Commit Graph

1220 Commits

Author SHA1 Message Date
Sean Christopherson 938c8745bc KVM: x86: Introduce "struct kvm_caps" to track misc caps/settings
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature.  The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 05:21:16 -04:00
Chenyi Qiang ed2351174e KVM: x86: Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault
For the triple fault sythesized by KVM, e.g. the RSM path or
nested_vmx_abort(), if KVM exits to userspace before the request is
serviced, userspace could migrate the VM and lose the triple fault.

Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault with a
new event KVM_VCPUEVENT_VALID_FAULT_FAULT so that userspace can save and
restore the triple fault event. This extension is guarded by a new KVM
capability KVM_CAP_TRIPLE_FAULT_EVENT.

Note that in the set_vcpu_events path, userspace is able to set/clear
the triple fault request through triple_fault.pending field.

Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 05:20:53 -04:00
Like Xu 854250329c KVM: x86/pmu: Disable guest PEBS temporarily in two rare situations
The guest PEBS will be disabled when some users try to perf KVM and
its user-space through the same PEBS facility OR when the host perf
doesn't schedule the guest PEBS counter in a one-to-one mapping manner
(neither of these are typical scenarios).

The PEBS records in the guest DS buffer are still accurate and the
above two restrictions will be checked before each vm-entry only if
guest PEBS is deemed to be enabled.

Suggested-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-15-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:14 -04:00
Like Xu 902caeb684 KVM: x86/pmu: Add PEBS_DATA_CFG MSR emulation to support adaptive PEBS
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.

Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.

When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.

According to Intel SDM, software is recommended to  PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.

Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:06 -04:00
Like Xu 8183a538cd KVM: x86/pmu: Add IA32_DS_AREA MSR emulation to support guest DS
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.

When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.

Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:03 -04:00
Like Xu c59a1f106f KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].

When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.

Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.

Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:55 -04:00
Like Xu 2c985527dd KVM: x86/pmu: Introduce the ctrl_mask value for fixed counter
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.

Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:50 -04:00
Chao Gao d588bb9be1 KVM: VMX: enable IPI virtualization
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.

A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().

Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.

Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.

Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:37 -04:00
Zeng Guang 3587531638 KVM: x86: Allow userspace to set maximum VCPU id for VM
Introduce new max_vcpu_ids in KVM for x86 architecture. Userspace
can assign maximum possible vcpu id for current VM session using
KVM_CAP_MAX_VCPU_ID of KVM_ENABLE_CAP ioctl().

This is done for x86 only because the sole use case is to guide
memory allocation for PID-pointer table, a structure needed to
enable VMX IPI.

By default, max_vcpu_ids set as KVM_MAX_VCPU_IDS.

Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154444.11888-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:31 -04:00
Sean Christopherson 2d61391270 KVM: x86: Differentiate Soft vs. Hard IRQs vs. reinjected in tracepoint
In the IRQ injection tracepoint, differentiate between Hard IRQs and Soft
"IRQs", i.e. interrupts that are reinjected after incomplete delivery of
a software interrupt from an INTn instruction.  Tag reinjected interrupts
as such, even though the information is usually redundant since soft
interrupts are only ever reinjected by KVM.  Though rare in practice, a
hard IRQ can be reinjected.

Signed-off-by: Sean Christopherson <seanjc@google.com>
[MSS: change "kvm_inj_virq" event "reinjected" field type to bool]
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <9664d49b3bd21e227caa501cff77b0569bebffe2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:01 -04:00
Paolo Bonzini 6cd88243c7 KVM: x86: do not report a vCPU as preempted outside instruction boundaries
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access.  A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.

To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary.  A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.

It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed.  However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses.  Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:21:07 -04:00
Paolo Bonzini 47e8eec832 KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
 
 - Guard pages for the EL2 stacks
 
 - Trap and emulate AArch32 ID registers to hide unsupported features
 
 - Ability to select and save/restore the set of hypercalls exposed
   to the guest
 
 - Support for PSCI-initiated suspend in collaboration with userspace
 
 - GICv3 register-based LPI invalidation support
 
 - Move host PMU event merging into the vcpu data structure
 
 - GICv3 ITS save/restore fixes
 
 - The usual set of small-scale cleanups and fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
 a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
 O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
 Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
 7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
 Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
 uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
 FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
 1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
 8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
 Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
 aTwPZAQ7
 =mh7W
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 updates for 5.19

- Add support for the ARMv8.6 WFxT extension

- Guard pages for the EL2 stacks

- Trap and emulate AArch32 ID registers to hide unsupported features

- Ability to select and save/restore the set of hypercalls exposed
  to the guest

- Support for PSCI-initiated suspend in collaboration with userspace

- GICv3 register-based LPI invalidation support

- Move host PMU event merging into the vcpu data structure

- GICv3 ITS save/restore fixes

- The usual set of small-scale cleanups and fixes

[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
 from 4 to 6. - Paolo]
2022-05-25 05:09:23 -04:00
Sean Christopherson 1075d41efd KVM: x86/mmu: Expand and clean up page fault stats
Expand and clean up the page fault stats.  The current stats are at best
incomplete, and at worst misleading.  Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.

Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:43 -04:00
Lai Jiangshan 84e5ffd045 KVM: X86/MMU: Fix shadowing 5-level NPT for 4-level NPT L1 guest
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.

And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4.  Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.

Here comes a problem:

If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57.  The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57.  The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1.  It is
lucky that the problem can't hurt L0.

And three special cases need to be handled:

The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless.  (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)

For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.

Such root_sp should not be accounted too.

So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:50:00 -04:00
Paolo Bonzini 347a0d0ded KVM: x86/mmu: replace direct_map with root_role.direct
direct_map is always equal to the direct field of the root page's role:

- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct

- for TDP, it is always true and root_role.direct is also always true

- for shadow TDP, it is always false and root_role.direct is also always
false

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:59 -04:00
Paolo Bonzini 4d25502aa1 KVM: x86/mmu: replace root_level with cpu_role.base.level
Remove another duplicate field of struct kvm_mmu.  This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:58 -04:00
Paolo Bonzini a972e29c1d KVM: x86/mmu: replace shadow_root_level with root_role.level
root_role.level is always the same value as shadow_level:

- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu

- it's the level argument when going through kvm_init_shadow_ept_mmu

- it's assigned directly from new_role.base.level when going
  through shadow_mmu_init_context

Remove the duplication and get the level directly from the role.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:58 -04:00
Paolo Bonzini faf729621c KVM: x86/mmu: remove redundant bits from extended role
Before the separation of the CPU and the MMU role, CR0.PG was not
available in the base MMU role, because two-dimensional paging always
used direct=1 in the MMU role.  However, now that the raw role is
snapshotted in mmu->cpu_role, the value of CR0.PG always matches both
!cpu_role.base.direct and cpu_role.base.level > 0.  There is no need to
store it again in union kvm_mmu_extended_role; instead, write an is_cr0_pg
accessor by hand that takes care of the conversion.  Use cpu_role.base.level
since the future of the direct field is unclear.

Likewise, CR4.PAE is now always present in the CPU role as
!cpu_role.base.has_4_byte_gpte.  The inversion makes certain tests on
the MMU role easier, and is easily hidden by the is_cr4_pae accessor
when operating on the CPU role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:57 -04:00
Paolo Bonzini 7a7ae82923 KVM: x86/mmu: rename kvm_mmu_role union
It is quite confusing that the "full" union is called kvm_mmu_role
but is used for the "cpu_role" field of struct kvm_mmu.  Rename it
to kvm_cpu_role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:56 -04:00
Paolo Bonzini 7a458f0e1b KVM: x86/mmu: remove extended bits from mmu_role, rename field
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.

ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role.  So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.

While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:56 -04:00
Paolo Bonzini ec283cb1dc KVM: x86/mmu: remove ept_ad field
The ept_ad field is used during page walk to determine if the guest PTEs
have accessed and dirty bits.  In the MMU role, the ad_disabled
bit represents whether the *shadow* PTEs have the bits, so it
would be incorrect to replace PT_HAVE_ACCESSED_DIRTY with just
!mmu->mmu_role.base.ad_disabled.

However, the similar field in the CPU mode, ad_disabled, is initialized
correctly: to the opposite value of ept_ad for shadow EPT, and zero
for non-EPT guest paging modes (which always have A/D bits).  It is
therefore possible to compute PT_HAVE_ACCESSED_DIRTY from the CPU mode,
like other page-format fields; it just has to be inverted to account
for the different polarity.

In fact, now that the CPU mode is distinct from the MMU roles, it would
even be possible to remove PT_HAVE_ACCESSED_DIRTY macro altogether, and
use !mmu->cpu_role.base.ad_disabled instead.  I am not doing this because
the macro has a small effect in terms of dead code elimination:

   text	   data	    bss	    dec	    hex
 103544	  16665	    112	 120321	  1d601    # as of this patch
 103746	  16665	    112	 120523	  1d6cb    # without PT_HAVE_ACCESSED_DIRTY

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:54 -04:00
Paolo Bonzini e5ed0fb010 KVM: x86/mmu: split cpu_role from mmu_role
Snapshot the state of the processor registers that govern page walk into
a new field of struct kvm_mmu.  This is a more natural representation
than having it *mostly* in mmu_role but not exclusively; the delta
right now is represented in other fields, such as root_level.

The nested MMU now has only the CPU role; and in fact the new function
kvm_calc_cpu_role is analogous to the previous kvm_calc_nested_mmu_role,
except that it has role.base.direct equal to !CR0.PG.  For a walk-only
MMU, "direct" has no meaning, but we set it to !CR0.PG so that
role.ext.cr0_pg can go away in a future patch.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:53 -04:00
Sean Christopherson 6819af7597 KVM: x86: Clean up and document nested #PF workaround
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:49 -04:00
Mingwei Zhang 683412ccf6 KVM: SEV: add cache flush to solve SEV cache incoherency issues
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots).  Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.

Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.

KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.

Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.

Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21 15:41:00 -04:00
Like Xu 34886e796c KVM: x86: Move .pmu_ops to kvm_x86_init_ops and tag as __initdata
The pmu_ops should be moved to kvm_x86_init_ops and tagged as __initdata.
That'll save those precious few bytes, and more importantly make
the original ops unreachable, i.e. make it harder to sneak in post-init
modification bugs.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:45 -04:00
Like Xu fdc298da86 KVM: x86: Move kvm_ops_static_call_update() to x86.c
The kvm_ops_static_call_update() is defined in kvm_host.h. That's
completely unnecessary, it should have exactly one caller,
kvm_arch_hardware_setup().  Move the helper to x86.c and have it do the
actual memcpy() of the ops in addition to the static call updates.  This
will also allow for cleanly giving kvm_pmu_ops static_call treatment.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: Move memcpy() into the helper and rename accordingly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:44 -04:00
Peng Hao 8176472563 kvm: x86: Adjust the location of pkru_mask of kvm_mmu to reduce memory
Adjust the field pkru_mask to the back of direct_map to make up 8-byte
alignment.This reduces the size of kvm_mmu by 8 bytes.

Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220228030749.88353-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:18 -04:00
Paolo Bonzini a4cfff3f0f Merge branch 'kvm-older-features' into HEAD
Merge branch for features that did not make it into 5.18:

* New ioctls to get/set TSC frequency for a whole VM

* Allow userspace to opt out of hypercall patching

Nested virtualization improvements for AMD:

* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
  nested vGIF)

* Allow AVIC to co-exist with a nested guest running

* Fixes for LBR virtualizations when a nested guest is running,
  and nested LBR virtualization support

* PAUSE filtering for nested hypervisors

Guest support:

* Decoupling of vcpu_is_preempted from PV spinlocks

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:17 -04:00
Vitaly Kuznetsov 42dcbe7d8b KVM: x86: hyper-v: Avoid writing to TSC page without an active vCPU
The following WARN is triggered from kvm_vm_ioctl_set_clock():
 WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
 ...
 CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G        W  O      5.16.0.stable #20
 Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
 RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
 ...
 Call Trace:
  <TASK>
  ? kvm_write_guest+0x114/0x120 [kvm]
  kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
  kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
  ? schedule+0x4e/0xc0
  ? __cond_resched+0x1a/0x50
  ? futex_wait+0x166/0x250
  ? __send_signal+0x1f1/0x3d0
  kvm_vm_ioctl+0x747/0xda0 [kvm]
  ...

The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().

Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
2022-04-11 13:29:51 -04:00
Suravee Suthikulpanit c538dc792f KVM: SVM: Do not activate AVIC for SEV-enabled guest
Since current AVIC implementation cannot support encrypted memory,
inhibit AVIC for SEV-enabled guest.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220408133710.54275-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-11 13:28:56 -04:00
Sean Christopherson 1d0e848060 KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.

Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.

In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded.  Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.

Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.

  =========================================================================
  UBSAN: invalid-load in kernel/params.c:320:33
  load of value 255 is not a valid value for type '_Bool'
  CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Call Trace:
   <TASK>
   dump_stack_lvl+0x34/0x44
   ubsan_epilogue+0x5/0x40
   __ubsan_handle_load_invalid_value.cold+0x43/0x48
   param_get_bool.cold+0xf/0x14
   param_attr_show+0x55/0x80
   module_attr_show+0x1c/0x30
   sysfs_kf_seq_show+0x93/0xc0
   seq_read_iter+0x11c/0x450
   new_sync_read+0x11b/0x1a0
   vfs_read+0xf0/0x190
   ksys_read+0x5f/0xe0
   do_syscall_64+0x3b/0xc0
   entry_SYSCALL_64_after_hwframe+0x44/0xae
   </TASK>
  =========================================================================

Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-05 08:09:46 -04:00
Linus Torvalds 38904911e8 * Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
* Documentation improvements
 
 * Prevent module exit until all VMs are freed
 
 * PMU Virtualization fixes
 
 * Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
 
 * Other miscellaneous bugfixes
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJIGV8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroO5FQgAhls4+Nu+NqId/yvvyNxr3vXq0dHI
 hLlHtvzgGzZisZ7y2bNeyIpJVBDT5LCbrptPD/5eTvchVswDh0+kCVC0Uni5ugGT
 tLT/Pv9Oq9e0X7aGdHRyuHIivIFDC20zIZO2DV48Lrj/+r6DafB2Fghq2XQLlBxN
 p8KislvuqAAos543BPC1+Lk3dhOLuZ8qcFD8wGRlcCwjNwYaitrQ16rO04cLfUur
 OwIks1I6TdI2JpLBhm6oWYVG/YnRsoo4bQE8cjdQ6yNSbwWtRpV33q7X6onw8x8K
 BEeESoTnMqfaxIF/6mPl6bnDblVHFp6Xhld/vJcgeWQTdajFtuFE/K4sCA==
 =xnQ6
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Only do MSR filtering for MSRs accessed by rdmsr/wrmsr

 - Documentation improvements

 - Prevent module exit until all VMs are freed

 - PMU Virtualization fixes

 - Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences

 - Other miscellaneous bugfixes

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
  KVM: x86: fix sending PV IPI
  KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
  KVM: x86: Remove redundant vm_entry_controls_clearbit() call
  KVM: x86: cleanup enter_rmode()
  KVM: x86: SVM: fix tsc scaling when the host doesn't support it
  kvm: x86: SVM: remove unused defines
  KVM: x86: SVM: move tsc ratio definitions to svm.h
  KVM: x86: SVM: fix avic spec based definitions again
  KVM: MIPS: remove reference to trap&emulate virtualization
  KVM: x86: document limitations of MSR filtering
  KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
  KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
  KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
  KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
  KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
  KVM: x86: Trace all APICv inhibit changes and capture overall status
  KVM: x86: Add wrappers for setting/clearing APICv inhibits
  KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
  KVM: X86: Handle implicit supervisor access with SMAP
  KVM: X86: Rename variable smap to not_smap in permission_fault()
  ...
2022-04-02 12:09:02 -07:00
Maxim Levitsky d5fa597ed8 KVM: x86: allow per cpu apicv inhibit reasons
Add optional callback .vcpu_get_apicv_inhibit_reasons returning
extra inhibit reasons that prevent APICv from working on this vCPU.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:24 -04:00
David Woodhouse ffbb61d09f KVM: x86: Accept KVM_[GS]ET_TSC_KHZ as a VM ioctl.
This sets the default TSC frequency for subsequently created vCPUs.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220225145304.36166-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:19 -04:00
Boris Ostrovsky 1a65105a5a KVM: x86/xen: handle PV spinlocks slowpath
Add support for SCHEDOP_poll hypercall.

