneously enables LBRs. Reported-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
ee89e80133 |
KVM: SVM: Drop DEBUGCTL[5:2] from guest's effective value
Drop bits 5:2 from the guest's effective DEBUGCTL value, as AMD changed the architectural behavior of the bits and broke backwards compatibility. On CPUs without BusLockTrap (or at least, in APMs from before ~2023), bits 5:2 controlled the behavior of external pins: Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write. Software uses thesebits to control the type of information reported by the four external performance-monitoring/breakpoint pins on the processor. When a PBi bit is cleared to 0, the corresponding external pin (BPi) reports performance-monitor information. When a PBi bit is set to 1, the corresponding external pin (BPi) reports breakpoint information. With the introduction of BusLockTrap, presumably to be compatible with Intel CPUs, AMD redefined bit 2 to be BLCKDB: Bus Lock #DB Trap (BLCKDB)—Bit 2, read/write. Software sets this bit to enable generation of a #DB trap following successful execution of a bus lock when CPL is > 0. and redefined bits 5:3 (and bit 6) as "6:3 Reserved MBZ". Ideally, KVM would treat bits 5:2 as reserved. Defer that change to a feature cleanup to avoid breaking existing guest in LTS kernels. For now, drop the bits to retain backwards compatibility (of a sort). Note, dropping bits 5:2 is still a guest-visible change, e.g. if the guest is enabling LBRs *and* the legacy PBi bits, then the state of the PBi bits is visible to the guest, whereas now the guest will always see '0'. Reported-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
be45bc4eff |
KVM: SVM: Set RFLAGS.IF=1 in C code, to get VMRUN out of the STI shadow
Enable/disable local IRQs, i.e. set/clear RFLAGS.IF, in the common
svm_vcpu_enter_exit() just after/before guest_state_{enter,exit}_irqoff()
so that VMRUN is not executed in an STI shadow. AMD CPUs have a quirk
(some would say "bug"), where the STI shadow bleeds into the guest's
intr_state field if a #VMEXIT occurs during injection of an event, i.e. if
the VMRUN doesn't complete before the subsequent #VMEXIT.
The spurious "interrupts masked" state is relatively benign, as it only
occurs during event injection and is transient. Because KVM is already
injecting an event, the guest can't be in HLT, and if KVM is querying IRQ
blocking for injection, then KVM would need to force an immediate exit
anyways since injecting multiple events is impossible.
However, because KVM copies int_state verbatim from vmcb02 to vmcb12, the
spurious STI shadow is visible to L1 when running a nested VM, which can
trip sanity checks, e.g. in VMware's VMM.
Hoist the STI+CLI all the way to C code, as the aforementioned calls to
guest_state_{enter,exit}_irqoff() already inform lockdep that IRQs are
enabled/disabled, and taking a fault on VMRUN with RFLAGS.IF=1 is already
possible. I.e. if there's kernel code that is confused by running with
RFLAGS.IF=1, then it's already a problem. In practice, since GIF=0 also
blocks NMIs, the only change in exposure to non-KVM code (relative to
surrounding VMRUN with STI+CLI) is exception handling code, and except for
the kvm_rebooting=1 case, all exception in the core VM-Enter/VM-Exit path
are fatal.
Use the "raw" variants to enable/disable IRQs to avoid tracing in the
"no instrumentation" code; the guest state helpers also take care of
tracing IRQ state.
Oppurtunstically document why KVM needs to do STI in the first place.
Reported-by: Doug Covelli <doug.covelli@broadcom.com>
Closes: https://lore.kernel.org/all/CADH9ctBs1YPmE4aCfGPNBwA10cA8RuAk2gO7542DjMZgs4uzJQ@mail.gmail.com
Fixes:
|
|
|
|
d3d0b8dfe0 |
KVM fixes for 6.14 part 1
- Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being emulated
by KVM to fix a NULL pointer dereference.
- Enter guest mode (L2) from KVM's perspective before initializing the vCPU's
nested NPT MMU so that the MMU is properly tagged for L2, not L1.
- Load the guest's DR6 outside of the innermost .vcpu_run() loop, as the
guest's value may be stale if a VM-Exit is handled in the fastpath.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmev2ekACgkQOlYIJqCj
N/32Gg/7B2+oV9RaKB1VNv4G4vbQLiA+DxPM91U0sBqytkr9BfU5kciaVs068OVk
2M3j007HHm51sWlsCB7VLeTmiNNi/RcJzh6mOCpJVGa70imNZl3/1cvbzx1hjOAn
DbZSIqBfLpPnAmNUp4c++WsDPZR2vVVMXriVNWM+RLFRT8E2GavCKxGppoNf+FIS
8aYYikiqIx+E6iYsZjEm4TXqOQ2CSLM+auq2/L24bFgkn/v6I5m70QfnnYgs7Y7R
uZhv+x2O8DXuW2RxabiC4q302PDdNKtHYpEh/5+vmG34mouZEEPTVlSRU720frqU
SnOwtiTKwDmAwMDSRXUAP4jc9FsD4JHSUUM7Sk0J/YaI55X3xV+YrJUBZ07bwunT
TkKPr6TvlJW9s2bi+CEc0HHoMHqmejjKhq8fOeDgVkGYH1nhjrLQAFpxjI4iVmPQ
vZLmCZXEMzJaqySMNVIPdSFJLLsKnD7mJT3XfbXG7dV5zmde2qYd7+TiRVb5dmst
xTgSvhA1jLXpSYA4rmMjhweLEfQyljaPgb1GEZCQCBrV9clP0cb091rOWNbrcieG
aMXFwHEyPjGDvlXlhjdfkNeHdP6Dq8y0aBoyeSnvdwvpAN256jswrzpYjBHWQqfv
jsD3QHcbImUr+kH2CHFsZuXxsjh+woL+4crR1eQkL8oZWHEykzs=
=aFcV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.14-rcN' of https://github.com/kvm-x86/linux into HEAD
KVM fixes for 6.14 part 1
- Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being emulated
by KVM to fix a NULL pointer dereference.
- Enter guest mode (L2) from KVM's perspective before initializing the vCPU's
nested NPT MMU so that the MMU is properly tagged for L2, not L1.
- Load the guest's DR6 outside of the innermost .vcpu_run() loop, as the
guest's value may be stale if a VM-Exit is handled in the fastpath.
|
|
|
|
44e70718df |
KVM: SVM: Ensure PSP module is initialized if KVM module is built-in
The kernel's initcall infrastructure lacks the ability to express dependencies between initcalls, whereas the modules infrastructure automatically handles dependencies via symbol loading. Ensure the PSP SEV driver is initialized before proceeding in sev_hardware_setup() if KVM is built-in as the dependency isn't handled by the initcall infrastructure. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <f78ddb64087df27e7bcb1ae0ab53f55aa0804fab.1739226950.git.ashish.kalra@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
c2fee09fc1 |
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.
When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit. This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.
For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.
But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.
Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop. If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.
The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup. E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).
L1's view:
==========
<L1 disables DR interception>
CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0
A: L1 Writes DR6
CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1
B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec
D: L1 reads DR6, arch.dr6 = 0
CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0
CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0
L2 reads DR6, L1 disables DR interception
CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0
CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0
L2 detects failure
CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT
L1 reads DR6 (confirms failure)
CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0
L0's view:
==========
L2 reads DR6, arch.dr6 = 0
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
L2 => L1 nested VM-Exit
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_entry: vcpu 23
L1 writes DR7, L0 disables DR interception
CPU 23/KVM-5046 [001] d.... 3410.005612: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000007
CPU 23/KVM-5046 [001] d.... 3410.005613: kvm_entry: vcpu 23
L0 writes DR6 = 0 (arch.dr6)
CPU 23/KVM-5046 [001] d.... 3410.005613: <hack>: Set DRs, DR6 = 0xffff0ff0
A: <L1 writes DR6 = 1, no interception, arch.dr6 is still '0'>
B: CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_exit: vcpu 23 reason PREEMPTION_TIMER
CPU 23/KVM-5046 [001] d.... 3410.005614: kvm_entry: vcpu 23
C: L0 writes DR6 = 0 (arch.dr6)
CPU 23/KVM-5046 [001] d.... 3410.005614: <hack>: Set DRs, DR6 = 0xffff0ff0
L1 => L2 nested VM-Enter
CPU 23/KVM-5046 [001] d.... 3410.005616: kvm_exit: vcpu 23 reason VMRESUME
L0 reads DR6, arch.dr6 = 0
Reported-by: John Stultz <jstultz@google.com>
Closes: https://lkml.kernel.org/r/CANDhNCq5_F3HfFYABqFGCA1bPd_%2BxgNj-iDQhH4tDk%2Bwi8iZZg%40mail.gmail.com
Fixes:
|
|
|
|
46d6c6f3ef |
KVM: nSVM: Enter guest mode before initializing nested NPT MMU
When preparing vmcb02 for nested VMRUN (or state restore), "enter" guest
mode prior to initializing the MMU for nested NPT so that guest_mode is
set in the MMU's role. KVM's model is that all L2 MMUs are tagged with
guest_mode, as the behavior of hypervisor MMUs tends to be significantly
different than kernel MMUs.
