mirror of https://github.com/torvalds/linux.git
1016 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
3add00be5f | Merge branches 'rcu-doc.2024.02.14a', 'rcu-nocb.2024.02.14a', 'rcu-exp.2024.02.14a', 'rcu-tasks.2024.02.26a' and 'rcu-misc.2024.02.14a' into rcu.2024.02.26a | |
|
|
30ef09635b |
rcu-tasks: Initialize callback lists at rcu_init() time
In order for RCU Tasks to reliably maintain per-CPU lists of exiting tasks, those lists must be initialized before it is possible for tasks to exit, especially given that the boot CPU is not necessarily CPU 0 (an example being, powerpc kexec() kernels). And at the time that rcu_init_tasks_generic() is called, a task could potentially exit, unconventional though that sort of thing might be. This commit therefore moves the calls to cblist_init_generic() from functions called from rcu_init_tasks_generic() to a new function named tasks_cblist_init_generic() that is invoked from rcu_init(). This constituted a bug in a commit that never went to mainline, so there is no need for any backporting to -stable. Reported-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
7f66f099de |
rcu: Provide a boot time parameter to control lazy RCU
To allow more flexible arrangements while still provide a single kernel for distros, provide a boot time parameter to enable/disable lazy RCU. Specify: rcutree.enable_rcu_lazy=[y|1|n|0] Which also requires rcu_nocbs=all at boot time to enable/disable lazy RCU. To disable it by default at build time when CONFIG_RCU_LAZY=y, the new CONFIG_RCU_LAZY_DEFAULT_OFF can be used. Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Tested-by: Andrea Righi <andrea.righi@canonical.com> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
23da2ad64d |
rcu/exp: Remove rcu_par_gp_wq
TREE04 running on short iterations can produce writer stalls of the
following kind:
??? Writer stall state RTWS_EXP_SYNC(4) g3968 f0x0 ->state 0x2 cpu 0
task:rcu_torture_wri state:D stack:14568 pid:83 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2de/0x850
? trace_event_raw_event_rcu_exp_funnel_lock+0x6d/0xb0
schedule+0x4f/0x90
synchronize_rcu_expedited+0x430/0x670
? __pfx_autoremove_wake_function+0x10/0x10
? __pfx_synchronize_rcu_expedited+0x10/0x10
do_rtws_sync.constprop.0+0xde/0x230
rcu_torture_writer+0x4b4/0xcd0
? __pfx_rcu_torture_writer+0x10/0x10
kthread+0xc7/0xf0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
Waiting for an expedited grace period and polling for an expedited
grace period both are operations that internally rely on the same
workqueue performing necessary asynchronous work.
However, a dependency chain is involved between those two operations,
as depicted below:
====== CPU 0 ======= ====== CPU 1 =======
synchronize_rcu_expedited()
exp_funnel_lock()
mutex_lock(&rcu_state.exp_mutex);
start_poll_synchronize_rcu_expedited
queue_work(rcu_gp_wq, &rnp->exp_poll_wq);
synchronize_rcu_expedited_queue_work()
queue_work(rcu_gp_wq, &rew->rew_work);
wait_event() // A, wait for &rew->rew_work completion
mutex_unlock() // B
//======> switch to kworker
sync_rcu_do_polled_gp() {
synchronize_rcu_expedited()
exp_funnel_lock()
mutex_lock(&rcu_state.exp_mutex); // C, wait B
....
} // D
Since workqueues are usually implemented on top of several kworkers
handling the queue concurrently, the above situation wouldn't deadlock
most of the time because A then doesn't depend on D. But in case of
memory stress, a single kworker may end up handling alone all the works
in a serialized way. In that case the above layout becomes a problem
because A then waits for D, closing a circular dependency:
A -> D -> C -> B -> A
This however only happens when CONFIG_RCU_EXP_KTHREAD=n. Indeed
synchronize_rcu_expedited() is otherwise implemented on top of a kthread
worker while polling still relies on rcu_gp_wq workqueue, breaking the
above circular dependency chain.
Fix this with making expedited grace period to always rely on kthread
worker. The workqueue based implementation is essentially a duplicate
anyway now that the per-node initialization is performed by per-node
kthread workers.
Meanwhile the CONFIG_RCU_EXP_KTHREAD switch is still kept around to
manage the scheduler policy of these kthread workers.
Reported-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Suggested-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
|
|
|
|
b67cffcbbf |
rcu/exp: Handle parallel exp gp kworkers affinity
Affine the parallel expedited gp kworkers to their respective RCU node in order to make them close to the cache their are playing with. This reuses the boost kthreads machinery that probe into CPU hotplug operations such that the kthreads become/stay affine to their respective node as soon/long as they contain online CPUs. Otherwise and if the current CPU going down was the last online on the leaf node, the related kthread is affine to the housekeeping CPUs. In the long run, this affinity VS CPU hotplug operation game should probably be implemented at the generic kthread level. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> [boqun: s/* rcu_boost_task/*rcu_boost_task as reported by checkpatch] Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
8e5e621566 |
rcu/exp: Make parallel exp gp kworker per rcu node
When CONFIG_RCU_EXP_KTHREAD=n, the expedited grace period per node initialization is performed in parallel via workqueues (one work per node). However in CONFIG_RCU_EXP_KTHREAD=y, this per node initialization is performed by a single kworker serializing each node initialization (one work for all nodes). The second part is certainly less scalable and efficient beyond a single leaf node. To improve this, expand this single kworker into per-node kworkers. This new layout is eventually intended to remove the workqueues based implementation since it will essentially now become duplicate code. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
c19e5d3b49 |
rcu/exp: Move expedited kthread worker creation functions above rcutree_prepare_cpu()
The expedited kthread worker performing the per node initialization is going to be split into per node kthreads. As such, the future per node kthread creation will need to be called from CPU hotplug callbacks instead of an initcall, right beside the per node boost kthread creation. To prepare for that, move the kthread worker creation above rcutree_prepare_cpu() as a first step to make the review smoother for the upcoming modifications. No intended functional change. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
7836b27060 |
rcu: s/boost_kthread_mutex/kthread_mutex
This mutex is currently protecting per node boost kthreads creation and affinity setting across CPU hotplug operations. Since the expedited kworkers will soon be split per node as well, they will be subject to the same concurrency constraints against hotplug. Therefore their creation and affinity tuning operations will be grouped with those of boost kthreads and then rely on the same mutex. To prepare for that, generalize its name. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
e7539ffc9a |
rcu/exp: Handle RCU expedited grace period kworker allocation failure
Just like is done for the kworker performing nodes initialization,
gracefully handle the possible allocation failure of the RCU expedited
grace period main kworker.
