mirror of https://github.com/torvalds/linux.git
545 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
6cb0bd94c0 |
Persistent buffer cleanups and simplifications for v6.15:
It was mistaken that the physical memory returned from "reserve_mem" had to
be vmap()'d to get to it from a virtual address. But reserve_mem already
maps the memory to the virtual address of the kernel so a simple
phys_to_virt() can be used to get to the virtual address from the physical
memory returned by "reserve_mem". With this new found knowledge, the
code can be cleaned up and simplified.
- Enforce that the persistent memory is page aligned
As the buffers using the persistent memory are all going to be
mapped via pages, make sure that the memory given to the tracing
infrastructure is page aligned. If it is not, it will print a warning
and fail to map the buffer.
- Use phys_to_virt() to get the virtual address from reserve_mem
Instead of calling vmap() on the physical memory returned from
"reserve_mem", use phys_to_virt() instead.
As the memory returned by "memmap" or any other means where a physical
address is given to the tracing infrastructure, it still needs to
be vmap(). Since this memory can never be returned back to the buddy
allocator nor should it ever be memmory mapped to user space, flag
this buffer and up the ref count. The ref count will keep it from
ever being freed, and the flag will prevent it from ever being memory
mapped to user space.
- Use vmap_page_range() for memmap virtual address mapping
For the memmap buffer, instead of allocating an array of struct pages,
assigning them to the contiguous phsycial memory and then passing that to
vmap(), use vmap_page_range() instead
- Replace flush_dcache_folio() with flush_kernel_vmap_range()
Instead of calling virt_to_folio() and passing that to
flush_dcache_folio(), just call flush_kernel_vmap_range() directly.
This also fixes a bug where if a subbuffer was bigger than PAGE_SIZE
only the PAGE_SIZE portion would be flushed.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ+6oZRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qhq6AP481KHAgaowQCg7zrKPkMlbYBIigYoU
7aqoAg2rSLBRSQEAl8fViHZgZ9Q+O7xdozQWiIR7/KQW8VIaTcP/V7cHkAU=
=+5JB
-----END PGP SIGNATURE-----
Merge tag 'trace-ringbuffer-v6.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ring-buffer updates from Steven Rostedt:
"Persistent buffer cleanups and simplifications.
It was mistaken that the physical memory returned from "reserve_mem"
had to be vmap()'d to get to it from a virtual address. But
reserve_mem already maps the memory to the virtual address of the
kernel so a simple phys_to_virt() can be used to get to the virtual
address from the physical memory returned by "reserve_mem". With this
new found knowledge, the code can be cleaned up and simplified.
- Enforce that the persistent memory is page aligned
As the buffers using the persistent memory are all going to be
mapped via pages, make sure that the memory given to the tracing
infrastructure is page aligned. If it is not, it will print a
warning and fail to map the buffer.
- Use phys_to_virt() to get the virtual address from reserve_mem
Instead of calling vmap() on the physical memory returned from
"reserve_mem", use phys_to_virt() instead.
As the memory returned by "memmap" or any other means where a
physical address is given to the tracing infrastructure, it still
needs to be vmap(). Since this memory can never be returned back to
the buddy allocator nor should it ever be memmory mapped to user
space, flag this buffer and up the ref count. The ref count will
keep it from ever being freed, and the flag will prevent it from
ever being memory mapped to user space.
- Use vmap_page_range() for memmap virtual address mapping
For the memmap buffer, instead of allocating an array of struct
pages, assigning them to the contiguous phsycial memory and then
passing that to vmap(), use vmap_page_range() instead
- Replace flush_dcache_folio() with flush_kernel_vmap_range()
Instead of calling virt_to_folio() and passing that to
flush_dcache_folio(), just call flush_kernel_vmap_range() directly.
This also fixes a bug where if a subbuffer was bigger than
PAGE_SIZE only the PAGE_SIZE portion would be flushed"
* tag 'trace-ringbuffer-v6.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Use flush_kernel_vmap_range() over flush_dcache_folio()
tracing: Use vmap_page_range() to map memmap ring buffer
tracing: Have reserve_mem use phys_to_virt() and separate from memmap buffer
tracing: Enforce the persistent ring buffer to be page aligned
|
|
|
|
e4d4b8670c |
ring-buffer: Use flush_kernel_vmap_range() over flush_dcache_folio()
Some architectures do not have data cache coherency between user and
kernel space. For these architectures, the cache needs to be flushed on
both the kernel and user addresses so that user space can see the updates
the kernel has made.
Instead of using flush_dcache_folio() and playing with virt_to_folio()
within the call to that function, use flush_kernel_vmap_range() which
takes the virtual address and does the work for those architectures that
need it.
This also fixes a bug where the flush of the reader page only flushed one
page. If the sub-buffer order is 1 or more, where the sub-buffer size
would be greater than a page, it would miss the rest of the sub-buffer
content, as the "reader page" is not just a page, but the size of a
sub-buffer.