Practically speaking, the bug is relatively benign, as KVM only directly
queries role.guest_mode in kvm_mmu_free_guest_mode_roots() and
kvm_mmu_page_ad_need_write_protect(), which SVM doesn't use, and in paths
that are optimizations (mmu_page_zap_pte() and
shadow_mmu_try_split_huge_pages()).
And while the role is incorprated into shadow page usage, because nested
NPT requires KVM to be using NPT for L1, reusing shadow pages across L1
and L2 is impossible as L1 MMUs will always have direct=1, while L2 MMUs
will have direct=0.
Hoist the TLB processing and setting of HF_GUEST_MASK to the beginning
of the flow instead of forcing guest_mode in the MMU, as nothing in
nested_vmcb02_prepare_control() between the old and new locations touches
TLB flush requests or HF_GUEST_MASK, i.e. there's no reason to present
inconsistent vCPU state to the MMU.
Fixes:
|
|
|
|
0f8e26b38d |
Loongarch:
* Clear LLBCTL if secondary mmu mapping changes.
* Add hypercall service support for usermode VMM.
x86:
* Add a comment to kvm_mmu_do_page_fault() to explain why KVM performs a
direct call to kvm_tdp_page_fault() when RETPOLINE is enabled.
* Ensure that all SEV code is compiled out when disabled in Kconfig, even
if building with less brilliant compilers.
* Remove a redundant TLB flush on AMD processors when guest CR4.PGE changes.
* Use str_enabled_disabled() to replace open coded strings.
* Drop kvm_x86_ops.hwapic_irr_update() as KVM updates hardware's APICv cache
prior to every VM-Enter.
* Overhaul KVM's CPUID feature infrastructure to track all vCPU capabilities
instead of just those where KVM needs to manage state and/or explicitly
enable the feature in hardware. Along the way, refactor the code to make
it easier to add features, and to make it more self-documenting how KVM
is handling each feature.
* Rework KVM's handling of VM-Exits during event vectoring; this plugs holes
where KVM unintentionally puts the vCPU into infinite loops in some scenarios
(e.g. if emulation is triggered by the exit), and brings parity between VMX
and SVM.
* Add pending request and interrupt injection information to the kvm_exit and
kvm_entry tracepoints respectively.
* Fix a relatively benign flaw where KVM would end up redoing RDPKRU when
loading guest/host PKRU, due to a refactoring of the kernel helpers that
didn't account for KVM's pre-checking of the need to do WRPKRU.
* Make the completion of hypercalls go through the complete_hypercall
function pointer argument, no matter if the hypercall exits to
userspace or not. Previously, the code assumed that KVM_HC_MAP_GPA_RANGE
specifically went to userspace, and all the others did not; the new code
need not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
all whether there was an exit to userspace or not.
* As part of enabling TDX virtual machines, support support separation of
private/shared EPT into separate roots. When TDX will be enabled, operations
on private pages will need to go through the privileged TDX Module via SEAMCALLs;
as a result, they are limited and relatively slow compared to reading a PTE.
The patches included in 6.14 allow KVM to keep a mirror of the private EPT in
host memory, and define entries in kvm_x86_ops to operate on external page
tables such as the TDX private EPT.
* The recently introduced conversion of the NX-page reclamation kthread to
vhost_task moved the task under the main process. The task is created as
soon as KVM_CREATE_VM was invoked and this, of course, broke userspace that
didn't expect to see any child task of the VM process until it started
creating its own userspace threads. In particular crosvm refuses to fork()
if procfs shows any child task, so unbreak it by creating the task lazily.
This is arguably a userspace bug, as there can be other kinds of legitimate
worker tasks and they wouldn't impede fork(); but it's not like userspace
has a way to distinguish kernel worker tasks right now. Should they show
as "Kthread: 1" in proc/.../status?
x86 - Intel:
* Fix a bug where KVM updates hardware's APICv cache of the highest ISR bit
while L2 is active, while ultimately results in a hardware-accelerated L1
EOI effectively being lost.
* Honor event priority when emulating Posted Interrupt delivery during nested
VM-Enter by queueing KVM_REQ_EVENT instead of immediately handling the
interrupt.
* Rework KVM's processing of the Page-Modification Logging buffer to reap
entries in the same order they were created, i.e. to mark gfns dirty in the
same order that hardware marked the page/PTE dirty.
* Misc cleanups.
Generic:
* Cleanup and harden kvm_set_memory_region(); add proper lockdep assertions when
setting memory regions and add a dedicated API for setting KVM-internal
memory regions. The API can then explicitly disallow all flags for
KVM-internal memory regions.
* Explicitly verify the target vCPU is online in kvm_get_vcpu() to fix a bug
where KVM would return a pointer to a vCPU prior to it being fully online,
and give kvm_for_each_vcpu() similar treatment to fix a similar flaw.
* Wait for a vCPU to come online prior to executing a vCPU ioctl, to fix a
bug where userspace could coerce KVM into handling the ioctl on a vCPU that
isn't yet onlined.
* Gracefully handle xarray insertion failures; even though such failures are
impossible in practice after xa_reserve(), reserving an entry is always followed
by xa_store() which does not know (or differentiate) whether there was an
xa_reserve() before or not.
RISC-V:
* Zabha, Svvptc, and Ziccrse extension support for guests. None of them
require anything in KVM except for detecting them and marking them
as supported; Zabha adds byte and halfword atomic operations, while the
others are markers for specific operation of the TLB and of LL/SC
instructions respectively.
* Virtualize SBI system suspend extension for Guest/VM
* Support firmware counters which can be used by the guests to collect
statistics about traps that occur in the host.
Selftests:
* Rework vcpu_get_reg() to return a value instead of using an out-param, and
update all affected arch code accordingly.
* Convert the max_guest_memory_test into a more generic mmu_stress_test.
The basic gist of the "conversion" is to have the test do mprotect() on
guest memory while vCPUs are accessing said memory, e.g. to verify KVM
and mmu_notifiers are working as intended.
* Play nice with treewrite builds of unsupported architectures, e.g. arm
(32-bit), as KVM selftests' Makefile doesn't do anything to ensure the
target architecture is actually one KVM selftests supports.
* Use the kernel's $(ARCH) definition instead of the target triple for arch
specific directories, e.g. arm64 instead of aarch64, mainly so as not to
be different from the rest of the kernel.
* Ensure that format strings for logging statements are checked by the
compiler even when the logging statement itself is disabled.
* Attempt to whack the last LLC references/misses mole in the Intel PMU
counters test by adding a data load and doing CLFLUSH{OPT} on the data
instead of the code being executed. It seems that modern Intel CPUs
have learned new code prefetching tricks that bypass the PMU counters.
* Fix a flaw in the Intel PMU counters test where it asserts that events
are counting correctly without actually knowing what the events count
given the underlying hardware; this can happen if Intel reuses a
formerly microarchitecture-specific event encoding as an architectural
event, as was the case for Top-Down Slots.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmeTuzoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOkBwf8CRNExYaM3j9y2E7mmo6AiL2ug6+J
Uy5Hai1poY48pPwKC6ke3EWT8WVsgj/Py5pCeHvLojQchWNjCCYNfSQluJdkRxwG
DgP3QUljSxEJWBeSwyTRcKM+IySi5hZd1IFo3gePFRB829Jpnj05vjbvCyv8gIwU
y3HXxSYDsViaaFoNg4OlZFsIGis7mtknsZzk++QjuCXmxNa6UCbv3qvE/UkVLhVg
WH65RTRdjk+EsdwaOMHKuUvQoGa+iM4o39b6bqmw8+ZMK39+y33WeTX/y5RXsp1N
tUUBRfS+MuuYgC/6LmTr66EkMzoChxk3Dp3kKUaCBcfqRC8PxQag5reZhw==
=NEaO
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Loongarch:
- Clear LLBCTL if secondary mmu mapping changes
- Add hypercall service support for usermode VMM
x86:
- Add a comment to kvm_mmu_do_page_fault() to explain why KVM
performs a direct call to kvm_tdp_page_fault() when RETPOLINE is
enabled
- Ensure that all SEV code is compiled out when disabled in Kconfig,
even if building with less brilliant compilers
- Remove a redundant TLB flush on AMD processors when guest CR4.PGE
changes
- Use str_enabled_disabled() to replace open coded strings
- Drop kvm_x86_ops.hwapic_irr_update() as KVM updates hardware's
APICv cache prior to every VM-Enter
- Overhaul KVM's CPUID feature infrastructure to track all vCPU
capabilities instead of just those where KVM needs to manage state
and/or explicitly enable the feature in hardware. Along the way,
refactor the code to make it easier to add features, and to make it
more self-documenting how KVM is handling each feature
- Rework KVM's handling of VM-Exits during event vectoring; this
plugs holes where KVM unintentionally puts the vCPU into infinite
loops in some scenarios (e.g. if emulation is triggered by the
exit), and brings parity between VMX and SVM
- Add pending request and interrupt injection information to the
kvm_exit and kvm_entry tracepoints respectively
- Fix a relatively benign flaw where KVM would end up redoing RDPKRU
when loading guest/host PKRU, due to a refactoring of the kernel
helpers that didn't account for KVM's pre-checking of the need to
do WRPKRU
- Make the completion of hypercalls go through the complete_hypercall
function pointer argument, no matter if the hypercall exits to
userspace or not.