While at it perform a rename of the related checking functions to better
reflect the expedited specifics.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes:
|
|
|
|
a636c5e6f8 |
rcu/exp: Fix RCU expedited parallel grace period kworker allocation failure recovery
Under CONFIG_RCU_EXP_KTHREAD=y, the nodes initialization for expedited
grace periods is queued to a kworker. However if the allocation of that
kworker failed, the nodes initialization is performed synchronously by
the caller instead.
Now the check for kworker initialization failure relies on the kworker
pointer to be NULL while its value might actually encapsulate an
allocation failure error.
Make sure to handle this case.
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Fixes:
|
|
|
|
afd4e69647 |
rcu/nocb: Re-arrange call_rcu() NOCB specific code
Currently the call_rcu() function interleaves NOCB and !NOCB enqueue code in a complicated way such that: * The bypass enqueue code may or may not have enqueued and may or may not have locked the ->nocb_lock. Everything that follows is in a Schrödinger locking state for the unwary reviewer's eyes. * The was_alldone is always set but only used in NOCB related code. * The NOCB wake up is distantly related to the locking hopefully performed by the bypass enqueue code that did not enqueue on the bypass list. Unconfuse the whole and gather NOCB and !NOCB specific enqueue code to their own functions. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> |
|
|
|
b913c3fe68 |
rcu/nocb: Make IRQs disablement symmetric
Currently IRQs are disabled on call_rcu() and then depending on the
context:
* If the CPU is in nocb mode:
- If the callback is enqueued in the bypass list, IRQs are re-enabled
implictly by rcu_nocb_try_bypass()
- If the callback is enqueued in the normal list, IRQs are re-enabled
implicitly by __call_rcu_nocb_wake()
* If the CPU is NOT in nocb mode, IRQs are reenabled explicitly from call_rcu()
This makes the code a bit hard to follow, especially as it interleaves
with nocb locking.
To make the IRQ flags coverage clearer and also in order to prepare for
moving all the nocb enqueue code to its own function, always re-enable
the IRQ flags explicitly from call_rcu().
Reviewed-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
|
|
|
|
1e8e6951a5 |
rcu/nocb: Remove needless full barrier after callback advancing
A full barrier is issued from nocb_gp_wait() upon callbacks advancing
to order grace period completion with callbacks execution.
However these two events are already ordered by the
smp_mb__after_unlock_lock() barrier within the call to
raw_spin_lock_rcu_node() that is necessary for callbacks advancing to
happen.
The following litmus test shows the kind of guarantee that this barrier
provides:
C smp_mb__after_unlock_lock
{}
// rcu_gp_cleanup()
P0(spinlock_t *rnp_lock, int *gpnum)
{
// Grace period cleanup increase gp sequence number
spin_lock(rnp_lock);
WRITE_ONCE(*gpnum, 1);
spin_unlock(rnp_lock);
}
// nocb_gp_wait()
P1(spinlock_t *rnp_lock, spinlock_t *nocb_lock, int *gpnum, int *cb_ready)
{
int r1;
// Call rcu_advance_cbs() from nocb_gp_wait()
spin_lock(nocb_lock);
spin_lock(rnp_lock);
smp_mb__after_unlock_lock();
r1 = READ_ONCE(*gpnum);
WRITE_ONCE(*cb_ready, 1);
spin_unlock(rnp_lock);
spin_unlock(nocb_lock);
}
// nocb_cb_wait()
P2(spinlock_t *nocb_lock, int *cb_ready, int *cb_executed)
{
int r2;
// rcu_do_batch() -> rcu_segcblist_extract_done_cbs()
spin_lock(nocb_lock);
r2 = READ_ONCE(*cb_ready);
spin_unlock(nocb_lock);
// Actual callback execution
WRITE_ONCE(*cb_executed, 1);
}
P3(int *cb_executed, int *gpnum)
{
int r3;
WRITE_ONCE(*cb_executed, 2);
smp_mb();
r3 = READ_ONCE(*gpnum);
}
exists (1:r1=1 /\ 2:r2=1 /\ cb_executed=2 /\ 3:r3=0) (* Bad outcome. *)
Here the bad outcome only occurs if the smp_mb__after_unlock_lock() is
removed. This barrier orders the grace period completion against
callbacks advancing and even later callbacks invocation, thanks to the
opportunistic propagation via the ->nocb_lock to nocb_cb_wait().
Therefore the smp_mb() placed after callbacks advancing can be safely
removed.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
|
|
|
|
e787644caf |
rcu: Defer RCU kthreads wakeup when CPU is dying
When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).
If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.
This triggers TREE03 rcutorture hangs:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
rcu: (t=21035 jiffies g=938281 q=40787 ncpus=6)
rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:R running task stack:14896 pid:14 tgid:14 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2eb/0xa80
schedule+0x1f/0x90
schedule_timeout+0x163/0x270
? __pfx_process_timeout+0x10/0x10
rcu_gp_fqs_loop+0x37c/0x5b0
? __pfx_rcu_gp_kthread+0x10/0x10
rcu_gp_kthread+0x17c/0x200
kthread+0xde/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2b/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.
