mirror of https://github.com/torvalds/linux.git
101 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
d55d5bc5d9 |
x86/boot: Rename conflicting 'boot_params' pointer to 'boot_params_ptr'
The x86 decompressor is built and linked as a separate executable, but it shares components with the kernel proper, which are either #include'd as C files, or linked into the decompresor as a static library (e.g, the EFI stub) Both the kernel itself and the decompressor define a global symbol 'boot_params' to refer to the boot_params struct, but in the former case, it refers to the struct directly, whereas in the decompressor, it refers to a global pointer variable referring to the struct boot_params passed by the bootloader or constructed from scratch. This ambiguity is unfortunate, and makes it impossible to assign this decompressor variable from the x86 EFI stub, given that declaring it as extern results in a clash. So rename the decompressor version (whose scope is limited) to boot_params_ptr. [ mingo: Renamed 'boot_params_p' to 'boot_params_ptr' for clarity ] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: linux-kernel@vger.kernel.org |
|
|
|
8338151935 |
x86/decompressor: Factor out kernel decompression and relocation
Factor out the decompressor sequence that invokes the decompressor, parses the ELF and applies the relocations so that it can be called directly from the EFI stub. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230807162720.545787-21-ardb@kernel.org |
|
|
|
24388292e2 |
x86/decompressor: Move global symbol references to C code
It is no longer necessary to be cautious when referring to global variables in the position independent decompressor code, now that it is built using PIE codegen and makes an assertion in the linker script that no GOT entries exist (which would require adjustment for the actual runtime load address of the decompressor binary). This means global variables can be referenced directly from C code, instead of having to pass their runtime addresses into C routines from asm code, which needs to happen at each call site. Do so for the code that will be called directly from the EFI stub after a subsequent patch, and avoid the need to duplicate this logic a third time. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230807162720.545787-20-ardb@kernel.org |
|
|
|
3fd1239a78 |
x86/boot/compressed: Handle unaccepted memory
The firmware will pre-accept the memory used to run the stub. But, the stub is responsible for accepting the memory into which it decompresses the main kernel. Accept memory just before decompression starts. The stub is also responsible for choosing a physical address in which to place the decompressed kernel image. The KASLR mechanism will randomize this physical address. Since the accepted memory region is relatively small, KASLR would be quite ineffective if it only used the pre-accepted area (EFI_CONVENTIONAL_MEMORY). Ensure that KASLR randomizes among the entire physical address space by also including EFI_UNACCEPTED_MEMORY. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20230606142637.5171-5-kirill.shutemov@linux.intel.com |
|
|
|
7734a0f31e |
x86/boot: Robustify calling startup_{32,64}() from the decompressor code
After commit
|
|
|
|
3a755ebcc2 |
Intel Trust Domain Extensions
This is the Intel version of a confidential computing solution called Trust Domain Extensions (TDX). This series adds support to run the kernel as part of a TDX guest. It provides similar guest protections to AMD's SEV-SNP like guest memory and register state encryption, memory integrity protection and a lot more. Design-wise, it differs from AMD's solution considerably: it uses a software module which runs in a special CPU mode called (Secure Arbitration Mode) SEAM. As the name suggests, this module serves as sort of an arbiter which the confidential guest calls for services it needs during its lifetime. Just like AMD's SNP set, this series reworks and streamlines certain parts of x86 arch code so that this feature can be properly accomodated. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLbisACgkQEsHwGGHe VUqZLg/7B55iygCwzz0W/KLcXL2cISatUpzGbFs1XTbE9DMz06BPkOsEjF2k8ckv kfZjgqhSx3GvUI80gK0Tn2M2DfIj3nKuNSXd1pfextP7AxEf68FFJsQz1Ju7bHpT pZaG+g8IK4+mnEHEKTCO9ANg/Zw8yqJLdtsCaCNE9SUGUfQ6m/ujTEfsambXDHNm khyCAgpIGSOt51/4apoR9ebyrNCaeVbDawpIPjTy+iyFRc/WyaLFV9CQ8klw4gbw r/90x2JYxvAf0/z/ifT9Wa+TnYiQ0d4VjFbfr0iJ4GcPn5L3EIoIKPE8vPGMpoSX fLSzoNmAOT3ja57ytUUQ3o0edoRUIPEdixOebf9qWvE/aj7W37YRzrlJ8Ej/x9Jy HcI4WZF6Dr1bh6FnI/xX2eVZRzLOL4j9gNyPCwIbvgr1NjDqQnxU7nhxVMmQhJrs IdiEcP5WYerLKfka/uF//QfWUg5mDBgFa1/3xK57Z3j0iKWmgjaPpR0SWlOKjj8G tr0gGN9ejikZTqXKGsHn8fv/R3bjXvbVD8z0IEcx+MIrRmZPnX2QBlg7UA1AXV5n HoVwPFdH1QAtjZq1MRcL4hTOjz3FkS68rg7ZH0f2GWJAzWmEGytBIhECRnN/PFFq VwRB4dCCt0bzqRxkiH5lzdgR+xqRe61juQQsMzg+Flv/trpXDqM= =ac9K -----END PGP SIGNATURE----- Merge tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull Intel TDX support from Borislav Petkov: "Intel Trust Domain Extensions (TDX) support. This is the Intel version of a confidential computing solution called Trust Domain Extensions (TDX). This series adds support to run the kernel as part of a TDX