Link: https://lore.kernel.org/all/CAG48ez3w0my4Rwttbc5tEbNsme6tc0mrSN95thjXUFaJ3aQ6SA@mail.gmail.com/
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Link: https://lore.kernel.org/20250402144953.920792197@goodmis.org
Fixes:
|
|
|
|
46d29f23a7 |
ring-buffer updates for v6.15
- Restructure the persistent memory to have a "scratch" area Instead of hard coding the KASLR offset in the persistent memory by the ring buffer, push that work up to the callers of the persistent memory as they are the ones that need this information. The offsets and such is not important to the ring buffer logic and it should not be part of that. A scratch pad is now created when the caller allocates a ring buffer from persistent memory by stating how much memory it needs to save. - Allow where modules are loaded to be saved in the new scratch pad Save the addresses of modules when they are loaded into the persistent memory scratch pad. - A new module_for_each_mod() helper function was created With the acknowledgement of the module maintainers a new module helper function was created to iterate over all the currently loaded modules. This has a callback to be called for each module. This is needed for when tracing is started in the persistent buffer and the currently loaded modules need to be saved in the scratch area. - Expose the last boot information where the kernel and modules were loaded The last_boot_info file is updated to print out the addresses of where the kernel "_text" location was loaded from a previous boot, as well as where the modules are loaded. If the buffer is recording the current boot, it only prints "# Current" so that it does not expose the KASLR offset of the currently running kernel. - Allow the persistent ring buffer to be released (freed) To have this in production environments, where the kernel command line can not be changed easily, the ring buffer needs to be freed when it is not going to be used. The memory for the buffer will always be allocated at boot up, but if the system isn't going to enable tracing, the memory needs to be freed. Allow it to be freed and added back to the kernel memory pool. - Allow stack traces to print the function names in the persistent buffer Now that the modules are saved in the persistent ring buffer, if the same modules are loaded, the printing of the function names will examine the saved modules. If the module is found in the scratch area and is also loaded, then it will do the offset shift and use kallsyms to display the function name. If the address is not found, it simply displays the address from the previous boot in hex. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ+cUERQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qrAsAQCFt2nfzxoe3wtF5EqIT1VHp/8bQVjG gBe8B6ouboreogD/dS7yK8MRy24ZAmObGwYG0RbVicd50S7P8Rf7+823ng8= =OJKk -----END PGP SIGNATURE----- Merge tag 'trace-ringbuffer-v6.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull ring-buffer updates from Steven Rostedt: - Restructure the persistent memory to have a "scratch" area Instead of hard coding the KASLR offset in the persistent memory by the ring buffer, push that work up to the callers of the persistent memory as they are the ones that need this information. The offsets and such is not important to the ring buffer logic and it should not be part of that. A scratch pad is now created when the caller allocates a ring buffer from persistent memory by stating how much memory it needs to save. - Allow where modules are loaded to be saved in the new scratch pad Save the addresses of modules when they are loaded into the persistent memory scratch pad. - A new module_for_each_mod() helper function was created With the acknowledgement of the module maintainers a new module helper function was created to iterate over all the currently loaded modules. This has a callback to be called for each module. This is needed for when tracing is started in the persistent buffer and the currently loaded modules need to be saved in the scratch area. - Expose the last boot information where the kernel and modules were loaded The last_boot_info file is updated to print out the addresses of where the kernel "_text" location was loaded from a previous boot, as well as where the modules are loaded. If the buffer is recording the current boot, it only prints "# Current" so that it does not expose the KASLR offset of the currently running kernel. - Allow the persistent ring buffer to be released (freed) To have this in production environments, where the kernel command line can not be changed easily, the ring buffer needs to be freed when it is not going to be used. The memory for the buffer will always be allocated at boot up, but if the system isn't going to enable tracing, the memory needs to be freed. Allow it to be freed and added back to the kernel memory pool. - Allow stack traces to print the function names in the persistent buffer Now that the modules are saved in the persistent ring buffer, if the same modules are loaded, the printing of the function names will examine the saved modules. If the module is found in the scratch area and is also loaded, then it will do the offset shift and use kallsyms to display the function name. If the address is not found, it simply displays the address from the previous boot in hex. * tag 'trace-ringbuffer-v6.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing: Use _text and the kernel offset in last_boot_info tracing: Show last module text symbols in the stacktrace ring-buffer: Remove the unused variable bmeta tracing: Skip update_last_data() if cleared and remove active check for save_mod() tracing: Initialize scratch_size to zero to prevent UB tracing: Fix a compilation error without CONFIG_MODULES tracing: Freeable reserved ring buffer mm/memblock: Add reserved memory release function tracing: Update modules to persistent instances when loaded tracing: Show module names and addresses of last boot tracing: Have persistent trace instances save module addresses module: Add module_for_each_mod() function tracing: Have persistent trace instances save KASLR offset ring-buffer: Add ring_buffer_meta_scratch() ring-buffer: Add buffer meta data for persistent ring buffer ring-buffer: Use kaslr address instead of text delta ring-buffer: Fix bytes_dropped calculation issue |
|
|
|
de48d7fff7 |
ring-buffer: Remove the unused variable bmeta
Variable bmeta is not effectively used, so delete it. kernel/trace/ring_buffer.c:1952:27: warning: variable ‘bmeta’ set but not used. Link: https://lore.kernel.org/20250317015524.3902-1-jiapeng.chong@linux.alibaba.com Reported-by: Abaci Robot <abaci@linux.alibaba.com> Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=19524 Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
b65334825f |
tracing: Have persistent trace instances save KASLR offset
There's no reason to save the KASLR offset for the ring buffer itself. That is used by the tracer. Now that the tracer has a way to save data in the persistent memory of the ring buffer, have the tracing infrastructure take care of the saving of the KASLR offset. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/20250305164608.792722274@goodmis.org Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
4af0a9c518 |
ring-buffer: Add ring_buffer_meta_scratch()
Now that there's one meta data at the start of the persistent memory used by the ring buffer, allow the caller to request some memory right after that data that it can use as its own persistent memory. Also fix some white space issues with ring_buffer_alloc(). Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/20250305164608.619631731@goodmis.org Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
4009cc31e7 |
ring-buffer: Add buffer meta data for persistent ring buffer
Instead of just having a meta data at the first page of each sub buffer that has duplicate data, add a new meta page to the entire block of memory that holds the duplicate data and remove it from the sub buffer meta data. This will open up the extra memory in this first page to be used by the tracer for its own persistent data. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/20250305164608.446351513@goodmis.org Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
bcba8d4dbe |
ring-buffer: Use kaslr address instead of text delta
Instead of saving off the text and data pointers and using them to compare with the current boot's text and data pointers, just save off the KASLR offset. Then that can be used to figure out how to read the previous boots buffer. The last_boot_info will now show this offset, but only if it is for a previous boot: ~# cat instances/boot_mapped/last_boot_info 39000000 [kernel] ~# echo function > instances/boot_mapped/current_tracer ~# cat instances/boot_mapped/last_boot_info # Current If the KASLR offset saved is for the current boot, the last_boot_info will show the value of "current". Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/20250305164608.274956504@goodmis.org Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
c73f0b6964 |
ring-buffer: Fix bytes_dropped calculation issue
The calculation of bytes-dropped and bytes_dropped_nested is reversed.