This implementation is optimized for polling for a single channel, which
is what Linux does. Polling for multiple channels is not especially
efficient (and has not been tested).

PV spinlocks slow path uses this hypercall, and explicitly crash if it's
not supported.

[ dwmw2: Rework to use kvm_vcpu_halt(), not supported for 32-bit guests ]

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-17-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:17 -04:00
David Woodhouse fde0451be8 KVM: x86/xen: Support per-vCPU event channel upcall via local APIC
Windows uses a per-vCPU vector, and it's delivered via the local APIC
basically like an MSI (with associated EOI) unlike the traditional
guest-wide vector which is just magically asserted by Xen (and in the
KVM case by kvm_xen_has_interrupt() / kvm_cpu_get_extint()).

Now that the kernel is able to raise event channel events for itself,
being able to do so for Windows guests is also going to be useful.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-15-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:17 -04:00
David Woodhouse 28d1629f75 KVM: x86/xen: Kernel acceleration for XENVER_version
Turns out this is a fast path for PV guests because they use it to
trigger the event channel upcall. So letting it bounce all the way up
to userspace is not great.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-14-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:16 -04:00
Joao Martins 5363952605 KVM: x86/xen: handle PV timers oneshot mode
If the guest has offloaded the timer virq, handle the following
hypercalls for programming the timer:

    VCPUOP_set_singleshot_timer
    VCPUOP_stop_singleshot_timer
    set_timer_op(timestamp_ns)

The event channel corresponding to the timer virq is then used to inject
events once timer deadlines are met. For now we back the PV timer with
hrtimer.

[ dwmw2: Add save/restore, 32-bit compat mode, immediate delivery,
         don't check timer in kvm_vcpu_has_event() ]

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-13-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:16 -04:00
David Woodhouse 942c2490c2 KVM: x86/xen: Add KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID
In order to intercept hypercalls such as VCPUOP_set_singleshot_timer, we
need to be aware of the Xen CPU numbering.

This looks a lot like the Hyper-V handling of vpidx, for obvious reasons.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:15 -04:00
Joao Martins 2fd6df2f2b KVM: x86/xen: intercept EVTCHNOP_send from guests
Userspace registers a sending @port to either deliver to an @eventfd
or directly back to a local event channel port.

After binding events the guest or host may wish to bind those
events to a particular vcpu. This is usually done for unbound
and and interdomain events. Update requests are handled via the
KVM_XEN_EVTCHN_UPDATE flag.

Unregistered ports are handled by the emulator.

Co-developed-by: Ankur Arora <ankur.a.arora@oracle.com>
Co-developed-By: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-10-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:15 -04:00
David Woodhouse 69d413cfcf KVM: x86/xen: Use gfn_to_pfn_cache for vcpu_time_info
This switches the final pvclock to kvm_setup_pvclock_pfncache() and now
the old kvm_setup_pvclock_page() can be removed.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-7-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:13 -04:00
David Woodhouse 7caf957156 KVM: x86/xen: Use gfn_to_pfn_cache for vcpu_info
Currently, the fast path of kvm_xen_set_evtchn_fast() doesn't set the
index bits in the target vCPU's evtchn_pending_sel, because it only has
a userspace virtual address with which to do so. It just sets them in
the kernel, and kvm_xen_has_interrupt() then completes the delivery to
the actual vcpu_info structure when the vCPU runs.

Using a gfn_to_pfn_cache allows kvm_xen_set_evtchn_fast() to do the full
delivery in the common case.

Clean up the fallback case too, by moving the deferred delivery out into
a separate kvm_xen_inject_pending_events() function which isn't ever
called in atomic contexts as __kvm_xen_has_interrupt() is.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:13 -04:00
David Woodhouse 916d3608df KVM: x86: Use gfn_to_pfn_cache for pv_time
Add a new kvm_setup_guest_pvclock() which parallels the existing
kvm_setup_pvclock_page(). The latter will be removed once we convert
all users to the gfn_to_pfn_cache version.

Using the new cache, we can potentially let kvm_set_guest_paused() set
the PVCLOCK_GUEST_STOPPED bit directly rather than having to delegate
to the vCPU via KVM_REQ_CLOCK_UPDATE. But not yet.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:12 -04:00
David Woodhouse a795cd43c5 KVM: x86/xen: Use gfn_to_pfn_cache for runstate area
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:12 -04:00
Oliver Upton f1a9761fbb KVM: x86: Allow userspace to opt out of hypercall patching
KVM handles the VMCALL/VMMCALL instructions very strangely. Even though
both of these instructions really should #UD when executed on the wrong
vendor's hardware (i.e. VMCALL on SVM, VMMCALL on VMX), KVM replaces the
guest's instruction with the appropriate instruction for the vendor.
Nonetheless, older guest kernels without commit c1118b3602 ("x86: kvm:
use alternatives for VMCALL vs. VMMCALL if kernel text is read-only")
do not patch in the appropriate instruction using alternatives, likely
motivating KVM's intervention.

Add a quirk allowing userspace to opt out of hypercall patching. If the
quirk is disabled, KVM synthesizes a #UD in the guest.

Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220316005538.2282772-2-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:10 -04:00
Sean Christopherson 320af55a93 KVM: x86: Add wrappers for setting/clearing APICv inhibits
Add set/clear wrappers for toggling APICv inhibits to make the call sites
more readable, and opportunistically rename the inner helpers to align
with the new wrappers and to make them more readable as well.  Invert the
flag from "activate" to "set"; activate is painfully ambiguous as it's
not obvious if the inhibit is being activated, or if APICv is being
activated, in which case the inhibit is being deactivated.

For the functions that take @set, swap the order of the inhibit reason
and @set so that the call sites are visually similar to those that bounce
through the wrapper.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:44 -04:00
Sean Christopherson 7491b7b2e1 KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
Use an enum for the APICv inhibit reasons, there is no meaning behind
their values and they most definitely are not "unsigned longs".  Rename
the various params to "reason" for consistency and clarity (inhibit may
be confused as a command, i.e. inhibit APICv, instead of the reason that
is getting toggled/checked).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:44 -04:00
Lai Jiangshan 4f4aa80e3b KVM: X86: Handle implicit supervisor access with SMAP
There are two kinds of implicit supervisor access
	implicit supervisor access when CPL = 3
	implicit supervisor access when CPL < 3

Current permission_fault() handles only the first kind for SMAP.

But if the access is implicit when SMAP is on, data may not be read
nor write from any user-mode address regardless the current CPL.

So the second kind should be also supported.

The first kind can be detect via CPL and access mode: if it is
supervisor access and CPL = 3, it must be implicit supervisor access.

But it is not possible to detect the second kind without extra
information, so this patch adds an artificial PFERR_EXPLICIT_ACCESS
into @access. This extra information also works for the first kind, so
the logic is changed to use this information for both cases.

The value of PFERR_EXPLICIT_ACCESS is deliberately chosen to be bit 48
which is in the most significant 16 bits of u64 and less likely to be
forced to change due to future hardware uses it.

This patch removes the call to ->get_cpl() for access mode is determined
by @access.  Not only does it reduce a function call, but also remove
confusions when the permission is checked for nested TDP.  The nested
TDP shouldn't have SMAP checking nor even the L2's CPL have any bearing
on it.  The original code works just because it is always user walk for
NPT and SMAP fault is not set for EPT in update_permission_bitmask.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:43 -04:00
Lai Jiangshan 5b22bbe717 KVM: X86: Change the type of access u32 to u64
Change the type of access u32 to u64 for FNAME(walk_addr) and
->gva_to_gpa().

The kinds of accesses are usually combinations of UWX, and VMX/SVM's
nested paging adds a new factor of access: is it an access for a guest
page table or for a final guest physical address.

And SMAP relies a factor for supervisor access: explicit or implicit.

So @access in FNAME(walk_addr) and ->gva_to_gpa() is better to include
all these information to do the walk.

Although @access(u32) has enough bits to encode all the kinds, this
patch extends it to u64:
	o Extra bits will be in the higher 32 bits, so that we can
	  easily obtain the traditional access mode (UWX) by converting
	  it to u32.
	o Reuse the value for the access kind defined by SVM's nested
	  paging (PFERR_GUEST_FINAL_MASK and PFERR_GUEST_PAGE_MASK) as
	  @error_code in kvm_handle_page_fault().

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:42 -04:00
Jim Mattson 95b065bf5c KVM: x86/pmu: Use different raw event masks for AMD and Intel
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.

Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().

Fixes: 710c476514 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:40 -04:00
Paolo Bonzini a1a39128fa KVM: MMU: propagate alloc_workqueue failure
If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:34:38 -04:00
Linus Torvalds 1ebdbeb03e ARM:
- Proper emulation of the OSLock feature of the debug architecture
 
 - Scalibility improvements for the MMU lock when dirty logging is on
 
 - New VMID allocator, which will eventually help with SVA in VMs
 
 - Better support for PMUs in heterogenous systems
 
 - PSCI 1.1 support, enabling support for SYSTEM_RESET2
 
 - Implement CONFIG_DEBUG_LIST at EL2
 
 - Make CONFIG_ARM64_ERRATUM_2077057 default y
 
 - Reduce the overhead of VM exit when no interrupt is pending
 
 - Remove traces of 32bit ARM host support from the documentation
 
 - Updated vgic selftests
 
 - Various cleanups, doc updates and spelling fixes
 
 RISC-V:
 
 - Prevent KVM_COMPAT from being selected
 
 - Optimize __kvm_riscv_switch_to() implementation
 
 - RISC-V SBI v0.3 support
 
 s390:
 
 - memop selftest
 
 - fix SCK locking
 
 - adapter interruptions virtualization for secure guests
 
 - add Claudio Imbrenda as maintainer
 
 - first step to do proper storage key checking
 
 x86:
 
 - Continue switching kvm_x86_ops to static_call(); introduce
   static_call_cond() and __static_call_ret0 when applicable.
 
 - Cleanup unused arguments in several functions
 
 - Synthesize AMD 0x80000021 leaf
 
 - Fixes and optimization for Hyper-V sparse-bank hypercalls
 
 - Implement Hyper-V's enlightened MSR bitmap for nested SVM
 
 - Remove MMU auditing
 
 - Eager splitting of page tables (new aka "TDP" MMU only) when dirty
   page tracking is enabled
 
 - Cleanup the implementation of the guest PGD cache
 
 - Preparation for the implementation of Intel IPI virtualization
 
 - Fix some segment descriptor checks in the emulator
 
 - Allow AMD AVIC support on systems with physical APIC ID above 255
 
 - Better API to disable virtualization quirks
 
 - Fixes and optimizations for the zapping of page tables:
 
   - Zap roots in two passes, avoiding RCU read-side critical sections
     that last too long for very large guests backed by 4 KiB SPTEs.
 
   - Zap invalid and defunct roots asynchronously via concurrency-managed
     work queue.
 
   - Allowing yielding when zapping TDP MMU roots in response to the root's
     last reference being put.
 
   - Batch more TLB flushes with an RCU trick.  Whoever frees the paging
     structure now holds RCU as a proxy for all vCPUs running in the guest,
     i.e. to prolongs the grace period on their behalf.  It then kicks the
     the vCPUs out of guest mode before doing rcu_read_unlock().
 
 Generic:
 
 - Introduce __vcalloc and use it for very large allocations that
   need memcg accounting
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmI4fdwUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMq8gf/WoeVHtw2QlL5Mmz6McvRRmPAYPLV
 wLUIFNrRqRvd8Tw4kivzZoh/xTpwmnojv0YdK5SjKAiMjgv094YI1LrNp1JSPvmL
 pitocMkA10RSJNWHeEMg9cMSKH0rKiqeYl6S1e2XsdB+UZZ2BINOCVtvglmjTAvJ
 dFBdKdBkqjAUZbdXAGIvz4JEEER3N/LkFDKGaUGX+0QIQOzGBPIyLTxynxIDG6mt
 RViCCFyXdy5NkVp5hZFm96vQ2qAlWL9B9+iKruQN++82+oqWbeTdSqPhdwF7GyFz
 BfOv3gobQ2c4ef/aMLO5LswZ9joI1t/4kQbbAn6dNybpOAz/NXfDnbNefg==
 =keox
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - Proper emulation of the OSLock feature of the debug architecture

   - Scalibility improvements for the MMU lock when dirty logging is on

   - New VMID allocator, which will eventually help with SVA in VMs

   - Better support for PMUs in heterogenous systems

   - PSCI 1.1 support, enabling support for SYSTEM_RESET2

   - Implement CONFIG_DEBUG_LIST at EL2

   - Make CONFIG_ARM64_ERRATUM_2077057 default y

   - Reduce the overhead of VM exit when no interrupt is pending

   - Remove traces of 32bit ARM host support from the documentation

   - Updated vgic selftests

   - Various cleanups, doc updates and spelling fixes

  RISC-V:
   - Prevent KVM_COMPAT from being selected

   - Optimize __kvm_riscv_switch_to() implementation

   - RISC-V SBI v0.3 support

  s390:
   - memop selftest

   - fix SCK locking

   - adapter interruptions virtualization for secure guests

   - add Claudio Imbrenda as maintainer

   - first step to do proper storage key checking

  x86:
   - Continue switching kvm_x86_ops to static_call(); introduce
     static_call_cond() and __static_call_ret0 when applicable.