Previously, the code assumed that KVM_HC_MAP_GPA_RANGE specifically
went to userspace, and all the others did not; the new code need
not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
all whether there was an exit to userspace or not
- As part of enabling TDX virtual machines, support support
separation of private/shared EPT into separate roots.
When TDX will be enabled, operations on private pages will need to
go through the privileged TDX Module via SEAMCALLs; as a result,
they are limited and relatively slow compared to reading a PTE.
The patches included in 6.14 allow KVM to keep a mirror of the
private EPT in host memory, and define entries in kvm_x86_ops to
operate on external page tables such as the TDX private EPT
- The recently introduced conversion of the NX-page reclamation
kthread to vhost_task moved the task under the main process. The
task is created as soon as KVM_CREATE_VM was invoked and this, of
course, broke userspace that didn't expect to see any child task of
the VM process until it started creating its own userspace threads.
In particular crosvm refuses to fork() if procfs shows any child
task, so unbreak it by creating the task lazily. This is arguably a
userspace bug, as there can be other kinds of legitimate worker
tasks and they wouldn't impede fork(); but it's not like userspace
has a way to distinguish kernel worker tasks right now. Should they
show as "Kthread: 1" in proc/.../status?
x86 - Intel:
- Fix a bug where KVM updates hardware's APICv cache of the highest
ISR bit while L2 is active, while ultimately results in a
hardware-accelerated L1 EOI effectively being lost
- Honor event priority when emulating Posted Interrupt delivery
during nested VM-Enter by queueing KVM_REQ_EVENT instead of
immediately handling the interrupt
- Rework KVM's processing of the Page-Modification Logging buffer to
reap entries in the same order they were created, i.e. to mark gfns
dirty in the same order that hardware marked the page/PTE dirty
- Misc cleanups
Generic:
- Cleanup and harden kvm_set_memory_region(); add proper lockdep
assertions when setting memory regions and add a dedicated API for
setting KVM-internal memory regions. The API can then explicitly
disallow all flags for KVM-internal memory regions
- Explicitly verify the target vCPU is online in kvm_get_vcpu() to
fix a bug where KVM would return a pointer to a vCPU prior to it
being fully online, and give kvm_for_each_vcpu() similar treatment
to fix a similar flaw
- Wait for a vCPU to come online prior to executing a vCPU ioctl, to
fix a bug where userspace could coerce KVM into handling the ioctl
on a vCPU that isn't yet onlined
- Gracefully handle xarray insertion failures; even though such
failures are impossible in practice after xa_reserve(), reserving
an entry is always followed by xa_store() which does not know (or
differentiate) whether there was an xa_reserve() before or not
RISC-V:
- Zabha, Svvptc, and Ziccrse extension support for guests. None of
them require anything in KVM except for detecting them and marking
them as supported; Zabha adds byte and halfword atomic operations,
while the others are markers for specific operation of the TLB and
of LL/SC instructions respectively
- Virtualize SBI system suspend extension for Guest/VM
- Support firmware counters which can be used by the guests to
collect statistics about traps that occur in the host
Selftests:
- Rework vcpu_get_reg() to return a value instead of using an
out-param, and update all affected arch code accordingly
- Convert the max_guest_memory_test into a more generic
mmu_stress_test. The basic gist of the "conversion" is to have the
test do mprotect() on guest memory while vCPUs are accessing said
memory, e.g. to verify KVM and mmu_notifiers are working as
intended
- Play nice with treewrite builds of unsupported architectures, e.g.
arm (32-bit), as KVM selftests' Makefile doesn't do anything to
ensure the target architecture is actually one KVM selftests
supports
- Use the kernel's $(ARCH) definition instead of the target triple
for arch specific directories, e.g. arm64 instead of aarch64,
mainly so as not to be different from the rest of the kernel
- Ensure that format strings for logging statements are checked by
the compiler even when the logging statement itself is disabled
- Attempt to whack the last LLC references/misses mole in the Intel
PMU counters test by adding a data load and doing CLFLUSH{OPT} on
the data instead of the code being executed. It seems that modern
Intel CPUs have learned new code prefetching tricks that bypass the
PMU counters
- Fix a flaw in the Intel PMU counters test where it asserts that
events are counting correctly without actually knowing what the
events count given the underlying hardware; this can happen if
Intel reuses a formerly microarchitecture-specific event encoding
as an architectural event, as was the case for Top-Down Slots"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (151 commits)
kvm: defer huge page recovery vhost task to later
KVM: x86/mmu: Return RET_PF* instead of 1 in kvm_mmu_page_fault()
KVM: Disallow all flags for KVM-internal memslots
KVM: x86: Drop double-underscores from __kvm_set_memory_region()
KVM: Add a dedicated API for setting KVM-internal memslots
KVM: Assert slots_lock is held when setting memory regions
KVM: Open code kvm_set_memory_region() into its sole caller (ioctl() API)
LoongArch: KVM: Add hypercall service support for usermode VMM
LoongArch: KVM: Clear LLBCTL if secondary mmu mapping is changed
KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup()
KVM: VMX: read the PML log in the same order as it was written
KVM: VMX: refactor PML terminology
KVM: VMX: Fix comment of handle_vmx_instruction()
KVM: VMX: Reinstate __exit attribute for vmx_exit()
KVM: SVM: Use str_enabled_disabled() helper in sev_hardware_setup()
KVM: x86: Avoid double RDPKRU when loading host/guest PKRU
KVM: x86: Use LVT_TIMER instead of an open coded literal
RISC-V: KVM: Add new exit statstics for redirected traps
RISC-V: KVM: Update firmware counters for various events
RISC-V: KVM: Redirect instruction access fault trap to guest
...
|
|
|
|
a6640c8c2f |
Objtool changes for v6.14:
- Introduce the generic section-based annotation
infrastructure a.k.a. ASM_ANNOTATE/ANNOTATE (Peter Zijlstra)
- Convert various facilities to ASM_ANNOTATE/ANNOTATE: (Peter Zijlstra)
- ANNOTATE_NOENDBR
- ANNOTATE_RETPOLINE_SAFE
- instrumentation_{begin,end}()
- VALIDATE_UNRET_BEGIN
- ANNOTATE_IGNORE_ALTERNATIVE
- ANNOTATE_INTRA_FUNCTION_CALL
- {.UN}REACHABLE
- Optimize the annotation-sections parsing code (Peter Zijlstra)
- Centralize annotation definitions in <linux/objtool.h>
- Unify & simplify the barrier_before_unreachable()/unreachable()
definitions (Peter Zijlstra)
- Convert unreachable() calls to BUG() in x86 code, as
unreachable() has unreliable code generation (Peter Zijlstra)
- Remove annotate_reachable() and annotate_unreachable(), as it's
unreliable against compiler optimizations (Peter Zijlstra)
- Fix non-standard ANNOTATE_REACHABLE annotation order (Peter Zijlstra)
- Robustify the annotation code by warning about unknown annotation
types (Peter Zijlstra)
- Allow arch code to discover jump table size, in preparation of
annotated jump table support (Ard Biesheuvel)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmeOHiARHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gATw/7Bn4A+Isqk9bKo6QgYEnKRoyf760ALQl6
av/toEy1qCHT/CXCiEn1Hut1JEy4YyD6lIarC1scRl5xy7amRDEcCL0i2CKz3orn
pf6Fk8/Pi68G2K50o4LTiq8t3uPBJXPlGyDlngh2hFTYRfPRT4m+cig784hmJEXG
Xq2YzzUNG++U/4Uwe3JH7bX/vcZTYkZfM62FWfp3I4V0OqKU4c+Pkiv4u3Rs7L7b
c3xk5/PktKZWV5TDsz0wU4SAGxYFGV47hhYM6cxdSYD3la7RVO+qZcqxsJByjpcL
bvOmGKQ1SAXr08rV7TB+Fh8icaNE8Rbbmxf6slB0hdXBQb8STAZ810mZJFey6pnm
kXgfhhfBOK5Sq+UbTfzF2JgquCGAbKK75bmNGgf2HaLnVLkFIw3AyMsuFqnxhI4X
vXRHGnHCYpYUHTxzRYTFYR8XL8twA2kgjWkSe7hYrX/RQZV3XfyKOc2jyoJFMXeX
LecfGJCE/pziZyj60SXT9WaUTvKc8gjWOEuAnW1pJQRM0zJqB9kjLh1cDYUseuwv
gGkH59KEu0kcfOb5t/jWoqW3PTENJjEAhOmjun6Jv8wgbOxU88TMmSCWppj54O2X
c2ibO407535u1SKBWZuaKFBLYftS2GM4WaGsdyTyh+ta48C8An90HMfYNKTHM9Nz
F61Q7Zbn65E=
=9nGt
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Introduce the generic section-based annotation infrastructure a.k.a.