So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes:
|
|
|
|
dee39c0c1e |
rcu: Force quiescent states only for ongoing grace period
If an rcutorture test scenario creates an fqs_task kthread, it will periodically invoke rcu_force_quiescent_state() in order to start force-quiescent-state (FQS) operations. However, an FQS operation will be started even if there is no RCU grace period in progress. Although testing FQS operations startup when there is no grace period in progress is necessary, it need not happen all that often. This commit therefore causes rcu_force_quiescent_state() to take an early exit if there is no grace period in progress. Note that there will still be attempts to start an FQS scan in the absence of a grace period because the grace period might end right after the rcu_force_quiescent_state() function's check. In actual testing, this happens about once every ten minutes, which should provide adequate testing. Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com> |
|
|
|
90450a0616 |
RCU fixes for v6.7
* Fix a lock inversion between scheduler and RCU introduced in v6.2-rc4. The scenario could trigger on any user of RCU_NOCB (mostly Android and also nohz_full). * Fix PF_IDLE semantic changes introduced in v6.6-rc3 breaking some RCU-Tasks and RCU-Tasks-Trace expectations as to what exactly is an idle task. This resulted in potential spurious stalls and warnings. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmVFB/QACgkQhSRUR1CO jHctUg/+LjAHNvT8YR99qxP3v8Ylqf191ADhDla1Zx1LYkhcrApdRKQU5G1dzfiF arJ/KSSgCLCYMecwdh6iOL5s3S3DtQGsh7Y7f/dJ6vwJbNe2NbPaMYK2WQ171zT+ ht7oAugFrOpWn5H6i1eC170N+rG7nHYuCXrzsta0fx1fOp9G0OeemvweD7HjpaB7 66tp0KnuJWLfPLoZucscxKRtC7ZG0zDztFUXcfcv+TQE6w5fXuhtLX7E7fE1jPMr Pa3x9Su5fjFCRJCCCFNHzKqbf8VKG/teGOONFBwt8AwwU1/7TuIuwSOjrISOaG91 eEeIwWyiAw+aP+7CMMGca0oYPOR+b3Xq7vmN85KIEFUHpNls6MvR5/itR1d3/FsA 9EkiNLIwbRV9ICi+JeGeJsSmm6TRJL4XToiw9fJKfC05IHjotMSAtUOqHS/VmdjL o1kDdiWBSHUy7VVelu5wRHb0WINc9Zrq/tc3MT2W0EpTDRSL2r04MsP8UDYre1oY KDdTLSPsy2D+5YWY484Z+bCOHl0bXSgZe4PycGVrP9HEus6MGHyxU6uDCXwWbqQz R0QdZ60AdquwWTdK1K0PsU5VKQw3oZKKwj8hyKOr31NpSZ1FvLJa8Ct8D2UZPbMS WNscgGE4ZNjCYFq8wtnL5LkUym8is1Y6/nLifBV1scx5GtyHYiU= =a5L7 -----END PGP SIGNATURE----- Merge tag 'rcu-fixes-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull RCU fixes from Frederic Weisbecker: - Fix a lock inversion between scheduler and RCU introduced in v6.2-rc4. The scenario could trigger on any user of RCU_NOCB (mostly Android but also nohz_full) - Fix PF_IDLE semantic changes introduced in v6.6-rc3 breaking some RCU-Tasks and RCU-Tasks-Trace expectations as to what exactly is an idle task. This resulted in potential spurious stalls and warnings. * tag 'rcu-fixes-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: rcu/tasks-trace: Handle new PF_IDLE semantics rcu/tasks: Handle new PF_IDLE semantics rcu: Introduce rcu_cpu_online() rcu: Break rcu_node_0 --> &rq->__lock order |
|
|
|
ecae0bd517 |
Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series "Fixes and cleanups to compaction".
- Joel Fernandes has a patchset ("Optimize mremap during mutual
alignment within PMD") which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested.
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series "Do not try to access unaccepted memory" Adrian Hunter
provides some fixups for the recently-added "unaccepted memory' feature.
To increase the feature's checking coverage. "Plug a few gaps where
RAM is exposed without checking if it is unaccepted memory".
- In the series "cleanups for lockless slab shrink" Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code.
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series "use refcount+RCU method to implement
lockless slab shrink".
- David Hildenbrand contributes some maintenance work for the rmap code
in the series "Anon rmap cleanups".
- Kefeng Wang does more folio conversions and some maintenance work in
the migration code. Series "mm: migrate: more folio conversion and
unification".
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series "Add and use bdev_getblk()".
- In the series "Use nth_page() in place of direct struct page
manipulation" Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames.
- In the series "mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO" has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of gigantic
pages are in use.
- Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
rationalization and folio conversions in the hugetlb code.
- Yin Fengwei has improved mlock()'s handling of large folios in the
series "support large folio for mlock"
- In the series "Expose swapcache stat for memcg v1" Liu Shixin has
added statistics for memcg v1 users which are available (and useful)
under memcg v2.
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named "MDWE
without inheritance".
- Kefeng Wang has provided the series "mm: convert numa balancing
functions to use a folio" which does what it says.
- In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
makes is possible for a process to propagate KSM treatment across
exec().
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use "high
bandwidth memory" in addition to Optane Data Center Persistent Memory
Modules (DCPMM). The series is named "memory tiering: calculate
abstract distance based on ACPI HMAT"
- In the series "Smart scanning mode for KSM" Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans.
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
series "mm: memcg: fix tracking of pending stats updates values".
- In the series "Implement IOCTL to get and optionally clear info about
PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
us to atomically read-then-clear page softdirty state. This is mainly
used by CRIU.
- Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
- a bunch of relatively minor maintenance tweaks to this code.
- Matthew Wilcox has increased the use of the VMA lock over file-backed
page faults in the series "Handle more faults under the VMA lock". Some
rationalizations of the fault path became possible as a result.
- In the series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
and folio conversions.
- In the series "various improvements to the GUP interface" Lorenzo
Stoakes has simplified and improved the GUP interface with an eye to
providing groundwork for future improvements.
- Andrey Konovalov has sent along the series "kasan: assorted fixes and
improvements" which does those things.
- Some page allocator maintenance work from Kemeng Shi in the series
"Two minor cleanups to break_down_buddy_pages".
- In thes series "New selftest for mm" Breno Leitao has developed
another MM self test which tickles a race we had between madvise() and
page faults.