   - Cleanup unused arguments in several functions

   - Synthesize AMD 0x80000021 leaf

   - Fixes and optimization for Hyper-V sparse-bank hypercalls

   - Implement Hyper-V's enlightened MSR bitmap for nested SVM

   - Remove MMU auditing

   - Eager splitting of page tables (new aka "TDP" MMU only) when dirty
     page tracking is enabled

   - Cleanup the implementation of the guest PGD cache

   - Preparation for the implementation of Intel IPI virtualization

   - Fix some segment descriptor checks in the emulator

   - Allow AMD AVIC support on systems with physical APIC ID above 255

   - Better API to disable virtualization quirks

   - Fixes and optimizations for the zapping of page tables:

      - Zap roots in two passes, avoiding RCU read-side critical
        sections that last too long for very large guests backed by 4
        KiB SPTEs.

      - Zap invalid and defunct roots asynchronously via
        concurrency-managed work queue.

      - Allowing yielding when zapping TDP MMU roots in response to the
        root's last reference being put.

      - Batch more TLB flushes with an RCU trick. Whoever frees the
        paging structure now holds RCU as a proxy for all vCPUs running
        in the guest, i.e. to prolongs the grace period on their behalf.
        It then kicks the the vCPUs out of guest mode before doing
        rcu_read_unlock().

  Generic:
   - Introduce __vcalloc and use it for very large allocations that need
     memcg accounting"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
  KVM: use kvcalloc for array allocations
  KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
  kvm: x86: Require const tsc for RT
  KVM: x86: synthesize CPUID leaf 0x80000021h if useful
  KVM: x86: add support for CPUID leaf 0x80000021
  KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
  Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
  kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
  KVM: arm64: fix typos in comments
  KVM: arm64: Generalise VM features into a set of flags
  KVM: s390: selftests: Add error memop tests
  KVM: s390: selftests: Add more copy memop tests
  KVM: s390: selftests: Add named stages for memop test
  KVM: s390: selftests: Add macro as abstraction for MEM_OP
  KVM: s390: selftests: Split memop tests
  KVM: s390x: fix SCK locking
  RISC-V: KVM: Implement SBI HSM suspend call
  RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
  RISC-V: Add SBI HSM suspend related defines
  RISC-V: KVM: Implement SBI v0.3 SRST extension
  ...
2022-03-24 11:58:57 -07:00
Linus Torvalds 95ab0e8768 Changes for this cycle were:
- Fix address filtering for Intel/PT,ARM/CoreSight
  - Enable Intel/PEBS format 5
  - Allow more fixed-function counters for x86
  - Intel/PT: Enable not recording Taken-Not-Taken packets
  - Add a few branch-types
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI4WdIRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jdTA/7BADTYzFCbdwPzHt2mR8osv7k+pDvYxs9
 wxNjyi1X7N8cPkhqgIg9CfdhdyDOqo7+J4fG17f2qbwjNK7b2Fb1/U6ZoZaf+f8F
 W0e2LX5KZTXUhkA+TEjrXvYD9FmJaCPM/l2RQg8U7okBs2kb0H6QT2Yn21wd1roC
 WwI5KFiWSVS1IzpVLaXjDh+FJfJHd75ReMqJeus+QoVQ9NHeuI+t4DglSB1IBi54
 d/zeVXE/Y4dFTQOrU06S2HxcOEptvXZsPmVLvKab/veeGGyWiGPxQpvu6bXm6u3x
 0sV+dn67zut2m2pQlUZUucgGTSYIZTpOe+rNukTB9hJ4XeN4/1ohOOCrOuYM+63P
 lGFbN1v+LD7Wc6C2eEhw8G5GEL0qbwzFNQ06O3EOFi7C7GKn7WS/ET6XuuMOERFk
 uxEPb4pFtbBlJ0SriCprFJSd5NL3PORZlLIhv4hGH5hilLR1TFeKDuwZaM4noQxU
 dL3rKGLi9H+P46Eni9H28+0gDISbv1xL+WivHOFQNmhBqAZO52ZcF3J+dgBaR1B5
 pBxVTycFpZMjxSZnqTE0gMsFaLIpVGc+75Chns1rajR0mEtRtJUQUbYz4tK4zb0E
 dZR1p+VF6+DYmSRhiqeaTi9uz9oE8kMa8o/EcbFIg/9BgEnUwJXU20bjnar30xQ7
 9OIn7r9hjHI=
 =XPuo
 -----END PGP SIGNATURE-----

Merge tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 perf event updates from Ingo Molnar:

 - Fix address filtering for Intel/PT,ARM/CoreSight

 - Enable Intel/PEBS format 5

 - Allow more fixed-function counters for x86

 - Intel/PT: Enable not recording Taken-Not-Taken packets

 - Add a few branch-types

* tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT
  perf: Add irq and exception return branch types
  perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses
  perf/x86/intel/pt: Add a capability and config bit for disabling TNTs
  perf/x86/intel/pt: Add a capability and config bit for event tracing
  perf/x86/intel: Increase max number of the fixed counters
  KVM: x86: use the KVM side max supported fixed counter
  perf/x86/intel: Enable PEBS format 5
  perf/core: Allow kernel address filter when not filtering the kernel
  perf/x86/intel/pt: Fix address filter config for 32-bit kernel
  perf/core: Fix address filter parser for multiple filters
  x86: Share definition of __is_canonical_address()
  perf/x86/intel/pt: Relax address filter validation
2022-03-22 13:06:49 -07:00
Oliver Upton 6d8491910f KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
KVM_CAP_DISABLE_QUIRKS is irrevocably broken. The capability does not
advertise the set of quirks which may be disabled to userspace, so it is
impossible to predict the behavior of KVM. Worse yet,
KVM_CAP_DISABLE_QUIRKS will tolerate any value for cap->args[0], meaning
it fails to reject attempts to set invalid quirk bits.

The only valid workaround for the quirky quirks API is to add a new CAP.
Actually advertise the set of quirks that can be disabled to userspace
so it can predict KVM's behavior. Reject values for cap->args[0] that
contain invalid bits.

Finally, add documentation for the new capability and describe the
existing quirks.

Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220301060351.442881-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-21 09:28:41 -04:00
Paolo Bonzini 22b94c4b63 KVM: x86/mmu: Zap invalidated roots via asynchronous worker
Use the system worker threads to zap the roots invalidated
by the TDP MMU's "fast zap" mechanism, implemented by
kvm_tdp_mmu_invalidate_all_roots().

At this point, apart from allowing some parallelism in the zapping of
roots, the workqueue is a glorified linked list: work items are added and
flushed entirely within a single kvm->slots_lock critical section.  However,
the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots()
assumes that it owns a reference to all invalid roots; therefore, no
one can set the invalid bit outside kvm_mmu_zap_all_fast().  Putting the
invalidated roots on a linked list... erm, on a workqueue ensures that
tdp_mmu_zap_root_work() only puts back those extra references that
kvm_mmu_zap_all_invalidated_roots() had gifted to it.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-08 10:55:27 -05:00
Paolo Bonzini 0564eeb71b Merge branch 'kvm-bugfixes' into HEAD
Merge bugfixes from 5.17 before merging more tricky work.
2022-03-04 18:39:29 -05:00
Sean Christopherson 527d5cd7ee KVM: x86/mmu: Zap only obsolete roots if a root shadow page is zapped
Zap only obsolete roots when responding to zapping a single root shadow
page.  Because KVM keeps root_count elevated when stuffing a previous
root into its PGD cache, shadowing a 64-bit guest means that zapping any
root causes all vCPUs to reload all roots, even if their current root is
not affected by the zap.

For many kernels, zapping a single root is a frequent operation, e.g. in
Linux it happens whenever an mm is dropped, e.g. process exits, etc...

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220225182248.3812651-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-03-01 08:58:25 -05:00
Paolo Bonzini 0c1c92f15f KVM: x86/mmu: do not pass vcpu to root freeing functions
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables).  They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu.  So, pass the vcpu->kvm directly to them.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:17 -05:00
Paolo Bonzini b9e5603c2a KVM: x86: use struct kvm_mmu_root_info for mmu->root
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.

The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:16 -05:00
David Dunn ba7bb663f5 KVM: x86: Provide per VM capability for disabling PMU virtualization
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis.  For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.

To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.

Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:14 -05:00
Sean Christopherson 925088781e KVM: x86: Fix pointer mistmatch warning when patching RET0 static calls
Cast kvm_x86_ops.func to 'void *' when updating KVM static calls that are
conditionally patched to __static_call_return0().  clang complains about
using mismatching pointers in the ternary operator, which breaks the
build when compiling with CONFIG_KVM_WERROR=y.

  >> arch/x86/include/asm/kvm-x86-ops.h:82:1: warning: pointer type mismatch
  ('bool (*)(struct kvm_vcpu *)' and 'void *') [-Wpointer-type-mismatch]

Fixes: 5be2226f41 ("KVM: x86: allow defining return-0 static calls")
Reported-by: Like Xu <like.xu.linux@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Message-Id: <20220223162355.3174907-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-25 08:20:14 -05:00
Sean Christopherson 1bbc60d0c7 KVM: x86/mmu: Remove MMU auditing
Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 13:46:23 -05:00
Paolo Bonzini 5be2226f41 KVM: x86: allow defining return-0 static calls
A few vendor callbacks are only used by VMX, but they return an integer
or bool value.  Introduce KVM_X86_OP_OPTIONAL_RET0 for them: if a func is
NULL in struct kvm_x86_ops, it will be changed to __static_call_return0
when updating static calls.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 12:44:22 -05:00
Paolo Bonzini dd2319c618 KVM: x86: warn on incorrectly NULL members of kvm_x86_ops
Use the newly corrected KVM_X86_OP annotations to warn about possible
NULL pointer dereferences as soon as the vendor module is loaded.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 12:31:43 -05:00
Paolo Bonzini e4fc23bad8 KVM: x86: remove KVM_X86_OP_NULL and mark optional kvm_x86_ops
The original use of KVM_X86_OP_NULL, which was to mark calls
that do not follow a specific naming convention, is not in use
anymore.  Instead, let's mark calls that are optional because
they are always invoked within conditionals or with static_call_cond.
Those that are _not_, i.e. those that are defined with KVM_X86_OP,
must be defined by both vendor modules or some kind of NULL pointer
dereference is bound to happen at runtime.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 12:31:27 -05:00
Paolo Bonzini 8a2897853c KVM: x86: return 1 unconditionally for availability of KVM_CAP_VAPIC
The two ioctls used to implement userspace-accelerated TPR,
KVM_TPR_ACCESS_REPORTING and KVM_SET_VAPIC_ADDR, are available
even if hardware-accelerated TPR can be used.  So there is
no reason not to report KVM_CAP_VAPIC.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-18 12:30:56 -05:00
Leonardo Bras 988896bb61 x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0
kvm_vcpu_arch currently contains the guest supported features in both
guest_supported_xcr0 and guest_fpu.fpstate->user_xfeatures field.

Currently both fields are set to the same value in
kvm_vcpu_after_set_cpuid() and are not changed anywhere else after that.

Since it's not good to keep duplicated data, remove guest_supported_xcr0.

To keep the code more readable, introduce kvm_guest_supported_xcr()
and kvm_guest_supported_xfd() to replace the previous usages of
guest_supported_xcr0.

Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220217053028.96432-3-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-17 10:06:49 -05:00
David Matlack cb00a70bd4 KVM: x86/mmu: Split huge pages mapped by the TDP MMU during KVM_CLEAR_DIRTY_LOG
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.

Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:43 -05:00
David Matlack a3fe5dbda0 KVM: x86/mmu: Split huge pages mapped by the TDP MMU when dirty logging is enabled
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.

Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.

Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:

 1. Splitting on the vCPU thread interrupts vCPUs execution and is
    disruptive to customers whereas splitting on VM ioctl threads can
    run in parallel with vCPU execution.

 2. Splitting all huge pages at once is more efficient because it does
    not require performing VM-exit handling or walking the page table for
    every 4KiB page in the memslot, and greatly reduces the amount of
    contention on the mmu_lock.

For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.

Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.

Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:42 -05:00
Sean Christopherson 03d004cd07 KVM: x86: Use more verbose names for mem encrypt kvm_x86_ops hooks
Use slightly more verbose names for the so called "memory encrypt",
a.k.a. "mem enc", kvm_x86_ops hooks to bridge the gap between the current
super short kvm_x86_ops names and SVM's more verbose, but non-conforming
names.  This is a step toward using kvm-x86-ops.h with KVM_X86_CVM_OP()
to fill svm_x86_ops.

Opportunistically rename mem_enc_op() to mem_enc_ioctl() to better
reflect its true nature, as it really is a full fledged ioctl() of its
own.  Ideally, the hook would be named confidential_vm_ioctl() or so, as
the ioctl() is a gateway to more than just memory encryption, and because
its underlying purpose to support Confidential VMs, which can be provided
without memory encryption, e.g. if the TCB of the guest includes the host
kernel but not host userspace, or by isolation in hardware without
encrypting memory.  But, diverging from KVM_MEMORY_ENCRYPT_OP even
further is undeseriable, and short of creating alises for all related
ioctl()s, which introduces a different flavor of divergence, KVM is stuck
with the nomenclature.

Defer renaming SVM's functions to a future commit as there are additional
changes needed to make SVM fully conforming and to match reality (looking
at you, svm_vm_copy_asid_from()).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:50:29 -05:00
Sean Christopherson 872e0c5308 KVM: x86: Move get_cs_db_l_bits() helper to SVM
Move kvm_get_cs_db_l_bits() to SVM and rename it appropriately so that
its svm_x86_ops entry can be filled via kvm-x86-ops, and to eliminate a
superfluous export from KVM x86.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:21 -05:00
Sean Christopherson e27bc0440e KVM: x86: Rename kvm_x86_ops pointers to align w/ preferred vendor names
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run().  This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.

In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name.  Justification for using the VMX nomenclature:

  - set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
    event that has already been "set" in e.g. the vIRR.  SVM's relevant
    VMCB field is even named event_inj, and KVM's stat is irq_injections.

  - prepare_guest_switch => prepare_switch_to_guest because the former is
    ambiguous, e.g. it could mean switching between multiple guests,
    switching from the guest to host, etc...

  - update_pi_irte => pi_update_irte to allow for matching match the rest
    of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().

  - start_assignment => pi_start_assignment to again follow VMX's posted
    interrupt naming scheme, and to provide context for what bit of code
    might care about an otherwise undescribed "assignment".

The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong.  x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs.  Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.

VMX and SVM function names are intentionally left as is to minimize the
diff.  Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:17 -05:00
Jinrong Liang 62711e5a74 KVM: x86: Remove unused "vcpu" of kvm_scale_tsc()
The "struct kvm_vcpu *vcpu" parameter of kvm_scale_tsc() is not used,
so remove it. No functional change intended.

Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-18-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-10 13:47:14 -05:00
Paolo Bonzini 7e6a6b400d KVM/arm64 fixes for 5.17, take #2
- A couple of fixes when handling an exception while a SError has been
   delivered
 
 - Workaround for Cortex-A510's single-step[ erratum
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmH9LlcPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDLTcP/3Ry8CzvPubZquMyNdRUFvEg2EcfTa6vtIGW
 Fw7ap2hwPUaXUgJKDihMFIWj3Wf/wPmXw4t2Sr8R/yq8v9kWe+IG1isnT0yQhY3W
 kLXEqc8Mu4Rf8+jvlFHsp5mLENHIswpWAv/EY49ChgZkNmtkKpnPm1qnD89d8bNv
 tUwooDWidQ/7nXdM3z6zygSROJS24+OGTYTWzOQ1KgV3FGaXbqYiCleoPOpRR/Tc
 DQQWF/tVl8bZCqgkGKZCv3aXT0ZUPrQggARJGai78vP0l2sE/Kyaydgq5I7npZja
 2L2U4kDNoPYIVa8A1jvV3Ef3AqNFs6B7+jXWfYIgAcXjCYzDK3cZcxavf/Inq9F1
 3udVGJGSzH1KkGaihW3BVhsqGORRHKCdksJzWRgqf6vGyJhJw0u0D2u1rTWcT+jw
 Nm4KxShp0CX59HSLnVF5sR0Mct3jNNZ7UCCgH7q10wuBqYRfJT32hCo2ZrT7g9oD
 IQ+pa2dVYa3SaKZ4O6T/lSlbLOuuxtvmcEIfxYpPD6m10S5RrxOdsW3MCtiYM5HQ
 24oo2mk6NIu/va0XxhcW+NBMcYtLQD9JUGbkUkpcRy2mgilTi9b4YPp+muYM7plQ
 /S1gj2kGY8vjMg0H+wysjMJyl2huEwSRsZ/UfxCAgW+MYhHLDxhxAnDWc8EcwGgE
 tUzomowB
 =Mbx/
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-fixes-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 fixes for 5.17, take #2

- A couple of fixes when handling an exception while a SError has been
  delivered

- Workaround for Cortex-A510's single-step[ erratum
2022-02-05 00:58:25 -05:00
Wei Wang 0144ba0c5b KVM: x86: use the KVM side max supported fixed counter
KVM vPMU doesn't support to emulate all the fixed counters that the
host PMU driver has supported, e.g. the fixed counter 3 used by
Topdown metrics hasn't been supported by KVM so far.

Rename MAX_FIXED_COUNTERS to KVM_PMC_MAX_FIXED to have a more
straightforward naming convention as INTEL_PMC_MAX_FIXED used by the
host PMU driver, and fix vPMU to use the KVM side KVM_PMC_MAX_FIXED
for the virtual fixed counter emulation, instead of the host side
INTEL_PMC_MAX_FIXED.

Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1643750603-100733-2-git-send-email-kan.liang@linux.intel.com
2022-02-02 13:11:44 +01:00
Sean Christopherson 57dfd7b53d KVM: x86: Move delivery of non-APICv interrupt into vendor code
Handle non-APICv interrupt delivery in vendor code, even though it means
VMX and SVM will temporarily have duplicate code.  SVM's AVIC has a race
condition that requires KVM to fall back to legacy interrupt injection
_after_ the interrupt has been logged in the vIRR, i.e. to fix the race,
SVM will need to open code the full flow anyways[*].  Refactor the code
so that the SVM bug without introducing other issues, e.g. SVM would
return "success" and thus invoke trace_kvm_apicv_accept_irq() even when
delivery through the AVIC failed, and to opportunistically prepare for
using KVM_X86_OP to fill each vendor's kvm_x86_ops struct, which will
rely on the vendor function matching the kvm_x86_op pointer name.

No functional change intended.

[*] https://lore.kernel.org/all/20211213104634.199141-4-mlevitsk@redhat.com

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-01 06:03:41 -05:00
Linus Torvalds 3cd7cd8a62 Two larger x86 series:
* Redo incorrect fix for SEV/SMAP erratum
 
 * Windows 11 Hyper-V workaround
 
 Other x86 changes:
 
 * Various x86 cleanups
 
 * Re-enable access_tracking_perf_test
 
 * Fix for #GP handling on SVM
 
 * Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
 
 * Fix for ICEBP in interrupt shadow
 
 * Avoid false-positive RCU splat
 
 * Enable Enlightened MSR-Bitmap support for real
 
 ARM:
 
 * Correctly update the shadow register on exception injection when
 running in nVHE mode
 
 * Correctly use the mm_ops indirection when performing cache invalidation
 from the page-table walker
 
 * Restrict the vgic-v3 workaround for SEIS to the two known broken
 implementations
 
 Generic code changes:
 
 * Dead code cleanup
 
 There will be another pull request for ARM fixes next week, but
 those patches need a bit more soak time.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHz5eIUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNv4wgAopj0Zlutrrtw3KT4/XnmSdMPgN0j
 jQNzysSLTO5wGQCEogycjYXkGUDFu1Gdi+K91QAyjeKja20pIhPLeS2CBDRJyOc5
 73K7sxqz51JnQiVFzkTuA+qzn+lXaJ9LUXtdg8BnQMSKyt2AJOqE8uT10kcYOD5q
 mW4V3QUA0QpVKN0cYHv/G/zvBwQGGSLZetFbuAzwH2EDTpIi1aio5ZN1r0AoH18L
 2x5kYPpqmnoBvo2cB4b7SNmxv3ZPQ5K+wta0uwZ4pO+UuYiRd84RPr5lErywJC3w
 nci0eC0DoXrC6h+35UItqM8RqAGv6LADbDnr1RGojmfogSD0OtbX8y3hjw==
 =iKnI
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "Two larger x86 series:

   - Redo incorrect fix for SEV/SMAP erratum

   - Windows 11 Hyper-V workaround

  Other x86 changes:

   - Various x86 cleanups

   - Re-enable access_tracking_perf_test

   - Fix for #GP handling on SVM

   - Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID

   - Fix for ICEBP in interrupt shadow

   - Avoid false-positive RCU splat

   - Enable Enlightened MSR-Bitmap support for real

  ARM:

   - Correctly update the shadow register on exception injection when
     running in nVHE mode

   - Correctly use the mm_ops indirection when performing cache
     invalidation from the page-table walker

   - Restrict the vgic-v3 workaround for SEIS to the two known broken
     implementations

  Generic code changes:

   - Dead code cleanup"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (43 commits)
  KVM: eventfd: Fix false positive RCU usage warning
  KVM: nVMX: Allow VMREAD when Enlightened VMCS is in use
  KVM: nVMX: Implement evmcs_field_offset() suitable for handle_vmread()
  KVM: nVMX: Rename vmcs_to_field_offset{,_table}
  KVM: nVMX: eVMCS: Filter out VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
  KVM: nVMX: Also filter MSR_IA32_VMX_TRUE_PINBASED_CTLS when eVMCS
  selftests: kvm: check dynamic bits against KVM_X86_XCOMP_GUEST_SUPP
  KVM: x86: add system attribute to retrieve full set of supported xsave states
  KVM: x86: Add a helper to retrieve userspace address from kvm_device_attr
  selftests: kvm: move vm_xsave_req_perm call to amx_test
  KVM: x86: Sync the states size with the XCR0/IA32_XSS at, any time
  KVM: x86: Update vCPU's runtime CPUID on write to MSR_IA32_XSS
  KVM: x86: Keep MSR_IA32_XSS unchanged for INIT
  KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2}
  KVM: nVMX: WARN on any attempt to allocate shadow VMCS for vmcs02
  KVM: selftests: Don't skip L2's VMCALL in SMM test for SVM guest
  KVM: x86: Check .flags in kvm_cpuid_check_equal() too
  KVM: x86: Forcibly leave nested virt when SMM state is toggled
  KVM: SVM: drop unnecessary code in svm_hv_vmcb_dirty_nested_enlightenments()
  KVM: SVM: hyper-v: Enable Enlightened MSR-Bitmap support for real
  ...
2022-01-28 19:00:26 +02:00
Sean Christopherson f7e570780e KVM: x86: Forcibly leave nested virt when SMM state is toggled
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS.  If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.

Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.

Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.

  WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
  WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
  Modules linked in:
  CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
  RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
  Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
  Call Trace:
   <TASK>
   kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
   kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
   kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
   kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
   kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
   kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
   kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
   kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
   __fput+0x286/0x9f0 fs/file_table.c:311
   task_work_run+0xdd/0x1a0 kernel/task_work.c:164
   exit_task_work include/linux/task_work.h:32 [inline]
   do_exit+0xb29/0x2a30 kernel/exit.c:806
   do_group_exit+0xd2/0x2f0 kernel/exit.c:935
   get_signal+0x4b0/0x28c0 kernel/signal.c:2862
   arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
   handle_signal_work kernel/entry/common.c:148 [inline]
   exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
   exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
   __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
   syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
   do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
   entry_SYSCALL_64_after_hwframe+0x44/0xae
   </TASK>

Cc: stable@vger.kernel.org
Reported-by: syzbot+8112db3ab20e70d50c31@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220358.2091737-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-26 12:15:03 -05:00
Sean Christopherson 4d31d9eff2 KVM: x86: Pass emulation type to can_emulate_instruction()
Pass the emulation type to kvm_x86_ops.can_emulate_insutrction() so that
a future commit can harden KVM's SEV support to WARN on emulation
scenarios that should never happen.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-26 12:15:00 -05:00
Quanfa Fu d081a343dd KVM/X86: Make kvm_vcpu_reload_apic_access_page() static
Make kvm_vcpu_reload_apic_access_page() static
as it is no longer invoked directly by vmx
and it is also no longer exported.

No functional change intended.

Signed-off-by: Quanfa Fu <quanfafu@gmail.com>
Message-Id: <20211219091446.174584-1-quanfafu@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-25 09:40:20 -05:00
Linus Torvalds 636b5284d8 Generic:
- selftest compilation fix for non-x86
 
 - KVM: avoid warning on s390 in mark_page_dirty
 
 x86:
 - fix page write-protection bug and improve comments
 
 - use binary search to lookup the PMU event filter, add test
 
 - enable_pmu module parameter support for Intel CPUs
 
 - switch blocked_vcpu_on_cpu_lock to raw spinlock
 
 - cleanups of blocked vCPU logic
 
 - partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)
 
 - various small fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHpmT0UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOstggAi1VSpT43oGslQjXNDZacHEARoYQs
 b0XpoW7HXicGSGRMWspCmiAPdJyYTsioEACttAmXUMs7brAgHb9n/vzdlcLh1ymL
 rQw2YFQlfqqB1Ki1iRhNkWlH9xOECsu28WLng6ylrx51GuT/pzWRt+V3EGUFTxIT
 ldW9HgZg2oFJIaLjg2hQVR/8EbBf0QdsAD3KV3tyvhBlXPkyeLOMcGe9onfjZ/NE
 JQeW7FtKtP4SsIFt1KrJpDPjtiwFt3bRM0gfgGw7//clvtKIqt1LYXZiq4C3b7f5
 tfYiC8lO2vnOoYcfeYEmvybbSsoS/CgSliZB32qkwoVvRMIl82YmxtDD+Q==
 =/Mak
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull more kvm updates from Paolo Bonzini:
 "Generic:

   - selftest compilation fix for non-x86

   - KVM: avoid warning on s390 in mark_page_dirty

 x86:

   - fix page write-protection bug and improve comments

   - use binary search to lookup the PMU event filter, add test

   - enable_pmu module parameter support for Intel CPUs

   - switch blocked_vcpu_on_cpu_lock to raw spinlock

   - cleanups of blocked vCPU logic

   - partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)

   - various small fixes"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (46 commits)
  docs: kvm: fix WARNINGs from api.rst
  selftests: kvm/x86: Fix the warning in lib/x86_64/processor.c
  selftests: kvm/x86: Fix the warning in pmu_event_filter_test.c
  kvm: selftests: Do not indent with spaces
  kvm: selftests: sync uapi/linux/kvm.h with Linux header
  selftests: kvm: add amx_test to .gitignore
  KVM: SVM: Nullify vcpu_(un)blocking() hooks if AVIC is disabled
  KVM: SVM: Move svm_hardware_setup() and its helpers below svm_x86_ops
  KVM: SVM: Drop AVIC's intermediate avic_set_running() helper
  KVM: VMX: Don't do full kick when handling posted interrupt wakeup
  KVM: VMX: Fold fallback path into triggering posted IRQ helper
  KVM: VMX: Pass desired vector instead of bool for triggering posted IRQ
  KVM: VMX: Don't do full kick when triggering posted interrupt "fails"
  KVM: SVM: Skip AVIC and IRTE updates when loading blocking vCPU
  KVM: SVM: Use kvm_vcpu_is_blocking() in AVIC load to handle preemption
  KVM: SVM: Remove unnecessary APICv/AVIC update in vCPU unblocking path
  KVM: SVM: Don't bother checking for "running" AVIC when kicking for IPIs
  KVM: SVM: Signal AVIC doorbell iff vCPU is in guest mode
  KVM: x86: Remove defunct pre_block/post_block kvm_x86_ops hooks
  KVM: x86: Unexport LAPIC's switch_to_{hv,sw}_timer() helpers
  ...
2022-01-22 09:40:01 +02:00
Sean Christopherson c3e8abf0f3 KVM: x86: Remove defunct pre_block/post_block kvm_x86_ops hooks
Drop kvm_x86_ops' pre/post_block() now that all implementations are nops.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-19 12:14:40 -05:00
Sean Christopherson fc4fad79fc KVM: VMX: Reject KVM_RUN if emulation is required with pending exception
Reject KVM_RUN if emulation is required (because VMX is running without
unrestricted guest) and an exception is pending, as KVM doesn't support
emulating exceptions except when emulating real mode via vm86.  The vCPU
is hosed either way, but letting KVM_RUN proceed triggers a WARN due to
the impossible condition.  Alternatively, the WARN could be removed, but
then userspace and/or KVM bugs would result in the vCPU silently running
in a bad state, which isn't very friendly to users.

Originally, the bug was hit by syzkaller with a nested guest as that
doesn't require kvm_intel.unrestricted_guest=0.  That particular flavor
is likely fixed by commit cd0e615c49 ("KVM: nVMX: Synthesize
TRIPLE_FAULT for L2 if emulation is required"), but it's trivial to
trigger the WARN with a non-nested guest, and userspace can likely force
bad state via ioctls() for a nested guest as well.

Checking for the impossible condition needs to be deferred until KVM_RUN
because KVM can't force specific ordering between ioctls.  E.g. clearing
exception.pending in KVM_SET_SREGS doesn't prevent userspace from setting
it in KVM_SET_VCPU_EVENTS, and disallowing KVM_SET_VCPU_EVENTS with
emulation_required would prevent userspace from queuing an exception and
then stuffing sregs.  Note, if KVM were to try and detect/prevent the
condition prior to KVM_RUN, handle_invalid_guest_state() and/or
handle_emulation_failure() would need to be modified to clear the pending
exception prior to exiting to userspace.