guest. It provides similar guest protections to AMD's SEV-SNP like guest memory and register state encryption, memory integrity protection and a lot more. Design-wise, it differs from AMD's solution considerably: it uses a software module which runs in a special CPU mode called (Secure Arbitration Mode) SEAM. As the name suggests, this module serves as sort of an arbiter which the confidential guest calls for services it needs during its lifetime. Just like AMD's SNP set, this series reworks and streamlines certain parts of x86 arch code so that this feature can be properly accomodated" * tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) x86/tdx: Fix RETs in TDX asm x86/tdx: Annotate a noreturn function x86/mm: Fix spacing within memory encryption features message x86/kaslr: Fix build warning in KASLR code in boot stub Documentation/x86: Document TDX kernel architecture ACPICA: Avoid cache flush inside virtual machines x86/tdx/ioapic: Add shared bit for IOAPIC base address x86/mm: Make DMA memory shared for TD guest x86/mm/cpa: Add support for TDX shared memory x86/tdx: Make pages shared in ioremap() x86/topology: Disable CPU online/offline control for TDX guests x86/boot: Avoid #VE during boot for TDX platforms x86/boot: Set CR0.NE early and keep it set during the boot x86/acpi/x86/boot: Add multiprocessor wake-up support x86/boot: Add a trampoline for booting APs via firmware handoff x86/tdx: Wire up KVM hypercalls x86/tdx: Port I/O: Add early boot support x86/tdx: Port I/O: Add runtime hypercalls x86/boot: Port I/O: Add decompression-time support for TDX x86/boot: Port I/O: Allow to hook up alternative helpers ... |
|
|
|
6044d159b5 |
x86/boot: Put globals that are accessed early into the .data section
The helpers in arch/x86/boot/compressed/efi.c might be used during
early boot to access the EFI system/config tables, and in some cases
these EFI helpers might attempt to print debug/error messages, before
console_init() has been called.
__putstr() checks some variables to avoid printing anything before
the console has been initialized, but this isn't enough since those
variables live in .bss, which may not have been cleared yet. This can
lead to a triple-fault occurring, primarily when booting in legacy/CSM
mode (where EFI helpers will attempt to print some debug messages).
Fix this by declaring these globals in .data section instead so there
is no dependency on .bss being cleared before accessing them.
Fixes:
|
|
|
|
eb4ea1ae8f |
x86/boot: Port I/O: Allow to hook up alternative helpers
Port I/O instructions trigger #VE in the TDX environment. In response to the exception, kernel emulates these instructions using hypercalls. But during early boot, on the decompression stage, it is cumbersome to deal with #VE. It is cleaner to go to hypercalls directly, bypassing #VE handling. Add a way to hook up alternative port I/O helpers in the boot stub with a new pio_ops structure. For now, set the ops structure to just call the normal I/O operation functions. out*()/in*() macros redefined to use pio_ops callbacks. It eliminates need in changing call sites. io_delay() changed to use port I/O helper instead of inline assembly. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20220405232939.73860-16-kirill.shutemov@linux.intel.com |
|
|
|
4b05f81504 |
x86/tdx: Detect TDX at early kernel decompression time
The early decompression code does port I/O for its console output. But, handling the decompression-time port I/O demands a different approach from normal runtime because the IDT required to support #VE based port I/O emulation is not yet set up. Paravirtualizing I/O calls during the decompression step is acceptable because the decompression code doesn't have a lot of call sites to IO instruction. To support port I/O in decompression code, TDX must be detected before the decompression code might do port I/O. Detect whether the kernel runs in a TDX guest. Add an early_is_tdx_guest() interface to query the cached TDX guest status in the decompression code. TDX is detected with CPUID. Make cpuid_count() accessible outside boot/cpuflags.c. TDX detection in the main kernel is very similar. Move common bits into <asm/shared/tdx.h>. The actual port I/O paravirtualization will come later in the series. Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20220405232939.73860-13-kirill.shutemov@linux.intel.com |
|
|
|
938a000e3f |
fortify: Detect struct member overflows in memmove() at compile-time
As done for memcpy(), also update memmove() to use the same tightened compile-time checks under CONFIG_FORTIFY_SOURCE. Signed-off-by: Kees Cook <keescook@chromium.org> |
|
|
|
33f98a9798 |
x86/boot/compressed: Avoid duplicate malloc() implementations
The early malloc() and free() implementation in include/linux/decompress/mm.h
(which is also included by the static decompressors) is static. This is
fine when the only thing interested in using malloc() is the decompression
code, but the x86 early boot environment may use malloc() in a couple places,
leading to a potential collision when the static copies of the available
memory region ("malloc_ptr") gets reset to the global "free_mem_ptr" value.
