mirror of https://github.com/torvalds/linux.git
231 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
78cc316e95 |
bpf, cgroup: Assign cgroup in cgroup_sk_alloc when called from interrupt
If cgroup_sk_alloc() is called from interrupt context, then just assign the root cgroup to skcd->cgroup. Prior to commit |
|
|
|
8520e224f5 |
bpf, cgroups: Fix cgroup v2 fallback on v1/v2 mixed mode
Fix cgroup v1 interference when non-root cgroup v2 BPF programs are used. Back in the days, commit |
|
|
|
d20d30ebb1 |
cgroup: Avoid compiler warnings with no subsystems
As done before in commit
|
|
|
|
1f8c543f14 |
cgroup: remove cgroup_mount from comments
Git rid of an outdated comment. Since cgroup was fully switched to fs_context, cgroup_mount() is gone and it's confusing to mention in comments of cgroup_kill_sb(). Delete it. Signed-off-by: zhaoxiaoqiang11 <zhaoxiaoqiang11@jd.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
bd31b9efbf |
SCSI misc on 20210702
This series consists of the usual driver updates (ufs, ibmvfc, megaraid_sas, lpfc, elx, mpi3mr, qedi, iscsi, storvsc, mpt3sas) with elx and mpi3mr being new drivers. The major core change is a rework to drop the status byte handling macros and the old bit shifted definitions and the rest of the updates are minor fixes. Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com> -----BEGIN PGP SIGNATURE----- iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCYN7I6iYcamFtZXMuYm90 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishXpRAQCkngYZ 35yQrqOxgOk2pfrysE95tHrV1MfJm2U49NFTwAEAuZutEvBUTfBF+sbcJ06r6q7i H0hkJN/Io7enFs5v3WA= =zwIa -----END PGP SIGNATURE----- Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI updates from James Bottomley: "This series consists of the usual driver updates (ufs, ibmvfc, megaraid_sas, lpfc, elx, mpi3mr, qedi, iscsi, storvsc, mpt3sas) with elx and mpi3mr being new drivers. The major core change is a rework to drop the status byte handling macros and the old bit shifted definitions and the rest of the updates are minor fixes" * tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (287 commits) scsi: aha1740: Avoid over-read of sense buffer scsi: arcmsr: Avoid over-read of sense buffer scsi: ips: Avoid over-read of sense buffer scsi: ufs: ufs-mediatek: Add missing of_node_put() in ufs_mtk_probe() scsi: elx: libefc: Fix IRQ restore in efc_domain_dispatch_frame() scsi: elx: libefc: Fix less than zero comparison of a unsigned int scsi: elx: efct: Fix pointer error checking in debugfs init scsi: elx: efct: Fix is_originator return code type scsi: elx: efct: Fix link error for _bad_cmpxchg scsi: elx: efct: Eliminate unnecessary boolean check in efct_hw_command_cancel() scsi: elx: efct: Do not use id uninitialized in efct_lio_setup_session() scsi: elx: efct: Fix error handling in efct_hw_init() scsi: elx: efct: Remove redundant initialization of variable lun scsi: elx: efct: Fix spelling mistake "Unexected" -> "Unexpected" scsi: lpfc: Fix build error in lpfc_scsi.c scsi: target: iscsi: Remove redundant continue statement scsi: qla4xxx: Remove redundant continue statement scsi: ppa: Switch to use module_parport_driver() scsi: imm: Switch to use module_parport_driver() scsi: mpt3sas: Fix error return value in _scsih_expander_add() ... |
|
|
|
3dbdb38e28 |
Merge branch 'for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: - cgroup.kill is added which implements atomic killing of the whole subtree. Down the line, this should be able to replace the multiple userland implementations of "keep killing till empty". - PSI can now be turned off at boot time to avoid overhead for configurations which don't care about PSI. * 'for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: make per-cgroup pressure stall tracking configurable cgroup: Fix kernel-doc cgroup: inline cgroup_task_freeze() tests/cgroup: test cgroup.kill tests/cgroup: move cg_wait_for(), cg_prepare_for_wait() tests/cgroup: use cgroup.kill in cg_killall() docs/cgroup: add entry for cgroup.kill cgroup: introduce cgroup.kill |
|
|
|
c74d40e8b5 |
loop: charge i/o to mem and blk cg
The current code only associates with the existing blkcg when aio is used to access the backing file. This patch covers all types of i/o to the backing file and also associates the memcg so if the backing file is on tmpfs, memory is charged appropriately. This patch also exports cgroup_get_e_css and int_active_memcg so it can be used by the loop module. Link: https://lkml.kernel.org/r/20210610173944.1203706-4-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
6b658c4863 |
scsi: cgroup: Add cgroup_get_from_id()
Add a new function, cgroup_get_from_id(), to retrieve the cgroup associated with a cgroup id. Also export the function cgroup_get_e_css() as this is needed in blk-cgroup.h. Link: https://lore.kernel.org/r/20210608043556.274139-2-muneendra.kumar@broadcom.com Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Muneendra Kumar <muneendra.kumar@broadcom.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
|
|
|
3958e2d0c3 |
cgroup: make per-cgroup pressure stall tracking configurable
PSI accounts stalls for each cgroup separately and aggregates it at each level of the hierarchy. This causes additional overhead with psi_avgs_work being called for each cgroup in the hierarchy. psi_avgs_work has been highly optimized, however on systems with large number of cgroups the overhead becomes noticeable. Systems which use PSI only at the system level could avoid this overhead if PSI can be configured to skip per-cgroup stall accounting. Add "cgroup_disable=pressure" kernel command-line option to allow requesting system-wide only pressure stall accounting. When set, it keeps system-wide accounting under /proc/pressure/ but skips accounting for individual cgroups and does not expose PSI nodes in cgroup hierarchy. Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
2ca11b0e04 |
cgroup: Fix kernel-doc
Fix function name in cgroup.c and rstat.c kernel-doc comment
to remove these warnings found by clang_w1.