 ------------[ cut here ]------------
 WARNING: CPU: 6 PID: 137812 at arch/x86/kvm/vmx/vmx.c:1623 vmx_queue_exception+0x14f/0x160 [kvm_intel]
 CPU: 6 PID: 137812 Comm: vmx_invalid_nes Not tainted 5.15.2-7cc36c3e14ae-pop #279
 Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
 RIP: 0010:vmx_queue_exception+0x14f/0x160 [kvm_intel]
 Code: <0f> 0b e9 fd fe ff ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00
 RSP: 0018:ffffa45c83577d38 EFLAGS: 00010202
 RAX: 0000000000000003 RBX: 0000000080000006 RCX: 0000000000000006
 RDX: 0000000000000000 RSI: 0000000000010002 RDI: ffff9916af734000
 RBP: ffff9916af734000 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000006
 R13: 0000000000000000 R14: ffff9916af734038 R15: 0000000000000000
 FS:  00007f1e1a47c740(0000) GS:ffff99188fb80000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f1e1a6a8008 CR3: 000000026f83b005 CR4: 00000000001726e0
 Call Trace:
  kvm_arch_vcpu_ioctl_run+0x13a2/0x1f20 [kvm]
  kvm_vcpu_ioctl+0x279/0x690 [kvm]
  __x64_sys_ioctl+0x83/0xb0
  do_syscall_64+0x3b/0xc0
  entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported-by: syzbot+82112403ace4cbd780d8@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211228232437.1875318-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-19 12:12:25 -05:00
Linus Torvalds 79e06c4c49 RISCV:
- Use common KVM implementation of MMU memory caches
 
 - SBI v0.2 support for Guest
 
 - Initial KVM selftests support
 
 - Fix to avoid spurious virtual interrupts after clearing hideleg CSR
 
 - Update email address for Anup and Atish
 
 ARM:
 - Simplification of the 'vcpu first run' by integrating it into
   KVM's 'pid change' flow
 
 - Refactoring of the FP and SVE state tracking, also leading to
   a simpler state and less shared data between EL1 and EL2 in
   the nVHE case
 
 - Tidy up the header file usage for the nvhe hyp object
 
 - New HYP unsharing mechanism, finally allowing pages to be
   unmapped from the Stage-1 EL2 page-tables
 
 - Various pKVM cleanups around refcounting and sharing
 
 - A couple of vgic fixes for bugs that would trigger once
   the vcpu xarray rework is merged, but not sooner
 
 - Add minimal support for ARMv8.7's PMU extension
 
 - Rework kvm_pgtable initialisation ahead of the NV work
 
 - New selftest for IRQ injection
 
 - Teach selftests about the lack of default IPA space and
   page sizes
 
 - Expand sysreg selftest to deal with Pointer Authentication
 
 - The usual bunch of cleanups and doc update
 
 s390:
 - fix sigp sense/start/stop/inconsistency
 
 - cleanups
 
 x86:
 - Clean up some function prototypes more
 
 - improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
 
 - add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
 
 - completely remove potential TOC/TOU races in nested SVM consistency checks
 
 - update some PMCs on emulated instructions
 
 - Intel AMX support (joint work between Thomas and Intel)
 
 - large MMU cleanups
 
 - module parameter to disable PMU virtualization
 
 - cleanup register cache
 
 - first part of halt handling cleanups
 
 - Hyper-V enlightened MSR bitmap support for nested hypervisors
 
 Generic:
 - clean up Makefiles
 
 - introduce CONFIG_HAVE_KVM_DIRTY_RING
 
 - optimize memslot lookup using a tree
 
 - optimize vCPU array usage by converting to xarray
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
 bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
 jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
 Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
 aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
 2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
 =s73m
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "RISCV:

   - Use common KVM implementation of MMU memory caches

   - SBI v0.2 support for Guest

   - Initial KVM selftests support

   - Fix to avoid spurious virtual interrupts after clearing hideleg CSR

   - Update email address for Anup and Atish

  ARM:

   - Simplification of the 'vcpu first run' by integrating it into KVM's
     'pid change' flow

   - Refactoring of the FP and SVE state tracking, also leading to a
     simpler state and less shared data between EL1 and EL2 in the nVHE
     case

   - Tidy up the header file usage for the nvhe hyp object

   - New HYP unsharing mechanism, finally allowing pages to be unmapped
     from the Stage-1 EL2 page-tables

   - Various pKVM cleanups around refcounting and sharing

   - A couple of vgic fixes for bugs that would trigger once the vcpu
     xarray rework is merged, but not sooner

   - Add minimal support for ARMv8.7's PMU extension

   - Rework kvm_pgtable initialisation ahead of the NV work

   - New selftest for IRQ injection

   - Teach selftests about the lack of default IPA space and page sizes

   - Expand sysreg selftest to deal with Pointer Authentication

   - The usual bunch of cleanups and doc update

  s390:

   - fix sigp sense/start/stop/inconsistency

   - cleanups

  x86:

   - Clean up some function prototypes more

   - improved gfn_to_pfn_cache with proper invalidation, used by Xen
     emulation

   - add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery

   - completely remove potential TOC/TOU races in nested SVM consistency
     checks

   - update some PMCs on emulated instructions

   - Intel AMX support (joint work between Thomas and Intel)

   - large MMU cleanups

   - module parameter to disable PMU virtualization

   - cleanup register cache

   - first part of halt handling cleanups

   - Hyper-V enlightened MSR bitmap support for nested hypervisors

  Generic:

   - clean up Makefiles

   - introduce CONFIG_HAVE_KVM_DIRTY_RING

   - optimize memslot lookup using a tree

   - optimize vCPU array usage by converting to xarray"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
  x86/fpu: Fix inline prefix warnings
  selftest: kvm: Add amx selftest
  selftest: kvm: Move struct kvm_x86_state to header
  selftest: kvm: Reorder vcpu_load_state steps for AMX
  kvm: x86: Disable interception for IA32_XFD on demand
  x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
  kvm: selftests: Add support for KVM_CAP_XSAVE2
  kvm: x86: Add support for getting/setting expanded xstate buffer
  x86/fpu: Add uabi_size to guest_fpu
  kvm: x86: Add CPUID support for Intel AMX
  kvm: x86: Add XCR0 support for Intel AMX
  kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
  kvm: x86: Emulate IA32_XFD_ERR for guest
  kvm: x86: Intercept #NM for saving IA32_XFD_ERR
  x86/fpu: Prepare xfd_err in struct fpu_guest
  kvm: x86: Add emulation for IA32_XFD
  x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
  kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
  x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
  x86/fpu: Add guest support to xfd_enable_feature()
  ...
2022-01-16 16:15:14 +02:00
Kevin Tian b5274b1b7b kvm: x86: Disable interception for IA32_XFD on demand
Always intercepting IA32_XFD causes non-negligible overhead when this
register is updated frequently in the guest.

Disable r/w emulation after intercepting the first WRMSR(IA32_XFD)
with a non-zero value.

Disable WRMSR emulation implies that IA32_XFD becomes out-of-sync
with the software states in fpstate and the per-cpu xfd cache. This
leads to two additional changes accordingly:

  - Call fpu_sync_guest_vmexit_xfd_state() after vm-exit to bring
    software states back in-sync with the MSR, before handle_exit_irqoff()
    is called.

  - Always trap #NM once write interception is disabled for IA32_XFD.
    The #NM exception is rare if the guest doesn't use dynamic
    features. Otherwise, there is at most one exception per guest
    task given a dynamic feature.

p.s. We have confirmed that SDM is being revised to say that
when setting IA32_XFD[18] the AMX register state is not guaranteed
to be preserved. This clarification avoids adding mess for a creative
guest which sets IA32_XFD[18]=1 before saving active AMX state to
its own storage.

Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-22-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-14 13:44:43 -05:00
Linus Torvalds 8e5b0adeea Peter Zijlstra says:
"Cleanup of the perf/kvm interaction."
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvbkACgkQEsHwGGHe
 VUrX7w/9FwKUm0WlGcQIAOSdWk85N2qAVH3brYcQHNpTCVe68TOqTCrxCDrGgyUq
 2XnCOim99MUlnsVU6QRZqF4yJ8S1tGrc0COJ/qR4SGntucu0oYuDe2aMVq+mWUD7
 /IThA0oMRfhki9WwAyUuyCrXzk4blZdlrXyYIRMJGl9xeGNy3cvUtU8f68Kiy22E
 OcmQ/o9Etsr38dueAMU1KYEmgSTvG47rS8nfyRUu3QpJHbyLmRXH32PQrm3tduxS
 Bw3gMAH5vqq1UDZJ8ZvsPsO0vFX7dtnKEwEKz4qdtRWk9gi8oLGHIwIXC+VtNqpf
 mCmX33Jw8uFz9h3JhE84J0j/CgsWHoU6MOs0MOch4Tb69/BfCjQnw1enImhejG8q
 YEIDjJf/vgRNaw9PYshiTHT+EJTe9inT3S4eK/ynLRDUEslAqyWZZm7bUE/XrEDi
 yRyGIxry/hNZVvRkXT9QBw32fpgnIH2NAMPLEjJSGCRxT89Tfqz0aRDfacCuHTTh
 P8pAeiDuy/6RkDlQckOZJWOFFh2IHsykX2l3IJcHqVRqt4ob9b+SZB5qoH/Mv9qb
 MSAqdFUupYZFC+6XuPAeX5/Mo+wSkP+pYYSbWNxjUa0yNiYecOjE7/8T2SB2y6Mx
 lk2L0ypsZUYSmpHSfvOdPmf6ucj19/5B4+VCX6PQfcNJTnvvhTE=
 =tU5G
 -----END PGP SIGNATURE-----

Merge tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf updates from Borislav Petkov:
 "Cleanup of the perf/kvm interaction."

* tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf: Drop guest callback (un)register stubs
  KVM: arm64: Drop perf.c and fold its tiny bits of code into arm.c
  KVM: arm64: Hide kvm_arm_pmu_available behind CONFIG_HW_PERF_EVENTS=y
  KVM: arm64: Convert to the generic perf callbacks
  KVM: x86: Move Intel Processor Trace interrupt handler to vmx.c
  KVM: Move x86's perf guest info callbacks to generic KVM
  KVM: x86: More precisely identify NMI from guest when handling PMI
  KVM: x86: Drop current_vcpu for kvm_running_vcpu + kvm_arch_vcpu variable
  perf/core: Use static_call to optimize perf_guest_info_callbacks
  perf: Force architectures to opt-in to guest callbacks
  perf: Add wrappers for invoking guest callbacks
  perf/core: Rework guest callbacks to prepare for static_call support
  perf: Drop dead and useless guest "support" from arm, csky, nds32 and riscv
  perf: Stop pretending that perf can handle multiple guest callbacks
  KVM: x86: Register Processor Trace interrupt hook iff PT enabled in guest
  KVM: x86: Register perf callbacks after calling vendor's hardware_setup()
  perf: Protect perf_guest_cbs with RCU
2022-01-12 16:26:58 -08:00
Michael Roth 405329fc9a KVM: SVM: include CR3 in initial VMSA state for SEV-ES guests
Normally guests will set up CR3 themselves, but some guests, such as
kselftests, and potentially CONFIG_PVH guests, rely on being booted
with paging enabled and CR3 initialized to a pre-allocated page table.

Currently CR3 updates via KVM_SET_SREGS* are not loaded into the guest
VMCB until just prior to entering the guest. For SEV-ES/SEV-SNP, this
is too late, since it will have switched over to using the VMSA page
prior to that point, with the VMSA CR3 copied from the VMCB initial
CR3 value: 0.

Address this by sync'ing the CR3 value into the VMCB save area
immediately when KVM_SET_SREGS* is issued so it will find it's way into
the initial VMSA.

Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20211216171358.61140-10-michael.roth@amd.com>
[Remove vmx_post_set_cr3; add a remark about kvm_set_cr3 not calling the
 new hook. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:46 -05:00
David Woodhouse 14243b3871 KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
This adds basic support for delivering 2 level event channels to a guest.

Initially, it only supports delivery via the IRQ routing table, triggered
by an eventfd. In order to do so, it has a kvm_xen_set_evtchn_fast()
function which will use the pre-mapped shared_info page if it already
exists and is still valid, while the slow path through the irqfd_inject
workqueue will remap the shared_info page if necessary.

It sets the bits in the shared_info page but not the vcpu_info; that is
deferred to __kvm_xen_has_interrupt() which raises the vector to the
appropriate vCPU.

Add a 'verbose' mode to xen_shinfo_test while adding test cases for this.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:45 -05:00
David Woodhouse 1cfc9c4b9d KVM: x86/xen: Maintain valid mapping of Xen shared_info page
Use the newly reinstated gfn_to_pfn_cache to maintain a kernel mapping
of the Xen shared_info page so that it can be accessed in atomic context.

Note that we do not participate in dirty tracking for the shared info
page and we do not explicitly mark it dirty every single tim we deliver
an event channel interrupts. We wouldn't want to do that even if we *did*
have a valid vCPU context with which to do so.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:45 -05:00
Like Xu 40ccb96d54 KVM: x86/pmu: Add pmc->intr to refactor kvm_perf_overflow{_intr}()
Depending on whether intr should be triggered or not, KVM registers
two different event overflow callbacks in the perf_event context.

The code skeleton of these two functions is very similar, so
the pmc->intr can be stored into pmc from pmc_reprogram_counter()
which provides smaller instructions footprint against the
u-architecture branch predictor.

The __kvm_perf_overflow() can be called in non-nmi contexts
and a flag is needed to distinguish the caller context and thus
avoid a check on kvm_is_in_guest(), otherwise we might get
warnings from suspicious RCU or check_preemption_disabled().

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:42 -05:00
Paolo Bonzini 855fb0384a Merge remote-tracking branch 'kvm/master' into HEAD
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU").  In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-21 12:51:09 -05:00
Marc Orr c5063551bf KVM: x86: Always set kvm_run->if_flag
The kvm_run struct's if_flag is a part of the userspace/kernel API. The
SEV-ES patches failed to set this flag because it's no longer needed by
QEMU (according to the comment in the source code). However, other
hypervisors may make use of this flag. Therefore, set the flag for
guests with encrypted registers (i.e., with guest_state_protected set).

Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Signed-off-by: Marc Orr <marcorr@google.com>
Message-Id: <20211209155257.128747-1-marcorr@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
2021-12-20 08:06:53 -05:00
Vitaly Kuznetsov 1ebfaa11eb KVM: x86: Wait for IPIs to be delivered when handling Hyper-V TLB flush hypercall
Prior to commit 0baedd7927 ("KVM: x86: make Hyper-V PV TLB flush use
tlb_flush_guest()"), kvm_hv_flush_tlb() was using 'KVM_REQ_TLB_FLUSH |
KVM_REQUEST_NO_WAKEUP' when making a request to flush TLBs on other vCPUs
and KVM_REQ_TLB_FLUSH is/was defined as:

 (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)

so KVM_REQUEST_WAIT was lost. Hyper-V TLFS, however, requires that
"This call guarantees that by the time control returns back to the
caller, the observable effects of all flushes on the specified virtual
processors have occurred." and without KVM_REQUEST_WAIT there's a small
chance that the vCPU making the TLB flush will resume running before
all IPIs get delivered to other vCPUs and a stale mapping can get read
there.