As it happened, the existing usage pattern was accidentally safe because each
user did 1 malloc() and 1 free() before returning and were not nested:
extract_kernel() (misc.c)
choose_random_location() (kaslr.c)
mem_avoid_init()
handle_mem_options()
malloc()
...
free()
...
parse_elf() (misc.c)
malloc()
...
free()
Once the future FGKASLR series is added, however, it will insert
additional malloc() calls local to fgkaslr.c in the middle of
parse_elf()'s malloc()/free() pair:
parse_elf() (misc.c)
malloc()
if (...) {
layout_randomized_image(output, &ehdr, phdrs);
malloc() <- boom
...
else
layout_image(output, &ehdr, phdrs);
free()
To avoid collisions, there must be a single implementation of malloc().
Adjust include/linux/decompress/mm.h so that visibility can be
controlled, provide prototypes in misc.h, and implement the functions in
misc.c. This also results in a small size savings:
$ size vmlinux.before vmlinux.after
text data bss dec hex filename
8842314 468 178320 9021102 89a6ae vmlinux.before
8842240 468 178320 9021028 89a664 vmlinux.after
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211013175742.1197608-4-keescook@chromium.org
|
|
|
|
a554e740b6 |
x86/boot/compressed: Enable -Wundef
A discussion around -Wundef showed that there were still a few boolean
Kconfigs where #if was used rather than #ifdef to guard different code.
Kconfig doesn't define boolean configs, which can result in -Wundef
warnings.
arch/x86/boot/compressed/Makefile resets the CFLAGS used for this
directory, and doesn't re-enable -Wundef as the top level Makefile does.
If re-added, with RANDOMIZE_BASE and X86_NEED_RELOCS disabled, the
following warnings are visible.
arch/x86/boot/compressed/misc.h:82:5: warning: 'CONFIG_RANDOMIZE_BASE'
is not defined, evaluates to 0 [-Wundef]
^
arch/x86/boot/compressed/misc.c:175:5: warning: 'CONFIG_X86_NEED_RELOCS'
is not defined, evaluates to 0 [-Wundef]
^
Simply fix these and re-enable this warning for this directory.
Suggested-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20210422190450.3903999-1-ndesaulniers@google.com
|
|
|
|
90e66ce9e8 |
Consolidation and cleanup of the early memory reservations, along with a
couple of gcc11 warning fixes. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmBgACgkQEsHwGGHe VUox6xAAus7u9Bpyu4UCr93j4PmkfLf0du7A7mfuxfATFFNTy+lQWq+tuJJsFMSI ShbRNKxE1clDtCpWHI9hi9B0GmrMlgjii2YtNfM7pkZYom3aA6IeXDedE3Ot1KwI Ox7DsUjgdwwF2O/pYHL4Jg6Vra5daNHYOSlAe7Rk78kcECFlXj77CJYiPtvtkYHD JH2tu2vaNcbp11vrWbbx7St4w+vDB37Y3NczatbqXMS4Uiwoyfjzyi4qmf97p92u 9aDNq+hj+90b/PYUzd9wyCWc0S6TcQo3OYfZq1/hHdS8UE8kq4AY3FFnzFGIKi7k IcQDJivkKjXOURD8Btjgbp9dkcbZtiuKS7RcjDuBbmH/q8iBIRYK8GfMxyna0TpE VKC9Wdn/LvNPS8t0vyB6fK+vt7uxvBXscRA0GtCva3WWSORdI3bFV9n998ArSVZa Itj0GBQXx4zNIjfg4U+aDsqICKmxGZqoKHm8pDVJUDrZi9A1kWxmhivMSQg58+as pDKPArtXN2NzN+DCU+UWyFk9qvMSVQh+t3204w4PM0PiHpOyFh7jRXCvzn3ulVJP LBm3L/Bj7m7qwfmB0iWOGvhwGFIOG0jUk2abudBn864TFuMqEPRadQUwMNC+ezOT 1bp5LWh2s71n610I5LPBYF1diwwxwmx5jhfhXjjfejzCcEy/Xp0= =PLgK -----END PGP SIGNATURE----- Merge tag 'x86_boot_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 boot updates from Borislav Petkov: "Consolidation and cleanup of the early memory reservations, along with a couple of gcc11 warning fixes" * tag 'x86_boot_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/setup: Move trim_snb_memory() later in setup_arch() to fix boot hangs x86/setup: Merge several reservations of start of memory x86/setup: Consolidate early memory reservations x86/boot/compressed: Avoid gcc-11 -Wstringop-overread warning x86/boot/tboot: Avoid Wstringop-overread-warning |
|
|
|
e14cfb3bdd |
x86/boot/compressed: Avoid gcc-11 -Wstringop-overread warning
GCC gets confused by the comparison of a pointer to an integer literal,
with the assumption that this is an offset from a NULL pointer and that
dereferencing it is invalid:
In file included from arch/x86/boot/compressed/misc.c:18:
In function ‘parse_elf’,
inlined from ‘extract_kernel’ at arch/x86/boot/compressed/misc.c:442:2:
arch/x86/boot/compressed/../string.h:15:23: error: ‘__builtin_memcpy’ reading 64 bytes from a region of size 0 [-Werror=stringop-overread]
15 | #define memcpy(d,s,l) __builtin_memcpy(d,s,l)
| ^~~~~~~~~~~~~~~~~~~~~~~
arch/x86/boot/compressed/misc.c:283:9: note: in expansion of macro ‘memcpy’
283 | memcpy(&ehdr, output, sizeof(ehdr));
| ^~~~~~