kernel/cgroup/cgroup.c:2401: warning: expecting prototype for
cgroup_taskset_migrate(). Prototype was for cgroup_migrate_execute()
instead.
kernel/cgroup/rstat.c:233: warning: expecting prototype for
cgroup_rstat_flush_begin(). Prototype was for cgroup_rstat_flush_hold()
instead.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Fixes: 'commit
|
|
|
|
c2a1197154 | Merge branch 'for-5.13-fixes' into for-5.14 | |
|
|
08b2b6fdf6 |
cgroup: fix spelling mistakes
Fix some spelling mistakes in comments: hierarhcy ==> hierarchy automtically ==> automatically overriden ==> overridden In absense of .. or ==> In absence of .. and assocaited ==> associated taget ==> target initate ==> initiate succeded ==> succeeded curremt ==> current udpated ==> updated Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
45e1ba4083 |
cgroup: disable controllers at parse time
This patch effectively reverts the commit |
|
|
|
f4f809f66b |
cgroup: inline cgroup_task_freeze()
After the introduction of the cgroup.kill there is only one call site of cgroup_task_freeze() left: cgroup_exit(). cgroup_task_freeze() is currently taking rcu_read_lock() to read task's cgroup flags, but because it's always called with css_set_lock locked, the rcu protection is excessive. Simplify the code by inlining cgroup_task_freeze(). v2: fix build Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
661ee62809 |
cgroup: introduce cgroup.kill
Introduce the cgroup.kill file. It does what it says on the tin and allows a caller to kill a cgroup by writing "1" into cgroup.kill. The file is available in non-root cgroups. Killing cgroups is a process directed operation, i.e. the whole thread-group is affected. Consequently trying to write to cgroup.kill in threaded cgroups will be rejected and EOPNOTSUPP returned. This behavior aligns with cgroup.procs where reads in threaded-cgroups are rejected with EOPNOTSUPP. The cgroup.kill file is write-only since killing a cgroup is an event not which makes it different from e.g. freezer where a cgroup transitions between the two states. As with all new cgroup features cgroup.kill is recursive by default. Killing a cgroup is protected against concurrent migrations through the cgroup mutex. To protect against forkbombs and to mitigate the effect of racing forks a new CGRP_KILL css set lock protected flag is introduced that is set prior to killing a cgroup and unset after the cgroup has been killed. We can then check in cgroup_post_fork() where we hold the css set lock already whether the cgroup is currently being killed. If so we send the child a SIGKILL signal immediately taking it down as soon as it returns to userspace. To make the killing of the child semantically clean it is killed after all cgroup attachment operations have been finalized. There are various use-cases of this interface: - Containers usually have a conservative layout where each container usually has a delegated cgroup. For such layouts there is a 1:1 mapping between container and cgroup. If the container in addition uses a separate pid namespace then killing a container usually becomes a simple kill -9 <container-init-pid> from an ancestor pid namespace. However, there are quite a few scenarios where that isn't true. For example, there are containers that share the cgroup with other processes on purpose that are supposed to be bound to the lifetime of the container but are not in the same pidns of the container. Containers that are in a delegated cgroup but share the pid namespace with the host or other containers. - Service managers such as systemd use cgroups to group and organize processes belonging to a service. They usually rely on a recursive algorithm now to kill a service. With cgroup.kill this becomes a simple write to cgroup.kill. - Userspace OOM implementations can make good use of this feature to efficiently take down whole cgroups quickly. - The kill program can gain a new kill --cgroup /sys/fs/cgroup/delegated flag to take down cgroups. A few observations about the semantics: - If parent and child are in the same cgroup and CLONE_INTO_CGROUP is not specified we are not taking cgroup mutex meaning the cgroup can be killed while a process in that cgroup is forking. If the kill request happens right before cgroup_can_fork() and before the parent grabs its siglock the parent is guaranteed to see the pending SIGKILL. In addition we perform another check in cgroup_post_fork() whether the cgroup is being killed and is so take down the child (see above). This is robust enough and protects gainst forkbombs. If userspace really really wants to have stricter protection the simple solution would be to grab the write side of the cgroup threadgroup rwsem which will force all ongoing forks to complete before killing starts. We concluded that this is not necessary as the semantics for concurrent forking should simply align with freezer where a similar check as cgroup_post_fork() is performed. For all other cases CLONE_INTO_CGROUP is required. In this case we will grab the cgroup mutex so the cgroup can't be killed while we fork. Once we're done with the fork and have dropped cgroup mutex we are visible and will be found by any subsequent kill request. - We obviously don't kill kthreads. This means a cgroup that has a kthread will not become empty after killing and consequently no unpopulated event will be generated. The assumption is that kthreads should be in the root cgroup only anyway so this is not an issue. - We skip killing tasks that already have pending fatal signals. - Freezer doesn't care about tasks in different pid namespaces, i.e. if you have two tasks in different pid namespaces the cgroup would still be frozen. The cgroup.kill mechanism consequently behaves the same way, i.e. we kill all processes and ignore in which pid namespace they exist. - If the caller is located in a cgroup that is killed the caller will obviously be killed as well. Link: https://lore.kernel.org/r/20210503143922.3093755-1-brauner@kernel.org Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: cgroups@vger.kernel.org Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Serge Hallyn <serge@hallyn.com> Acked-by: Roman Gushchin <guro@fb.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