- In the series "Add folio_end_read" Matthew Wilcox provides cleanups
and an optimization to the core pagecache code.
- Nhat Pham has added memcg accounting for hugetlb memory in the series
"hugetlb memcg accounting".
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series "Abstract vma_merge() and split_vma()".
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series "Fix page_owner's use of free timestamps".
- Lorenzo Stoakes has fixed the handling of new mappings of sealed files
in the series "permit write-sealed memfd read-only shared mappings".
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series "Batch hugetlb vmemmap modification operations".
- Some buffer_head folio conversions and cleanups from Matthew Wilcox in
the series "Finish the create_empty_buffers() transition".
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the series
"mm: PCP high auto-tuning".
- Roman Gushchin has contributed the patchset "mm: improve performance
of accounted kernel memory allocations" which improves their performance
by ~30% as measured by a micro-benchmark.
- folio conversions from Kefeng Wang in the series "mm: convert page
cpupid functions to folios".
- Some kmemleak fixups in Liu Shixin's series "Some bugfix about
kmemleak".
- Qi Zheng has improved our handling of memoryless nodes by keeping them
off the allocation fallback list. This is done in the series "handle
memoryless nodes more appropriately".
- khugepaged conversions from Vishal Moola in the series "Some
khugepaged folio conversions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
FgeUPAD1oasg6CP+INZvCj34waNxwAc=
=E+Y4
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
|
|
|
|
2be4686d86 |
rcu: Introduce rcu_cpu_online()
Export the RCU point of view as to when a CPU is considered offline
(ie: when does RCU consider that a CPU is sufficiently down in the
hotplug process to not feature any possible read side).
This will be used by RCU-tasks whose vision of an offline CPU should
reasonably match the one of RCU core.
Fixes:
|
|
|
|
85d68222dd |
rcu: Break rcu_node_0 --> &rq->__lock order
Commit |
|
|
|
d97ae6474c |
Merge branches 'rcu/torture', 'rcu/fixes', 'rcu/docs', 'rcu/refscale', 'rcu/tasks' and 'rcu/stall' into rcu/next
rcu/torture: RCU torture, locktorture and generic torture infrastructure rcu/fixes: Generic and misc fixes rcu/docs: RCU documentation updates rcu/refscale: RCU reference scalability test updates rcu/tasks: RCU tasks updates rcu/stall: Stall detection updates |
|
|
|
448e9f34d9 |
rcu: Standardize explicit CPU-hotplug calls
rcu_report_dead() and rcutree_migrate_callbacks() have their headers in rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug functions. Also rcu_cpu_starting() and rcu_report_dead() have different naming conventions while they mirror each other's effects. Fix the headers and propose a naming that relates both functions and aligns with the prefix of other rcutree CPU-hotplug functions. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
2cb1f6e9a7 |
rcu: Conditionally build CPU-hotplug teardown callbacks
Among the three CPU-hotplug teardown RCU callbacks, two of them early exit if CONFIG_HOTPLUG_CPU=n, and one is left unchanged. In any case all of them have an implementation when CONFIG_HOTPLUG_CPU=n. Align instead with the common way to deal with CPU-hotplug teardown callbacks and provide a proper stub when they are not supported. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
21e0b932fb |
rcu: dynamically allocate the rcu-kfree shrinker
Use new APIs to dynamically allocate the rcu-kfree shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-17-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Neil Brown <neilb@suse.de> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Tom Talpey <tom@talpey.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
|
|
|
c964c1f5ee |
rcu: Assume rcu_report_dead() is always called locally
rcu_report_dead() has to be called locally by the CPU that is going to exit the RCU state machine. Passing a cpu argument here is error-prone and leaves the possibility for a racy remote call. Use local access instead. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
358662a961 |
rcu: Assume IRQS disabled from rcu_report_dead()
rcu_report_dead() is the last RCU word from the CPU down through the hotplug path. It is called in the idle loop right before the CPU shuts down for good. Because it removes the CPU from the grace period state machine and reports an ultimate quiescent state if necessary, no further use of RCU is allowed. Therefore it is expected that IRQs are disabled upon calling this function and are not to be re-enabled again until the CPU shuts down. Remove the IRQs disablement from that function and verify instead that it is actually called with IRQs disabled as it is expected at that special point in the idle path. Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
5f98fd034c |
rcu: kmemleak: Ignore kmemleak false positives when RCU-freeing objects
Since the actual slab freeing is deferred when calling kvfree_rcu(), so is the kmemleak_free() callback informing kmemleak of the object deletion. From the perspective of the kvfree_rcu() caller, the object is freed and it may remove any references to it. Since kmemleak does not scan RCU internal data storing the pointer, it will report such objects as leaks during the grace period. Tell kmemleak to ignore such objects on the kvfree_call_rcu() path. Note that the tiny RCU implementation does not have such issue since the objects can be tracked from the rcu_ctrlblk structure. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Christoph Paasch <cpaasch@apple.com> Closes: https://lore.kernel.org/all/F903A825-F05F-4B77-A2B5-7356282FBA2C@apple.com/ Cc: <stable@vger.kernel.org> Tested-by: Christoph Paasch <cpaasch@apple.com> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
0ae9942f03 |
rcu: Eliminate rcu_gp_slow_unregister() false positive
When using rcutorture as a module, there are a number of conditions that can abort the modprobe operation, for example, when attempting to run both RCU CPU stall warning tests and forward-progress tests. This can cause rcu_torture_cleanup() to be invoked on the unwind path out of rcu_rcu_torture_init(), which will mean that rcu_gp_slow_unregister() is invoked without a matching rcu_gp_slow_register(). This will cause a splat because rcu_gp_slow_unregister() is passed rcu_fwd_cb_nodelay, which does not match a NULL pointer. This commit therefore forgives a mismatch involving a NULL pointer, thus avoiding this false-positive splat. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