I could not find any good workaround for this, but as this is only
a warning for a failure during early boot, removing the line entirely
works around the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Sebor <msebor@gmail.com>
Link: https://lore.kernel.org/r/20210322160253.4032422-2-arnd@kernel.org
|
|
|
|
b099155e2d |
x86/boot/compressed/64: Cleanup exception handling before booting kernel
Disable the exception handling before booting the kernel to make sure any exceptions that happen during early kernel boot are not directed to the pre-decompression code. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210312123824.306-2-joro@8bytes.org |
|
|
|
597cfe4821 |
x86/boot/compressed/64: Setup a GHCB-based VC Exception handler
Install an exception handler for #VC exception that uses a GHCB. Also add the infrastructure for handling different exit-codes by decoding the instruction that caused the exception and error handling. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200907131613.12703-24-joro@8bytes.org |
|
|
|
394b19d6cb |
x86/boot/compressed: Use builtin mem functions for decompressor
Since commits |
|
|
|
fb46d057db |
x86: Add support for ZSTD compressed kernel
- Add support for zstd compressed kernel - Define __DISABLE_EXPORTS in Makefile - Remove __DISABLE_EXPORTS definition from kaslr.c - Bump the heap size for zstd. - Update the documentation. Integrates the ZSTD decompression code to the x86 pre-boot code. Zstandard requires slightly more memory during the kernel decompression on x86 (192 KB vs 64 KB), and the memory usage is independent of the window size. __DISABLE_EXPORTS is now defined in the Makefile, which covers both the existing use in kaslr.c, and the use needed by the zstd decompressor in misc.c. This patch has been boot tested with both a zstd and gzip compressed kernel on i386 and x86_64 using buildroot and QEMU. Additionally, this has been tested in production on x86_64 devices. We saw a 2 second boot time reduction by switching kernel compression from xz to zstd. Signed-off-by: Nick Terrell <terrelln@fb.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20200730190841.2071656-7-nickrterrell@gmail.com |
|
|
|
1869dbe87c |
x86/boot/64: Round memory hole size up to next PMD page
The kernel image map is created using PMD pages, which can include some extra space beyond what's actually needed. Round the size of the memory hole we search for up to the next PMD boundary, to be certain all of the space to be mapped is usable RAM and includes no reserved areas. Signed-off-by: Steve Wahl <steve.wahl@hpe.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Baoquan He <bhe@redhat.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: dimitri.sivanich@hpe.com Cc: Feng Tang <feng.tang@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jordan Borgner <mail@jordan-borgner.de> Cc: Juergen Gross <jgross@suse.com> Cc: mike.travis@hpe.com Cc: russ.anderson@hpe.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com> Link: https://lkml.kernel.org/r/df4f49f05c0c27f108234eb93db5c613d09ea62e.1569358539.git.steve.wahl@hpe.com |
|
|
|
8c5477e804 |
x86, boot: Remove multiple copy of static function sanitize_boot_params()
Kernel build warns: 'sanitize_boot_params' defined but not used [-Wunused-function] at below files: arch/x86/boot/compressed/cmdline.c arch/x86/boot/compressed/error.c arch/x86/boot/compressed/early_serial_console.c arch/x86/boot/compressed/acpi.c That's becausethey each include misc.h which includes a definition of sanitize_boot_params() via bootparam_utils.h. Remove the inclusion from misc.h and have the c file including bootparam_utils.h directly. Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1563283092-1189-1-git-send-email-zhenzhong.duan@oracle.com |
|
|
|
5b51ae969e |
x86/boot: Call get_rsdp_addr() after console_init()
... so that early debugging output from the RSDP parsing code can be visible and collected. Suggested-by: Dave Young <dyoung@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Baoquan He <bhe@redhat.com> Cc: Chao Fan <fanc.fnst@cn.fujitsu.com> Cc: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Kairui Song <kasong@redhat.com> Cc: kexec@lists.infradead.org Cc: x86@kernel.org |
|
|
|
8e44c78404 |
Revert "x86/boot: Disable RSDP parsing temporarily"
TODO:
- ask dyoung and Dirk van der Merwe <dirk.vandermerwe@netronome.com> to
test again.