a7df69b81a |
cgroup: rstat: support cgroup1
Rstat currently only supports the default hierarchy in cgroup2. In order to replace memcg's private stats infrastructure - used in both cgroup1 and cgroup2 - with rstat, the latter needs to support cgroup1. The initialization and destruction callbacks for regular cgroups are already in place. Remove the cgroup_on_dfl() guards to handle cgroup1. The initialization of the root cgroup is currently hardcoded to only handle cgrp_dfl_root.cgrp. Move those callbacks to cgroup_setup_root() and cgroup_destroy_root() to handle the default root as well as the various cgroup1 roots we may set up during mounting. The linking of css to cgroups happens in code shared between cgroup1 and cgroup2 as well. Simply remove the cgroup_on_dfl() guard. Linkage of the root css to the root cgroup is a bit trickier: per default, the root css of a subsystem controller belongs to the default hierarchy (i.e. the cgroup2 root). When a controller is mounted in its cgroup1 version, the root css is stolen and moved to the cgroup1 root; on unmount, the css moves back to the default hierarchy. Annotate rebind_subsystems() to move the root css linkage along between roots. Link: https://lkml.kernel.org/r/20210209163304.77088-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Michal Koutný <mkoutny@suse.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
7d6beb71da |
idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
https://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
|
|
|
|
4b3bd22b12 |
Merge branch 'for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
"Nothing interesting. Just two minor patches"
* 'for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: fix typos in comments
cgroup: cgroup.{procs,threads} factor out common parts
|
|
|
|
47291baa8d
|
namei: make permission helpers idmapped mount aware
The two helpers inode_permission() and generic_permission() are used by the vfs to perform basic permission checking by verifying that the caller is privileged over an inode. In order to handle idmapped mounts we extend the two helpers with an additional user namespace argument. On idmapped mounts the two helpers will make sure to map the inode according to the mount's user namespace and then peform identical permission checks to inode_permission() and generic_permission(). If the initial user namespace is passed nothing changes so non-idmapped mounts will see identical behavior as before. Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
385aac1519 |
cgroup: fix psi monitor for root cgroup
Fix NULL pointer dereference when adding new psi monitor to the root cgroup. PSI files for root cgroup was introduced in |
|
|
|
da70862efe |
cgroup: cgroup.{procs,threads} factor out common parts
The functions cgroup_threads_write and cgroup_procs_write are almost identical. In order to reduce duplication, factor out the common code in similar fashion we already do for other threadgroup/task functions. No functional changes are intended. Suggested-by: Hao Lee <haolee.swjtu@gmail.com> Signed-off-by: Michal Koutný <mkoutny@suse.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
91afe604c1 |
Merge branch 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: "These three patches were scheduled for the merge window but I forgot to send them out. Sorry about that. None of them are significant and they fit well in a fix pull request too - two are cosmetic and one fixes a memory leak in the mount option parsing path" * 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: Fix memory leak when parsing multiple source parameters cgroup/cgroup.c: replace 'of->kn->priv' with of_cft() kernel: cgroup: Mundane spelling fixes throughout the file |
|
|
|
ac73e3dc8a |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
|
|
|
|
9d9d341df4 |
cgroup: remove obsoleted broken_hierarchy and warned_broken_hierarchy
With the deprecation of the non-hierarchical mode of the memory controller there are no more examples of broken hierarchies left. Let's remove the cgroup core code which was supposed to print warnings about creating of broken hierarchies. Link: https://lkml.kernel.org/r/20201110220800.929549-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
bef8620cd8 |
mm: memcg: deprecate the non-hierarchical mode
Patch series "mm: memcg: deprecate cgroup v1 non-hierarchical mode", v1. The non-hierarchical cgroup v1 mode is a legacy of early days of the memory controller and doesn't bring any value today. However, it complicates the code and creates many edge cases all over the memory controller code. It's a good time to deprecate it completely. This patchset removes the internal logic, adjusts the user interface and updates the documentation. The alt patch removes some bits of the cgroup core code, which become obsolete. Michal Hocko said: "All that we know today is that we have a warning in place to complain loudly when somebody relies on use_hierarchy=0 with a deeper hierarchy. For all those years we have seen _zero_ reports that would describe a sensible usecase. Moreover we (SUSE) have backported this warning into old distribution kernels (since 3.0 based kernels) to extend the coverage and didn't hear even for users who adopt new kernels only very slowly. The only report we have seen so far was a LTP test suite which doesn't really reflect any real life usecase" This patch (of 3): The non-hierarchical cgroup v1 mode is a legacy of early days of the memory controller and doesn't bring any value today. However, it complicates the code and creates many edge cases all over the memory controller code. It's a good time to deprecate it completely. Functionally this patch enabled is by default for all cgroups and forbids switching it off. Nothing changes if cgroup v2 is used: hierarchical mode was enforced from scratch. To protect the ABI memory.use_hierarchy interface is preserved with a limited functionality: reading always returns "1", writing of "1" passes silently, writing of any other value fails with -EINVAL and a warning to dmesg (on the first occasion). Link: https://lkml.kernel.org/r/20201110220800.929549-1-guro@fb.com Link: https://lkml.kernel.org/r/20201110220800.929549-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