Fix the issue by adding KVM_REQUEST_WAIT flag to KVM_REQ_TLB_FLUSH_GUEST:
kvm_hv_flush_tlb() is the sole caller which uses it for
kvm_make_all_cpus_request()/kvm_make_vcpus_request_mask() where
KVM_REQUEST_WAIT makes a difference.

Cc: stable@kernel.org
Fixes: 0baedd7927 ("KVM: x86: make Hyper-V PV TLB flush use tlb_flush_guest()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211209102937.584397-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 07:12:41 -05:00
Hou Wenlong 906fa90416 KVM: x86: Add an emulation type to handle completion of user exits
The next patch would use kvm_emulate_instruction() with
EMULTYPE_SKIP in complete_userspace_io callback to fix a
problem in msr access emulation. However, EMULTYPE_SKIP
only updates RIP, more things like updating interruptibility
state and injecting single-step #DBs would be done in the
callback. Since the emulator also does those things after
x86_emulate_insn(), add a new emulation type to pair with
EMULTYPE_SKIP to do those things for completion of user exits
within the emulator.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <8f8c8e268b65f31d55c2881a4b30670946ecfa0d.1635842679.git.houwenlong93@linux.alibaba.com>
2021-12-08 04:25:15 -05:00
Lai Jiangshan 2df4a5eb6c KVM: X86: Remove mmu parameter from load_pdptrs()
It uses vcpu->arch.walk_mmu always; nested EPT does not have PDPTRs,
and nested NPT treats them like all other non-leaf page table levels
instead of caching them.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:14 -05:00
Lai Jiangshan bb3b394d35 KVM: X86: Rename gpte_is_8_bytes to has_4_byte_gpte and invert the direction
This bit is very close to mean "role.quadrant is not in use", except that
it is false also when the MMU is mapping guest physical addresses
directly.  In that case, role.quadrant is indeed not in use, but there
are no guest PTEs at all.

Changing the name and direction of the bit removes the special case,
since a guest with paging disabled, or not considering guest paging
structures as is the case for two-dimensional paging, does not have
to deal with 4-byte guest PTEs.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:13 -05:00
Lai Jiangshan c59a0f57fa KVM: X86: Remove mmu->translate_gpa
Reduce an indirect function call (retpoline) and some intialization
code.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:11 -05:00
Lai Jiangshan 1f5a21ee84 KVM: X86: Add parameter struct kvm_mmu *mmu into mmu->gva_to_gpa()
The mmu->gva_to_gpa() has no "struct kvm_mmu *mmu", so an extra
FNAME(gva_to_gpa_nested) is needed.

Add the parameter can simplify the code.  And it makes it explicit that
the walk is upon vcpu->arch.walk_mmu for gva and vcpu->arch.mmu for L2
gpa in translate_nested_gpa() via the new parameter.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:10 -05:00
Lai Jiangshan 42f34c20a1 KVM: X86: Remove unused declaration of __kvm_mmu_free_some_pages()
The body of __kvm_mmu_free_some_pages() has been removed.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-13-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:25:09 -05:00
Sean Christopherson 005467e06b KVM: Drop obsolete kvm_arch_vcpu_block_finish()
Drop kvm_arch_vcpu_block_finish() now that all arch implementations are
nops.

No functional change intended.

Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:50 -05:00
Sean Christopherson 1460179dcd KVM: x86: Tweak halt emulation helper names to free up kvm_vcpu_halt()
Rename a variety of HLT-related helpers to free up the function name
"kvm_vcpu_halt" for future use in generic KVM code, e.g. to differentiate
between "block" and "halt".

No functional change intended.

Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:50 -05:00
Maciej S. Szmigiero f5756029ee KVM: x86: Use nr_memslot_pages to avoid traversing the memslots array
There is no point in recalculating from scratch the total number of pages
in all memslots each time a memslot is created or deleted.  Use KVM's
cached nr_memslot_pages to compute the default max number of MMU pages.

Note that even with nr_memslot_pages capped at ULONG_MAX we can't safely
multiply it by KVM_PERMILLE_MMU_PAGES (20) since this operation can
possibly overflow an unsigned long variable.

Write this "* 20 / 1000" operation as "/ 50" instead to avoid such
overflow.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
[sean: use common KVM field and rework changelog accordingly]
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <d14c5a24535269606675437d5602b7dac4ad8c0e.1638817640.git.maciej.szmigiero@oracle.com>
2021-12-08 04:24:29 -05:00
Paolo Bonzini dc1ce45575 KVM: MMU: update comment on the number of page role combinations
Fix the number of bits in the role, and simplify the explanation of
why several bits or combinations of bits are redundant.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:13 -05:00
Paolo Bonzini ef8b4b7203 KVM: ensure APICv is considered inactive if there is no APIC
kvm_vcpu_apicv_active() returns false if a virtual machine has no in-kernel
local APIC, however kvm_apicv_activated might still be true if there are
no reasons to disable APICv; in fact it is quite likely that there is none
because APICv is inhibited by specific configurations of the local APIC
and those configurations cannot be programmed.  This triggers a WARN:

   WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));

To avoid this, introduce another cause for APICv inhibition, namely the
absence of an in-kernel local APIC.  This cause is enabled by default,
and is dropped by either KVM_CREATE_IRQCHIP or the enabling of
KVM_CAP_IRQCHIP_SPLIT.

Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Fixes: ee49a89329 ("KVM: x86: Move SVM's APICv sanity check to common x86", 2021-10-22)
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Ignat Korchagin <ignat@cloudflare.com>
Message-Id: <20211130123746.293379-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-02 04:12:11 -05:00
Paolo Bonzini 817506df9d Merge branch 'kvm-5.16-fixes' into kvm-master
* Fixes for Xen emulation

* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache

* Fixes for migration of 32-bit nested guests on 64-bit hypervisor

* Compilation fixes

* More SEV cleanups
2021-11-18 02:11:57 -05:00
Maxim Levitsky b8453cdcf2 KVM: x86/mmu: include EFER.LMA in extended mmu role
Incorporate EFER.LMA into kvm_mmu_extended_role, as it used to compute the
guest root level and is not reflected in kvm_mmu_page_role.level when TDP
is in use.  When simply running the guest, it is impossible for EFER.LMA
and kvm_mmu.root_level to get out of sync, as the guest cannot transition
from PAE paging to 64-bit paging without toggling CR0.PG, i.e. without
first bouncing through a different MMU context.  And stuffing guest state
via KVM_SET_SREGS{,2} also ensures a full MMU context reset.

However, if KVM_SET_SREGS{,2} is followed by KVM_SET_NESTED_STATE, e.g. to
set guest state when migrating the VM while L2 is active, the vCPU state
will reflect L2, not L1.  If L1 is using TDP for L2, then root_mmu will
have been configured using L2's state, despite not being used for L2.  If
L2.EFER.LMA != L1.EFER.LMA, and L2 is using PAE paging, then root_mmu will
be configured for guest PAE paging, but will match the mmu_role for 64-bit
paging and cause KVM to not reconfigure root_mmu on the next nested VM-Exit.

Alternatively, the root_mmu's role could be invalidated after a successful
KVM_SET_NESTED_STATE that yields vcpu->arch.mmu != vcpu->arch.root_mmu,
i.e. that switches the active mmu to guest_mmu, but doing so is unnecessarily
tricky, and not even needed if L1 and L2 do have the same role (e.g., they
are both 64-bit guests and run with the same CR4).

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:03:42 -05:00
Sean Christopherson 33271a9e2b KVM: x86: Move Intel Processor Trace interrupt handler to vmx.c
Now that all state needed for VMX's PT interrupt handler is exposed to
vmx.c (specifically the currently running vCPU), move the handler into
vmx.c where it belongs.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-14-seanjc@google.com
2021-11-17 14:49:10 +01:00
Sean Christopherson e1bfc24577 KVM: Move x86's perf guest info callbacks to generic KVM
Move x86's perf guest callbacks into common KVM, as they are semantically
identical to arm64's callbacks (the only other such KVM callbacks).
arm64 will convert to the common versions in a future patch.

Implement the necessary arm64 arch hooks now to avoid having to provide
stubs or a temporary #define (from x86) to avoid arm64 compilation errors
when CONFIG_GUEST_PERF_EVENTS=y.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-13-seanjc@google.com
2021-11-17 14:49:10 +01:00
Sean Christopherson 73cd107b96 KVM: x86: Drop current_vcpu for kvm_running_vcpu + kvm_arch_vcpu variable
Use the generic kvm_running_vcpu plus a new 'handling_intr_from_guest'
variable in kvm_arch_vcpu instead of the semi-redundant current_vcpu.
kvm_before/after_interrupt() must be called while the vCPU is loaded,
(which protects against preemption), thus kvm_running_vcpu is guaranteed
to be non-NULL when handling_intr_from_guest is non-zero.

Switching to kvm_get_running_vcpu() will allows moving KVM's perf
callbacks to generic code, and the new flag will be used in a future
patch to more precisely identify the "NMI from guest" case.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-11-seanjc@google.com
2021-11-17 14:49:09 +01:00
Like Xu b9f5621c95 perf/core: Rework guest callbacks to prepare for static_call support
To prepare for using static_calls to optimize perf's guest callbacks,
replace ->is_in_guest and ->is_user_mode with a new multiplexed hook
->state, tweak ->handle_intel_pt_intr to play nice with being called when
there is no active guest, and drop "guest" from ->get_guest_ip.

Return '0' from ->state and ->handle_intel_pt_intr to indicate "not in
guest" so that DEFINE_STATIC_CALL_RET0 can be used to define the static
calls, i.e. no callback == !guest.

[sean: extracted from static_call patch, fixed get_ip() bug, wrote changelog]
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Zhu Lingshan <lingshan.zhu@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-7-seanjc@google.com
2021-11-17 14:49:07 +01:00
Sean Christopherson f4b027c5c8 KVM: x86: Register Processor Trace interrupt hook iff PT enabled in guest
Override the Processor Trace (PT) interrupt handler for guest mode if and
only if PT is configured for host+guest mode, i.e. is being used
independently by both host and guest.  If PT is configured for system
mode, the host fully controls PT and must handle all events.

Fixes: 8479e04e7d ("KVM: x86: Inject PMI for KVM guest")
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reported-by: Artem Kashkanov <artem.kashkanov@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211111020738.2512932-4-seanjc@google.com
2021-11-17 14:49:06 +01:00
Paolo Bonzini f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Paolo Bonzini 1f05833193 Merge branch 'kvm-sev-move-context' into kvm-master
Add support for AMD SEV and SEV-ES intra-host migration support.  Intra
host migration provides a low-cost mechanism for userspace VMM upgrades.

In the common case for intra host migration, we can rely on the normal
ioctls for passing data from one VMM to the next. SEV, SEV-ES, and other
confidential compute environments make most of this information opaque, and
render KVM ioctls such as "KVM_GET_REGS" irrelevant.  As a result, we need
the ability to pass this opaque metadata from one VMM to the next. The
easiest way to do this is to leave this data in the kernel, and transfer
ownership of the metadata from one KVM VM (or vCPU) to the next.  In-kernel
hand off makes it possible to move any data that would be
unsafe/impossible for the kernel to hand directly to userspace, and
cannot be reproduced using data that can be handed to userspace.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 11:02:58 -05:00
Vitaly Kuznetsov da1bfd52b9 KVM: x86: Drop arbitrary KVM_SOFT_MAX_VCPUS
KVM_CAP_NR_VCPUS is used to get the "recommended" maximum number of
VCPUs and arm64/mips/riscv report num_online_cpus(). Powerpc reports
either num_online_cpus() or num_present_cpus(), s390 has multiple
constants depending on hardware features. On x86, KVM reports an
arbitrary value of '710' which is supposed to be the maximum tested
value but it's possible to test all KVM_MAX_VCPUS even when there are
less physical CPUs available.

Drop the arbitrary '710' value and return num_online_cpus() on x86 as
well. The recommendation will match other architectures and will mean
'no CPU overcommit'.

For reference, QEMU only queries KVM_CAP_NR_VCPUS to print a warning
when the requested vCPU number exceeds it. The static limit of '710'
is quite weird as smaller systems with just a few physical CPUs should
certainly "recommend" less.

Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211111134733.86601-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:24 -05:00
Paul Durrant 760849b147 KVM: x86: Make sure KVM_CPUID_FEATURES really are KVM_CPUID_FEATURES
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.

This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.

NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
      into processor.h to avoid having duplicate code for the iteration
      over possible hypervisor base leaves.

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:21 -05:00
Maxim Levitsky cae72dcc3b KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.

Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.

Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
David Woodhouse 7e2175ebd6 KVM: x86: Fix recording of guest steal time / preempted status
In commit b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is
not missed") we switched to using a gfn_to_pfn_cache for accessing the
guest steal time structure in order to allow for an atomic xchg of the
preempted field. This has a couple of problems.

Firstly, kvm_map_gfn() doesn't work at all for IOMEM pages when the
atomic flag is set, which it is in kvm_steal_time_set_preempted(). So a
guest vCPU using an IOMEM page for its steal time would never have its
preempted field set.

Secondly, the gfn_to_pfn_cache is not invalidated in all cases where it
should have been. There are two stages to the GFN->PFN conversion;
first the GFN is converted to a userspace HVA, and then that HVA is
looked up in the process page tables to find the underlying host PFN.
Correct invalidation of the latter would require being hooked up to the
MMU notifiers, but that doesn't happen---so it just keeps mapping and
unmapping the *wrong* PFN after the userspace page tables change.

In the !IOMEM case at least the stale page *is* pinned all the time it's
cached, so it won't be freed and reused by anyone else while still
receiving the steal time updates. The map/unmap dance only takes care
of the KVM administrivia such as marking the page dirty.

Until the gfn_to_pfn cache handles the remapping automatically by
integrating with the MMU notifiers, we might as well not get a
kernel mapping of it, and use the perfectly serviceable userspace HVA
that we already have.  We just need to implement the atomic xchg on
the userspace address with appropriate exception handling, which is
fairly trivial.

Cc: stable@vger.kernel.org
Fixes: b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <3645b9b889dac6438394194bb5586a46b68d581f.camel@infradead.org>
[I didn't entirely agree with David's assessment of the
 usefulness of the gfn_to_pfn cache, and integrated the outcome
 of the discussion in the above commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:19 -05:00
Peter Gonda b56639318b KVM: SEV: Add support for SEV intra host migration
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.

Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:27 -05:00
Linus Torvalds d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Linus Torvalds 8cb1ae19bf x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
    allows to make the FPU exception fixups more robust as well.
 
  - Change the return code for signal frame related failures from explicit
    error codes to a boolean fail/success as that's all what the calling
    code evaluates.
 