ASM_ANNOTATE/ANNOTATE (Peter Zijlstra)
- Convert various facilities to ASM_ANNOTATE/ANNOTATE: (Peter Zijlstra)
- ANNOTATE_NOENDBR
- ANNOTATE_RETPOLINE_SAFE
- instrumentation_{begin,end}()
- VALIDATE_UNRET_BEGIN
- ANNOTATE_IGNORE_ALTERNATIVE
- ANNOTATE_INTRA_FUNCTION_CALL
- {.UN}REACHABLE
- Optimize the annotation-sections parsing code (Peter Zijlstra)
- Centralize annotation definitions in <linux/objtool.h>
- Unify & simplify the barrier_before_unreachable()/unreachable()
definitions (Peter Zijlstra)
- Convert unreachable() calls to BUG() in x86 code, as unreachable()
has unreliable code generation (Peter Zijlstra)
- Remove annotate_reachable() and annotate_unreachable(), as it's
unreliable against compiler optimizations (Peter Zijlstra)
- Fix non-standard ANNOTATE_REACHABLE annotation order (Peter Zijlstra)
- Robustify the annotation code by warning about unknown annotation
types (Peter Zijlstra)
- Allow arch code to discover jump table size, in preparation of
annotated jump table support (Ard Biesheuvel)
* tag 'objtool-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Convert unreachable() to BUG()
objtool: Allow arch code to discover jump table size
objtool: Warn about unknown annotation types
objtool: Fix ANNOTATE_REACHABLE to be a normal annotation
objtool: Convert {.UN}REACHABLE to ANNOTATE
objtool: Remove annotate_{,un}reachable()
loongarch: Use ASM_REACHABLE
x86: Convert unreachable() to BUG()
unreachable: Unify
objtool: Collect more annotations in objtool.h
objtool: Collapse annotate sequences
objtool: Convert ANNOTATE_INTRA_FUNCTION_CALL to ANNOTATE
objtool: Convert ANNOTATE_IGNORE_ALTERNATIVE to ANNOTATE
objtool: Convert VALIDATE_UNRET_BEGIN to ANNOTATE
objtool: Convert instrumentation_{begin,end}() to ANNOTATE
objtool: Convert ANNOTATE_RETPOLINE_SAFE to ANNOTATE
objtool: Convert ANNOTATE_NOENDBR to ANNOTATE
objtool: Generic annotation infrastructure
|
|
|
|
3eba032bb7 |
Merge branch 'kvm-userspace-hypercall' into HEAD
Make the completion of hypercalls go through the complete_hypercall function pointer argument, no matter if the hypercall exits to userspace or not. Previously, the code assumed that KVM_HC_MAP_GPA_RANGE specifically went to userspace, and all the others did not; the new code need not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at all whether there was an exit to userspace or not. |
|
|
|
4f7ff70c05 |
KVM x86 misc changes for 6.14:
- Overhaul KVM's CPUID feature infrastructure to replace "governed" features
with per-vCPU tracking of the vCPU's capabailities for all features. Along
the way, refactor the code to make it easier to add/modify features, and
add a variety of self-documenting macro types to again simplify adding new
features and to help readers understand KVM's handling of existing features.
- Rework KVM's handling of VM-Exits during event vectoring to plug holes where
KVM unintentionally puts the vCPU into infinite loops in some scenarios,
e.g. if emulation is triggered by the exit, and to bring parity between VMX
and SVM.
- Add pending request and interrupt injection information to the kvm_exit and
kvm_entry tracepoints respectively.
- Fix a relatively benign flaw where KVM would end up redoing RDPKRU when
loading guest/host PKRU due to a refactoring of the kernel helpers that
didn't account for KVM's pre-checking of the need to do WRPKRU.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmeJngsACgkQOlYIJqCj
N/1dfA/+NIZmnd8OV9Zvc6HGxrzgt4QsM9pmsUmrfkDWefxMYIAMeaW8Vn4CJfRf
zY/UcqyNI7JYxSiuVTckz+Tf54HhqYaLrUwILGCQ49koirZx+aQT1OUfjLroVMlh
ffX1i6GOoLNtxjb9MXM/heLVdUbvmzQMSFkd/AkOH+nrOtDNOiPlZfjHsewj9zrf
BNJGhzvT4M6vc/AsScC7tc0yFD5KKFRv8tVwJ6Zf1nWKyUDOSpMTWkVnq6geKJPZ
iGBZPPNg55Oy1g6uj6VYWmqYTD8Qioz5jtEJ/8pPHdAyIFo21s81bfJc548d+QLh
KfrL1K7TrCOhSAGC3Cb3lTLeq2immmGHaiTBLwGABG4MhpiX4NVpMMdOyFbVLMOS
HIYuwXwDckm1pfU7/w+PgPaakCyPrXQntm+3Y2pvDOoY6e2JbwodK4j8BvvQda35
8TrYKEGFvq5aij7Iw1O9TUoLAocDM/sHIHE6BCazHyzKBIv9xLRFeabiCQ+A1pwv
gZk5u0+j+DPpLdeLhbMYhIXUtr3bvyMYvc+tRkG716f8ubAE3+Kn5BEDo4Ot2DcT
vc+NTRYYWN6zavHiJH3Ddt153yj256JCZhLwCdfbryCQdz3Mpy16m36tgkDRd3lR
QT4IkPQo1Vl/aU0yiE/dhnJgh1rTO26YQjZoHs5Oj16d0HRrKyc=
=32mM
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.14' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.14:
- Overhaul KVM's CPUID feature infrastructure to track all vCPU capabilities
instead of just those where KVM needs to manage state and/or explicitly
enable the feature in hardware. Along the way, refactor the code to make
it easier to add features, and to make it more self-documenting how KVM
is handling each feature.
- Rework KVM's handling of VM-Exits during event vectoring; this plugs holes
where KVM unintentionally puts the vCPU into infinite loops in some scenarios
(e.g. if emulation is triggered by the exit), and brings parity between VMX
and SVM.
- Add pending request and interrupt injection information to the kvm_exit and
kvm_entry tracepoints respectively.
- Fix a relatively benign flaw where KVM would end up redoing RDPKRU when
loading guest/host PKRU, due to a refactoring of the kernel helpers that
didn't account for KVM's pre-checking of the need to do WRPKRU.
|
|
|
|
672162a0d3 |
KVM SVM changes for 6.14:
- Macrofy the SEV=n version of the sev_xxx_guest() helpers so that the code is
optimized away when building with less than brilliant compilers.
- Remove a now-redundant TLB flush when guest CR4.PGE changes.
- Use str_enabled_disabled() to replace open coded strings.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmeJoesACgkQOlYIJqCj
N/1FuQ//bKhTrPVvMhCZB7cxS7wcpb82LA15Gc73hXBTjsik896O6fAN0MyvYWvp
eLmvhRWloVspIAkLj4pYF7PB6Tl0VAtpGOIdZp9TXOkbGcWg7jFFBrF3Udr2kDig
3YyinqGhwPN6oSkrJMGuk79EKhuRVGcb7utE/T8MCV5ct9kayQAogGYMLwfnpYvX
02SRYj++PUz5rk/gVUA2RA/EFSe57JE2VrzQlT34ttqqMZ2JKtysl5ytONGpEW/u
ZJQ4naztY+vRCLHm+n8ZWE5TCQ3ZZVR5WVcnMqx1MQQEVSZJT5SxveLGVu9tVV4c
Fv5fTvxa6iKfsUYl4o6tX1E0s388mwEast6uY40q4GysgkpsRRQR1KOLMGTQTMiz
7hagYbc9gGY3Pr6pn1+qf3hgVogcDX0wnQlFe6PYkHiMc7woIhUCGJ3LND7Y11O+
cPnbdK+0ZZhsOzYQ6SGeXIv326wvZacqKzXkkWt9pf8abbwaUXVqjYe+Y0yEHsuJ
e1gPnTdtzzim3Jq5qDRhPEHthHLm+na4O+6vjYlFVoUN4XnbNGhVzUJvQX70WX8a
6vrQ6gM768dwkyzdpRAGuWv+OWXHBe8UYKp4HQKpWGjRcKiwcXWDwQeIbfE7JkS+
L/Ck0oQ72sWoBoH4noM/5ehVB4ZY/bEp+GbVbd/ny6nDP1fmApM=
=MhtD
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.14' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.14:
- Macrofy the SEV=n version of the sev_xxx_guest() helpers so that the code is
optimized away when building with less than brilliant compilers.
- Remove a now-redundant TLB flush when guest CR4.PGE changes.