f9b4240b07 |
fixes-v5.11
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCX9daOgAKCRCRxhvAZXjc
ohPkAQChXUB2BAjtIzXlCkZoDBbzHHblm5DZ37oy/4xYFmAcEwEA5sw6dQqyGHnF
GEP9def51HvXLpBV2BzNUGggo1SoGgQ=
=w/cO
-----END PGP SIGNATURE-----
Merge tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull misc fixes from Christian Brauner:
"This contains several fixes which felt worth being combined into a
single branch:
- Use put_nsproxy() instead of open-coding it switch_task_namespaces()
- Kirill's work to unify lifecycle management for all namespaces. The
lifetime counters are used identically for all namespaces types.
Namespaces may of course have additional unrelated counters and
these are not altered. This work allows us to unify the type of the
counters and reduces maintenance cost by moving the counter in one
place and indicating that basic lifetime management is identical
for all namespaces.
- Peilin's fix adding three byte padding to Dmitry's
PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak.
- Two smal patches to convert from the /* fall through */ comment
annotation to the fallthrough keyword annotation which I had taken
into my branch and into -next before
|
|
|
|
5a7b5f32c5 |
cgroup/cgroup.c: replace 'of->kn->priv' with of_cft()
we have supplied the inline function: of_cft() in cgroup.h. So replace the direct use 'of->kn->priv' with inline func of_cft(), which is more readable. Signed-off-by: Hui Su <sh_def@163.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
58315c9665 |
kernel: cgroup: Mundane spelling fixes throughout the file
Few spelling fixes throughout the file. Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
65026da59c |
cgroup: Zero sized write should be no-op
Do not report failure on zero sized writes, and handle them as no-op.
There's issues for example in case of writev() when there's iovec
containing zero buffer as a first one. It's expected writev() on below
example to successfully perform the write to specified writable cgroup
file expecting integer value, and to return 2. For now it's returning
value -1, and skipping the write:
int writetest(int fd) {
const char *buf1 = "";
const char *buf2 = "1\n";
struct iovec iov[2] = {
{ .iov_base = (void*)buf1, .iov_len = 0 },
{ .iov_base = (void*)buf2, .iov_len = 2 }
};
return writev(fd, iov, 2);
}
This patch fixes the issue by checking if there's nothing to write,
and handling the write as no-op by just returning 0.
Signed-off-by: Jouni Roivas <jouni.roivas@tuxera.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
95d325185c |
cgroup: remove redundant kernfs_activate in cgroup_setup_root()
This step is already done in rebind_subsystems(). Not necessary to do it again. Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
f387882d8d
|
cgroup: Use generic ns_common::count
Switch over cgroup namespaces to use the newly introduced common lifetime counter. Currently every namespace type has its own lifetime counter which is stored in the specific namespace struct. The lifetime counters are used identically for all namespaces types. Namespaces may of course have additional unrelated counters and these are not altered. This introduces a common lifetime counter into struct ns_common. The ns_common struct encompasses information that all namespaces share. That should include the lifetime counter since its common for all of them. It also allows us to unify the type of the counters across all namespaces. Most of them use refcount_t but one uses atomic_t and at least one uses kref. Especially the last one doesn't make much sense since it's just a wrapper around refcount_t since 2016 and actually complicates cleanup operations by having to use container_of() to cast the correct namespace struct out of struct ns_common. Having the lifetime counter for the namespaces in one place reduces maintenance cost. Not just because after switching all namespaces over we will have removed more code than we added but also because the logic is more easily understandable and we indicate to the user that the basic lifetime requirements for all namespaces are currently identical. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Link: https://lore.kernel.org/r/159644980994.604812.383801057081594972.stgit@localhost.localdomain Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
|
|
|
ad0f75e5f5 |
cgroup: fix cgroup_sk_alloc() for sk_clone_lock()
When we clone a socket in sk_clone_lock(), its sk_cgrp_data is copied, so the cgroup refcnt must be taken too. And, unlike the sk_alloc() path, sock_update_netprioidx() is not called here. Therefore, it is safe and necessary to grab the cgroup refcnt even when cgroup_sk_alloc is disabled. sk_clone_lock() is in BH context anyway, the in_interrupt() would terminate this function if called there. And for sk_alloc() skcd->val is always zero. So it's safe to factor out the code to make it more readable. The global variable 'cgroup_sk_alloc_disabled' is used to determine whether to take these reference counts. It is impossible to make the reference counting correct unless we save this bit of information in skcd->val. So, add a new bit there to record whether the socket has already taken the reference counts. This obviously relies on kmalloc() to align cgroup pointers to at least 4 bytes, ARCH_KMALLOC_MINALIGN is certainly larger than that. This bug seems to be introduced since the beginning, commit |