This reverts commit
|
|
|
|
36f0c42355 |
x86/boot: Disable RSDP parsing temporarily
The original intention to move RDSP parsing very early, before KASLR does its ranges selection, was to accommodate movable memory regions machines (CONFIG_MEMORY_HOTREMOVE) to still be able to do memory hotplug. However, that broke kexec'ing a kernel on EFI machines because depending on where the EFI systab was mapped, on at least one machine it isn't present in the kexec mapping of the second kernel, leading to a triple fault in the early code. Fixing this properly requires significantly involved surgery and we cannot allow ourselves to do that, that close to the merge window. So disable the RSDP parsing code temporarily until it is fixed properly in the next release cycle. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Baoquan He <bhe@redhat.com> Cc: Chao Fan <fanc.fnst@cn.fujitsu.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: indou.takao@jp.fujitsu.com Cc: Ingo Molnar <mingo@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: kasong@redhat.com Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: msys.mizuma@gmail.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190419141952.GE10324@zn.tnic |
|
|
|
3a63f70bf4 |
x86/boot: Early parse RSDP and save it in boot_params
The RSDP is needed by KASLR so parse it early and save it in
boot_params.acpi_rsdp_addr, before KASLR setup runs.
RSDP is needed by other kernel facilities so have the parsing code
built-in instead of a long "depends on" line in Kconfig.
[ bp:
- Trim commit message and comments
- Add CONFIG_ACPI dependency in the Makefile
- Move ->acpi_rsdp_addr assignment with the rest of boot_params massaging in extract_kernel().
]
Signed-off-by: Chao Fan <fanc.fnst@cn.fujitsu.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: bhe@redhat.com
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: indou.takao@jp.fujitsu.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kasong@redhat.com
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: msys.mizuma@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190123110850.12433-6-fanc.fnst@cn.fujitsu.com
|
|
|
|
0bc91d4ba7 |
Linux 4.16-rc7
-----BEGIN PGP SIGNATURE----- iQEcBAABAgAGBQJauCZfAAoJEHm+PkMAQRiGWGUH/2rhdQDkoJpYWnjaQkolECG8 MxpGE7nmIIHxQcbSDdHTGJ8IhVm6Z5wZ7ym/PwCDTT043Y1y341sJrIwL2/nTG6d HVidk8hFvgN6QzlzVAHT3ZZMII/V9Zt+VV5SUYLGnPAVuJNHo/6uzWlTU5g+NTFo IquFDdQUaGBlkKqby+NoAFnkV1UAIkW0g22cfvPnlO5GMer0gusGyVNvVp7TNj3C sqj4Hvt3RMDLMNe9RZ2pFTiOD096n8FWpYftZneUTxFImhRV3Jg5MaaYZm9SI3HW tXrv/LChT/F1mi5Pkx6tkT5Hr8WvcrwDMJ4It1kom10RqWAgjxIR3CMm448ileY= =YKUG -----END PGP SIGNATURE----- Merge tag 'v4.16-rc7' into x86/mm, to fix up conflict Conflicts: arch/x86/mm/init_64.c Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c55b8550fa |
x86/boot/64: Verify alignment of the LOAD segment
Since the x86-64 kernel must be aligned to 2MB, refuse to boot the kernel if the alignment of the LOAD segment isn't a multiple of 2MB. Signed-off-by: H.J. Lu <hjl.tools@gmail.com> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/CAMe9rOrR7xSJgUfiCoZLuqWUwymRxXPoGBW38%2BpN%3D9g%2ByKNhZw@mail.gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3548e131ec |
x86/boot/compressed/64: Find a place for 32-bit trampoline
If a bootloader enables 64-bit mode with 4-level paging, we might need to switch over to 5-level paging. The switching requires the disabling of paging, which works fine if kernel itself is loaded below 4G. But if the bootloader puts the kernel above 4G (not sure if anybody does this), we would lose control as soon as paging is disabled, because the code becomes unreachable to the CPU. To handle the situation, we need a trampoline in lower memory that would take care of switching on 5-level paging. This patch finds a spot in low memory for a trampoline. The heuristic is based on code in reserve_bios_regions(). We find the end of low memory based on BIOS and EBDA start addresses. The trampoline is put just before end of low memory. It's mimic approach taken to allocate memory for realtime trampoline. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180226180451.86788-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6657fca06e |
x86/mm: Allow to boot without LA57 if CONFIG_X86_5LEVEL=y
All pieces of the puzzle are in place and we can now allow to boot with CONFIG_X86_5LEVEL=y on a machine without LA57 support. Kernel will detect that LA57 is missing and fold p4d at runtime. Update the documentation and the Kconfig option description to reflect the change. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180214182542.69302-10-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6d7e0ba2d2 |
x86/boot/compressed/64: Print error if 5-level paging is not supported
If the machine does not support the paging mode for which the kernel was
compiled, the boot process cannot continue.