2cbc482d32 |
rcu: Dump memory object info if callback function is invalid
When a structure containing an RCU callback rhp is (incorrectly) freed and reallocated after rhp is passed to call_rcu(), it is not unusual for rhp->func to be set to NULL. This defeats the debugging prints used by __call_rcu_common() in kernels built with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y, which expect to identify the offending code using the identity of this function. And in kernels build without CONFIG_DEBUG_OBJECTS_RCU_HEAD=y, things are even worse, as can be seen from this splat: Unable to handle kernel NULL pointer dereference at virtual address 0 ... ... PC is at 0x0 LR is at rcu_do_batch+0x1c0/0x3b8 ... ... (rcu_do_batch) from (rcu_core+0x1d4/0x284) (rcu_core) from (__do_softirq+0x24c/0x344) (__do_softirq) from (__irq_exit_rcu+0x64/0x108) (__irq_exit_rcu) from (irq_exit+0x8/0x10) (irq_exit) from (__handle_domain_irq+0x74/0x9c) (__handle_domain_irq) from (gic_handle_irq+0x8c/0x98) (gic_handle_irq) from (__irq_svc+0x5c/0x94) (__irq_svc) from (arch_cpu_idle+0x20/0x3c) (arch_cpu_idle) from (default_idle_call+0x4c/0x78) (default_idle_call) from (do_idle+0xf8/0x150) (do_idle) from (cpu_startup_entry+0x18/0x20) (cpu_startup_entry) from (0xc01530) This commit therefore adds calls to mem_dump_obj(rhp) to output some information, for example: slab kmalloc-256 start ffff410c45019900 pointer offset 0 size 256 This provides the rough size of the memory block and the offset of the rcu_head structure, which as least provides at least a few clues to help locate the problem. If the problem is reproducible, additional slab debugging can be enabled, for example, CONFIG_DEBUG_SLAB=y, which can provide significantly more information. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
16128b1f8c |
rcu: Add sysfs to provide throttled access to rcu_barrier()
When running a series of stress tests all making heavy use of RCU, it is all too possible to OOM the system when the prior test's RCU callbacks don't get invoked until after the subsequent test starts. One way of handling this is just a timed wait, but this fails when a given CPU has so many callbacks queued that they take longer to invoke than allowed for by that timed wait. This commit therefore adds an rcutree.do_rcu_barrier module parameter that is accessible from sysfs. Writing one of the many synonyms for boolean "true" will cause an rcu_barrier() to be invoked, but will guarantee that no more than one rcu_barrier() will be invoked per sixteenth of a second via this mechanism. The flip side is that a given request might wait a second or three longer than absolutely necessary, but only when there are multiple uses of rcutree.do_rcu_barrier within a one-second time interval. This commit unnecessarily serializes the rcu_barrier() machinery, given that serialization is already provided by procfs. This has the advantage of allowing throttled rcu_barrier() from other sources within the kernel. Reported-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
4502138acc |
rcu/tree: Remove superfluous return from void call_rcu* functions
The return keyword is not needed here. Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
b96e7a5fa0 |
rcu/tree: Defer setting of jiffies during stall reset
There are instances where rcu_cpu_stall_reset() is called when jiffies
did not get a chance to update for a long time. Before jiffies is
updated, the CPU stall detector can go off triggering false-positives
where a just-started grace period appears to be ages old. In the past,
we disabled stall detection in rcu_cpu_stall_reset() however this got
changed [1]. This is resulting in false-positives in KGDB usecase [2].
Fix this by deferring the update of jiffies to the third run of the FQS
loop. This is more robust, as, even if rcu_cpu_stall_reset() is called
just before jiffies is read, we would end up pushing out the jiffies
read by 3 more FQS loops. Meanwhile the CPU stall detection will be
delayed and we will not get any false positives.
[1] https://lore.kernel.org/all/20210521155624.174524-2-senozhatsky@chromium.org/
[2] https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Tested with rcutorture.cpu_stall option as well to verify stall behavior
with/without patch.
Tested-by: Huacai Chen <chenhuacai@loongson.cn>
Reported-by: Binbin Zhou <zhoubinbin@loongson.cn>
Closes: https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Suggested-by: Paul McKenney <paulmck@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes:
|
|
|
|
343640cb5b |
rcu: Mark __rcu_irq_enter_check_tick() ->rcu_urgent_qs load
The rcu_request_urgent_qs_task() function does a cross-CPU store to ->rcu_urgent_qs, so this commit therefore marks the load in __rcu_irq_enter_check_tick() with READ_ONCE(). Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> |
|
|
|
c924bf5a43 |
rcu: Clarify rcu_is_watching() kernel-doc comment
Make it clear that this function always returns either true or false without other planned failure modes. Reported-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> |
|
|
|
2e31da752c |
Merge branches 'doc.2023.05.10a', 'fixes.2023.05.11a', 'kvfree.2023.05.10a', 'nocb.2023.05.11a', 'rcu-tasks.2023.05.10a', 'torture.2023.05.15a' and 'rcu-urgent.2023.06.06a' into HEAD
doc.2023.05.10a: Documentation updates fixes.2023.05.11a: Miscellaneous fixes kvfree.2023.05.10a: kvfree_rcu updates nocb.2023.05.11a: Callback-offloading updates rcu-tasks.2023.05.10a: Tasks RCU updates torture.2023.05.15a: Torture-test updates rcu-urgent.2023.06.06a: Urgent SRCU fix |
|
|
|
401b0de3ae |
rcu-tasks: Stop rcu_tasks_invoke_cbs() from using never-onlined CPUs
The rcu_tasks_invoke_cbs() function relies on queue_work_on() to silently
fall back to WORK_CPU_UNBOUND when the specified CPU is offline. However,
the queue_work_on() function's silent fallback mechanism relies on that
CPU having been online at some time in the past. When queue_work_on()
is passed a CPU that has never been online, workqueue lockups ensue,
which can be bad for your kernel's general health and well-being.
This commit therefore checks whether a given CPU has ever been online,
and, if not substitutes WORK_CPU_UNBOUND in the subsequent call to
queue_work_on(). Why not simply omit the queue_work_on() call entirely?
Because this function is flooding callback-invocation notifications
to all CPUs, and must deal with possibilities that include a sparse
cpu_possible_mask.
This commit also moves the setting of the rcu_data structure's
->beenonline field to rcu_cpu_starting(), which executes on the
incoming CPU before that CPU has ever enabled interrupts. This ensures
that the required workqueues are present. In addition, because the
incoming CPU has not yet enabled its interrupts, there cannot yet have
been any softirq handlers running on this CPU, which means that the
WARN_ON_ONCE(!rdp->beenonline) within the RCU_SOFTIRQ handler cannot
have triggered yet.
Fixes:
|
|
|
|
15d44dfa40 |
rcu: Make rcu_cpu_starting() rely on interrupts being disabled
Currently, rcu_cpu_starting() is written so that it might be invoked with interrupts enabled. However, it is always called when interrupts are disabled, either by rcu_init(), notify_cpu_starting(), or from a call point prior to the call to notify_cpu_starting(). But why bother requiring that interrupts be disabled? The purpose is to allow the rcu_data structure's ->beenonline flag to be set after all early processing has completed for the incoming CPU, thus allowing this flag to be used to determine when workqueues have been set up for the incoming CPU, while still allowing this flag to be used as a diagnostic within rcu_core(). This commit therefore makes rcu_cpu_starting() rely on interrupts being disabled. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
a24c1aab65 |
rcu: Mark rcu_cpu_kthread() accesses to ->rcu_cpu_has_work
The rcu_data structure's ->rcu_cpu_has_work field can be modified by any CPU attempting to wake up the rcuc kthread. Therefore, this commit marks accesses to this field from the rcu_cpu_kthread() function. This data race was reported by KCSAN. Not appropriate for backporting due to failure being unlikely. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
f51164a808 |
rcu: Employ jiffies-based backstop to callback time limit
Currently, if there are more than 100 ready-to-invoke RCU callbacks queued on a given CPU, the rcu_do_batch() function sets a timeout for invocation of the series. This timeout defaulting to three milliseconds, and may be adjusted using the rcutree.rcu_resched_ns kernel boot parameter. This timeout is checked using local_clock(), but the overhead of this function combined with the common-case very small callback-invocation overhead means that local_clock() is checked every 32nd invocation. This works well except for longer-than average callbacks. For example, a series of 500-microsecond-duration callbacks means that local_clock() is checked only once every 16 milliseconds, which makes it difficult to enforce a three-millisecond timeout. This commit therefore adds a Kconfig option RCU_DOUBLE_CHECK_CB_TIME that enables backup timeout checking using the coarser grained but lighter weight jiffies. If the jiffies counter detects a timeout, then local_clock() is consulted even if this is not the 32nd callback. This prevents the aforementioned 16-millisecond latency blow. Reported-by: Domas Mituzas <dmituzas@meta.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
fea1c1f010 |
rcu: Check callback-invocation time limit for rcuc kthreads
Currently, a callback-invocation time limit is enforced only for callbacks invoked from the softirq environment, the rationale being that when callbacks are instead invoked from rcuc and rcuoc kthreads, these callbacks cannot be holding up other softirq vectors. Which is in fact true. However, if an rcuc kthread spends too much time invoking callbacks, it can delay quiescent-state reports from its CPU, which can also be a problem. This commit therefore applies the callback-invocation time limit to callback invocation from the rcuc kthreads as well as from softirq. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
6b706e5603 |
rcu/kvfree: Make drain_page_cache() take early return if cache is disabled
If the rcutree.rcu_min_cached_objs kernel boot parameter is set to zero, then krcp->page_cache_work will never be triggered to fill page cache. In addition, the put_cached_bnode() will not fill page cache. As a result krcp->bkvcache will always be empty, so there is no need to acquire krcp->lock to get page from krcp->bkvcache. This commit therefore makes drain_page_cache() return immediately if the rcu_min_cached_objs is zero. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
60888b77a0 |
rcu/kvfree: Make fill page cache start from krcp->nr_bkv_objs
When the fill_page_cache_func() function is invoked, it assumes that the cache of pages is completely empty. However, there can be some time between triggering execution of this function and its actual invocation. During this time, kfree_rcu_work() might run, and might fill in part or all of this cache of pages, thus invalidating the fill_page_cache_func() function's assumption. This will not overfill the cache because put_cached_bnode() will reject the extra page. However, it will result in a needless allocation and freeing of one extra page, which might not be helpful under lowish-memory conditions. This commit therefore causes the fill_page_cache_func() to explicitly account for pages that have been placed into the cache shortly before it starts running. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
021a5ff847 |
rcu/kvfree: Do not run a page work if a cache is disabled
By default the cache size is 5 pages per CPU, but it can be disabled at boot time by setting the rcu_min_cached_objs to zero. When that happens, the current code will uselessly set an hrtimer to schedule refilling this cache with zero pages. This commit therefore streamlines this process by simply refusing the set the hrtimer when rcu_min_cached_objs is zero. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
309a431650 |
rcu/kvfree: Use consistent krcp when growing kfree_rcu() page cache
The add_ptr_to_bulk_krc_lock() function is invoked to allocate a new kfree_rcu() page, also known as a kvfree_rcu_bulk_data structure. The kfree_rcu_cpu structure's lock is used to protect this operation, except that this lock must be momentarily dropped when allocating memory. It is clearly important that the lock that is reacquired be the same lock that was acquired initially via krc_this_cpu_lock(). Unfortunately, this same krc_this_cpu_lock() function is used to re-acquire this lock, and if the task migrated to some other CPU during the memory allocation, this will result in the kvfree_rcu_bulk_data structure being added to the wrong CPU's kfree_rcu_cpu structure. This commit therefore replaces that second call to krc_this_cpu_lock() with raw_spin_lock_irqsave() in order to explicitly acquire the lock on the correct kfree_rcu_cpu structure, thus keeping things straight even when the task migrates. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
1e237994d9 |
rcu/kvfree: Invoke debug_rcu_bhead_unqueue() after checking bnode->gp_snap
If kvfree_rcu_bulk() sees that the required grace period has failed to elapse, it leaks the memory because readers might still be using it. But in that case, the debug-objects subsystem still marks the relevant structures as having been freed, even though they are instead being leaked. This commit fixes this mismatch by invoking debug_rcu_bhead_unqueue() only when we are actually going to free the objects. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
f32276a376 |
rcu/kvfree: Add debug check for GP complete for kfree_rcu_cpu list
Under low-memory conditions, kvfree_rcu() will use each object's rcu_head structure to queue objects in a singly linked list headed by the kfree_rcu_cpu structure's ->head field. This list is passed to call_rcu() as a unit, but there is no indication of which grace period this list needs to wait for. This in turn prevents adding debug checks in the kfree_rcu_work() as was done for the two page-of-pointers channels in the kfree_rcu_cpu structure. This commit therefore adds a ->head_free_gp_snap field to the kfree_rcu_cpu_work structure to record this grace-period number. It also adds a WARN_ON_ONCE() to kfree_rcu_monitor() that checks to make sure that the required grace period has in fact elapsed. [ paulmck: Fix kerneldoc issue raised by Stephen Rothwell. ] Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
cdfa0f6fa6 |
rcu/kvfree: Add debug to check grace periods
This commit adds debugging checks to verify that the required RCU grace period has elapsed for each kvfree_rcu_bulk_data structure that arrives at the kvfree_rcu_bulk() function. These checks make use of that structure's ->gp_snap field, which has been upgraded from an unsigned long to an rcu_gp_oldstate structure. This upgrade reduces the chances of false positives to nearly zero, even on 32-bit systems, for which this structure carries 64 bits of state. Cc: Ziwei Dai <ziwei.dai@unisoc.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
|
|
|
5dfb75e842 |
RCU Changes for 6.4:
o MAINTAINERS files additions and changes.
o Fix hotplug warning in nohz code.
o Tick dependency changes by Zqiang.
o Lazy-RCU shrinker fixes by Zqiang.
o rcu-tasks stall reporting improvements by Neeraj.
o Initial changes for renaming of k[v]free_rcu() to its new k[v]free_rcu_mightsleep()
name for robustness.
o Documentation Updates:
o Significant changes to srcu_struct size.
o Deadlock detection for srcu_read_lock() vs synchronize_srcu() from Boqun.
o rcutorture and rcu-related tool, which are targeted for v6.4 from Boqun's tree.
o Other misc changes.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEcoCIrlGe4gjE06JJqA4nf2o45hAFAmQuBnIACgkQqA4nf2o4
5hACVRAAoXu7/gfh5Pjw9O4E4pCdPJKsZZVYrcrVGrq6NAxRn6M1SgurAdC5grj2
96x0waoGaiO82V0H5iJMcKdAVu67x9R8WaQ1JoxN75Efn8h9W4TguB87TV1gk0xS
eZ18b/CyEaM5mNb80DFFF4FLohy5737p/kNTMqXQdUyR1BsDl16iRMgjiBiFhNUx
yPo8Y2kC2U2OTbldZgaE7s9bQO3xxEcifx93sGWsAex/gx54FYNisiwSlCOSgOE+
XkYo/OKk8Xvr82tLVX8XQVEPCMJ+rxea8T5zSs8/alvsPq7gA8wW3y6fsoa3vUU/
+Gd+W+Q/OsONIDtp8rQAY1qsD0ScDpaR8052RSH0zTa7pj8HsQgE5PjZ+cJW0SEi
cKN+Oe8+ETqKald+xZ6PDf58O212VLrru3RpQWrOQcJ7fmKmfT4REK0RcbLgg4qT
CBgOo6eg+ub4pxq2y11LZJBNTv1/S7xAEzFE0kArew64KB2gyVud0VJRZVAJnEfe
93QQVDFrwK2bhgWQZ6J6IbTvGeQW0L93IibuaU6jhZPR283VtUIIvM7vrOylN7Fq
4jsae0T7YGYfKUhgTpm7rCnm8A/D3Ni8MY0sKYYgDSyKmZUsnpI5wpx1xke4lwwV
ErrY46RCFa+k8wscc6iWfB4cGXyyFHyu+wtyg0KpFn5JAzcfz4A=
=Rgbj
-----END PGP SIGNATURE-----
Merge tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux
Pull RCU updates from Joel Fernandes:
- Updates and additions to MAINTAINERS files, with Boqun being added to
the RCU entry and Zqiang being added as an RCU reviewer.
I have also transitioned from reviewer to maintainer; however, Paul
will be taking over sending RCU pull-requests for the next merge
window.
- Resolution of hotplug warning in nohz code, achieved by fixing
cpu_is_hotpluggable() through interaction with the nohz subsystem.
Tick dependency modifications by Zqiang, focusing on fixing usage of
the TICK_DEP_BIT_RCU_EXP bitmask.
- Avoid needless calls to the rcu-lazy shrinker for CONFIG_RCU_LAZY=n
kernels, fixed by Zqiang.
- Improvements to rcu-tasks stall reporting by Neeraj.
- Initial renaming of k[v]free_rcu() to k[v]free_rcu_mightsleep() for
increased robustness, affecting several components like mac802154,
drbd, vmw_vmci, tracing, and more.
A report by Eric Dumazet showed that the API could be unknowingly
used in an atomic context, so we'd rather make sure they know what
they're asking for by being explicit:
https://lore.kernel.org/all/20221202052847.2623997-1-edumazet@google.com/
- Documentation updates, including corrections to spelling,
clarifications in comments, and improvements to the srcu_size_state
comments.
- Better srcu_struct cache locality for readers, by adjusting the size
of srcu_struct in support of SRCU usage by Christoph Hellwig.
- Teach lockdep to detect deadlocks between srcu_read_lock() vs
synchronize_srcu() contributed by Boqun.
Previously lockdep could not detect such deadlocks, now it can.