|
|
|
4a7e89c5ec |
Merge branch 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: "Just two patches: one to add system-level cpu.stat to the root cgroup for convenience and a trivial comment update" * 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: add cpu.stat file to root cgroup cgroup: Remove stale comments |
|
|
|
936f2a70f2 |
cgroup: add cpu.stat file to root cgroup
Currently, the root cgroup does not have a cpu.stat file. Add one which is consistent with /proc/stat to capture global cpu statistics that might not fall under cgroup accounting. We haven't done this in the past because the data are already presented in /proc/stat and we didn't want to add overhead from collecting root cgroup stats when cgroups are configured, but no cgroups have been created. By keeping the data consistent with /proc/stat, I think we avoid the first problem, while improving the usability of cgroups stats. We avoid the second problem by computing the contents of cpu.stat from existing data collected for /proc/stat anyway. Signed-off-by: Boris Burkov <boris@bur.io> Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
6b6ebb3474 |
cgroup: Remove stale comments
- The default root is where we can create v2 cgroups. - The __DEVEL__sane_behavior mount option has been removed long long ago. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
f9d041271c |
bpf: Refactor bpf_link update handling
Make bpf_link update support more generic by making it into another bpf_link_ops methods. This allows generic syscall handling code to be agnostic to various conditionally compiled features (e.g., the case of CONFIG_CGROUP_BPF). This also allows to keep link type-specific code to remain static within respective code base. Refactor existing bpf_cgroup_link code and take advantage of this. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200429001614.1544-2-andriin@fb.com |
|
|
|
d883600523 |
Merge branch 'for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: - Christian extended clone3 so that processes can be spawned into cgroups directly. This is not only neat in terms of semantics but also avoids grabbing the global cgroup_threadgroup_rwsem for migration. - Daniel added !root xattr support to cgroupfs. Userland already uses xattrs on cgroupfs for bookkeeping. This will allow delegated cgroups to support such usages. - Prateek tried to make cpuset hotplug handling synchronous but that led to possible deadlock scenarios. Reverted. - Other minor changes including release_agent_path handling cleanup. * 'for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: docs: cgroup-v1: Document the cpuset_v2_mode mount option Revert "cpuset: Make cpuset hotplug synchronous" cgroupfs: Support user xattrs kernfs: Add option to enable user xattrs kernfs: Add removed_size out param for simple_xattr_set kernfs: kvmalloc xattr value instead of kmalloc cgroup: Restructure release_agent_path handling selftests/cgroup: add tests for cloning into cgroups clone3: allow spawning processes into cgroups cgroup: add cgroup_may_write() helper cgroup: refactor fork helpers cgroup: add cgroup_get_from_file() helper cgroup: unify attach permission checking cpuset: Make cpuset hotplug synchronous cgroup.c: Use built-in RCU list checking kselftest/cgroup: add cgroup destruction test cgroup: Clean up css_set task traversal |
|
|
|
8a931f8013 |
mm: memcontrol: recursive memory.low protection
Right now, the effective protection of any given cgroup is capped by its
own explicit memory.low setting, regardless of what the parent says. The
reasons for this are mostly historical and ease of implementation: to make
delegation of memory.low safe, effective protection is the min() of all
memory.low up the tree.
Unfortunately, this limitation makes it impossible to protect an entire
subtree from another without forcing the user to make explicit protection
allocations all the way to the leaf cgroups - something that is highly
undesirable in real life scenarios.
Consider memory in a data center host. At the cgroup top level, we have a
distinction between system management software and the actual workload the
system is executing. Both branches are further subdivided into individual
services, job components etc.
We want to protect the workload as a whole from the system management
software, but that doesn't mean we want to protect and prioritize
individual workload wrt each other. Their memory demand can vary over
time, and we'd want the VM to simply cache the hottest data within the
workload subtree. Yet, the current memory.low limitations force us to
allocate a fixed amount of protection to each workload component in order
to get protection from system management software in general. This
results in very inefficient resource distribution.
Another concern with mandating downward allocation is that, as the
complexity of the cgroup tree grows, it gets harder for the lower levels
to be informed about decisions made at the host-level. Consider a
container inside a namespace that in turn creates its own nested tree of
cgroups to run multiple workloads. It'd be extremely difficult to
configure memory.low parameters in those leaf cgroups that on one hand
balance pressure among siblings as the container desires, while also
reflecting the host-level protection from e.g. rpm upgrades, that lie
beyond one or more delegation and namespacing points in the tree.