It's not possible to let the kernel detect the mismatch as it does not even
reach the point where cpu features can be evaluted due to a triple fault in
the KASLR setup.
Instead of instantaneous silent reboot, emit an error message which gives
the user the information why the boot fails.
Fixes:
|
|
|
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
|
|
fb1cc2f916 |
x86/boot: Prevent faulty bootparams.screeninfo from causing harm
If a zero for the number of lines manages to slip through, scroll() may underflow some offset calculations, causing accesses outside the video memory. Make the check in __putstr() more pessimistic to prevent that. Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1503858223-14983-1-git-send-email-jschoenh@amazon.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6974f0c455 |
include/linux/string.h: add the option of fortified string.h functions
This adds support for compiling with a rough equivalent to the glibc _FORTIFY_SOURCE=1 feature, providing compile-time and runtime buffer overflow checks for string.h functions when the compiler determines the size of the source or destination buffer at compile-time. Unlike glibc, it covers buffer reads in addition to writes. GNU C __builtin_*_chk intrinsics are avoided because they would force a much more complex implementation. They aren't designed to detect read overflows and offer no real benefit when using an implementation based on inline checks. Inline checks don't add up to much code size and allow full use of the regular string intrinsics while avoiding the need for a bunch of _chk functions and per-arch assembly to avoid wrapper overhead. This detects various overflows at compile-time in various drivers and some non-x86 core kernel code. There will likely be issues caught in regular use at runtime too. Future improvements left out of initial implementation for simplicity, as it's all quite optional and can be done incrementally: * Some of the fortified string functions (strncpy, strcat), don't yet place a limit on reads from the source based on __builtin_object_size of the source buffer. * Extending coverage to more string functions like strlcat. * It should be possible to optionally use __builtin_object_size(x, 1) for some functions (C strings) to detect intra-object overflows (like glibc's _FORTIFY_SOURCE=2), but for now this takes the conservative approach to avoid likely compatibility issues. * The compile-time checks should be made available via a separate config option which can be enabled by default (or always enabled) once enough time has passed to get the issues it catches fixed. Kees said: "This is great to have. While it was out-of-tree code, it would have blocked at least CVE-2016-3858 from being exploitable (improper size argument to strlcpy()). I've sent a number of fixes for out-of-bounds-reads that this detected upstream already" [arnd@arndb.de: x86: fix fortified memcpy] Link: http://lkml.kernel.org/r/20170627150047.660360-1-arnd@arndb.de [keescook@chromium.org: avoid panic() in favor of BUG()] Link: http://lkml.kernel.org/r/20170626235122.GA25261@beast [keescook@chromium.org: move from -mm, add ARCH_HAS_FORTIFY_SOURCE, tweak Kconfig help] Link: http://lkml.kernel.org/r/20170526095404.20439-1-danielmicay@gmail.com Link: http://lkml.kernel.org/r/1497903987-21002-8-git-send-email-keescook@chromium.org Signed-off-by: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Daniel Axtens <dja@axtens.net> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
8eabf42ae5 |
x86/boot/KASLR: Fix kexec crash due to 'virt_addr' calculation bug
Kernel text KASLR is separated into physical address and virtual
address randomization. And for virtual address randomization, we
only randomiza to get an offset between 16M and KERNEL_IMAGE_SIZE.
So the initial value of 'virt_addr' should be LOAD_PHYSICAL_ADDR,
but not the original kernel loading address 'output'.
The bug will cause kernel boot failure if kernel is loaded at a different
position than the address, 16M, which is decided at compiled time.
Kexec/kdump is such practical case.
To fix it, just assign LOAD_PHYSICAL_ADDR to virt_addr as initial
value.