Although it does not affect the final calculation of total_dropped,
it should still be modified.
Link: https://lore.kernel.org/20250223070106.6781-1-yangfeng59949@163.com
Fixes:
|
|
|
|
3ca4d7af35 |
ring-buffer: Fix typo in comment about header page pointer
Fix typo in comment about header page pointer in function rb_get_reader_page. Link: https://lore.kernel.org/20250118012352.3430519-1-zhouzhouyi@gmail.com Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
97937834ae |
ring-buffer: Update pages_touched to reflect persistent buffer content
The pages_touched field represents the number of subbuffers in the ring
buffer that have content that can be read. This is used in accounting of
"dirty_pages" and "buffer_percent" to allow the user to wait for the
buffer to be filled to a certain amount before it reads the buffer in
blocking mode.
The persistent buffer never updated this value so it was set to zero, and
this accounting would take it as it had no content. This would cause user
space to wait for content even though there's enough content in the ring
buffer that satisfies the buffer_percent.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214123512.0631436e@gandalf.local.home
Fixes:
|
|
|
|
f5b95f1fa2 |
ring-buffer: Validate the persistent meta data subbuf array
The meta data for a mapped ring buffer contains an array of indexes of all
the subbuffers. The first entry is the reader page, and the rest of the
entries lay out the order of the subbuffers in how the ring buffer link
list is to be created.
The validator currently makes sure that all the entries are within the
range of 0 and nr_subbufs. But it does not check if there are any
duplicates.
While working on the ring buffer, I corrupted this array, where I added
duplicates. The validator did not catch it and created the ring buffer
link list on top of it. Luckily, the corruption was only that the reader
page was also in the writer path and only presented corrupted data but did
not crash the kernel. But if there were duplicates in the writer side,
then it could corrupt the ring buffer link list and cause a crash.
Create a bitmask array with the size of the number of subbuffers. Then
clear it. When walking through the subbuf array checking to see if the
entries are within the range, test if its bit is already set in the
subbuf_mask. If it is, then there is duplicates and fail the validation.
If not, set the corresponding bit and continue.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214102820.7509ddea@gandalf.local.home
Fixes:
|
|
|
|
9ba0e1755a |
ring-buffer: Unlock resize on mmap error
Memory mapping the tracing ring buffer will disable resizing the buffer.
But if there's an error in the memory mapping like an invalid parameter,
the function exits out without re-enabling the resizing of the ring
buffer, preventing the ring buffer from being resized after that.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250213131957.530ec3c5@gandalf.local.home
Fixes:
|
|
|
|
cd2375a356 |
ring-buffer: Do not allow events in NMI with generic atomic64 cmpxchg()
Some architectures can not safely do atomic64 operations in NMI context.
Since the ring buffer relies on atomic64 operations to do its time
keeping, if an event is requested in NMI context, reject it for these
architectures.
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andreas Larsson <andreas@gaisler.com>
Link: https://lore.kernel.org/20250120235721.407068250@goodmis.org
Fixes:
|
|
|
|
6e31b759b0 |
ring-buffer: Make reading page consistent with the code logic
In the loop of __rb_map_vma(), the 's' variable is calculated from the same logic that nr_pages is and they both come from nr_subbufs. But the relationship is not obvious and there's a WARN_ON_ONCE() around the 's' variable to make sure it never becomes equal to nr_subbufs within the loop. If that happens, then the code is buggy and needs to be fixed. The 'page' variable is calculated from cpu_buffer->subbuf_ids[s] which is an array of 'nr_subbufs' entries. If the code becomes buggy and 's' becomes equal to or greater than 'nr_subbufs' then this will be an out of bounds hit before the WARN_ON() is triggered and the code exiting safely. Make the 'page' initialization consistent with the code logic and assign it after the out of bounds check. Link: https://lore.kernel.org/20250110162612.13983-1-aha310510@gmail.com Signed-off-by: Jeongjun Park <aha310510@gmail.com> [ sdr: rewrote change log ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
0568c6ebf0 |
ring-buffer: Check for empty ring-buffer with rb_num_of_entries()
Currently there are two ways of identifying an empty ring-buffer. One relying on the current status of the commit / reader page (rb_per_cpu_empty()) and the other on the write and read counters (rb_num_of_entries() used in rb_get_reader_page()). with rb_num_of_entries(). This intends to ease later introduction of ring-buffer writers which are out of the kernel control and with whom, the only information available is through the meta-page counters. Link: https://lore.kernel.org/20250108114536.627715-2-vdonnefort@google.com Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
c58a812c8e |
ring-buffer: Fix overflow in __rb_map_vma
An overflow occurred when performing the following calculation:
nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff;
Add a check before the calculation to avoid this problem.
syzbot reported this as a slab-out-of-bounds in __rb_map_vma:
BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836
CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:489
kasan_report+0xd9/0x110 mm/kasan/report.c:602
__rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138
tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482
call_mmap include/linux/fs.h:2183 [inline]
mmap_file mm/internal.h:124 [inline]
__mmap_new_file_vma mm/vma.c:2291 [inline]
__mmap_new_vma mm/vma.c:2355 [inline]
__mmap_region+0x1786/0x2670 mm/vma.c:2456
mmap_region+0x127/0x320 mm/mmap.c:1348
do_mmap+0xc00/0xfc0 mm/mmap.c:496
vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580
ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542
__do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline]
__se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline]
__x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reproducer for this bug is:
------------------------8<-------------------------
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <asm/types.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
int page_size = getpagesize();
int fd;
void *meta;
system("echo 1 > /sys/kernel/tracing/buffer_size_kb");
fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY);
meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5);
}
------------------------>8-------------------------
Cc: stable@vger.kernel.org
Fixes:
|
|
|
|
f1db825805 |
trace ring-buffer updates for v6.13
- Limit time interrupts are disabled in rb_check_pages() The rb_check_pages() is called after the ring buffer size is updated to make sure that the ring buffer has not been corrupted. Commit |
|
|
|
537affea16 |
ring-buffer: Correct a grammatical error in a comment
The word "trace" begins with a consonant sound, so "a" should be used instead of "an". Link: https://lore.kernel.org/20241107095327.6390-1-liujing@cmss.chinamobile.com Signed-off-by: liujing <liujing@cmss.chinamobile.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
580bb355bc |
Revert: "ring-buffer: Do not have boot mapped buffers hook to CPU hotplug"
A crash happened when testing cpu hotplug with respect to the memory mapped ring buffers. It was assumed that the hot plug code was adding a per CPU buffer that was already created that caused the crash. The real problem was due to ref counting and was fixed by commit |
|
|
|
0b60a7fb60 |
ring-buffer: Reorganize kerneldoc parameter names
Reorganize kerneldoc parameter names to match the parameter order in the function header. Problems identified using Coccinelle. Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20240930112121.95324-22-Julia.Lawall@inria.fr Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
b237e1f7d2 |
ring-buffer: Limit time with disabled interrupts in rb_check_pages()
The function rb_check_pages() validates the integrity of a specified per-CPU tracing ring buffer. It does so by traversing the underlying linked list and checking its next and prev links. To guarantee that the list isn't modified during the check, a caller typically needs to take cpu_buffer->reader_lock. This prevents the check from running concurrently, for example, with a potential reader which can make the list temporarily inconsistent when swapping its old reader page into the buffer. A problem with this approach is that the time when interrupts are disabled is non-deterministic, dependent on the ring buffer size. This particularly affects PREEMPT_RT because the reader_lock is a raw spinlock which doesn't become sleepable on PREEMPT_RT kernels. Modify the check so it still attempts to traverse the entire list, but gives up the reader_lock between checking individual pages. Introduce for this purpose a new variable ring_buffer_per_cpu.cnt which is bumped any time the list is modified. The value is used by rb_check_pages() to detect such a change and restart the check. Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20241015112810.27203-1-petr.pavlu@suse.com Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
09661f75e7 |
ring-buffer: Fix reader locking when changing the sub buffer order
The function ring_buffer_subbuf_order_set() updates each
ring_buffer_per_cpu and installs new sub buffers that match the requested
page order. This operation may be invoked concurrently with readers that
rely on some of the modified data, such as the head bit (RB_PAGE_HEAD), or
the ring_buffer_per_cpu.pages and reader_page pointers. However, no
exclusive access is acquired by ring_buffer_subbuf_order_set(). Modifying
the mentioned data while a reader also operates on them can then result in
incorrect memory access and various crashes.
Fix the problem by taking the reader_lock when updating a specific
ring_buffer_per_cpu in ring_buffer_subbuf_order_set().
Link: https://lore.kernel.org/linux-trace-kernel/20240715145141.5528-1-petr.pavlu@suse.com/
Link: https://lore.kernel.org/linux-trace-kernel/20241010195849.2f77cc3f@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20241011112850.17212b25@gandalf.local.home/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241015112440.26987-1-petr.pavlu@suse.com
Fixes:
|
|
|
|
912da2c384 |
ring-buffer: Do not have boot mapped buffers hook to CPU hotplug
The boot mapped ring buffer has its buffer mapped at a fixed location
found at boot up. It is not dynamic. It cannot grow or be expanded when
new CPUs come online.
Do not hook fixed memory mapped ring buffers to the CPU hotplug callback,
otherwise it can cause a crash when it tries to add the buffer to the
memory that is already fully occupied.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241008143242.25e20801@gandalf.local.home
Fixes:
|
|
|
|
eb2dcde9f9 |
ring-buffer: Align meta-page to sub-buffers for improved TLB usage
Previously, the mapped ring-buffer layout caused misalignment between the meta-page and sub-buffers when the sub-buffer size was not a multiple of PAGE_SIZE. This prevented hardware with larger TLB entries from utilizing them effectively. Add a padding with the zero-page between the meta-page and sub-buffers. Also update the ring-buffer map_test to verify that padding. Link: https://lore.kernel.org/20240628104611.1443542-1-vdonnefort@google.com Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
d0f2d6e951 |
ring-buffer: Add magic and struct size to boot up meta data
Add a magic number as well as save the struct size of the ring_buffer_meta structure in the meta data to also use as validation. Updating the magic number could be used to force a invalidation between kernel versions, and saving the structure size is also a good method to make sure the content is what is expected. Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Vincent Donnefort <vdonnefort@google.com> Link: https://lore.kernel.org/20240815115032.0c197b32@rorschach.local.home Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
bca704f62d |
ring-buffer: Don't reset persistent ring-buffer meta saved addresses
The text and data address is saved in the meta data so that it can be used
to know the delta of the text and data addresses of the last boot compared
to the text and data addresses of the current boot. The delta is used to
convert function pointer entries in the ring buffer to something that can
be used by kallsyms (note this only works for built-in functions).
But the saved addresses get reset on boot up. If the buffer is not used
and there's another reboot, then the saved text and data addresses will be
of the last boot and not that of the boot that created the content in the
ring buffer.
To get an idea of the issue:
# trace-cmd start -B boot_mapped -p function
# reboot
# trace-cmd show -B boot_mapped | tail
<...>-1 [000] d..1. 461.983243: native_apic_msr_write <-native_kick_ap
<...>-1 [000] d..1. 461.983244: __pfx_native_apic_msr_eoi <-native_kick_ap
<...>-1 [000] d..1. 461.983244: reserve_irq_vector_locked <-native_kick_ap
<...>-1 [000] d..1. 461.983262: branch_emulate_op <-native_kick_ap
<...>-1 [000] d..1. 461.983262: __ia32_sys_ia32_pread64 <-native_kick_ap
<...>-1 [000] d..1. 461.983263: native_kick_ap <-__smpboot_create_thread
<...>-1 [000] d..1. 461.983263: store_cache_disable <-native_kick_ap
<...>-1 [000] d..1. 461.983279: acpi_power_off_prepare <-native_kick_ap
<...>-1 [000] d..1. 461.983280: __pfx_acpi_ns_delete_node <-acpi_suspend_enter
<...>-1 [000] d..1. 461.983280: __pfx_acpi_os_release_lock <-acpi_suspend_enter
# reboot
# trace-cmd show -B boot_mapped |tail
<...>-1 [000] d..1. 461.983243: 0xffffffffa9669220 <-0xffffffffa965f3db
<...>-1 [000] d..1. 461.983244: 0xffffffffa96690f0 <-0xffffffffa965f3db
<...>-1 [000] d..1. 461.983244: 0xffffffffa9663fa0 <-0xffffffffa965f3db
<...>-1 [000] d..1. 461.983262: 0xffffffffa9672e80 <-0xffffffffa965f3e0
<...>-1 [000] d..1. 461.983262: 0xffffffffa962b940 <-0xffffffffa965f3ec
<...>-1 [000] d..1. 461.983263: 0xffffffffa965f540 <-0xffffffffa96e1362
<...>-1 [000] d..1. 461.983263: 0xffffffffa963c940 <-0xffffffffa965f55b
<...>-1 [000] d..1. 461.983279: 0xffffffffa9ee30c0 <-0xffffffffa965f59b
<...>-1 [000] d..1. 461.983280: 0xffffffffa9f16c10 <-0xffffffffa9ee3157
<...>-1 [000] d..1. 461.983280: 0xffffffffa9ee02e0 <-0xffffffffa9ee3157
By not updating the saved text and data addresses in the meta data at
every boot up and only updating them when the buffer is reset, it
allows multiple boots to see the same data.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20240815113629.0dc90af8@rorschach.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
|
|
ee057c8c19 |
Linux 6.11-rc3
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAma5LLIeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwUAIAJNwbkdgTIqEsyBU wsFcXGaFSsGJNbTulINJb34jl2gD2yr4pmnnrA0NePW1TUKOnx169hNMF8NWbr/A 0cHIREV9cyfnm/kzAcnHn7cWLSmsKd+x3TnCbCyodDZQDJzdLmw3LQG+4dTNJbw1 WtJO/EoaU4qaydW2VxtApw54sirq5bopZz7rpcRapA1afzbA2TUDbnnuEWjm9KCF 5K+RZTJZA/xI9gqEwJB+/p5FglW4n/T3xcDwaQp5uFsDskgV5e1AUrRLM+icTsem 0Egrs8Ca2Vp4oBM+r9miCSwjRu04jLKyuu20p7AN8zXLyN7WGAjduS15Dv+aHRZ/ 9XABZs0= =/T17 -----END PGP SIGNATURE----- Merge tag 'v6.11-rc3' into trace/ring-buffer/core The "reserve_mem" kernel command line parameter has been pulled into v6.11. Merge the latest -rc3 to allow the persistent ring buffer memory to be able to be mapped at the address specified by the "reserve_mem" command line parameter. Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
58f7e4d7ba |
ring-buffer: Remove unused function ring_buffer_nr_pages()
Because ring_buffer_nr_pages() is not an inline function and user accesses buffer->buffers[cpu]->nr_pages directly, the function ring_buffer_nr_pages is removed. Signed-off-by: Jianhui Zhou <912460177@qq.com> Link: https://lore.kernel.org/tencent_F4A7E9AB337F44E0F4B858D07D19EF460708@qq.com Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
b96c312551 |
ring-buffer: Use vma_pages() helper function
Use the vma_pages() helper function and fix the following Coccinelle/coccicheck warning reported by vma_pages.cocci: WARNING: Consider using vma_pages helper on vma Rename the local variable vma_pages accordingly. Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Link: https://lore.kernel.org/20240709215657.322071-2-thorsten.blum@toblux.com Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
7a1d1e4b96 |
tracing/ring-buffer: Add last_boot_info file to boot instance
If an instance is mapped to memory on boot up, create a new file called "last_boot_info" that will hold information that can be used to properly parse the raw data in the ring buffer. It will export the delta of the addresses for text and data from what it was from the last boot. It does not expose actually addresses (unless you knew what the actual address was from the last boot). The output will look like: # cat last_boot_info text delta: -268435456 data delta: -268435456 The text and data are kept separate in case they are ever made different. Link: https://lkml.kernel.org/r/20240612232026.658680738@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
8f3e665965 |
ring-buffer: Save text and data locations in mapped meta data
When a ring buffer is mapped to a specific address, save the address of a text function and some data. This will be used to determine the delta between the last boot and the current boot for pointers to functions as well as to data. Link: https://lkml.kernel.org/r/20240612232026.496176678@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
5f3b6e839f |
ring-buffer: Validate boot range memory events
Make sure all the events in each of the sub-buffers that were mapped in a memory region are valid. This moves the code that walks the buffers for time-stamp validation out of the CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS ifdef block and is used to validate the content. Only the ring buffer event meta data and time stamps are checked and not the data load. This also has a second purpose. The buffer_page structure that points to the data sub-buffers has accounting that keeps track of the number of events that are on the sub-buffer. This updates that counter as well. That counter is used in reading the buffer and knowing if the ring buffer is empty or not. Link: https://lkml.kernel.org/r/20240612232026.172503570@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
c76883f18e |
ring-buffer: Add test if range of boot buffer is valid
Add a test against the ring buffer memory range to see if it has valid data. The ring_buffer_meta structure is given a new field called "first_buffer" which holds the address of the first sub-buffer. This is used to both determine if the other fields are valid as well as finding the offset between the old addresses of the sub-buffer from the previous boot to the new addresses of the current boot. Since the values for nr_subbufs and subbuf_size is to be the same, check if the values in the meta page match the values calculated. Take the range of the first_buffer and the total size of all the buffers and make sure the saved head_buffer and commit_buffer fall in the range. Iterate through all the sub-buffers to make sure that the values in the sub-buffer "commit" field (the field that holds the amount of data on the sub-buffer) is within the end of the sub-buffer. Also check the index array to make sure that all the indexes are within nr_subbufs. Link: https://lkml.kernel.org/r/20240612232026.013843655@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
950032ffce |
ring-buffer: Add output of ring buffer meta page
Add a buffer_meta per-cpu file for the trace instance that is mapped to boot memory. This shows the current meta-data and can be used by user space tools to record off the current mappings to help reconstruct the ring buffer after a reboot. It does not expose any virtual addresses, just indexes into the sub-buffer pages. Link: https://lkml.kernel.org/r/20240612232025.854471446@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
b14d032973 |
ring-buffer: Add ring_buffer_meta data
Populate the ring_buffer_meta array. It holds the pointer to the head_buffer (next to read), the commit_buffer (next to write) the size of the sub-buffers, number of sub-buffers and an array that keeps track of the order of the sub-buffers. This information will be stored in the persistent memory to help on reboot to reconstruct the ring buffer. Link: https://lkml.kernel.org/r/20240612232025.530733577@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
be68d63a13 |
ring-buffer: Add ring_buffer_alloc_range()
In preparation to allowing the trace ring buffer to be allocated in a range of memory that is persistent across reboots, add ring_buffer_alloc_range(). It takes a contiguous range of memory and will split it up evenly for the per CPU ring buffers. If there's not enough memory to handle all CPUs with the minimum size, it will fail to allocate the ring buffer. Link: https://lkml.kernel.org/r/20240612232025.363998725@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
dd4900d94f |
ring-buffer: Allow mapped field to be set without mapping
In preparation for having the ring buffer mapped to a dedicated location, which will have the same restrictions as user space memory mapped buffers, allow it to use the "mapped" field of the ring_buffer_per_cpu structure without having the user space meta page mapping. When this starts using the mapped field, it will need to handle adding a user space mapping (and removing it) from a ring buffer that is using a dedicated memory range. Link: https://lkml.kernel.org/r/20240612232025.190908567@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineeth Pillai <vineeth@bitbyteword.org> Cc: Youssef Esmat <youssefesmat@google.com> Cc: Beau Belgrave <beaub@linux.microsoft.com> Cc: Alexander Graf <graf@amazon.com> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Ross Zwisler <zwisler@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
c2274b908d |
ring-buffer: Fix a race between readers and resize checks
The reader code in rb_get_reader_page() swaps a new reader page into the ring buffer by doing cmpxchg on old->list.prev->next to point it to the new page. Following that, if the operation is successful, old->list.next->prev gets updated too. This means the underlying doubly-linked list is temporarily inconsistent, page->prev->next or page->next->prev might not be equal back to page for some page in the ring buffer. The resize operation in ring_buffer_resize() can be invoked in parallel. It calls rb_check_pages() which can detect the described inconsistency and stop further tracing: [ 190.271762] ------------[ cut here ]------------ [ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0 [ 190.271789] Modules linked in: [...] [ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1 [ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f [ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014 [ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0 [ 190.272023] Code: [...] [ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206 [ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80 [ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700 [ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000 [ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720 [ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000 [ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000 [ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0 [ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 190.272077] Call Trace: [ 190.272098] <TASK> [ 190.272189] ring_buffer_resize+0x2ab/0x460 [ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0 [ 190.272206] tracing_resize_ring_buffer+0x65/0x90 [ 190.272216] tracing_entries_write+0x74/0xc0 [ 190.272225] vfs_write+0xf5/0x420 [ 190.272248] ksys_write+0x67/0xe0 [ 190.272256] do_syscall_64+0x82/0x170 [ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 190.272373] RIP: 0033:0x7f1bd657d263 [ 190.272381] Code: [...] [ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263 [ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001 [ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000 [ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500 [ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002 [ 190.272412] </TASK> [ 190.272414] ---[ end trace 0000000000000000 ]--- Note that ring_buffer_resize() calls rb_check_pages() only if the parent trace_buffer has recording disabled. Recent commit |
|
|
|
ea70a9628e |
ring-buffer: Correct stale comments related to non-consuming readers
Adjust the following code documentation: * Kernel-doc comments for ring_buffer_read_prepare() and ring_buffer_read_finish() mention that recording to the ring buffer is disabled when the read is active. Remove mention of this restriction because it was already lifted in commit |
|
|
|
b9c6820f02 |
ring-buffer: Add cast to unsigned long addr passed to virt_to_page()
The sub-buffer pages are held in an unsigned long array, and when it is
passed to virt_to_page() a cast is needed.
Link: https://lore.kernel.org/all/20240515124808.06279d04@canb.auug.org.au/
Link: https://lore.kernel.org/linux-trace-kernel/20240515010558.4abaefdd@rorschach.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
|
|
|
fe832be05a |
ring-buffer: Have mmapped ring buffer keep track of missed events
While testing libtracefs on the mmapped ring buffer, the test that checks if missed events are accounted for failed when using the mapped buffer. This is because the mapped page does not update the missed events that were dropped because the writer filled up the ring buffer before the reader could catch it. Add the missed events to the reader page/sub-buffer when the IOCTL is done and a new reader page is acquired. Note that all accesses to the reader_page via rb_page_commit() had to be switched to rb_page_size(), and rb_page_size() which was just a copy of rb_page_commit() but now it masks out the RB_MISSED bits. This is needed as the mapped reader page is still active in the ring buffer code and where it reads the commit field of the bpage for the size, it now must mask it otherwise the missed bits that are now set will corrupt the size returned. Link: https://lore.kernel.org/linux-trace-kernel/20240312175405.12fb6726@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
117c39200d |
ring-buffer: Introducing ring-buffer mapping functions
In preparation for allowing the user-space to map a ring-buffer, add
a set of mapping functions:
ring_buffer_{map,unmap}()
And controls on the ring-buffer:
ring_buffer_map_get_reader() /* swap reader and head */
Mapping the ring-buffer also involves:
A unique ID for each subbuf of the ring-buffer, currently they are
only identified through their in-kernel VA.
A meta-page, where are stored ring-buffer statistics and a
description for the current reader
The linear mapping exposes the meta-page, and each subbuf of the
ring-buffer, ordered following their unique ID, assigned during the
first mapping.
Once mapped, no subbuf can get in or out of the ring-buffer: the buffer
size will remain unmodified and the splice enabling functions will in
reality simply memcpy the data instead of swapping subbufs.
Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-3-vdonnefort@google.com
CC: <linux-mm@kvack.org>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
|
|
c09d4167b5 |
ring-buffer: Allocate sub-buffers with __GFP_COMP
In preparation for the ring-buffer memory mapping, allocate compound pages for the ring-buffer sub-buffers to enable us to map them to user-space with vm_insert_pages(). Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-2-vdonnefort@google.com Acked-by: David Hildenbrand <david@redhat.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
ffe3986fec |
ring-buffer: Only update pages_touched when a new page is touched
The "buffer_percent" logic that is used by the ring buffer splice code to
only wake up the tasks when there's no data after the buffer is filled to
the percentage of the "buffer_percent" file is dependent on three
variables that determine the amount of data that is in the ring buffer:
1) pages_read - incremented whenever a new sub-buffer is consumed
2) pages_lost - incremented every time a writer overwrites a sub-buffer
3) pages_touched - incremented when a write goes to a new sub-buffer
The percentage is the calculation of:
(pages_touched - (pages_lost + pages_read)) / nr_pages
Basically, the amount of data is the total number of sub-bufs that have been
touched, minus the number of sub-bufs lost and sub-bufs consumed. This is
divided by the total count to give the buffer percentage. When the
percentage is greater than the value in the "buffer_percent" file, it
wakes up splice readers waiting for that amount.
It was observed that over time, the amount read from the splice was
constantly decreasing the longer the trace was running. That is, if one
asked for 60%, it would read over 60% when it first starts tracing, but
then it would be woken up at under 60% and would slowly decrease the
amount of data read after being woken up, where the amount becomes much
less than the buffer percent.
This was due to an accounting of the pages_touched incrementation. This
value is incremented whenever a writer transfers to a new sub-buffer. But
the place where it was incremented was incorrect. If a writer overflowed
the current sub-buffer it would go to the next one. If it gets preempted
by an interrupt at that time, and the interrupt performs a trace, it too
will end up going to the next sub-buffer. But only one should increment
the counter. Unfortunately, that was not the case.
Change the cmpxchg() that does the real switch of the tail-page into a
try_cmpxchg(), and on success, perform the increment of pages_touched. This
will only increment the counter once for when the writer moves to a new
sub-buffer, and not when there's a race and is incremented for when a
writer and its preempting writer both move to the same new sub-buffer.
Link: https://lore.kernel.org/linux-trace-kernel/20240409151309.0d0e5056@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
|
|
|
b70f293824 |
ring-buffer: Make wake once of ring_buffer_wait() more robust
The default behavior of ring_buffer_wait() when passed a NULL "cond"
parameter is to exit the function the first time it is woken up. The
current implementation uses a counter that starts at zero and when it is
greater than one it exits the wait_event_interruptible().
But this relies on the internal working of wait_event_interruptible() as
that code basically has:
if (cond)
return;
prepare_to_wait();
if (!cond)
schedule();
finish_wait();
That is, cond is called twice before it sleeps. The default cond of
ring_buffer_wait() needs to account for that and wait for its counter to
increment twice before exiting.
Instead, use the seq/atomic_inc logic that is used by the tracing code
that calls this function. Add an atomic_t seq to rb_irq_work and when cond
is NULL, have the default callback take a descriptor as its data that
holds the rbwork and the value of the seq when it started.
The wakeups will now increment the rbwork->seq and the cond callback will
simply check if that number is different, and no longer have to rely on
the implementation of wait_event_interruptible().
Link: https://lore.kernel.org/linux-trace-kernel/20240315063115.6cb5d205@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
|
|
|
f1e30cb636 |
ring-buffer: use READ_ONCE() to read cpu_buffer->commit_page in concurrent environment
In function ring_buffer_iter_empty(), cpu_buffer->commit_page is read while other threads may change it. It may cause the time_stamp that read in the next line come from a different page. Use READ_ONCE() to avoid having to reason about compiler optimizations now and in future. Link: https://lore.kernel.org/linux-trace-kernel/tencent_DFF7D3561A0686B5E8FC079150A02505180A@qq.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: linke li <lilinke99@qq.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
6b76323e5a |
ring-buffer: Zero ring-buffer sub-buffers
In preparation for the ring-buffer memory mapping where each subbuf will be accessible to user-space, zero all the page allocations. Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-2-vdonnefort@google.com Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
|
|
|
63bd30f249 |
Tracing/ring-buffer fixes for 6.8 (to be applied in 6.9-rc):
- Do not update shortest_full in rb_watermark_hit() if the watermark is hit. The shortest_full field was being updated regardless if the task was going to wait or not. If the watermark is hit, then the task is not going to wait, so do not update the shortest_full field (used by the waker). - Update shortest_full field before setting the full_waiters_pending flag In the poll logic, the full_waiters_pending flag was being set before the shortest_full field was set. If the full_waiters_pending flag is set, writers will check the shortest_full field which has the least percentage of data that the ring buffer needs to be filled before waking up. The writer will check shortest_full if full_waiters_pending is set, and if the ring buffer percentage filled is greater than shortest full, then it will call the irq_work to wake up the waiters. The problem was that the poll logic set the full_waiters_pending flag before updating shortest_full, which when zero will always trigger the writer to call the irq_work to wake up the waiters. The irq_work will reset the shortest_full field back to zero as the woken waiters is suppose to reset it. - There's some optimized logic in the rb_watermark_hit() that is used in ring_buffer_wait(). Use that helper function in the poll logic as well. - Restructure ring_buffer_wait() to use wait_event_interruptible() The logic to wake up pending readers when the file descriptor is closed is racy. Restructure ring_buffer_wait() to allow callers to pass in conditions besides the ring buffer having enough data in it by using wait_event_interruptible(). - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its own conditions to exit the wait loop. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfH6MRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qtlwAP9ZoSIkvw2MVu7FclgAguaX2CaylGEw sv0wZaCy1kgAPgD8CFhezZcHrt/RwJibpMxVnUs+DDqYnGdJsHYLihlbWgg= =99FG -----END PGP SIGNATURE----- Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Do not update shortest_full in rb_watermark_hit() if the watermark is hit. The shortest_full field was being updated regardless if the task was going to wait or not. If the watermark is hit, then the task is not going to wait, so do not update the shortest_full field (used by the waker). - Update shortest_full field before setting the full_waiters_pending flag In the poll logic, the full_waiters_pending flag was being set before the shortest_full field was set. If the full_waiters_pending flag is set, writers will check the shortest_full field which has the least percentage of data that the ring buffer needs to be filled before waking up. The writer will check shortest_full if full_waiters_pending is set, and if the ring buffer percentage filled is greater than shortest full, then it will call the irq_work to wake up the waiters. The problem was that the poll logic set the full_waiters_pending flag before updating shortest_full, which when zero will always trigger the writer to call the irq_work to wake up the waiters. The irq_work will reset the shortest_full field back to zero as the woken waiters is suppose to reset it. - There's some optimized logic in the rb_watermark_hit() that is used in ring_buffer_wait(). Use that helper function in the poll logic as well. - Restructure ring_buffer_wait() to use wait_event_interruptible() The logic to wake up pending readers when the file descriptor is closed is racy. Restructure ring_buffer_wait() to allow callers to pass in conditions besides the ring buffer having enough data in it by using wait_event_interruptible(). - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its own conditions to exit the wait loop. * tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/ring-buffer: Fix wait_on_pipe() race ring-buffer: Use wait_event_interruptible() in ring_buffer_wait() ring-buffer: Reuse rb_watermark_hit() for the poll logic ring-buffer: Fix full_waiters_pending in poll ring-buffer: Do not set shortest_full when full target is hit |
|
|
|
2aa043a55b |
tracing/ring-buffer: Fix wait_on_pipe() race
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.
CPU 0 CPU 1
----- -----
wait_index++;
index = wait_index;
ring_buffer_wake_waiters();
wait_on_pipe()
ring_buffer_wait();
The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:
prepare_to_wait();
if (!condition)
schedule();
Where the missing condition check is the iter->wait_index update.
Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.
In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.
Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.
Have the wait_on_pipe() condition callback also check the closed field.
Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.
Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes:
|