  - A large refactoring of the FPU code to prepare for adding AMX support:
 
    - Distangle the public header maze and remove especially the misnomed
      kitchen sink internal.h which is despite it's name included all over
      the place.
 
    - Add a proper abstraction for the register buffer storage (struct
      fpstate) which allows to dynamically size the buffer at runtime by
      flipping the pointer to the buffer container from the default
      container which is embedded in task_struct::tread::fpu to a
      dynamically allocated container with a larger register buffer.
 
    - Convert the code over to the new fpstate mechanism.
 
    - Consolidate the KVM FPU handling by moving the FPU related code into
      the FPU core which removes the number of exports and avoids adding
      even more export when AMX has to be supported in KVM. This also
      removes duplicated code which was of course unnecessary different and
      incomplete in the KVM copy.
 
    - Simplify the KVM FPU buffer handling by utilizing the new fpstate
      container and just switching the buffer pointer from the user space
      buffer to the KVM guest buffer when entering vcpu_run() and flipping
      it back when leaving the function. This cuts the memory requirements
      of a vCPU for FPU buffers in half and avoids pointless memory copy
      operations.
 
      This also solves the so far unresolved problem of adding AMX support
      because the current FPU buffer handling of KVM inflicted a circular
      dependency between adding AMX support to the core and to KVM.  With
      the new scheme of switching fpstate AMX support can be added to the
      core code without affecting KVM.
 
    - Replace various variables with proper data structures so the extra
      information required for adding dynamically enabled FPU features (AMX)
      can be added in one place
 
  - Add AMX (Advanved Matrix eXtensions) support (finally):
 
     AMX is a large XSTATE component which is going to be available with
     Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
     which allows to trap the (first) use of an AMX related instruction,
     which has two benefits:
 
     1) It allows the kernel to control access to the feature
 
     2) It allows the kernel to dynamically allocate the large register
        state buffer instead of burdening every task with the the extra 8K
        or larger state storage.
 
     It would have been great to gain this kind of control already with
     AVX512.
 
     The support comes with the following infrastructure components:
 
     1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature
 
        Permission is granted per process, inherited on fork() and cleared
        on exec(). The permission policy of the kernel is restricted to
        sigaltstack size validation, but the syscall obviously allows
        further restrictions via seccomp etc.
 
     2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
        takes granted permissions and the potentially resulting larger
        signal frame into account. This mechanism can also be used to
        enforce factual sigaltstack validation independent of dynamic
        features to help with finding potential victims of the 2K
        sigaltstack size constant which is broken since AVX512 support was
        added.
 
     3) Exception handling for #NM traps to catch first use of a extended
        feature via a new cause MSR. If the exception was caused by the use
        of such a feature, the handler checks permission for that
        feature. If permission has not been granted, the handler sends a
        SIGILL like the #UD handler would do if the feature would have been
        disabled in XCR0. If permission has been granted, then a new fpstate
        which fits the larger buffer requirement is allocated.
 
        In the unlikely case that this allocation fails, the handler sends
        SIGSEGV to the task. That's not elegant, but unavoidable as the
        other discussed options of preallocation or full per task
        permissions come with their own set of horrors for kernel and/or
        userspace. So this is the lesser of the evils and SIGSEGV caused by
        unexpected memory allocation failures is not a fundamentally new
        concept either.
 
        When allocation succeeds, the fpstate properties are filled in to
        reflect the extended feature set and the resulting sizes, the
        fpu::fpstate pointer is updated accordingly and the trap is disarmed
        for this task permanently.
 
     4) Enumeration and size calculations
 
     5) Trap switching via MSR_XFD
 
        The XFD (eXtended Feature Disable) MSR is context switched with the
        same life time rules as the FPU register state itself. The mechanism
        is keyed off with a static key which is default disabled so !AMX
        equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
        is limited by comparing the tasks XFD value with a per CPU shadow
        variable to avoid redundant MSR writes. In case of switching from a
        AMX using task to a non AMX using task or vice versa, the extra MSR
        write is obviously inevitable.
 
        All other places which need to be aware of the variable feature sets
        and resulting variable sizes are not affected at all because they
        retrieve the information (feature set, sizes) unconditonally from
        the fpstate properties.
 
     6) Enable the new AMX states
 
   Note, this is relatively new code despite the fact that AMX support is in
   the works for more than a year now.
 
   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which has
   not been caught in review and testing right away was restricted to AMX
   enabled systems, which is completely irrelevant for anyone outside Intel
   and their early access program. There might be dragons lurking as usual,
   but so far the fine grained refactoring has held up and eventual yet
   undetected fallout is bisectable and should be easily addressable before
   the 5.16 release. Famous last words...
 
   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity to
   follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for inclusion
   into 5.16-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
 /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
 jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
 jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
 EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
 RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
 YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
 dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
 hcKvDmehQLrUvg==
 =x3WL
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:

 - Cleanup of extable fixup handling to be more robust, which in turn
   allows to make the FPU exception fixups more robust as well.

 - Change the return code for signal frame related failures from
   explicit error codes to a boolean fail/success as that's all what the
   calling code evaluates.

 - A large refactoring of the FPU code to prepare for adding AMX
   support:

      - Distangle the public header maze and remove especially the
        misnomed kitchen sink internal.h which is despite it's name
        included all over the place.

      - Add a proper abstraction for the register buffer storage (struct
        fpstate) which allows to dynamically size the buffer at runtime
        by flipping the pointer to the buffer container from the default
        container which is embedded in task_struct::tread::fpu to a
        dynamically allocated container with a larger register buffer.

      - Convert the code over to the new fpstate mechanism.

      - Consolidate the KVM FPU handling by moving the FPU related code
        into the FPU core which removes the number of exports and avoids
        adding even more export when AMX has to be supported in KVM.
        This also removes duplicated code which was of course
        unnecessary different and incomplete in the KVM copy.

      - Simplify the KVM FPU buffer handling by utilizing the new
        fpstate container and just switching the buffer pointer from the
        user space buffer to the KVM guest buffer when entering
        vcpu_run() and flipping it back when leaving the function. This
        cuts the memory requirements of a vCPU for FPU buffers in half
        and avoids pointless memory copy operations.

        This also solves the so far unresolved problem of adding AMX
        support because the current FPU buffer handling of KVM inflicted
        a circular dependency between adding AMX support to the core and
        to KVM. With the new scheme of switching fpstate AMX support can
        be added to the core code without affecting KVM.

      - Replace various variables with proper data structures so the
        extra information required for adding dynamically enabled FPU
        features (AMX) can be added in one place

 - Add AMX (Advanced Matrix eXtensions) support (finally):

   AMX is a large XSTATE component which is going to be available with
   Saphire Rapids XEON CPUs. The feature comes with an extra MSR
   (MSR_XFD) which allows to trap the (first) use of an AMX related
   instruction, which has two benefits:

    1) It allows the kernel to control access to the feature

    2) It allows the kernel to dynamically allocate the large register
       state buffer instead of burdening every task with the the extra
       8K or larger state storage.

   It would have been great to gain this kind of control already with
   AVX512.

   The support comes with the following infrastructure components:

    1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature

       Permission is granted per process, inherited on fork() and
       cleared on exec(). The permission policy of the kernel is
       restricted to sigaltstack size validation, but the syscall
       obviously allows further restrictions via seccomp etc.

    2) A stronger sigaltstack size validation for sys_sigaltstack(2)
       which takes granted permissions and the potentially resulting
       larger signal frame into account. This mechanism can also be used
       to enforce factual sigaltstack validation independent of dynamic
       features to help with finding potential victims of the 2K
       sigaltstack size constant which is broken since AVX512 support
       was added.

    3) Exception handling for #NM traps to catch first use of a extended
       feature via a new cause MSR. If the exception was caused by the
       use of such a feature, the handler checks permission for that
       feature. If permission has not been granted, the handler sends a
       SIGILL like the #UD handler would do if the feature would have
       been disabled in XCR0. If permission has been granted, then a new
       fpstate which fits the larger buffer requirement is allocated.

       In the unlikely case that this allocation fails, the handler
       sends SIGSEGV to the task. That's not elegant, but unavoidable as
       the other discussed options of preallocation or full per task
       permissions come with their own set of horrors for kernel and/or
       userspace. So this is the lesser of the evils and SIGSEGV caused
       by unexpected memory allocation failures is not a fundamentally
       new concept either.

       When allocation succeeds, the fpstate properties are filled in to
       reflect the extended feature set and the resulting sizes, the
       fpu::fpstate pointer is updated accordingly and the trap is
       disarmed for this task permanently.

    4) Enumeration and size calculations

    5) Trap switching via MSR_XFD

       The XFD (eXtended Feature Disable) MSR is context switched with
       the same life time rules as the FPU register state itself. The
       mechanism is keyed off with a static key which is default
       disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
       CPUs the overhead is limited by comparing the tasks XFD value
       with a per CPU shadow variable to avoid redundant MSR writes. In
       case of switching from a AMX using task to a non AMX using task
       or vice versa, the extra MSR write is obviously inevitable.

       All other places which need to be aware of the variable feature
       sets and resulting variable sizes are not affected at all because
       they retrieve the information (feature set, sizes) unconditonally
       from the fpstate properties.

    6) Enable the new AMX states

   Note, this is relatively new code despite the fact that AMX support
   is in the works for more than a year now.

   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which
   has not been caught in review and testing right away was restricted
   to AMX enabled systems, which is completely irrelevant for anyone
   outside Intel and their early access program. There might be dragons
   lurking as usual, but so far the fine grained refactoring has held up
   and eventual yet undetected fallout is bisectable and should be
   easily addressable before the 5.16 release. Famous last words...

   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity
   to follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for
   inclusion into 5.16-rc1

* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
  Documentation/x86: Add documentation for using dynamic XSTATE features
  x86/fpu: Include vmalloc.h for vzalloc()
  selftests/x86/amx: Add context switch test
  selftests/x86/amx: Add test cases for AMX state management
  x86/fpu/amx: Enable the AMX feature in 64-bit mode
  x86/fpu: Add XFD handling for dynamic states
  x86/fpu: Calculate the default sizes independently
  x86/fpu/amx: Define AMX state components and have it used for boot-time checks
  x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
  x86/fpu/xstate: Add fpstate_realloc()/free()
  x86/fpu/xstate: Add XFD #NM handler
  x86/fpu: Update XFD state where required
  x86/fpu: Add sanity checks for XFD
  x86/fpu: Add XFD state to fpstate
  x86/msr-index: Add MSRs for XFD
  x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
  x86/fpu: Reset permission and fpstate on exec()
  x86/fpu: Prepare fpu_clone() for dynamically enabled features
  x86/fpu/signal: Prepare for variable sigframe length
  x86/signal: Use fpu::__state_user_size for sigalt stack validation
  ...
2021-11-01 14:03:56 -07:00
Linus Torvalds ca5e83eddc * Fixes for s390 interrupt delivery
* Fixes for Xen emulator bugs showing up as debug kernel WARNs
 * Fix another issue with SEV/ES string I/O VMGEXITs
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmF6uGIUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNRagf/Srvk9lNcRh4cEzsczErKMyr3xOqA
 jgsTSqgl1ExJI9sBLMpVYBOFGILMaMSrhLPIltKPy0Bj/E+hw8WOQwPa44QjWlSD
 MAUxO1Nryt9Luc2L8uSd1c//g4fr4V1BhOaumk1lM14Q8EDfQBcDIMI2ZKueMU1+
 2Q+n8/AsG63jQIINwKNidof0dzRtbfcE30Wq/8QHttIPo5wt6l0YClOlOikqNY8N
 5+WSQFmuutHIXftq5Jb/Ldn/+HVukWZyZOEVwLnBpM9uBvIubNgcEakqvxsaVtAn
 FHdvnA+Bk99/Xuhl+wRLQo8ofzQIQ13RQv3HPArJAJv34oAJZx2rNObVlA==
 =6ofB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Fixes for s390 interrupt delivery

 - Fixes for Xen emulator bugs showing up as debug kernel WARNs

 - Fix another issue with SEV/ES string I/O VMGEXITs

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: Take srcu lock in post_kvm_run_save()
  KVM: SEV-ES: fix another issue with string I/O VMGEXITs
  KVM: x86/xen: Fix kvm_xen_has_interrupt() sleeping in kvm_vcpu_block()
  KVM: x86: switch pvclock_gtod_sync_lock to a raw spinlock
  KVM: s390: preserve deliverable_mask in __airqs_kick_single_vcpu
  KVM: s390: clear kicked_mask before sleeping again
2021-10-31 11:19:02 -07:00
David Woodhouse 8228c77d8b KVM: x86: switch pvclock_gtod_sync_lock to a raw spinlock
On the preemption path when updating a Xen guest's runstate times, this
lock is taken inside the scheduler rq->lock, which is a raw spinlock.
This was shown in a lockdep warning:

[   89.138354] =============================
[   89.138356] [ BUG: Invalid wait context ]
[   89.138358] 5.15.0-rc5+ #834 Tainted: G S        I E
[   89.138360] -----------------------------
[   89.138361] xen_shinfo_test/2575 is trying to lock:
[   89.138363] ffffa34a0364efd8 (&kvm->arch.pvclock_gtod_sync_lock){....}-{3:3}, at: get_kvmclock_ns+0x1f/0x130 [kvm]
[   89.138442] other info that might help us debug this:
[   89.138444] context-{5:5}
[   89.138445] 4 locks held by xen_shinfo_test/2575:
[   89.138447]  #0: ffff972bdc3b8108 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x77/0x6f0 [kvm]
[   89.138483]  #1: ffffa34a03662e90 (&kvm->srcu){....}-{0:0}, at: kvm_arch_vcpu_ioctl_run+0xdc/0x8b0 [kvm]
[   89.138526]  #2: ffff97331fdbac98 (&rq->__lock){-.-.}-{2:2}, at: __schedule+0xff/0xbd0
[   89.138534]  #3: ffffa34a03662e90 (&kvm->srcu){....}-{0:0}, at: kvm_arch_vcpu_put+0x26/0x170 [kvm]
...
[   89.138695]  get_kvmclock_ns+0x1f/0x130 [kvm]
[   89.138734]  kvm_xen_update_runstate+0x14/0x90 [kvm]
[   89.138783]  kvm_xen_update_runstate_guest+0x15/0xd0 [kvm]
[   89.138830]  kvm_arch_vcpu_put+0xe6/0x170 [kvm]
[   89.138870]  kvm_sched_out+0x2f/0x40 [kvm]
[   89.138900]  __schedule+0x5de/0xbd0

Cc: stable@vger.kernel.org
Reported-by: syzbot+b282b65c2c68492df769@syzkaller.appspotmail.com
Fixes: 30b5c851af ("KVM: x86/xen: Add support for vCPU runstate information")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <1b02a06421c17993df337493a68ba923f3bd5c0f.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 08:14:38 -04:00
David Edmondson e615e35589 KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
Should instruction emulation fail, include the VM exit reason, etc. in
the emulation_failure data passed to userspace, in order that the VMM
can report it as a debugging aid when describing the failure.