It's highly unusual from a cgroup interface POV that nested levels have to
be aware of and reflect decisions made at higher levels for them to be
effective.
To enable such use cases and scale configurability for complex trees, this
patch implements a resource inheritance model for memory that is similar
to how the CPU and the IO controller implement work-conserving resource
allocations: a share of a resource allocated to a subree always applies to
the entire subtree recursively, while allowing, but not mandating,
children to further specify distribution rules.
That means that if protection is explicitly allocated among siblings,
those configured shares are being followed during page reclaim just like
they are now. However, if the memory.low set at a higher level is not
fully claimed by the children in that subtree, the "floating" remainder is
applied to each cgroup in the tree in proportion to its size. Since
reclaim pressure is applied in proportion to size as well, each child in
that tree gets the same boost, and the effect is neutral among siblings -
with respect to each other, they behave as if no memory control was
enabled at all, and the VM simply balances the memory demands optimally
within the subtree. But collectively those cgroups enjoy a boost over the
cgroups in neighboring trees.
E.g. a leaf cgroup with a memory.low setting of 0 no longer means that
it's not getting a share of the hierarchically assigned resource, just
that it doesn't claim a fixed amount of it to protect from its siblings.
This allows us to recursively protect one subtree (workload) from another
(system management), while letting subgroups compete freely among each
other - without having to assign fixed shares to each leaf, and without
nested groups having to echo higher-level settings.
The floating protection composes naturally with fixed protection.
Consider the following example tree:
A A: low = 2G
/ \ A1: low = 1G
A1 A2 A2: low = 0G
As outside pressure is applied to this tree, A1 will enjoy a fixed
protection from A2 of 1G, but the remaining, unclaimed 1G from A is split
evenly among A1 and A2, coming out to 1.5G and 0.5G.
There is a slight risk of regressing theoretical setups where the
top-level cgroups don't know about the true budgeting and set bogusly high
"bypass" values that are meaningfully allocated down the tree. Such
setups would rely on unclaimed protection to be discarded, and
distributing it would change the intended behavior. Be safe and hide the
new behavior behind a mount option, 'memory_recursiveprot'.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
0c991ebc8c |
bpf: Implement bpf_prog replacement for an active bpf_cgroup_link
Add new operation (LINK_UPDATE), which allows to replace active bpf_prog from under given bpf_link. Currently this is only supported for bpf_cgroup_link, but will be extended to other kinds of bpf_links in follow-up patches. For bpf_cgroup_link, implemented functionality matches existing semantics for direct bpf_prog attachment (including BPF_F_REPLACE flag). User can either unconditionally set new bpf_prog regardless of which bpf_prog is currently active under given bpf_link, or, optionally, can specify expected active bpf_prog. If active bpf_prog doesn't match expected one, no changes are performed, old bpf_link stays intact and attached, operation returns a failure. cgroup_bpf_replace() operation is resolving race between auto-detachment and bpf_prog update in the same fashion as it's done for bpf_link detachment, except in this case update has no way of succeeding because of target cgroup marked as dying. So in this case error is returned. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200330030001.2312810-3-andriin@fb.com |
|
|
|
af6eea5743 |
bpf: Implement bpf_link-based cgroup BPF program attachment
Implement new sub-command to attach cgroup BPF programs and return FD-based bpf_link back on success. bpf_link, once attached to cgroup, cannot be replaced, except by owner having its FD. Cgroup bpf_link supports only BPF_F_ALLOW_MULTI semantics. Both link-based and prog-based BPF_F_ALLOW_MULTI attachments can be freely intermixed. To prevent bpf_cgroup_link from keeping cgroup alive past the point when no BPF program can be executed, implement auto-detachment of link. When cgroup_bpf_release() is called, all attached bpf_links are forced to release cgroup refcounts, but they leave bpf_link otherwise active and allocated, as well as still owning underlying bpf_prog. This is because user-space might still have FDs open and active, so bpf_link as a user-referenced object can't be freed yet. Once last active FD is closed, bpf_link will be freed and underlying bpf_prog refcount will be dropped. But cgroup refcount won't be touched, because cgroup is released already. The inherent race between bpf_cgroup_link release (from closing last FD) and cgroup_bpf_release() is resolved by both operations taking cgroup_mutex. So the only additional check required is when bpf_cgroup_link attempts to detach itself from cgroup. At that time we need to check whether there is still cgroup associated with that link. And if not, exit with success, because bpf_cgroup_link was already successfully detached. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20200330030001.2312810-2-andriin@fb.com |
|
|
|
38aca3071c |
cgroupfs: Support user xattrs
This patch turns on xattr support for cgroupfs. This is useful for
letting non-root owners of delegated subtrees attach metadata to
cgroups.
One use case is for subtree owners to tell a userspace out of memory
killer to bias away from killing specific subtrees.