- Use str_enabled_disabled() to replace open coded strings.
|
|
|
|
4c334c6880 |
KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup()
Remove hard-coded strings by using the str_enabled_disabled() helper function. Suggested-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev> Link: https://lore.kernel.org/r/20250110101100.272312-2-thorsten.blum@linux.dev Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
800173cf75 |
KVM: SVM: Use str_enabled_disabled() helper in sev_hardware_setup()
Remove hard-coded strings by using the str_enabled_disabled() helper function. Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev> Reviewed-by: Pavan Kumar Paluri <papaluri@amd.com> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Link: https://lore.kernel.org/r/20241227094450.674104-2-thorsten.blum@linux.dev Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
c4c083d951 |
KVM: x86: Add a helper to check for user interception of KVM hypercalls
Add and use user_exit_on_hypercall() to check if userspace wants to handle a KVM hypercall instead of open-coding the logic everywhere. No functional change intended. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> [sean: squash into one patch, keep explicit KVM_HC_MAP_GPA_RANGE check] Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Message-ID: <20241128004344.4072099-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
9a1dfeff44 |
KVM: x86: clear vcpu->run->hypercall.ret before exiting for KVM_EXIT_HYPERCALL
QEMU up to 9.2.0 is assuming that vcpu->run->hypercall.ret is 0 on exit and it never modifies it when processing KVM_EXIT_HYPERCALL. Make this explicit in the code, to avoid breakage when KVM starts modifying that field. This in principle is not a good idea... It would have been much better if KVM had set the field to -KVM_ENOSYS from the beginning, so that a dumb userspace that does nothing on KVM_EXIT_HYPERCALL would tell the guest it does not support KVM_HC_MAP_GPA_RANGE. However, breaking userspace is a Very Bad Thing, as everybody should know. Reported-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
4d5163cba4 |
KVM: SVM: Allow guest writes to set MSR_AMD64_DE_CFG bits
Drop KVM's arbitrary behavior of making DE_CFG.LFENCE_SERIALIZE read-only for the guest, as rejecting writes can lead to guest crashes, e.g. Windows in particular doesn't gracefully handle unexpected #GPs on the WRMSR, and nothing in the AMD manuals suggests that LFENCE_SERIALIZE is read-only _if it exists_. KVM only allows LFENCE_SERIALIZE to be set, by the guest or host, if the underlying CPU has X86_FEATURE_LFENCE_RDTSC, i.e. if LFENCE is guaranteed to be serializing. So if the guest sets LFENCE_SERIALIZE, KVM will provide the desired/correct behavior without any additional action (the guest's value is never stuffed into hardware). And having LFENCE be serializing even when it's not _required_ to be is a-ok from a functional perspective. Fixes: |
|
|
|
d81cadbe16 |
KVM: SVM: Disable AVIC on SNP-enabled system without HvInUseWrAllowed feature
On SNP-enabled system, VMRUN marks AVIC Backing Page as in-use while
the guest is running for both secure and non-secure guest. Any hypervisor
write to the in-use vCPU's AVIC backing page (e.g. to inject an interrupt)
will generate unexpected #PF in the host.
Currently, attempt to run AVIC guest would result in the following error:
BUG: unable to handle page fault for address: ff3a442e549cc270
#PF: supervisor write access in kernel mode
#PF: error_code(0x80000003) - RMP violation
PGD b6ee01067 P4D b6ee02067 PUD 10096d063 PMD 11c540063 PTE 80000001149cc163
SEV-SNP: PFN 0x1149cc unassigned, dumping non-zero entries in 2M PFN region: [0x114800 - 0x114a00]
...
Newer AMD system is enhanced to allow hypervisor to modify the backing page
for non-secure guest on SNP-enabled system. This enhancement is available
when the CPUID Fn8000_001F_EAX bit 30 is set (HvInUseWrAllowed).
This table describes AVIC support matrix w.r.t. SNP enablement:
| Non-SNP system | SNP system
-----------------------------------------------------
Non-SNP guest | AVIC Activate | AVIC Activate iff
| | HvInuseWrAllowed=1
-----------------------------------------------------
SNP guest | N/A | Secure AVIC
Therefore, check and disable AVIC in kvm_amd driver when the feature is not
available on SNP-enabled system.
See the AMD64 Architecture Programmer’s Manual (APM) Volume 2 for detail.
(https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/
programmer-references/40332.pdf)
Fixes:
|
|
|
|
3e633e7e7d |
KVM: x86: Add interrupt injection information to the kvm_entry tracepoint
Add VMX/SVM specific interrupt injection info the kvm_entry tracepoint. As is done with kvm_exit, gather the information via a kvm_x86_ops hook to avoid the moderately costly VMREADs on VMX when the tracepoint isn't enabled. Opportunistically rename the parameters in the get_exit_info() declaration to match the names used by both SVM and VMX. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240910200350.264245-2-mlevitsk@redhat.com [sean: drop is_guest_mode() change, use intr_info/error_code for names] Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
7bd7ff9911 |
KVM: SVM: Handle event vectoring error in check_emulate_instruction()
Detect unhandleable vectoring in check_emulate_instruction() to prevent infinite retry loops on SVM, and to eliminate the main differences in how VM-Exits during event vectoring are handled on SVM versus VMX. E.g. if the vCPU puts its IDT in emulated MMIO memory and generates an event, without the check_emulate_instruction() change, SVM will re-inject the event and resume the guest, and effectively put the vCPU into an infinite loop. Signed-off-by: Ivan Orlov <iorlov@amazon.com> Link: https://lore.kernel.org/r/20241217181458.68690-6-iorlov@amazon.com [sean: grab "svm" locally, massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
cbdeea032b |
KVM: x86: Drop superfluous host XSAVE check when adjusting guest XSAVES caps
Drop the manual boot_cpu_has() checks on XSAVE when adjusting the guest's XSAVES capabilities now that guest cpu_caps incorporates KVM's support. The guest's cpu_caps are initialized from kvm_cpu_caps, which are in turn initialized from boot_cpu_data, i.e. checking guest_cpu_cap_has() also checks host/KVM capabilities (which is the entire point of cpu_caps). Cc: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20241128013424.4096668-52-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
8f2a27752e |
KVM: x86: Replace (almost) all guest CPUID feature queries with cpu_caps
Switch all queries (except XSAVES) of guest features from guest CPUID to guest capabilities, i.e. replace all calls to guest_cpuid_has() with calls to guest_cpu_cap_has(). Keep guest_cpuid_has() around for XSAVES, but subsume its helper guest_cpuid_get_register() and add a compile-time assertion to prevent using guest_cpuid_has() for any other feature. Add yet another comment for XSAVE to explain why KVM is allowed to query its raw guest CPUID. Opportunistically drop the unused guest_cpuid_clear(), as there should be no circumstance in which KVM needs to _clear_ a guest CPUID feature now that everything is tracked via cpu_caps. E.g. KVM may need to _change_ a feature to emulate dynamic CPUID flags, but KVM should never need to clear a feature in guest CPUID to prevent it from being used by the guest. Delete the last remnants of the governed features framework, as the lone holdout was vmx_adjust_secondary_exec_control()'s divergent behavior for governed vs. ungoverned features. Note, replacing guest_cpuid_has() checks with guest_cpu_cap_has() when computing reserved CR4 bits is a nop when viewed as a whole, as KVM's capabilities are already incorporated into the calculation, i.e. if a feature is present in guest CPUID but unsupported by KVM, its CR4 bit was already being marked as reserved, checking guest_cpu_cap_has() simply double-stamps that it's a reserved bit. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20241128013424.4096668-51-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
e592ec657d |
KVM: x86: Initialize guest cpu_caps based on KVM support
Constrain all guest cpu_caps based on KVM support instead of constraining only the few features that KVM _currently_ needs to verify are actually supported by KVM. The intent of cpu_caps is to track what the guest is actually capable of using, not the raw, unfiltered CPUID values that the guest sees. I.e. KVM should always consult it's only support when making decisions based on guest CPUID, and the only reason KVM has historically made the checks opt-in was due to lack of centralized tracking. Suggested-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20241128013424.4096668-45-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
a7a308f863 |
KVM: x86: Initialize guest cpu_caps based on guest CPUID
Initialize a vCPU's capabilities based on the guest CPUID provided by userspace instead of simply zeroing the entire array. This is the first step toward using cpu_caps to query *all* CPUID-based guest capabilities, i.e. will allow converting all usage of guest_cpuid_has() to guest_cpu_cap_has(). Zeroing the array was the logical choice when using cpu_caps was opt-in, e.g. "unsupported" was generally a safer default, and the whole point of governed features is that KVM would need to check host and guest support, i.e. making everything unsupported by default didn't require more code. But requiring KVM to manually "enable" every CPUID-based feature in cpu_caps would require an absurd amount of boilerplate code. Follow existing CPUID/kvm_cpu_caps nomenclature where possible, e.g. for the change() and clear() APIs. Replace check_and_set() with constrain() to try and capture that KVM is constraining userspace's desired guest feature set based on KVM's capabilities. This is intended to be gigantic nop, i.e. should not have any impact on guest or KVM functionality. This is also an intermediate step; a future commit will also incorporate KVM support into the vCPU's cpu_caps before converting guest_cpuid_has() to guest_cpu_cap_has(). Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20241128013424.4096668-42-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
2c5e168e5c |
KVM: x86: Rename "governed features" helpers to use "guest_cpu_cap"
As the first step toward replacing KVM's so-called "governed features" framework with a more comprehensive, less poorly named implementation, replace the "kvm_governed_feature" function prefix with "guest_cpu_cap" and rename guest_can_use() to guest_cpu_cap_has(). The "guest_cpu_cap" naming scheme mirrors that of "kvm_cpu_cap", and provides a more clear distinction between guest capabilities, which are KVM controlled (heh, or one might say "governed"), and guest CPUID, which with few exceptions is fully userspace controlled. Opportunistically rewrite the comment about XSS passthrough for SEV-ES guests to avoid referencing so many functions, as such comments are prone to becoming stale (case in point...). No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Link: https://lore.kernel.org/r/20241128013424.4096668-40-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
036e78a942 |
KVM: SVM: Remove redundant TLB flush on guest CR4.PGE change
Drop SVM's direct TLB flush when CR4.PGE is toggled and NPT is enabled, as KVM already guarantees TLBs are flushed appropriately. For the call from cr_trap(), kvm_post_set_cr4() requests TLB_FLUSH_GUEST (which is a superset of TLB_FLUSH_CURRENT) when CR4.PGE is toggled, regardless of whether or not KVM is using TDP. The calls from nested_vmcb02_prepare_save() and nested_svm_vmexit() are checking guest (L2) vs. host (L1) CR4, and so a flush is unnecessary as L2 is defined to use a different ASID (from L1's perspective). Lastly, the call from svm_set_cr0() passes in the current CR4 value, i.e. can't toggle PGE. Link: https://lore.kernel.org/r/20241127235312.4048445-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
45d522d3ee |
KVM: SVM: Macrofy SEV=n versions of sev_xxx_guest()
Define sev_{,es_,snp_}guest() as "false" when SEV is disabled via Kconfig,
i.e. when CONFIG_KVM_AMD_SEV=n. Despite the helpers being __always_inline,
gcc-12 is somehow incapable of realizing that the return value is a
compile-time constant and generates sub-optimal code.
Opportunistically clump the paths together to reduce the amount of
ifdeffery.
No functional change intended.
Link: https://lore.kernel.org/r/20241127234659.4046347-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
|
|
2190966fbc |
x86: Convert unreachable() to BUG()
Avoid unreachable() as it can (and will in the absence of UBSAN) generate fallthrough code. Use BUG() so we get a UD2 trap (with unreachable annotation). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/20241128094312.028316261@infradead.org |
|
|
|
9f16d5e6f2 |
The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages. The reason to
do so was that KVM needs to map both non-refcounted pages (for example
BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain
refcounted pages. However, the result was security issues in the past,
and more recently the inability to map VM_IO and VM_PFNMAP memory
that _is_ backed by struct page but is not refcounted. In particular
this broke virtio-gpu blob resources (which directly map host graphics
buffers into the guest as "vram" for the virtio-gpu device) with the
amdgpu driver, because amdgpu allocates non-compound higher order pages
and the tail pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the per-architecture
code, to always work on the pfn whenever possible. The large series that
did this, from David Stevens and Sean Christopherson, also cleaned up
substantially the set of functions that provided arch code with the
pfn for a host virtual addresses. The previous maze of twisty little
passages, all different, is replaced by five functions (__gfn_to_page,
__kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages)
saving almost 200 lines of code.
ARM:
* Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
* Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call
was introduced in PSCIv1.3 as a mechanism to request hibernation,
similar to the S4 state in ACPI
* Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
* PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
* Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
* Avoid emulated MMIO completion if userspace has requested synchronous
external abort injection
* Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
* Add iocsr and mmio bus simulation in kernel.
* Add in-kernel interrupt controller emulation.
* Add support for virtualization extensions to the eiointc irqchip.
PPC:
* Drop lingering and utterly obsolete references to PPC970 KVM, which was
removed 10 years ago.
* Fix incorrect documentation references to non-existing ioctls
RISC-V:
* Accelerate KVM RISC-V when running as a guest
* Perf support to collect KVM guest statistics from host side
s390:
* New selftests: more ucontrol selftests and CPU model sanity checks
* Support for the gen17 CPU model
* List registers supported by KVM_GET/SET_ONE_REG in the documentation
x86:
* Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
documentation, harden against unexpected changes. Even if the hardware
A/D tracking is disabled, it is possible to use the hardware-defined A/D
bits to track if a PFN is Accessed and/or Dirty, and that removes a lot
of special cases.
* Elide TLB flushes when aging secondary PTEs, as has been done in x86's
primary MMU for over 10 years.
* Recover huge pages in-place in the TDP MMU when dirty page logging is
toggled off, instead of zapping them and waiting until the page is
re-accessed to create a huge mapping. This reduces vCPU jitter.
* Batch TLB flushes when dirty page logging is toggled off. This reduces
the time it takes to disable dirty logging by ~3x.
* Remove the shrinker that was (poorly) attempting to reclaim shadow page
tables in low-memory situations.
* Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
* Advertise CPUIDs for new instructions in Clearwater Forest
* Quirk KVM's misguided behavior of initialized certain feature MSRs to
their maximum supported feature set, which can result in KVM creating
invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero
value results in the vCPU having invalid state if userspace hides PDCM
from the guest, which in turn can lead to save/restore failures.
* Fix KVM's handling of non-canonical checks for vCPUs that support LA57
to better follow the "architecture", in quotes because the actual
behavior is poorly documented. E.g. most MSR writes and descriptor
table loads ignore CR4.LA57 and operate purely on whether the CPU
supports LA57.
* Bypass the register cache when querying CPL from kvm_sched_out(), as
filling the cache from IRQ context is generally unsafe; harden the
cache accessors to try to prevent similar issues from occuring in the
future. The issue that triggered this change was already fixed in 6.12,
but was still kinda latent.
* Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
* Minor cleanups
* Switch hugepage recovery thread to use vhost_task. These kthreads can
consume significant amounts of CPU time on behalf of a VM or in response
to how the VM behaves (for example how it accesses its memory); therefore
KVM tried to place the thread in the VM's cgroups and charge the CPU
time consumed by that work to the VM's container. However the kthreads
did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM
instances inside could not complete freezing. Fix this by replacing the
kthread with a PF_USER_WORKER thread, via the vhost_task abstraction.
Another 100+ lines removed, with generally better behavior too like
having these threads properly parented in the process tree.
* Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't
really work; there was really nothing to work around anyway: the broken
patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL
MSR is virtualized and therefore unaffected by the erratum.
* Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'.
x86 selftests:
* x86 selftests can now use AVX.
Documentation:
* Use rST internal links
* Reorganize the introduction to the API document
Generic:
* Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
of RCU, so that running a vCPU on a different task doesn't encounter long
due to having to wait for all CPUs become quiescent. In general both reads
and writes are rare, but userspace that supports confidential computing is
introducing the use of "helper" vCPUs that may jump from one host processor
to another. Those will be very happy to trigger a synchronize_rcu(), and
the effect on performance is quite the disaster.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4
dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS
letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI
1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+
t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW
ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig==
=lWpE
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
|
|
|
|
0f25f0e4ef |
the bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same
scope where they'd been created, getting rid of reassignments
and passing them by reference, converting to CLASS(fd{,_pos,_raw}).
We are getting very close to having the memory safety of that stuff
trivial to verify.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ
69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9
CN18glYmD3wRyU6Bwl4vGODouSJvDgA=
=gVH3
-----END PGP SIGNATURE-----
Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull 'struct fd' class updates from Al Viro:
"The bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same scope
where they'd been created, getting rid of reassignments and passing
them by reference, converting to CLASS(fd{,_pos,_raw}).
We are getting very close to having the memory safety of that stuff
trivial to verify"
* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits)
deal with the last remaing boolean uses of fd_file()
css_set_fork(): switch to CLASS(fd_raw, ...)
memcg_write_event_control(): switch to CLASS(fd)
assorted variants of irqfd setup: convert to CLASS(fd)
do_pollfd(): convert to CLASS(fd)
convert do_select()
convert vfs_dedupe_file_range().
convert cifs_ioctl_copychunk()
convert media_request_get_by_fd()
convert spu_run(2)
switch spufs_calls_{get,put}() to CLASS() use
convert cachestat(2)
convert do_preadv()/do_pwritev()
fdget(), more trivial conversions
fdget(), trivial conversions
privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget()
o2hb_region_dev_store(): avoid goto around fdget()/fdput()
introduce "fd_pos" class, convert fdget_pos() users to it.
fdget_raw() users: switch to CLASS(fd_raw)
convert vmsplice() to CLASS(fd)
...
|
|
|
|
2e9a2c624e |
Merge branch 'kvm-docs-6.13' into HEAD
- Drop obsolete references to PPC970 KVM, which was removed 10 years ago. - Fix incorrect references to non-existing ioctls - List registers supported by KVM_GET/SET_ONE_REG on s390 - Use rST internal links - Reorganize the introduction to the API document |
|
|
|
bb4409a9e7 |
KVM x86 misc changes for 6.13
- Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
- Quirk KVM's misguided behavior of initialized certain feature MSRs to
their maximum supported feature set, which can result in KVM creating
invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero
value results in the vCPU having invalid state if userspace hides PDCM
from the guest, which can lead to save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support LA57
to better follow the "architecture", in quotes because the actual
behavior is poorly documented. E.g. most MSR writes and descriptor
table loads ignore CR4.LA57 and operate purely on whether the CPU
supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(), as
filling the cache from IRQ context is generally unsafe, and harden the
cache accessors to try to prevent similar issues from occuring in the
future.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
- Minor cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmczowUACgkQOlYIJqCj
N/3G8w//RYIslQkHXZXovQvhHKM9RBxdg6FjU0Do2KLN/xnR+JdjrBAI3HnG0TVu
TEsA6slaTdvAFudSBZ27rORPARJ3XCSnDT+NflDR2UqtmGYFXxixcs4LQRUC3I2L
tS/e847Qfp7/+kXFYQuH6YmMftCf7SQNbUPU3EwSXY8seUJB6ZhO89WXgrBtaMH+
94b7EdkP86L4dqiEMGr/q/46/ewFpPlB4WWFNIAY+SoZebQ+C8gcAsGDzfG6giNV
HxdehWNp5nJ34k9Tudt2FseL/IclA3nXZZIl2dU6PWLkjgvDqL2kXLHpAQTpKuXf
ZzBM4wjdVqZRQHscLgX6+0/uOJDf9/iJs/dwD9PbzLhAJnHF3SWRAy/grzpChLFR
Yil5zagtdhjqSKDf2FsUCJ7lwaST0fhHvmZZx4loIhcmN0/rvvrhhfLsJgCWv/Kf
RWMkiSQGhxAZUXjOJDQB+wTHv7ZoJy51ov7/rYjr49jCJrCVO6I6yQ6lNKDCYClR
vDS3yK6fiEXbC09iudm74FBl2KO+BwJKhnidekzzKGv34RHRAux5Oo54J5jJMhBA
tXFxALGwKr1KAI7vLK8ByZzwZjN5pDmKHUuOAlJNy9XQi+b4zbbREkXlcqZ5VgxA
xCibpnLzJFoHS8y7c76wfz4mCkWSWzuC9Rzy4sTkHMzgJESmZiE=
=dESL
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.13' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.13
- Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
- Quirk KVM's misguided behavior of initialized certain feature MSRs to
their maximum supported feature set, which can result in KVM creating
invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero
value results in the vCPU having invalid state if userspace hides PDCM
from the guest, which can lead to save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support LA57
to better follow the "architecture", in quotes because the actual
behavior is poorly documented. E.g. most MSR writes and descriptor
table loads ignore CR4.LA57 and operate purely on whether the CPU
supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(), as
filling the cache from IRQ context is generally unsafe, and harden the
cache accessors to try to prevent similar issues from occuring in the
future.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
- Minor cleanups
|
|
|
|
e3a7792d96 |
kvm: svm: Fix gctx page leak on invalid inputs
Ensure that snp gctx page allocation is adequately deallocated on
failure during snp_launch_start.
Fixes:
|
|
|
|
e5d253c60e |
KVM: SVM: Propagate error from snp_guest_req_init() to userspace
If snp_guest_req_init() fails, return the provided error code up the
stack to userspace, e.g. so that userspace can log that KVM_SEV_INIT2
failed, as opposed to some random operation later in VM setup failing
because SNP wasn't actually enabled for the VM.
Note, KVM itself doesn't consult the return value from __sev_guest_init(),
i.e. the fallout is purely that userspace may be confused.
Fixes:
|
|
|
|
6348be02ee |
fdget(), trivial conversions
fdget() is the first thing done in scope, all matching fdput() are immediately followed by leaving the scope. Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
|
|
|
dcb988cdac |
KVM: x86: Quirk initialization of feature MSRs to KVM's max configuration
Add a quirk to control KVM's misguided initialization of select feature MSRs to KVM's max configuration, as enabling features by default violates KVM's approach of letting userspace own the vCPU model, and is actively problematic for MSRs that are conditionally supported, as the vCPU will end up with an MSR value that userspace can't restore. E.g. if the vCPU is configured with PDCM=0, userspace will save and attempt to restore a non-zero PERF_CAPABILITIES, thanks to KVM's meddling. Link: https://lore.kernel.org/r/20240802185511.305849-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
|
|
|
f0e7012c4b |
KVM: x86: Bypass register cache when querying CPL from kvm_sched_out()
When querying guest CPL to determine if a vCPU was preempted while in
kernel mode, bypass the register cache, i.e. always read SS.AR_BYTES from
the VMCS on Intel CPUs. If the kernel is running with full preemption
enabled, using the register cache in the preemption path can result in
stale and/or uninitialized data being cached in the segment cache.
In particular the following scenario is currently possible:
- vCPU is just created, and the vCPU thread is preempted before
SS.AR_BYTES is written in vmx_vcpu_reset().
- When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() =>
vmx_get_cpl() reads and caches '0' for SS.AR_BYTES.
- vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't
invoke vmx_segment_cache_clear() to invalidate the cache.
As a result, KVM retains a stale value in the cache, which can be read,
e.g. via KVM_GET_SREGS. Usually this is not a problem because the VMX
segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM
selftests) reads and writes system registers just after the vCPU was
created, _without_ modifying SS.AR_BYTES, userspace will write back the
stale '0' value and ultimately will trigger a VM-Entry failure due to
incorrect SS segment type.
Note, the VM-Enter failure can also be avoided by moving the call to
vmx_segment_cache_clear() until after the vmx_vcpu_reset() initializes all
segments. However, while that change is correct and desirable (and will
come along shortly), it does not address the underlying problem that
accessing KVM's register caches from !task context is generally unsafe.
In addition to fixing the immediate bug, bypassing the cache for this
particular case will allow hardening KVM register caching log to assert
that the caches are accessed only when KVM _knows_ it is safe to do so.
Fixes:
|
|
|
|
1fbee5b01a |
KVM: guest_memfd: Provide "struct page" as output from kvm_gmem_get_pfn()
Provide the "struct page" associated with a guest_memfd pfn as an output from __kvm_gmem_get_pfn() so that KVM guest page fault handlers can directly put the page instead of having to rely on kvm_pfn_to_refcounted_page(). Tested-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20241010182427.1434605-47-seanjc@google.com> |
|
|
|
365e319208 |
KVM: Pass in write/dirty to kvm_vcpu_map(), not kvm_vcpu_unmap()
Now that all kvm_vcpu_{,un}map() users pass "true" for @dirty, have them
pass "true" as a @writable param to kvm_vcpu_map(), and thus create a
read-only mapping when possible.
Note, creating read-only mappings can be theoretically slower, as they
don't play nice with fast GUP due to the need to break CoW before mapping
the underlying PFN. But practically speaking, creating a mapping isn't
a super hot path, and getting a writable mapping for reading is weird and
confusing.
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-34-seanjc@google.com>
|
|
|
|
f559b2e9c5 |
KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken.
Fixes:
|
|
|
|
3efc57369a |
x86:
* KVM currently invalidates the entirety of the page tables, not just
those for the memslot being touched, when a memslot is moved or deleted.
The former does not have particularly noticeable overhead, but Intel's
TDX will require the guest to re-accept private pages if they are
dropped from the secure EPT, which is a non starter. Actually,
the only reason why this is not already being done is a bug which
was never fully investigated and caused VM instability with assigned
GeForce GPUs, so allow userspace to opt into the new behavior.
* Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
functionality that is on the horizon).
* Rework common MSR handling code to suppress errors on userspace accesses to
unsupported-but-advertised MSRs. This will allow removing (almost?) all of
KVM's exemptions for userspace access to MSRs that shouldn't exist based on
the vCPU model (the actual cleanup is non-trivial future work).
* Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
stores the entire 64-bit value at the ICR offset.
* Fix a bug where KVM would fail to exit to userspace if one was triggered by
a fastpath exit handler.
* Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
there's already a pending wake event at the time of the exit.
* Fix a WARN caused by RSM entering a nested guest from SMM with invalid guest
state, by forcing the vCPU out of guest mode prior to signalling SHUTDOWN
(the SHUTDOWN hits the VM altogether, not the nested guest)
* Overhaul the "unprotect and retry" logic to more precisely identify cases
where retrying is actually helpful, and to harden all retry paths against
putting the guest into an infinite retry loop.
* Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in
the shadow MMU.
* Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for
adding multi generation LRU support in KVM.
* Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled,
i.e. when the CPU has already flushed the RSB.
* Trace the per-CPU host save area as a VMCB pointer to improve readability
and cleanup the retrieval of the SEV-ES host save area.
* Remove unnecessary accounting of temporary nested VMCB related allocations.
* Set FINAL/PAGE in the page fault error code for EPT violations if and only
if the GVA is valid. If the GVA is NOT valid, there is no guest-side page
table walk and so stuffing paging related metadata is nonsensical.
* Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
emulating posted interrupt delivery to L2.
* Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.
* Harden eVMCS loading against an impossible NULL pointer deref (really truly
should be impossible).
* Minor SGX fix and a cleanup.
* Misc cleanups
Generic:
* Register KVM's cpuhp and syscore callbacks when enabling virtualization in
hardware, as the sole purpose of said callbacks is to disable and re-enable
virtualization as needed.
* Enable virtualization when KVM is loaded, not right before the first VM
is created. Together with the previous change, this simplifies a
lot the logic of the callbacks, because their very existence implies
virtualization is enabled.
* Fix a bug that results in KVM prematurely exiting to userspace for coalesced
MMIO/PIO in many cases, clean up the related code, and add a testcase.
* Fix a bug in kvm_clear_guest() where it would trigger a buffer overflow _if_
the gpa+len crosses a page boundary, which thankfully is guaranteed to not
happen in the current code base. Add WARNs in more helpers that read/write
guest memory to detect similar bugs.
Selftests:
* Fix a goof that caused some Hyper-V tests to be skipped when run on bare
metal, i.e. NOT in a VM.
* Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES guest.
* Explicitly include one-off assets in .gitignore. Past Sean was completely
wrong about not being able to detect missing .gitignore entries.
* Verify userspace single-stepping works when KVM happens to handle a VM-Exit
in its fastpath.
* Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmb201AUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOM1gf+Ij7dpCh0KwoNYlHfW2aCHAv3PqQd
cKMDSGxoCernbJEyPO/3qXNUK+p4zKedk3d92snW3mKa+cwxMdfthJ3i9d7uoNiw
7hAgcfKNHDZGqAQXhx8QcVF3wgp+diXSyirR+h1IKrGtCCmjMdNC8ftSYe6voEkw
VTVbLL+tER5H0Xo5UKaXbnXKDbQvWLXkdIqM8dtLGFGLQ2PnF/DdMP0p6HYrKf1w
B7LBu0rvqYDL8/pS82mtR3brHJXxAr9m72fOezRLEUbfUdzkTUi/b1vEe6nDCl0Q
i/PuFlARDLWuetlR0VVWKNbop/C/l4EmwCcKzFHa+gfNH3L9361Oz+NzBw==
=Q7kz
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull x86 kvm updates from Paolo Bonzini:
"x86:
- KVM currently invalidates the entirety of the page tables, not just
those for the memslot being touched, when a memslot is moved or
deleted.
This does not traditionally have particularly noticeable overhead,
but Intel's TDX will require the guest to re-accept private pages
if they are dropped from the secure EPT, which is a non starter.
Actually, the only reason why this is not already being done is a
bug which was never fully investigated and caused VM instability
with assigned GeForce GPUs, so allow userspace to opt into the new
behavior.
- Advertise AVX10.1 to userspace (effectively prep work for the
"real" AVX10 functionality that is on the horizon)
- Rework common MSR handling code to suppress errors on userspace
accesses to unsupported-but-advertised MSRs
This will allow removing (almost?) all of KVM's exemptions for
userspace access to MSRs that shouldn't exist based on the vCPU
model (the actual cleanup is non-trivial future work)
- Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC)
splits the 64-bit value into the legacy ICR and ICR2 storage,
whereas Intel (APICv) stores the entire 64-bit value at the ICR
offset
- Fix a bug where KVM would fail to exit to userspace if one was
triggered by a fastpath exit handler
- Add fastpath handling of HLT VM-Exit to expedite re-entering the
guest when there's already a pending wake event at the time of the
exit
- Fix a WARN caused by RSM entering a nested guest from SMM with
invalid guest state, by forcing the vCPU out of guest mode prior to
signalling SHUTDOWN (the SHUTDOWN hits the VM altogether, not the
nested guest)
- Overhaul the "unprotect and retry" logic to more precisely identify
cases where retrying is actually helpful, and to harden all retry
paths against putting the guest into an infinite retry loop
- Add support for yielding, e.g. to honor NEED_RESCHED, when zapping
rmaps in the shadow MMU
- Refactor pieces of the shadow MMU related to aging SPTEs in
prepartion for adding multi generation LRU support in KVM
- Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is
enabled, i.e. when the CPU has already flushed the RSB
- Trace the per-CPU host save area as a VMCB pointer to improve
readability and cleanup the retrieval of the SEV-ES host save area
- Remove unnecessary accounting of temporary nested VMCB related
allocations
- Set FINAL/PAGE in the page fault error code for EPT violations if
and only if the GVA is valid. If the GVA is NOT valid, there is no
guest-side page table walk and so stuffing paging related metadata
is nonsensical
- Fix a bug where KVM would incorrectly synthesize a nested VM-Exit
instead of emulating posted interrupt delivery to L2
- Add a lockdep assertion to detect unsafe accesses of vmcs12
structures
- Harden eVMCS loading against an impossible NULL pointer deref
(really truly should be impossible)
- Minor SGX fix and a cleanup
- Misc cleanups
Generic:
- Register KVM's cpuhp and syscore callbacks when enabling
virtualization in hardware, as the sole purpose of said callbacks
is to disable and re-enable virtualization as needed
- Enable virtualization when KVM is loaded, not right before the
first VM is created
Together with the previous change, this simplifies a lot the logic
of the callbacks, because their very existence implies
virtualization is enabled
- Fix a bug that results in KVM prematurely exiting to userspace for
coalesced MMIO/PIO in many cases, clean up the related code, and
add a testcase
- Fix a bug in kvm_clear_guest() where it would trigger a buffer
overflow _if_ the gpa+len crosses a page boundary, which thankfully
is guaranteed to not happen in the current code base. Add WARNs in
more helpers that read/write guest memory to detect similar bugs
Selftests:
- Fix a goof that caused some Hyper-V tests to be skipped when run on
bare metal, i.e. NOT in a VM
- Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES
guest
- Explicitly include one-off assets in .gitignore. Past Sean was
completely wrong about not being able to detect missing .gitignore
entries
- Verify userspace single-stepping works when KVM happens to handle a
VM-Exit in its fastpath
- Misc cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
Documentation: KVM: fix warning in "make htmldocs"
s390: Enable KVM_S390_UCONTROL config in debug_defconfig
selftests: kvm: s390: Add VM run test case
KVM: SVM: let alternatives handle the cases when RSB filling is required
KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is valid
KVM: x86/mmu: Use KVM_PAGES_PER_HPAGE() instead of an open coded equivalent
KVM: x86/mmu: Add KVM_RMAP_MANY to replace open coded '1' and '1ul' literals
KVM: x86/mmu: Fold mmu_spte_age() into kvm_rmap_age_gfn_range()
KVM: x86/mmu: Morph kvm_handle_gfn_range() into an aging specific helper
KVM: x86/mmu: Honor NEED_RESCHED when zapping rmaps and blocking is allowed
KVM: x86/mmu: Add a helper to walk and zap rmaps for a memslot
KVM: x86/mmu: Plumb a @can_yield parameter into __walk_slot_rmaps()
KVM: x86/mmu: Move walk_slot_rmaps() up near for_each_slot_rmap_range()
KVM: x86/mmu: WARN on MMIO cache hit when emulating write-protected gfn
KVM: x86/mmu: Detect if unprotect will do anything based on invalid_list
KVM: x86/mmu: Subsume kvm_mmu_unprotect_page() into the and_retry() version
KVM: x86: Rename reexecute_instruction()=>kvm_unprotect_and_retry_on_failure()
KVM: x86: Update retry protection fields when forcing retry on emulation failure
KVM: x86: Apply retry protection to "unprotect on failure" path
KVM: x86: Check EMULTYPE_WRITE_PF_TO_SP before unprotecting gfn
...
|
|
|
|
f8ffbc365f |
struct fd layout change (and conversion to accessor helpers)
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZvDNmgAKCRBZ7Krx/gZQ 63zrAP9vI0rf55v27twiabe9LnI7aSx5ckoqXxFIFxyT3dOYpQD/bPmoApnWDD3d 592+iDgLsema/H/0/CqfqlaNtDNY8Q0= =HUl5 -----END PGP SIGNATURE----- Merge tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull 'struct fd' updates from Al Viro: "Just the 'struct fd' layout change, with conversion to accessor helpers" * tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: add struct fd constructors, get rid of __to_fd() struct fd: representation change introduce fd_file(), convert all accessors to it. |
|
|
|
55e6f8f29d |
Merge tag 'kvm-x86-svm-6.12' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.12: - Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled, i.e. when the CPU has already flushed the RSB. - Trace the per-CPU host save area as a VMCB pointer to improve readability and cleanup the retrieval of the SEV-ES host save area. - Remove unnecessary accounting of temporary nested VMCB related allocations. |
|
|
|
41786cc5ea |
Merge tag 'kvm-x86-misc-6.12' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.12 - Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10 functionality that is on the horizon). - Rework common MSR handling code to suppress errors on userspace accesses to unsupported-but-advertised MSRs. This will allow removing (almost?) all of KVM's exemptions for userspace access to MSRs that shouldn't exist based on the vCPU model (the actual cleanup is non-trivial future work). - Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the 64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv) stores the entire 64-bit value a the ICR offset. - Fix a bug where KVM would fail to exit to userspace if one was triggered by a fastpath exit handler. - Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when there's already a pending wake event at the time of the exit. - Finally fix the RSM vs. nested VM-Enter WARN by forcing the vCPU out of guest mode prior to signalling SHUTDOWN (architecturally, the SHUTDOWN is supposed to hit L1, not L2). |
|
|
|
c09dd2bb57 |
Merge branch 'kvm-redo-enable-virt' into HEAD
Register KVM's cpuhp and syscore callbacks when enabling virtualization in hardware, as the sole purpose of said callbacks is to disable and re-enable virtualization as needed. The primary motivation for this series is to simplify dealing with enabling virtualization for Intel's TDX, which needs to enable virtualization when kvm-intel.ko is loaded, i.e. long before the first VM is created. That said, this is a nice cleanup on its own. By registering the callbacks on-demand, the callbacks themselves don't need to check kvm_usage_count, because their very existence implies a non-zero count. Patch 1 (re)adds a dedicated lock for kvm_usage_count. This avoids a lock ordering issue between cpus_read_lock() and kvm_lock. The lock ordering issue still exist in very rare cases, and will be fixed for good by switching vm_list to an (S)RCU-protected list. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
|
|
|
4440337af4 |
KVM: SVM: let alternatives handle the cases when RSB filling is required
Remove superfluous RSB filling after a VMEXIT when the CPU already has flushed the RSB after a VMEXIT when AutoIBRS is enabled. The initial implementation for adding RETPOLINES added an ALTERNATIVES implementation for filling the RSB after a VMEXIT in commit |