Suggested-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 06:48:24 -04:00
David Edmondson 0a62a0319a KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.

Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 06:48:24 -04:00
Thomas Gleixner d69c1382e1 x86/kvm: Convert FPU handling to a single swap buffer
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().

With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.

Convert the KVM FPU code over to this new scheme.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185313.019454292@linutronix.de
2021-10-23 16:13:29 +02:00
Sean Christopherson 187c8833de KVM: x86: Use rw_semaphore for APICv lock to allow vCPU parallelism
Use a rw_semaphore instead of a mutex to coordinate APICv updates so that
vCPUs responding to requests can take the lock for read and run in
parallel.  Using a mutex forces serialization of vCPUs even though
kvm_vcpu_update_apicv() only touches data local to that vCPU or is
protected by a different lock, e.g. SVM's ir_list_lock.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022004927.1448382-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 11:20:16 -04:00
Paolo Bonzini 95e16b4792 KVM: SEV-ES: go over the sev_pio_data buffer in multiple passes if needed
The PIO scratch buffer is larger than a single page, and therefore
it is not possible to copy it in a single step to vcpu->arch/pio_data.
Bound each call to emulator_pio_in/out to a single page; keep
track of how many I/O operations are left in vcpu->arch.sev_pio_count,
so that the operation can be restarted in the complete_userspace_io
callback.

For OUT, this means that the previous kvm_sev_es_outs implementation
becomes an iterator of the loop, and we can consume the sev_pio_data
buffer before leaving to userspace.

For IN, instead, consuming the buffer and decreasing sev_pio_count
is always done in the complete_userspace_io callback, because that
is when the memcpy is done into sev_pio_data.

Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Reported-by: Felix Wilhelm <fwilhelm@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 10:09:13 -04:00
Paolo Bonzini b5998402e3 KVM: SEV-ES: rename guest_ins_data to sev_pio_data
We will be using this field for OUTS emulation as well, in case the
data that is pushed via OUTS spans more than one page.  In that case,
there will be a need to save the data pointer across exits to userspace.

So, change the name to something that refers to any kind of PIO.
Also spell out what it is used for, namely SEV-ES.

No functional change intended.

Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 10:01:26 -04:00
Sean Christopherson 9dadfc4a61 KVM: x86: Add vendor name to kvm_x86_ops, use it for error messages
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.

Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.

Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.

Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
Wanpeng Li 540c7abe61 KVM: vPMU: Fill get_msr MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0
SDM section 18.2.3 mentioned that:

  "IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
   any general-purpose or fixed-function counters via a single WRMSR."

It is R/W mentioned by SDM, we read this msr on bare-metal during perf testing,
the value is always 0 for ICX/SKX boxes on hands. Let's fill get_msr
MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0 as hardware behavior and drop
global_ovf_ctrl variable.

Tested-by: Like Xu <likexu@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1634631160-67276-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
David Stevens 1e76a3ce0d KVM: cleanup allocation of rmaps and page tracking data
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots.  This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.

Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
 fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:25 -04:00
Oliver Upton 828ca89628 KVM: x86: Expose TSC offset controls to userspace
To date, VMM-directed TSC synchronization and migration has been a bit
messy. KVM has some baked-in heuristics around TSC writes to infer if
the VMM is attempting to synchronize. This is problematic, as it depends
on host userspace writing to the guest's TSC within 1 second of the last
write.

A much cleaner approach to configuring the guest's views of the TSC is to
simply migrate the TSC offset for every vCPU. Offsets are idempotent,
and thus not subject to change depending on when the VMM actually
reads/writes values from/to KVM. The VMM can then read the TSC once with
KVM_GET_CLOCK to capture a (realtime, host_tsc) pair at the instant when
the guest is paused.

Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-8-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:43:45 -04:00
Paolo Bonzini 869b44211a kvm: x86: protect masterclock with a seqcount
Protect the reference point for kvmclock with a seqcount, so that
kvmclock updates for all vCPUs can proceed in parallel.  Xen runstate
updates will also run in parallel and not bounce the kvmclock cacheline.

Of the variables that were protected by pvclock_gtod_sync_lock,
nr_vcpus_matched_tsc is different because it is updated outside
pvclock_update_vm_gtod_copy and read inside it.  Therefore, we
need to keep it protected by a spinlock.  In fact it must now
be a raw spinlock, because pvclock_update_vm_gtod_copy, being the
write-side of a seqcount, is non-preemptible.  Since we already
have tsc_write_lock which is a raw spinlock, we can just use
tsc_write_lock as the lock that protects the write-side of the
seqcount.

Co-developed-by: Oliver Upton <oupton@google.com>
Message-Id: <20210916181538.968978-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:43:44 -04:00
Oliver Upton c68dc1b577 KVM: x86: Report host tsc and realtime values in KVM_GET_CLOCK
Handling the migration of TSCs correctly is difficult, in part because
Linux does not provide userspace with the ability to retrieve a (TSC,
realtime) clock pair for a single instant in time. In lieu of a more
convenient facility, KVM can report similar information in the kvm_clock
structure.

Provide userspace with a host TSC & realtime pair iff the realtime clock
is based on the TSC. If userspace provides KVM_SET_CLOCK with a valid
realtime value, advance the KVM clock by the amount of elapsed time. Do
not step the KVM clock backwards, though, as it is a monotonic
oscillator.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:43:44 -04:00
David Stevens deae4a10f1 KVM: x86: only allocate gfn_track when necessary
Avoid allocating the gfn_track arrays if nothing needs them. If there
are no external to KVM users of the API (i.e. no GVT-g), then page
tracking is only needed for shadow page tables. This means that when tdp
is enabled and there are no external users, then the gfn_track arrays
can be lazily allocated when the shadow MMU is actually used. This avoid
allocations equal to .05% of guest memory when nested virtualization is
not used, if the kernel is compiled without GVT-g.

Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210922045859.2011227-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:58 -04:00
Juergen Gross 78b497f2e6 kvm: use kvfree() in kvm_arch_free_vm()
By switching from kfree() to kvfree() in kvm_arch_free_vm() Arm64 can
use the common variant. This can be accomplished by adding another
macro __KVM_HAVE_ARCH_VM_FREE, which will be used only by x86 for now.

Further simplification can be achieved by adding __kvm_arch_free_vm()
doing the common part.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20210903130808.30142-5-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:57 -04:00
Paolo Bonzini c501040abc KVM: MMU: change mmu->page_fault() arguments to kvm_page_fault
Pass struct kvm_page_fault to mmu->page_fault() instead of
extracting the arguments from the struct.  FNAME(page_fault) can use
the precomputed bools from the error code.

Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:48 -04:00
Paolo Bonzini 6b6fcd2804 kvm: x86: abstract locking around pvclock_update_vm_gtod_copy
Updates to the kvmclock parameters needs to do a complicated dance of
KVM_REQ_MCLOCK_INPROGRESS and KVM_REQ_CLOCK_UPDATE in addition to taking
pvclock_gtod_sync_lock.  Place that in two functions that can be called
on all of master clock update, KVM_SET_CLOCK, and Hyper-V reenlightenment.

Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:47 -04:00
Sean Christopherson 15cabbc259 KVM: x86: Subsume nested GPA read helper into load_pdptrs()
Open code the call to mmu->translate_gpa() when loading nested PDPTRs and
kill off the existing helper, kvm_read_guest_page_mmu(), to discourage
incorrect use.  Reading guest memory straight from an L2 GPA is extremely
rare (as evidenced by the lack of users), as very few constructs in x86
specify physical addresses, even fewer are virtualized by KVM, and even
fewer yet require emulation of L2 by L0 KVM.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210831164224.1119728-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:05 -04:00
Juergen Gross a1c42ddedf kvm: rename KVM_MAX_VCPU_ID to KVM_MAX_VCPU_IDS
KVM_MAX_VCPU_ID is not specifying the highest allowed vcpu-id, but the
number of allowed vcpu-ids. This has already led to confusion, so
rename KVM_MAX_VCPU_ID to KVM_MAX_VCPU_IDS to make its semantics more
clear

Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210913135745.13944-3-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:05 -04:00
Vitaly Kuznetsov 620b2438ab KVM: Make kvm_make_vcpus_request_mask() use pre-allocated cpu_kick_mask
kvm_make_vcpus_request_mask() already disables preemption so just like
kvm_make_all_cpus_request_except() it can be switched to using
pre-allocated per-cpu cpumasks. This allows for improvements for both
users of the function: in Hyper-V emulation code 'tlb_flush' can now be
dropped from 'struct kvm_vcpu_hv' and kvm_make_scan_ioapic_request_mask()
gets rid of dynamic allocation.

cpumask_available() checks in kvm_make_vcpu_request() and
kvm_kick_many_cpus() can now be dropped as they checks for an impossible
condition: kvm_init() makes sure per-cpu masks are allocated.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:04 -04:00
Eduardo Habkost 1dbaf04cb9 kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
Support for 710 VCPUs was tested by Red Hat since RHEL-8.4,
so increase KVM_SOFT_MAX_VCPUS to 710.

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210903211600.2002377-4-ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:12:05 -04:00
Eduardo Habkost 074c82c8f7 kvm: x86: Increase MAX_VCPUS to 1024
Increase KVM_MAX_VCPUS to 1024, so we can test larger VMs.

I'm not changing KVM_SOFT_MAX_VCPUS yet because I'm afraid it
might involve complicated questions around the meaning of
"supported" and "recommended" in the upstream tree.
KVM_SOFT_MAX_VCPUS will be changed in a separate patch.

For reference, visible effects of this change are:
- KVM_CAP_MAX_VCPUS will now return 1024 (of course)
- Default value for CPUID[HYPERV_CPUID_IMPLEMENT_LIMITS (00x40000005)].EAX
  will now be 1024
- KVM_MAX_VCPU_ID will change from 1151 to 4096
- Size of struct kvm will increase from 19328 to 22272 bytes
  (in x86_64)
- Size of struct kvm_ioapic will increase from 1780 to 5084 bytes
  (in x86_64)
- Bitmap stack variables that will grow:
  - At kvm_hv_flush_tlb() kvm_hv_send_ipi(),
    vp_bitmap[] and vcpu_bitmap[] will now be 128 bytes long
  - vcpu_bitmap at bioapic_write_indirect() will be 128 bytes long
    once patch "KVM: x86: Fix stack-out-of-bounds memory access
    from ioapic_write_indirect()" is applied

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210903211600.2002377-3-ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:11:55 -04:00
Eduardo Habkost 4ddacd525a kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
Instead of requiring KVM_MAX_VCPU_ID to be manually increased
every time we increase KVM_MAX_VCPUS, set it to 4*KVM_MAX_VCPUS.
This should be enough for CPU topologies where Cores-per-Package
and Packages-per-Socket are not powers of 2.

In practice, this increases KVM_MAX_VCPU_ID from 1023 to 1152.
The only side effect of this change is making some fields in
struct kvm_ioapic larger, increasing the struct size from 1628 to
1780 bytes (in x86_64).

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210903211600.2002377-2-ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:11:39 -04:00
Wei Huang cb0f722aff KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host
When the 5-level page table CPU flag is set in the host, but the guest
has CR4.LA57=0 (including the case of a 32-bit guest), the top level of
the shadow NPT page tables will be fixed, consisting of one pointer to
a lower-level table and 511 non-present entries.  Extend the existing
code that creates the fixed PML4 or PDP table, to provide a fixed PML5
table if needed.

This is not needed on EPT because the number of layers in the tables
is specified in the EPTP instead of depending on the host CR4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-3-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:48 -04:00
Wei Huang 746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Maxim Levitsky 61e5f69ef0 KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ
KVM_GUESTDBG_BLOCKIRQ will allow KVM to block all interrupts
while running.

This change is mostly intended for more robust single stepping
of the guest and it has the following benefits when enabled:

* Resuming from a breakpoint is much more reliable.
  When resuming execution from a breakpoint, with interrupts enabled,
  more often than not, KVM would inject an interrupt and make the CPU
  jump immediately to the interrupt handler and eventually return to
  the breakpoint, to trigger it again.

  From the user point of view it looks like the CPU never executed a
  single instruction and in some cases that can even prevent forward
  progress, for example, when the breakpoint is placed by an automated
  script (e.g lx-symbols), which does something in response to the
  breakpoint and then continues the guest automatically.
  If the script execution takes enough time for another interrupt to
  arrive, the guest will be stuck on the same breakpoint RIP forever.

* Normal single stepping is much more predictable, since it won't
  land the debugger into an interrupt handler.

* RFLAGS.TF has less chance to be leaked to the guest:

  We set that flag behind the guest's back to do single stepping
  but if single step lands us into an interrupt/exception handler
  it will be leaked to the guest in the form of being pushed
  to the stack.
  This doesn't completely eliminate this problem as exceptions
  can still happen, but at least this reduces the chances
  of this happening.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:37 -04:00
Mingwei Zhang 71f51d2c32 KVM: x86/mmu: Add detailed page size stats
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.

So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Vitaly Kuznetsov 0f250a6463 KVM: x86: hyper-v: Deactivate APICv only when AutoEOI feature is in use
APICV_INHIBIT_REASON_HYPERV is currently unconditionally forced upon
SynIC activation as SynIC's AutoEOI is incompatible with APICv/AVIC. It is,
however, possible to track whether the feature was actually used by the
guest and only inhibit APICv/AVIC when needed.

TLFS suggests a dedicated 'HV_DEPRECATING_AEOI_RECOMMENDED' flag to let
Windows know that AutoEOI feature should be avoided. While it's up to
KVM userspace to set the flag, KVM can help a bit by exposing global
APICv/AVIC enablement.

Maxim:
   - always set HV_DEPRECATING_AEOI_RECOMMENDED in kvm_get_hv_cpuid,
     since this feature can be used regardless of AVIC

Paolo:
   - use arch.apicv_update_lock to protect the hv->synic_auto_eoi_used
     instead of atomic ops

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-12-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:25 -04:00
Maxim Levitsky b0a1637f64 KVM: x86: APICv: fix race in kvm_request_apicv_update on SVM
Currently on SVM, the kvm_request_apicv_update toggles the APICv
memslot without doing any synchronization.

If there is a mismatch between that memslot state and the AVIC state,
on one of the vCPUs, an APIC mmio access can be lost:

For example:

VCPU0: enable the APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
VCPU1: access an APIC mmio register.

Since AVIC is still disabled on VCPU1, the access will not be intercepted
by it, and neither will it cause MMIO fault, but rather it will just be
read/written from/to the dummy page mapped into the
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT.

Fix that by adding a lock guarding the AVIC state changes, and carefully
order the operations of kvm_request_apicv_update to avoid this race:

1. Take the lock
2. Send KVM_REQ_APICV_UPDATE
3. Update the apic inhibit reason
4. Release the lock

This ensures that at (2) all vCPUs are kicked out of the guest mode,
but don't yet see the new avic state.
Then only after (4) all other vCPUs can update their AVIC state and resume.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-10-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:23 -04:00