Tested-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes:
|
|
|
|
b892cb873c |
x86/boot/KASLR: Add checking for the offset of kernel virtual address randomization
For kernel text KASLR, the virtual address is confined to area of 1G, [0xffffffff80000000, 0xffffffffc0000000). For the implemenataion of virtual address randomization, we only randomize to get an offset between 16M and 1G, then add this offset to the starting address, 0xffffffff80000000. Here 16M is the offset which is decided at linking stage. So the amount of the local variable 'virt_addr' which respresents the offset plus the kernel output size can not exceed KERNEL_IMAGE_SIZE. Add a debug check for the offset. If out of bounds, print error message and hang there. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1498567146-11990-2-git-send-email-bhe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
8391c73c96 |
x86/KASLR: Randomize virtual address separately
The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
549f90db68 |
x86/boot: Simplify pointer casting in choose_random_location()
Pass them down as 'unsigned long' directly and get rid of more casting and assignments. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: bhe@redhat.com Cc: dyoung@redhat.com Cc: linux-tip-commits@vger.kernel.org Cc: luto@kernel.org Cc: vgoyal@redhat.com Cc: yinghai@kernel.org Link: http://lkml.kernel.org/r/20160506115015.GI24044@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
dc425a6e14 |
x86/boot: Extract error reporting functions
Currently to use warn(), a caller would need to include misc.h. However, this means they would get the (unavailable during compressed boot) gcc built-in memcpy family of functions. But since string.c is defining these memcpy functions for use by misc.c, we end up in a weird circular dependency. To break this loop, move the error reporting functions outside of misc.c with their own header so that they can be independently included by other sources. Since the screen-writing routines use memmove(), keep the low-level *_putstr() functions in misc.c. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Lasse Collin <lasse.collin@tukaani.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1462229461-3370-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4abf061bf8 |
x86/boot: Correctly bounds-check relocations
Relocation handling performs bounds checking on the resulting calculated addresses. The existing code uses output_len (VO size plus relocs size) as the max address. This is not right since the max_addr check should stop at the end of VO and exclude bss, brk, etc, which follows. The valid range should be VO [_text, __bss_start] in the loaded physical address space. This patch adds an export for __bss_start in voffset.h and uses it to set the correct limit for max_addr. Signed-off-by: Yinghai Lu <yinghai@kernel.org> [ Rewrote the changelog. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-7-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4d2d542482 |
x86/KASLR: Clean up unused code from old 'run_size' and rename it to 'kernel_total_size'
Since 'run_size' is now calculated in misc.c, the old script and associated argument passing is no longer needed. This patch removes them, and renames 'run_size' to the more descriptive 'kernel_total_size'. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote the changelog, renamed 'run_size' to 'kernel_total_size' ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Junjie Mao <eternal.n08@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-6-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
67b6662559 |
x86/boot: Fix "run_size" calculation
Currently, the "run_size" variable holds the total kernel size
(size of code plus brk and bss) and is calculated via the shell script
arch/x86/tools/calc_run_size.sh. It gets the file offset and mem size
of the .bss and .brk sections from the vmlinux, and adds them as follows:
run_size = $(( $offsetA + $sizeA + $sizeB ))
However, this is not correct (it is too large). To illustrate, here's
a walk-through of the script's calculation, compared to the correct way
to find it.
First, offsetA is found as the starting address of the first .bss or
.brk section seen in the ELF file. The sizeA and sizeB values are the
respective section sizes.
[bhe@x1 linux]$ objdump -h vmlinux
vmlinux: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn
27 .bss 00170000 ffffffff81ec8000 0000000001ec8000 012c8000 2**12
ALLOC
28 .brk 00027000 ffffffff82038000 0000000002038000 012c8000 2**0
ALLOC
Here, offsetA is 0x012c8000, with sizeA at 0x00170000 and sizeB at
0x00027000. The resulting run_size is 0x145f000:
0x012c8000 + 0x00170000 + 0x00027000 = 0x145f000
However, if we instead examine the ELF LOAD program headers, we see a
different picture.
[bhe@x1 linux]$ readelf -l vmlinux
Elf file type is EXEC (Executable file)
Entry point 0x1000000
There are 5 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000200000 0xffffffff81000000 0x0000000001000000
0x0000000000b5e000 0x0000000000b5e000 R E 200000
LOAD 0x0000000000e00000 0xffffffff81c00000 0x0000000001c00000
0x0000000000145000 0x0000000000145000 RW 200000
LOAD 0x0000000001000000 0x0000000000000000 0x0000000001d45000
0x0000000000018158 0x0000000000018158 RW 200000
LOAD 0x000000000115e000 0xffffffff81d5e000 0x0000000001d5e000
0x000000000016a000 0x0000000000301000 RWE 200000
NOTE 0x000000000099bcac 0xffffffff8179bcac 0x000000000179bcac
0x00000000000001bc 0x00000000000001bc 4
Section to Segment mapping:
Segment Sections...
00 .text .notes __ex_table .rodata __bug_table .pci_fixup .tracedata
__ksymtab __ksymtab_gpl __ksymtab_strings __init_rodata __param
__modver
01 .data .vvar
02 .data..percpu
03 .init.text .init.data .x86_cpu_dev.init .parainstructions
.altinstructions .altinstr_replacement .iommu_table .apicdrivers
.exit.text .smp_locks .bss .brk
04 .notes
As mentioned, run_size needs to be the size of the running kernel
including .bss and .brk. We can see from the Section/Segment mapping
above that .bss and .brk are included in segment 03 (which corresponds
to the final LOAD program header). To find the run_size, we calculate
the end of the LOAD segment from its PhysAddr start (0x0000000001d5e000)
and its MemSiz (0x0000000000301000), minus the physical load address of
the kernel (the first LOAD segment's PhysAddr: 0x0000000001000000). The
resulting run_size is 0x105f000:
0x0000000001d5e000 + 0x0000000000301000 - 0x0000000001000000 = 0x105f000
So, from this we can see that the existing run_size calculation is
0x400000 too high. And, as it turns out, the correct run_size is
actually equal to VO_end - VO_text, which is certainly easier to calculate.