- Integration of rcutorture and rcu-related tools, targeted for v6.4
from Boqun's tree, featuring new SRCU deadlock scenarios, test_nmis
module parameter, and more
- Miscellaneous changes, various code cleanups and comment improvements
* tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux: (71 commits)
checkpatch: Error out if deprecated RCU API used
mac802154: Rename kfree_rcu() to kvfree_rcu_mightsleep()
rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep()
ext4/super: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/mlx5: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/sysctl: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
lib/test_vmalloc.c: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
tracing: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
misc: vmw_vmci: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
drbd: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()
rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early
rcu: Remove never-set needwake assignment from rcu_report_qs_rdp()
rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels
rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check
rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race
rcu/trace: use strscpy() to instead of strncpy()
tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem
...
|
|
|
|
5da7cb193d |
rcu/kvfree: Avoid freeing new kfree_rcu() memory after old grace period
Memory passed to kvfree_rcu() that is to be freed is tracked by a per-CPU kfree_rcu_cpu structure, which in turn contains pointers to kvfree_rcu_bulk_data structures that contain pointers to memory that has not yet been handed to RCU, along with an kfree_rcu_cpu_work structure that tracks the memory that has already been handed to RCU. These structures track three categories of memory: (1) Memory for kfree(), (2) Memory for kvfree(), and (3) Memory for both that arrived during an OOM episode. The first two categories are tracked in a cache-friendly manner involving a dynamically allocated page of pointers (the aforementioned kvfree_rcu_bulk_data structures), while the third uses a simple (but decidedly cache-unfriendly) linked list through the rcu_head structures in each block of memory. On a given CPU, these three categories are handled as a unit, with that CPU's kfree_rcu_cpu_work structure having one pointer for each of the three categories. Clearly, new memory for a given category cannot be placed in the corresponding kfree_rcu_cpu_work structure until any old memory has had its grace period elapse and thus has been removed. And the kfree_rcu_monitor() function does in fact check for this. Except that the kfree_rcu_monitor() function checks these pointers one at a time. This means that if the previous kfree_rcu() memory passed to RCU had only category 1 and the current one has only category 2, the kfree_rcu_monitor() function will send that current category-2 memory along immediately. This can result in memory being freed too soon, that is, out from under unsuspecting RCU readers. To see this, consider the following sequence of events, in which: o Task A on CPU 0 calls rcu_read_lock(), then uses "from_cset", then is preempted. o CPU 1 calls kfree_rcu(cset, rcu_head) in order to free "from_cset" after a later grace period. Except that "from_cset" is freed right after the previous grace period ended, so that "from_cset" is immediately freed. Task A resumes and references "from_cset"'s member, after which nothing good happens. In full detail: CPU 0 CPU 1 ---------------------- ---------------------- count_memcg_event_mm() |rcu_read_lock() <--- |mem_cgroup_from_task() |// css_set_ptr is the "from_cset" mentioned on CPU 1 |css_set_ptr = rcu_dereference((task)->cgroups) |// Hard irq comes, current task is scheduled out. cgroup_attach_task() |cgroup_migrate() |cgroup_migrate_execute() |css_set_move_task(task, from_cset, to_cset, true) |cgroup_move_task(task, to_cset) |rcu_assign_pointer(.., to_cset) |... |cgroup_migrate_finish() |put_css_set_locked(from_cset) |from_cset->refcount return 0 |kfree_rcu(cset, rcu_head) // free from_cset after new gp |add_ptr_to_bulk_krc_lock() |schedule_delayed_work(&krcp->monitor_work, ..) kfree_rcu_monitor() |krcp->bulk_head[0]'s work attached to krwp->bulk_head_free[] |queue_rcu_work(system_wq, &krwp->rcu_work) |if rwork->rcu.work is not in WORK_STRUCT_PENDING_BIT state, |call_rcu(&rwork->rcu, rcu_work_rcufn) <--- request new gp // There is a perious call_rcu(.., rcu_work_rcufn) // gp end, rcu_work_rcufn() is called. rcu_work_rcufn() |__queue_work(.., rwork->wq, &rwork->work); |kfree_rcu_work() |krwp->bulk_head_free[0] bulk is freed before new gp end!!! |The "from_cset" is freed before new gp end. // the task resumes some time later. |css_set_ptr->subsys[(subsys_id) <--- Caused kernel crash, because css_set_ptr is freed. This commit therefore causes kfree_rcu_monitor() to refrain from moving kfree_rcu() memory to the kfree_rcu_cpu_work structure until the RCU grace period has completed for all three categories. v2: Use helper function instead of inserted code block at kfree_rcu_monitor(). Fixes: |
|
|
|
8ae9985774 | Merge branches 'rcu/staging-core', 'rcu/staging-docs' and 'rcu/staging-kfree', remote-tracking branches 'paul/srcu-cf.2023.04.04a', 'fbq/rcu/lockdep.2023.03.27a' and 'fbq/rcu/rcutorture.2023.03.20a' into rcu/staging | |
|
|
7a29fb4a47 |
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:
# cd /sys/kernel/tracing/
# echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
# echo 1 > events/kprobes/enable
This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().
Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack: [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack: [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xf8/0x108
show_stack+0x20/0x30
dump_stack_lvl+0x68/0x84
dump_stack+0x1c/0x38
panic+0x214/0x404
add_taint+0x0/0xf8
panic_bad_stack+0x144/0x160
handle_bad_stack+0x38/0x58
__bad_stack+0x78/0x7c
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
[...]
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
el1_interrupt+0x28/0x60
el1h_64_irq_handler+0x18/0x28
el1h_64_irq+0x64/0x68
__ftrace_set_clr_event_nolock+0x98/0x198
__ftrace_set_clr_event+0x58/0x80
system_enable_write+0x144/0x178
vfs_write+0x174/0x738
ksys_write+0xd0/0x188
__arm64_sys_write+0x4c/0x60
invoke_syscall+0x64/0x180
el0_svc_common.constprop.0+0x84/0x160
do_el0_svc+0x48/0xe8
el0_svc+0x34/0xd0
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/all/20221119040049.795065-1-zhengyejian1@huawei.com/
Fixes:
|