Tests:
[/sys/fs/cgroup]# for i in $(seq 0 130); \
do setfattr workload.slice -n user.name$i -v wow; done
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
[/sys/fs/cgroup]# for i in $(seq 0 130); \
do setfattr workload.slice --remove user.name$i; done
setfattr: workload.slice: No such attribute
setfattr: workload.slice: No such attribute
setfattr: workload.slice: No such attribute
[/sys/fs/cgroup]# for i in $(seq 0 130); \
do setfattr workload.slice -n user.name$i -v wow; done
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
setfattr: workload.slice: No space left on device
`seq 0 130` is inclusive, and 131 - 128 = 3, which is the number of
errors we expect to see.
[/data]# cat testxattr.c
#include <sys/types.h>
#include <sys/xattr.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
char name[256];
char *buf = malloc(64 << 10);
if (!buf) {
perror("malloc");
return 1;
}
for (int i = 0; i < 4; ++i) {
snprintf(name, 256, "user.bigone%d", i);
if (setxattr("/sys/fs/cgroup/system.slice", name, buf,
64 << 10, 0)) {
printf("setxattr failed on iteration=%d\n", i);
return 1;
}
}
return 0;
}
[/data]# ./a.out
setxattr failed on iteration=2
[/data]# ./a.out
setxattr failed on iteration=0
[/sys/fs/cgroup]# setfattr -x user.bigone0 system.slice/
[/sys/fs/cgroup]# setfattr -x user.bigone1 system.slice/
[/data]# ./a.out
setxattr failed on iteration=2
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
|
|
1b51f69461 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from David Miller:
"It looks like a decent sized set of fixes, but a lot of these are one
liner off-by-one and similar type changes:
1) Fix netlink header pointer to calcular bad attribute offset
reported to user. From Pablo Neira Ayuso.
2) Don't double clear PHY interrupts when ->did_interrupt is set,
from Heiner Kallweit.
3) Add missing validation of various (devlink, nl802154, fib, etc.)
attributes, from Jakub Kicinski.
4) Missing *pos increments in various netfilter seq_next ops, from
Vasily Averin.
5) Missing break in of_mdiobus_register() loop, from Dajun Jin.
6) Don't double bump tx_dropped in veth driver, from Jiang Lidong.
7) Work around FMAN erratum A050385, from Madalin Bucur.
8) Make sure ARP header is pulled early enough in bonding driver,
from Eric Dumazet.
9) Do a cond_resched() during multicast processing of ipvlan and
macvlan, from Mahesh Bandewar.
10) Don't attach cgroups to unrelated sockets when in interrupt
context, from Shakeel Butt.
11) Fix tpacket ring state management when encountering unknown GSO
types. From Willem de Bruijn.
12) Fix MDIO bus PHY resume by checking mdio_bus_phy_may_suspend()
only in the suspend context. From Heiner Kallweit"
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (112 commits)
net: systemport: fix index check to avoid an array out of bounds access
tc-testing: add ETS scheduler to tdc build configuration
net: phy: fix MDIO bus PM PHY resuming
net: hns3: clear port base VLAN when unload PF
net: hns3: fix RMW issue for VLAN filter switch
net: hns3: fix VF VLAN table entries inconsistent issue
net: hns3: fix "tc qdisc del" failed issue
taprio: Fix sending packets without dequeueing them
net: mvmdio: avoid error message for optional IRQ
net: dsa: mv88e6xxx: Add missing mask of ATU occupancy register
net: memcg: fix lockdep splat in inet_csk_accept()
s390/qeth: implement smarter resizing of the RX buffer pool
s390/qeth: refactor buffer pool code
s390/qeth: use page pointers to manage RX buffer pool
seg6: fix SRv6 L2 tunnels to use IANA-assigned protocol number
net: dsa: Don't instantiate phylink for CPU/DSA ports unless needed
net/packet: tpacket_rcv: do not increment ring index on drop
sxgbe: Fix off by one in samsung driver strncpy size arg
net: caif: Add lockdep expression to RCU traversal primitive
MAINTAINERS: remove Sathya Perla as Emulex NIC maintainer
...
|
|
|
|
a09833f7cd | Merge branch 'for-5.6-fixes' into for-5.7 | |
|
|
e876ecc67d |
cgroup: memcg: net: do not associate sock with unrelated cgroup
We are testing network memory accounting in our setup and noticed inconsistent network memory usage and often unrelated cgroups network usage correlates with testing workload. On further inspection, it seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in irq context specially for cgroup v1. mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context and kind of assumes that this can only happen from sk_clone_lock() and the source sock object has already associated cgroup. However in cgroup v1, where network memory accounting is opt-in, the source sock can be unassociated with any cgroup and the new cloned sock can get associated with unrelated interrupted cgroup. Cgroup v2 can also suffer if the source sock object was created by process in the root cgroup or if sk_alloc() is called in irq context. The fix is to just do nothing in interrupt. WARNING: Please note that about half of the TCP sockets are allocated from the IRQ context, so, memory used by such sockets will not be accouted by the memcg. The stack trace of mem_cgroup_sk_alloc() from IRQ-context: CPU: 70 PID: 12720 Comm: ssh Tainted: 5.6.0-smp-DEV #1 Hardware name: ... Call Trace: <IRQ> dump_stack+0x57/0x75 mem_cgroup_sk_alloc+0xe9/0xf0 sk_clone_lock+0x2a7/0x420 inet_csk_clone_lock+0x1b/0x110 tcp_create_openreq_child+0x23/0x3b0 tcp_v6_syn_recv_sock+0x88/0x730 tcp_check_req+0x429/0x560 tcp_v6_rcv+0x72d/0xa40 ip6_protocol_deliver_rcu+0xc9/0x400 ip6_input+0x44/0xd0 ? ip6_protocol_deliver_rcu+0x400/0x400 ip6_rcv_finish+0x71/0x80 ipv6_rcv+0x5b/0xe0 ? ip6_sublist_rcv+0x2e0/0x2e0 process_backlog+0x108/0x1e0 net_rx_action+0x26b/0x460 __do_softirq+0x104/0x2a6 do_softirq_own_stack+0x2a/0x40 </IRQ> do_softirq.part.19+0x40/0x50 __local_bh_enable_ip+0x51/0x60 ip6_finish_output2+0x23d/0x520 ? ip6table_mangle_hook+0x55/0x160 __ip6_finish_output+0xa1/0x100 ip6_finish_output+0x30/0xd0 ip6_output+0x73/0x120 ? __ip6_finish_output+0x100/0x100 ip6_xmit+0x2e3/0x600 ? ipv6_anycast_cleanup+0x50/0x50 ? inet6_csk_route_socket+0x136/0x1e0 ? skb_free_head+0x1e/0x30 inet6_csk_xmit+0x95/0xf0 __tcp_transmit_skb+0x5b4/0xb20 __tcp_send_ack.part.60+0xa3/0x110 tcp_send_ack+0x1d/0x20 tcp_rcv_state_process+0xe64/0xe80 ? tcp_v6_connect+0x5d1/0x5f0 tcp_v6_do_rcv+0x1b1/0x3f0 ? tcp_v6_do_rcv+0x1b1/0x3f0 __release_sock+0x7f/0xd0 release_sock+0x30/0xa0 __inet_stream_connect+0x1c3/0x3b0 ? prepare_to_wait+0xb0/0xb0 inet_stream_connect+0x3b/0x60 __sys_connect+0x101/0x120 ? __sys_getsockopt+0x11b/0x140 __x64_sys_connect+0x1a/0x20 do_syscall_64+0x51/0x200 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The stack trace of mem_cgroup_sk_alloc() from IRQ-context: Fixes: |
|
|
|
190ecb190a |
cgroup: fix psi_show() crash on 32bit ino archs
Similar to the commit |
|
|
|
ef2c41cf38 |
clone3: allow spawning processes into cgroups
This adds support for creating a process in a different cgroup than its parent. Callers can limit and account processes and threads right from the moment they are spawned: - A service manager can directly spawn new services into dedicated cgroups. - A process can be directly created in a frozen cgroup and will be frozen as well. - The initial accounting jitter experienced by process supervisors and daemons is eliminated with this. - Threaded applications or even thread implementations can choose to create a specific cgroup layout where each thread is spawned directly into a dedicated cgroup. This feature is limited to the unified hierarchy. Callers need to pass a directory file descriptor for the target cgroup. The caller can choose to pass an O_PATH file descriptor. All usual migration restrictions apply, i.e. there can be no processes in inner nodes. In general, creating a process directly in a target cgroup adheres to all migration restrictions. One of the biggest advantages of this feature is that CLONE_INTO_GROUP does not need to grab the write side of the cgroup cgroup_threadgroup_rwsem. This global lock makes moving tasks/threads around super expensive. With clone3() this lock is avoided. Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: cgroups@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
f3553220d4 |
cgroup: add cgroup_may_write() helper
Add a cgroup_may_write() helper which we can use in the CLONE_INTO_CGROUP patch series to verify that we can write to the destination cgroup. Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
5a5cf5cb30 |
cgroup: refactor fork helpers
This refactors the fork helpers so they can be easily modified in the next patches. The patch just moves the cgroup threadgroup rwsem grab and release into the helpers. They don't need to be directly exposed in fork.c. Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
17703097f3 |
cgroup: add cgroup_get_from_file() helper
Add a helper cgroup_get_from_file(). The helper will be used in subsequent patches to retrieve a cgroup while holding a reference to the struct file it was taken from. Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
|
|
|
6df970e4f5 |
cgroup: unify attach permission checking
The core codepaths to check whether a process can be attached to a cgroup are the same for threads and thread-group leaders. Only a small piece of code verifying that source and destination cgroup are in the same domain differentiates the thread permission checking from thread-group leader permission checking. Since cgroup_migrate_vet_dst() only matters cgroup2 - it is a noop on cgroup1 - we can move it out of cgroup_attach_task(). All checks can now be consolidated into a new helper cgroup_attach_permissions() callable from both cgroup_procs_write() and cgroup_threads_write(). Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: cgroups@vger.kernel.org Acked-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Tejun Heo <tj@kernel.org> |