_end: 0xffffffff8205f000
_text:0xffffffff81000000
0xffffffff8205f000 - 0xffffffff81000000 = 0x105f000
As a result, run_size is a simple constant, so we don't need to pass it
around; we already have voffset.h for such things. We can share voffset.h
between misc.c and header.S instead of getting run_size in other ways.
This patch moves voffset.h creation code to boot/compressed/Makefile,
and switches misc.c to use the VO_end - VO_text calculation for run_size.
Dependence before:
boot/header.S ==> boot/voffset.h ==> vmlinux
boot/header.S ==> compressed/vmlinux ==> compressed/misc.c
Dependence after:
boot/header.S ==> compressed/vmlinux ==> compressed/misc.c ==> boot/voffset.h ==> vmlinux
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Fixes:
|
|
|
|
974f221c84 |
x86/boot: Move compressed kernel to the end of the decompression buffer
This change makes later calculations about where the kernel is located easier to reason about. To better understand this change, we must first clarify what 'VO' and 'ZO' are. These values were introduced in commits by hpa: |
|
|
|
6f9af75faa |
x86/KASLR: Handle kernel relocations above 2G correctly
When processing the relocation table, the offset used to calculate the relocation is an 'int'. This is sufficient for calculating the physical address of the relocs entry on 32-bit systems and on 64-bit systems when the relocation is under 2G. To handle relocations above 2G (seen in situations like kexec, netboot, etc), this offset needs to be calculated using a 'long' to avoid wrapping and miscalculating the relocation. Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote the changelog. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
81b785f3e4 |
x86/boot: Rename overlapping memcpy() to memmove()
Instead of having non-standard memcpy() behavior, explicitly call the new function memmove(), make it available to the decompressors, and switch the two overlap cases (screen scrolling and ELF parsing) to use memmove(). Additionally documents the purpose of compressed/string.c. Suggested-by: Lasse Collin <lasse.collin@tukaani.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/20160426214606.GA5758@www.outflux.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
0f8ede1b8c |
x86/KASLR: Warn when KASLR is disabled
If KASLR is built in but not available at run-time (either due to the current conflict with hibernation, command-line request, or e820 parsing failures), announce the state explicitly. To support this, a new "warn" function is created, based on the existing "error" function. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1461185746-8017-6-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
bf0118dbba |
x86/boot: Make memcpy() handle overlaps
Two uses of memcpy() (screen scrolling and ELF parsing) were handling overlapping memory areas. While there were no explicitly noticed bugs here (yet), it is best to fix this so that the copying will always be safe. Instead of making a new memmove() function that might collide with other memmove() definitions in the decompressors, this just makes the compressed boot code's copy of memcpy() overlap-safe. Suggested-by: Lasse Collin <lasse.collin@tukaani.org> Reported-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1461185746-8017-5-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1f208de37d |
x86/boot: Clean up things used by decompressors
This rearranges the pieces needed to include the decompressor code in misc.c. It wasn't obvious why things were there, so a comment was added and definitions consolidated. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1461185746-8017-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4252db1055 |
x86/KASLR: Update description for decompressor worst case size
The comment that describes the analysis for the size of the decompressor code only took gzip into account (there are currently 6 other decompressors that could be used). The actual z_extract_offset calculation in code was already handling the correct maximum size, but this documentation hadn't been updated. This updates the documentation, fixes several typos, moves the comment to header.S, updates references, and adds a note at the end of the decompressor include list to remind us about updating the comment in the future. (Instead of moving the comment to mkpiggy.c, where the calculation is currently happening, it is being moved to header.S because the calculations in mkpiggy.c will be removed in favor of header.S calculations in a following patch, and it seemed like overkill to move the giant comment twice, especially when there's already reference to z_extract_offset in header.S.) Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote changelog, cleaned up comment style, moved comments around. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1461185746-8017-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7de828dfe6 |
x86/KASLR: Clarify purpose of kaslr.c
The name "choose_kernel_location" isn't specific enough, and doesn't describe the primary thing it does: choosing a random location. This patch renames it to "choose_random_location", and clarifies the what routines are contained in the kaslr.c source file. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1460997735-24785-6-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c040288132 |
x86/boot: Clarify purpose of functions in misc.c
The function "decompress_kernel" now performs many more duties, so this patch renames it to "extract_kernel" and updates callers and comments. Additionally the file header comment for misc.c is improved to actually describe what is contained. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1460997735-24785-5-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6655e0aaf7 |
x86/boot: Rename "real_mode" to "boot_params"
The non-compressed boot code uses the (much more obvious) name "boot_params" for the global pointer to the x86 boot parameters. The compressed kernel loader code, though, was using the legacy name "real_mode". There is no need to have a different name, and changing it improves readability. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1460997735-24785-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |