Commit Graph

24220 Commits

Author SHA1 Message Date
Thomas Prescher c34b3eceea mm: hugetlb: improve parallel huge page allocation time
Patch series "Add a command line option that enables control of how many
threads should be used to allocate huge pages", v2.

Allocating huge pages can take a very long time on servers with terabytes
of memory even when they are allocated at boot time where the allocation
happens in parallel.

Before this series, the kernel used a hard coded value of 2 threads per
NUMA node for these allocations.  This value might have been good enough
in the past but it is not sufficient to fully utilize newer systems.

This series changes the default so the kernel uses 25% of the available
hardware threads for these allocations.  In addition, we allow the user
that wish to micro-optimize the allocation time to override this value via
a new kernel parameter.

We tested this on 2 generations of Xeon CPUs and the results show a big
improvement of the overall allocation time.

+-----------------------+-------+-------+-------+-------+-------+
| threads               |   8   |   16  |   32  |   64  |   128 |
+-----------------------+-------+-------+-------+-------+-------+
| skylake      144 cpus |   44s |   22s |   16s |   19s |   20s |
| cascade lake 192 cpus |   39s |   20s |   11s |   10s |    9s |
+-----------------------+-------+-------+-------+-------+-------+

On skylake, we see an improvment of 2.75x when using 32 threads, on
cascade lake we can get even better at 4.3x when we use 128 threads.

This speedup is quite significant and users of large machines like these
should have the option to make the machines boot as fast as possible.


This patch (of 3):

Before this patch, the kernel currently used a hard coded value of 2
threads per NUMA node for these allocations.

This patch changes this policy and the kernel now uses 25% of the
available hardware threads for the allocations.

Link: https://lkml.kernel.org/r/20250227-hugepage-parameter-v2-0-7db8c6dc0453@cyberus-technology.de
Link: https://lkml.kernel.org/r/20250227-hugepage-parameter-v2-1-7db8c6dc0453@cyberus-technology.de
Signed-off-by: Thomas Prescher <thomas.prescher@cyberus-technology.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:36 -07:00
Shakeel Butt 3dc30ef64b memcg: bypass root memcg check for skmem charging
The root memcg is never associated with a socket in mem_cgroup_sk_alloc,
so there is no need to check if the given memcg is root for the skmem
charging code path.

Link: https://lkml.kernel.org/r/20250228022354.2624249-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:36 -07:00
Shakeel Butt 0e2759afca page_counter: track failcnt only for legacy cgroups
Currently page_counter tracks failcnt for counters used by v1 and v2
controllers.  However failcnt is only exported for v1 deployment and thus
there is no need to maintain it in v2.  The oom report does expose failcnt
for memory and swap in v2 but v2 already maintains MEMCG_MAX and
MEMCG_SWAP_MAX event counters which can be used.

Link: https://lkml.kernel.org/r/20250228075808.207484-3-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:35 -07:00
Shakeel Butt 645207a670 memcg: don't call propagate_protected_usage() for v1
Patch series "page_counter cleanup and size reduction".

Commit c6f53ed8f2 ("mm, memcg: cg2 memory{.swap,}.peak write handlers")
accidently increased the size of struct page_counter.  This series
rearrange the fields to reduce its size and also has some cleanups.


This patch (of 3):

Memcg-v1 does not support memory protection (min/low) and thus there is no
need to track protected memory usage for it.

Link: https://lkml.kernel.org/r/20250228075808.207484-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20250228075808.207484-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:35 -07:00
Brendan Jackman a14efee047 mm/page_alloc: clarify should_claim_block() commentary
There's lots of text here but it's a little hard to follow, this is an
attempt to break it up and align its structure more closely with the code.

Reword the top-level function comment to just explain what question the
function answers from the point of view of the caller.

Break up the internal logic into different sections that can have their
own commentary describing why that part of the rationale is present.

Note the page_group_by_mobility_disabled logic is not explained in the
commentary, that is outside the scope of this patch...

Link: https://lkml.kernel.org/r/20250228-clarify-steal-v4-2-cb2ef1a4e610@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:35 -07:00
Brendan Jackman e47f1f56dd mm/page_alloc: clarify terminology in migratetype fallback code
Patch series "mm/page_alloc: Some clarifications for migratetype
fallback", v4.

A couple of patches to try and make the code easier to follow.


This patch (of 2):

This code is rather confusing because:

 1. "Steal" is sometimes used to refer to the general concept of
    allocating from a from a block of a fallback migratetype
    (steal_suitable_fallback()) but sometimes it refers specifically to
    converting a whole block's migratetype (can_steal_fallback()).

 2. can_steal_fallback() sounds as though it's answering the question "am
    I functionally permitted to allocate from that other type" but in
    fact it is encoding a heuristic preference.

 3. The same piece of data has different names in different places:
    can_steal vs whole_block. This reinforces point 2 because it looks
    like the different names reflect a shift in intent from "am I
    allowed to steal" to "do I want to steal", but no such shift exists.

Fix 1. by avoiding the term "steal" in ambiguous contexts. Start using
the term "claim" to refer to the special case of stealing the entire
block.

Fix 2. by using "should" instead of "can", and also rename its
parameters and add some commentary to make it more explicit what they
mean.

Fix 3. by adopting the new "claim" terminology universally for this
set of variables.

Link: https://lkml.kernel.org/r/20250228-clarify-steal-v4-0-cb2ef1a4e610@google.com
Link: https://lkml.kernel.org/r/20250228-clarify-steal-v4-1-cb2ef1a4e610@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:35 -07:00
SeongJae Park 1077605396 mm/damon/sysfs: implement a command to update auto-tuned monitoring intervals
DAMON kernel API callers can show auto-tuned sampling and aggregation
intervals from the monmitoring attributes data structure.  That can be
useful for debugging or tuning of the feature.  DAMON user-space ABI users
has no way to see that, though.  Implement a new DAMON sysfs interface
command, namely 'update_tuned_intervals', for the purpose.  If the command
is written to the kdamond state file, the tuned sampling and aggregation
intervals will be updated to the corresponding sysfs interface files.

Link: https://lkml.kernel.org/r/20250303221726.484227-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:33 -07:00
SeongJae Park 0622c68d0a mm/damon/sysfs: commit intervals tuning goal
Connect DAMON sysfs interface for sampling and aggregation intervals
auto-tuning with DAMON core API, so that users can really use the feature
using the sysfs files.

Link: https://lkml.kernel.org/r/20250303221726.484227-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:33 -07:00
SeongJae Park 8fbbcbeaaf mm/damon/sysfs: implement intervals tuning goal directory
Implement DAMON sysfs interface directory and its files for setting DAMON
sampling and aggregation intervals auto-tuning goal.

Link: https://lkml.kernel.org/r/20250303221726.484227-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:33 -07:00
SeongJae Park f04b0fedbe mm/damon/core: implement intervals auto-tuning
Implement the DAMON sampling and aggregation intervals auto-tuning
mechanism as briefly described on 'struct damon_intervals_goal'.  The core
part for deciding the direction and amount of the changes is implemented
reusing the feedback loop function which is being used for DAMOS quotas
auto-tuning.  Unlike the DAMOS quotas auto-tuning use case, limit the
maximum decreasing amount after the adjustment to 50% of the current
value, though.  This is because the intervals have no good merits at rapid
reductions since it could unnecessarily increase the monitoring overhead.

Link: https://lkml.kernel.org/r/20250303221726.484227-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:32 -07:00
SeongJae Park 1eb3471bf5 mm/damon: add data structure for monitoring intervals auto-tuning
Patch series "mm/damon: auto-tune aggregation interval".

DAMON requires time-consuming and repetitive aggregation interval tuning. 
Introduce a feature for automating it using a feedback loop that aims an
amount of observed access events, like auto-exposing cameras.

Background: Access Frequency Monitoring and Aggregation Interval
================================================================

DAMON checks if each memory element (damon_region) is accessed or not for
every user-specified time interval called 'sampling interval'.  It
aggregates the check intervals on per-element counter called
'nr_accesses'.  DAMON users can read the counters to get the access
temperature of a given element.  The counters are reset for every another
user-specified time interval called 'aggregation interval'.

This can be illustrated as DAMON continuously capturing a snapshot of
access events that happen and captured within the last aggregation
interval.  This implies the aggregation interval plays a key role for the
quality of the snapshots, like the camera exposure time.  If it is too
short, the amount of access events that happened and captured for each
snapshot is small, so each snapshot will show no many interesting things
but just a cold and dark world with hopefuly one pale blue dot or two.  If
it is too long, too many events are aggregated in a single shot, so each
snapshot will look like world of flames, or Muspellheim.  It will be
difficult to find practical insights in both cases.

Problem: Time Consuming and Repetitive Tuning
=============================================

The appropriate length of the aggregation interval depends on how
frequently the system and workloads are making access events that DAMON
can observe.  Hence, users have to tune the interval with excessive amount
of tests with the target system and workloads.  If the system and
workloads are changed, the tuning should be done again.  If the
characteristic of the workloads is dynamic, it becomes more challenging. 
It is therefore time-consuming and repetitive.

The tuning challenge mainly stems from the wrong question.  It is not
asking users what quality of monitoring results they want, but how DAMON
should operate for their hidden goal.  To make the right answer, users
need to fully understand DAMON's mechanisms and the characteristics of
their workloads.  Users shouldn't be asked to understand the underlying
mechanism.  Understanding the characteristics of the workloads shouldn't
be the role of users but DAMON.

Aim-oriented Feedback-driven Auto-Tuning
=========================================

Fortunately, the appropriate length of the aggregation interval can be
inferred using a feedback loop.  If the current snapshots are showing no
much intresting information, in other words, if it shows only rare access
events, increasing the aggregation interval helps, and vice versa.  We
tested this theory on a few real-world workloads, and documented one of
the experience with an official DAMON monitoring intervals tuning
guideline.  Since it is a simple theory that requires repeatable tries, it
can be a good job for machines.

Based on the guideline's theory, we design an automation of aggregation
interval tuning, in a way similar to that of camera auto-exposure feature.
It defines the amount of interesting information as the ratio of
DAMON-observed access events that DAMON actually observed to theoretical
maximum amount of it within each snapshot.  Events are accounted in byte
and sampling attempts granularity.  For example, let's say there is a
region of 'X' bytes size.  DAMON tried access check smapling for the
region 'Y' times in total for a given aggregation.  Among the 'Y'
attempts, 'Z' times it shown positive results.  Then, the theoritical
maximum number of access events for the region is 'X * Y'.  And the number
of access events that DAMON has observed for the region is 'X * Z'.  The
abount of the interesting information is '(X * Z / X * Y)'.  Note that
each snapshot would have multiple regions.

Users can set an arbitrary value of the ratio as their target.  Once the
target is set, the automation periodically measures the current value of
the ratio and increase or decrease the aggregation interval if the ratio
value is lower or higher than the target.  The amount of the change is
proportion to the distance between the current adn the target values.

To avoid auto-tuning goes too long way, let users set the minimum and the
maximum aggregation interval times.  Changing only aggregation interval
while sampling interval is kept makes the maximum level of access
frequency in each snapshot, or discernment of regions inconsistent.  Also,
unnecessarily short sampling interval causes meaningless monitoring
overhed.  The automation therefore adjusts the sampling interval together
with aggregation interval, while keeping the ratio between the two
intervals.  Users can set the ratio, or the discernment.

Discussion
==========

The modified question (aimed amount of access events, or lights, in each
snapshot) is easy to answer by both the users and the kernel.  If users
are interested in finding more cold regions, the value should be lower,
and vice versa.  If users have no idea, kernel can suggest a fair default
value based on some theories and experiments.  For example, based on the
Pareto principle (80/20 rule), we could expect 20% target ratio will
capture 80% of real access events.  Since 80% might be too high, applying
the rule once again, 4% (20% * 20%) may capture about 56% (80% * 80%) of
real access events.

Sampling to aggregation intervals ratio and min/max aggregation intervals
are also arguably easy to answer.  What users want is discernment of
regions for efficient system operation, for examples, X amount of colder
regions or Y amount of warmer regions, not exactly how many times each
cache line is accessed in nanoseconds degree.  The appropriate min/max
aggregation interval can relatively naively set, and may better to set for
aimed monitoring overhead.  Since sampling interval is directly deciding
the overhead, setting it based on the sampling interval can be easy.  With
my experiences, I'd argue the intervals ratio 0.05, and 5 milliseconds to
20 seconds sampling interval range (100 milliseconds to 400 seconds
aggregation interval) can be a good default suggestion.

Evaluation
==========

On a machine running a real world server workload, I ran DAMON to monitor
its physical address space for about 23 hours, with this feature turned
on.  We set it to tune sampling interval in a range from 5 milliseconds to
10 seconds, aiming 4 % DAMON-observed access ratio per three aggregation
intervals.  The exact command I used is as below.

    damo start --monitoring_intervals_goal 4% 3 5ms 10s --damos_action stat

During the test run, DAMON continuously updated sampling and aggregation
intervals as designed, within the given range.  For all the time, DAMON
was able to find the intervals that meets the target access events ratio
in the given intervals range (sampling interval between 5 milliseconds and
10 seconds).

For most of the time, tuned sampling interval was converged in 300-400
milliseconds.  It made only small amount of changes within the range.  The
average of the tuned sampling interval during the test was about 380
milliseconds.

The workload periodically gets less load and decreases its CPU usage. 
Presumably this also caused it making less memory access events. 
Reactively to such event,s DAMON also increased the intervals as expected.
It was still able to find the optimum interval that satisfying the target
access ratio within the given intervals range.  Usually it was converged
to about 5 seconds.  Once the workload gets normal amount of load again,
DAMON reactively reduced the intervals to the normal range.

I collected and visualized DAMON's monitoring results on the server a few
times.  Every time the visualized access pattern looked not biased to only
cold or hot pages but diverse and balanced.  Let me show some of the
snapshots that I collected at the nearly end of the test (after about 23
hours have passed since starting DAMON on the server).

The recency histogram looks as below.  Please note that this visualization
shows only a very coarse grained information.  For more details about the
visualization format, please refer to DAMON user-space tool
documentation[1].

    # ./damo report access --style recency-sz-hist --tried_regions_of 0 0 0 --access_rate 0 0
    <last accessed time (us)> <total size>
    [-19 h 7 m 45.514 s, -17 h 12 m 58.963 s)  6.198 GiB  |****                |
    [-17 h 12 m 58.963 s, -15 h 18 m 12.412 s) 0 B        |                    |
    [-15 h 18 m 12.412 s, -13 h 23 m 25.860 s) 0 B        |                    |
    [-13 h 23 m 25.860 s, -11 h 28 m 39.309 s) 0 B        |                    |
    [-11 h 28 m 39.309 s, -9 h 33 m 52.757 s)  0 B        |                    |
    [-9 h 33 m 52.757 s, -7 h 39 m 6.206 s)    0 B        |                    |
    [-7 h 39 m 6.206 s, -5 h 44 m 19.654 s)    0 B        |                    |
    [-5 h 44 m 19.654 s, -3 h 49 m 33.103 s)   0 B        |                    |
    [-3 h 49 m 33.103 s, -1 h 54 m 46.551 s)   0 B        |                    |
    [-1 h 54 m 46.551 s, -0 ns)                16.967 GiB |*********           |
    [-0 ns, --6886551440000 ns)                38.835 GiB |********************|
    memory bw estimate: 9.425 GiB per second
    total size: 62.000 GiB

It shows about 38 GiB of memory was accessed at least once within last
aggregation interval (given ~300 milliseconds tuned sampling interval,
this is about six seconds).  This is about 61 % of the total memory.  In
other words, DAMON found warmest 61 % memory of the system.  The number is
particularly interesting given our Pareto principle based theory for the
tuning goal value.  We set it as 20 % of 20 % (4 %), thinking it would
capture 80 % of 80 % (64 %) real access events.  And it foudn 61 % hot
memory, or working set.  Nevertheless, to make the theory clearer, much
more discussion and tests would be needed.  At the moment, nonetheless, we
can say making the target value higher helps finding more hot memory
regions.

The histogram also shows an amount of cold memory.  About 17 GiB memory of
the system has not accessed at least for last aggregation interval (about
six seconds), and at most for about last two hours.  The real longest
unaccessed time of the 17 GiB memory was about 19 minutes, though.  This
is a limitation of this visualization format.

It further found very cold 6 GiB memory.  It has not accessed at least for
last 17 hours and at most 19 hours.

What about hot memory distribution?  To see this, I capture and visualize
the snapshot in access temperature histogram.  Again, please refer to the
DAMON user-space tool documentation[1] for the format and what access
temperature mean.  Both the visualization and metric shows only very
coarse grained and limited information.  The resulting histogram look like
below.

    # ./damo report access --style temperature-sz-hist --tried_regions_of 0 0 0
    <temperature> <total size>
    [-6,840,763,776,000, -5,501,580,939,800) 6.198 GiB  |***                 |
    [-5,501,580,939,800, -4,162,398,103,600) 0 B        |                    |
    [-4,162,398,103,600, -2,823,215,267,400) 0 B        |                    |
    [-2,823,215,267,400, -1,484,032,431,200) 0 B        |                    |
    [-1,484,032,431,200, -144,849,595,000)   0 B        |                    |
    [-144,849,595,000, 1,194,333,241,200)    55.802 GiB |********************|
    [1,194,333,241,200, 2,533,516,077,400)   4.000 KiB  |*                   |
    [2,533,516,077,400, 3,872,698,913,600)   4.000 KiB  |*                   |
    [3,872,698,913,600, 5,211,881,749,800)   8.000 KiB  |*                   |
    [5,211,881,749,800, 6,551,064,586,000)   12.000 KiB |*                   |
    [6,551,064,586,000, 7,890,247,422,200)   4.000 KiB  |*                   |
    memory bw estimate: 5.178 GiB per second
    total size: 62.000 GiB

We can see most of the memory is in similar access temperature range, and
definitely some pages are extremely hot.

To see the picture in more detail, let's capture and visualize the
snapshot per DAMON-region, sorted by their access temperature.  The total
number of the regions was about 300.  Due to the limited space, I'm
showing only a few parts of the output here.

    # ./damo report access --style hot --tried_regions_of 0 0 0
    heatmap: 00000000888888889999999888888888888888888888888888888888888888888888888888888888
    # min/max temperatures: -6,827,258,184,000, 17,589,052,500, column size: 793.600 MiB
     |999999999999999999999999999999999999999| 4.000 KiB   access 100 % 18 h 9 m 43.918 s
     |999999999999999999999999999999999999999| 8.000 KiB   access 100 % 17 h 56 m 5.351 s
     |999999999999999999999999999999999999999| 4.000 KiB   access 100 % 15 h 24 m 19.634 s
     |999999999999999999999999999999999999999| 4.000 KiB   access 100 % 14 h 10 m 55.606 s
     |999999999999999999999999999999999999999| 4.000 KiB   access 100 % 11 h 34 m 18.993 s
    [...]
               |99999999999999999999999999999| 8.000 KiB   access 100 % 1 m 27.945 s
               |11111111111111111111111111111| 80.000 KiB  access 15 %  1 m 21.180 s
               |00000000000000000000000000000| 24.000 KiB  access 5 %   1 m 21.180 s
               |00000000000000000000000000000| 5.919 GiB   access 10 %  1 m 14.415 s
               |99999999999999999999999999999| 12.000 KiB  access 100 % 1 m 7.650 s
    [...]
                                           |0| 4.000 KiB   access 5 %   0 ns
                                           |0| 12.000 KiB  access 5 %   0 ns
                                           |0| 188.000 KiB access 0 %   0 ns
                                           |0| 24.000 KiB  access 0 %   0 ns
                                           |0| 48.000 KiB  access 0 %   0 ns
    [...]
             |0000000000000000000000000000000| 8.000 KiB   access 0 %   6 m 45.901 s
            |00000000000000000000000000000000| 36.000 KiB  access 0 %   7 m 26.491 s
            |00000000000000000000000000000000| 4.000 KiB   access 0 %   12 m 37.682 s
           |000000000000000000000000000000000| 8.000 KiB   access 0 %   18 m 9.168 s
           |000000000000000000000000000000000| 16.000 KiB  access 0 %   19 m 3.288 s
    |0000000000000000000000000000000000000000| 6.198 GiB   access 0 %   18 h 57 m 52.582 s
    memory bw estimate: 8.798 GiB per second
    total size: 62.000 GiB

We can see DAMON found small and extremely hot regions that accessed for
all access check sampling (once per about 300 milliseconds) for more than
10 hours.  The access temperature rapidly decreases.  DAMON was also able
to find small and big regions that not accessed for up to about 19
minutes.  It even found an outlier cold region of 6 GiB that not accessed
for about 19 hours.  It is unclear what the outlier region is, as of this
writing.

For the testing, DAMON was consuming about 0.1% of single CPU time.  This
is again expected results, since DAMON was using about 370 milliseconds
sampling interval in most case.

    # ps -p $kdamond_pid -o %cpu
    %CPU
     0.1

I also ran similar tests against kernel build workload and an in-memory
cache workload benchmark[2].  Detialed results including tuned intervals
and captured access pattern were of course different sicne those depend on
the workloads.  But the auto-tuning feature was always working as expected
like the above results for the real world workload.

To wrap up, with intervals auto-tuning feature, DAMON was able to capture
access pattern snapshots of a quality on a real world server workload. 
The auto-tuning feature was able to adaptively react to the dynamic access
patterns of the workload and reliably provide consistent monitoring
results without manual human interventions.  Also, the auto-tuning made
DAMON consumes only necessary amount of resource for the required quality.

References
==========

[1] https://github.com/damonitor/damo/blob/next/USAGE.md#access-report-styles
[2] https://github.com/facebookresearch/DCPerf/blob/main/packages/tao_bench/README.md


This patch (of 8):

Add data structures for DAMON sampling and aggregation intervals automatic
tuning that aims specific amount of DAMON-observed access events per
snapshot.  In more detail, define the data structure for the tuning goal,
link it to the monitoring attributes data structure so that DAMON kernel
API callers can make the request, and update parameters setup DAMON
function to respect the new parameter.

Link: https://lkml.kernel.org/r/20250303221726.484227-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250303221726.484227-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:32 -07:00
Zeng Jingxiang b9585a3f3e mm/list_lru: make the case where mlru is NULL as unlikely
In the following memcg_list_lru_alloc() function, mlru here is almost
always NULL, so in most cases this should save a function call, mark mlru
as unlikely to optimize the code, and reusing the mlru for the next
attempt when the tree insertion fails.

        do {
                xas_lock_irqsave(&xas, flags);
                if (!xas_load(&xas) && !css_is_dying(&pos->css)) {
                        xas_store(&xas, mlru);
                        if (!xas_error(&xas))
                                mlru = NULL;
                }
                xas_unlock_irqrestore(&xas, flags);
        } while (xas_nomem(&xas, GFP_KERNEL));
>       if (mlru)
                kfree(mlru);

Link: https://lkml.kernel.org/r/20250227082223.1173847-1-jingxiangzeng.cas@gmail.com
Signed-off-by: Zeng Jingxiang <linuszeng@tencent.com>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202412290924.UTP7GH2Z-lkp@intel.com/
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Jingxiang Zeng <linuszeng@tencent.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:32 -07:00
Anshuman Khandual f9aad62200 mm: rename GENERIC_PTDUMP and PTDUMP_CORE
Platforms subscribe into generic ptdump implementation via GENERIC_PTDUMP.
But generic ptdump gets enabled via PTDUMP_CORE.  These configs
combination is confusing as they sound very similar and does not
differentiate between platform's feature subscription and feature
enablement for ptdump.  Rename the configs as ARCH_HAS_PTDUMP and PTDUMP
making it more clear and improve readability.

Link: https://lkml.kernel.org/r/20250226122404.1927473-6-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> (powerpc)
Acked-by: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Will Deacon <will@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Steven Price <steven.price@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:32 -07:00
Anshuman Khandual 3f54872454 mm: make DEBUG_WX depdendent on GENERIC_PTDUMP
DEBUG_WX selects PTDUMP_CORE without even ensuring that the given platform
implements GENERIC_PTDUMP.  This problem has been latent until now, as all
the platforms subscribing ARCH_HAS_DEBUG_WX also subscribe GENERIC_PTDUMP.

Link: https://lkml.kernel.org/r/20250226122404.1927473-5-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:31 -07:00
David Hildenbrand 720ba85040 mm/mmu_notifier: use MMU_NOTIFY_CLEAR in remove_device_exclusive_entry()
Let's limit the use of MMU_NOTIFY_EXCLUSIVE to the case where we convert a
present PTE to device-exclusive.  For the other case, we can simply use
MMU_NOTIFY_CLEAR, because it really is clearing the device-exclusive entry
first, to then install the present entry.

Update the documentation of MMU_NOTIFY_EXCLUSIVE, to document the single
use case more thoroughly.

If ever required, we could add a separate MMU_NOTIFY_CLEAR_EXCLUSIVE; for
now using MMU_NOTIFY_CLEAR seems to be sufficient.

Link: https://lkml.kernel.org/r/20250226132257.2826043-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:30 -07:00
David Hildenbrand 2f95381f8a mm/memory: document restore_exclusive_pte()
Let's document how this function is to be used, and why the folio lock is
involved.

Link: https://lkml.kernel.org/r/20250226132257.2826043-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:30 -07:00
David Hildenbrand 248624f9c6 mm/memory: pass folio and pte to restore_exclusive_pte()
Let's pass the folio and the pte to restore_exclusive_pte(), so we can
avoid repeated page_folio() and ptep_get().  To do that, pass the pte to
try_restore_exclusive_pte() and use a folio in there already.

While at it, just avoid the "swp_entry_t entry" variable in
try_restore_exclusive_pte() and add a folio-locked check to
restore_exclusive_pte().

Link: https://lkml.kernel.org/r/20250226132257.2826043-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:30 -07:00
David Hildenbrand db0f6e674c mm/memory: remove PageAnonExclusive sanity-check in restore_exclusive_pte()
In commit b832a354d7 ("mm/memory: page_add_anon_rmap() ->
folio_add_anon_rmap_pte()") we accidentally changed the sanity check to
essentially ignore anonymous folio by mis-placing the "!" ...  but we
really always only get anonymous folios in restore_exclusive_pte().

However, in the meantime we removed the separate "writable
device-exclusive entries" and always detect if the PTE can be writable
using can_change_pte_writable() -- which also consults PageAnonExclusive.

So let's just get rid of this sanity check completely.

Link: https://lkml.kernel.org/r/20250226132257.2826043-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:29 -07:00
Matthew Wilcox (Oracle) 173a3dc051 mm: assert the folio is locked in folio_start_writeback()
The folio must be locked when we start writeback in order to prevent
writeback from being started twice on the same folio.  I don't expect this
to catch any problems, but it should be good documentation.

Link: https://lkml.kernel.org/r/20250226153614.3774896-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 00:05:29 -07:00
Brendan Jackman ebc29409c2 mm/page_alloc: warn on nr_reserved_highatomic underflow
As documented in the comment this underflow should not happen.  The
locking has indeed changed here since the comment was written, see the
migratetype hygiene patches[0].  However, those changes made the locking
_safer_, so the underflow _really_ shouldn't happen now.  So upgrade the
comment to a warning.

[0] https://lore.kernel.org/all/20240320180429.678181-7-hannes@cmpxchg.org/T/#m3da87e6cc3348a4640aa298137bc9f8f61b76c84

Link: https://lkml.kernel.org/r/20250225-warn-underflow-v1-1-3dc542941d3a@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:44 -07:00
Kairui Song b487a2da35 mm, swap: simplify folio swap allocation
With slot cache gone, clean up the allocation helpers even more. 
folio_alloc_swap will be the only entry for allocation and adding the
folio to swap cache (except suspend), making it opposite of
folio_free_swap.

Link: https://lkml.kernel.org/r/20250313165935.63303-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:44 -07:00
Kairui Song 0ff67f990b mm, swap: remove swap slot cache
Slot cache is no longer needed now, removing it and all related code.

- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:

                      Before (KB/s) (stdev)  After (KB/s) (stdev)
Random (4K):          424907.60 (24410.78)   414745.92  (34554.78)
Random (64K):         163308.82 (11635.72)   167314.50  (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)

The performance changes are below noise level.

- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:

                  Before (s) (stdev)  After (s) (stdev)
make -j96 (4K):   6445.69 (61.95)     6408.80 (69.46)
make -j96 (64K):  6841.71 (409.04)    6437.99 (435.55)

Similar to above, 64k mTHP case showed a slight improvement.

Link: https://lkml.kernel.org/r/20250313165935.63303-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:43 -07:00
Kairui Song 1b7e90020e mm, swap: use percpu cluster as allocation fast path
Current allocation workflow first traverses the plist with a global lock
held, after choosing a device, it uses the percpu cluster on that swap
device.  This commit moves the percpu cluster variable out of being tied
to individual swap devices, making it a global percpu variable, and will
be used directly for allocation as a fast path.

The global percpu cluster variable will never point to a HDD device, and
allocations on a HDD device are still globally serialized.

This improves the allocator performance and prepares for removal of the
slot cache in later commits.  There shouldn't be much observable behavior
change, except one thing: this changes how swap device allocation rotation
works.

Currently, each allocation will rotate the plist, and because of the
existence of slot cache (one order 0 allocation usually returns 64
entries), swap devices of the same priority are rotated for every 64 order
0 entries consumed.  High order allocations are different, they will
bypass the slot cache, and so swap device is rotated for every 16K, 32K,
or up to 2M allocation.

The rotation rule was never clearly defined or documented, it was changed
several times without mentioning.

After this commit, and once slot cache is gone in later commits, swap
device rotation will happen for every consumed cluster.  Ideally non-HDD
devices will be rotated if 2M space has been consumed for each order.
Fragmented clusters will rotate the device faster, which seems OK.  HDD
devices is rotated for every allocation regardless of the allocation
order, which should be OK too and trivial.

This commit also slightly changes allocation behaviour for slot cache.
The new added cluster allocation fast path may allocate entries from
different device to the slot cache, this is not observable from user
space, only impact performance very slightly, and slot cache will be just
gone in next commit, so this can be ignored.

Link: https://lkml.kernel.org/r/20250313165935.63303-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:43 -07:00
Kairui Song 280cfccaa2 mm, swap: don't update the counter up-front
The counter update before allocation design was useful to avoid
unnecessary scan when device is full, so it will abort early if the
counter indicates the device is full.  But that is an uncommon case, and
now scanning of a full device is very fast, so the up-front update is not
helpful any more.

Remove it and simplify the slot allocation logic.

Link: https://lkml.kernel.org/r/20250313165935.63303-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:43 -07:00
Kairui Song 78524b05f1 mm, swap: avoid redundant swap device pinning
Currently __read_swap_cache_async() has get/put_swap_device() calls to
increase/decrease a swap device reference to prevent swapoff.  While some
of its callers have already held the swap device reference, e.g in
do_swap_page() and shmem_swapin_folio() where __read_swap_cache_async()
will finally called.  Now there are only two callers not holding a swap
device reference, so make them hold a reference instead.  And drop the
get/put_swap_device calls in __read_swap_cache_async.  This should reduce
the overhead for swap in during page fault slightly.

Link: https://lkml.kernel.org/r/20250313165935.63303-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:43 -07:00
Kairui Song 3123fb0a18 mm, swap: drop the flag TTRS_DIRECT
This flag exists temporarily to allow the allocator to bypass the slot
cache during freeing, so reclaiming one slot will free the slot
immediately.

But now we have already removed slot cache usage on freeing, so this flag
has no effect now.

Link: https://lkml.kernel.org/r/20250313165935.63303-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:42 -07:00
Kairui Song fae8595505 mm, swap: avoid reclaiming irrelevant swap cache
Patch series "mm, swap: remove swap slot cache", v3.

Slot cache was initially introduced by commit 67afa38e01 ("mm/swap: add
cache for swap slots allocation") to reduce the lock contention of
si->lock.

Previous series "mm, swap: rework of swap allocator locks" [1] removed
swap slot cache for freeing path as freeing path no longer touches
si->lock in most cased.  Allocation path also have slight to none
contention on si->lock since that series, but slot cache still helps to
reduce other overheads, like counters and the plist.

This series removes the slot cache from allocation path too, by using the
cluster as allocation fast path and also reduce other overheads.

Now slot cache is completely gone, the code is much simplified without
obvious feature or performance change, also clean up related workaround. 
Also this should avoid other potential issues, e.g.  the long pinning of
swap slots: swap slot cache pins swap slots with HAS_CACHE, causing
reclaim or allocation fail to use these slots on scanning.

The only behavior change is the swap device allocation rotation mechanism,
as explained in the patch "mm, swap: use percpu cluster as allocation fast
path".

Test results are looking good after deleting the swap slot cache:

- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:

                      Before (KB/s) (stdev)  After (KB/s) (stdev)
Random (4K):          424907.60 (24410.78)   414745.92  (34554.78)
Random (64K):         163308.82 (11635.72)   167314.50  (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)

- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:

                  Before (s) (stdev)  After (s) (stdev)
make -j96 (4K):   6445.69 (61.95)     6408.80 (69.46)
make -j96 (64K):  6841.71 (409.04)    6437.99 (435.55)

The performance is unchanged, slightly better in some cases.

[1] https://lore.kernel.org/linux-mm/20250113175732.48099-1-ryncsn@gmail.com/


This patch (of 7):

Swap allocator will do swap cache reclaim to recycle HAS_CACHE slots for
allocation.  It initiates the reclaim from the offset to be reclaimed and
looks up the corresponding folio.  The lookup process is lockless, so it's
possible the folio will be removed from the swap cache and given a
different swap entry before the reclaim locks the folio.  If it happens,
the reclaim will end up reclaiming an irrelevant folio, and return wrong
return value.

This shouldn't cause any problem with correctness or stability, but it is
indeed confusing and unexpected, and will increase fragmentation, decrease
performance.

Fix this by checking whether the folio is still pointing to the offset the
allocator want to reclaim before reclaiming it.

Link: https://lkml.kernel.org/r/20250313165935.63303-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250313165935.63303-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:42 -07:00
Jane Chu 442b1eca22 mm: make page_mapped_in_vma() hugetlb walk aware
When a process consumes a UE in a page, the memory failure handler
attempts to collect information for a potential SIGBUS.  If the page is an
anonymous page, page_mapped_in_vma(page, vma) is invoked in order to

  1. retrieve the vaddr from the process' address space,

  2. verify that the vaddr is indeed mapped to the poisoned page,
     where 'page' is the precise small page with UE.

It's been observed that when injecting poison to a non-head subpage of an
anonymous hugetlb page, no SIGBUS shows up, while injecting to the head
page produces a SIGBUS.  The cause is that, though hugetlb_walk() returns
a valid pmd entry (on x86), but check_pte() detects mismatch between the
head page per the pmd and the input subpage.  Thus the vaddr is considered
not mapped to the subpage and the process is not collected for SIGBUS
purpose.  This is the calling stack:

      collect_procs_anon
        page_mapped_in_vma
          page_vma_mapped_walk
            hugetlb_walk
              huge_pte_lock
                check_pte

check_pte() header says that it
"check if [pvmw->pfn, @pvmw->pfn + @pvmw->nr_pages) is mapped at the @pvmw->pte"
but practically works only if pvmw->pfn is the head page pfn at pvmw->pte.
Hindsight acknowledging that some pvmw->pte could point to a hugepage of
some sort such that it makes sense to make check_pte() work for hugepage.

Link: https://lkml.kernel.org/r/20250224211445.2663312-1-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:42 -07:00
Johannes Weiner a4138a2702 mm: page_alloc: group fallback functions together
The way the fallback rules are spread out makes them hard to follow.  Move
the functions next to each other at least.

Link: https://lkml.kernel.org/r/20250225001023.1494422-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:42 -07:00
Johannes Weiner 020396a581 mm: page_alloc: remove remnants of unlocked migratetype updates
The freelist hygiene patches made migratetype accesses fully protected
under the zone->lock.  Remove remnants of handling the race conditions
that existed before from the MIGRATE_HIGHATOMIC code.

Link: https://lkml.kernel.org/r/20250225001023.1494422-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:41 -07:00
Johannes Weiner c2f6ea38fc mm: page_alloc: don't steal single pages from biggest buddy
The fallback code searches for the biggest buddy first in an attempt to
steal the whole block and encourage type grouping down the line.

The approach used to be this:

- Non-movable requests will split the largest buddy and steal the
  remainder. This splits up contiguity, but it allows subsequent
  requests of this type to fall back into adjacent space.

- Movable requests go and look for the smallest buddy instead. The
  thinking is that movable requests can be compacted, so grouping is
  less important than retaining contiguity.

c0cd6f557b ("mm: page_alloc: fix freelist movement during block
conversion") enforces freelist type hygiene, which restricts stealing to
either claiming the whole block or just taking the requested chunk; no
additional pages or buddy remainders can be stolen any more.

The patch mishandled when to switch to finding the smallest buddy in that
new reality.  As a result, it may steal the exact request size, but from
the biggest buddy.  This causes fracturing for no good reason.

Fix this by committing to the new behavior: either steal the whole block,
or fall back to the smallest buddy.

Remove single-page stealing from steal_suitable_fallback().  Rename it to
try_to_steal_block() to make the intentions clear.  If this fails, always
fall back to the smallest buddy.

The following is from 4 runs of mmtest's thpchallenge.  "Pollute" is
single page fallback, "steal" is conversion of a partially used block. 
The numbers for free block conversions (omitted) are comparable.

				     vanilla	      patched

@pollute[unmovable from reclaimable]:	  27		  106
@pollute[unmovable from movable]:	  82		   46
@pollute[reclaimable from unmovable]:	 256		   83
@pollute[reclaimable from movable]:	  46		    8
@pollute[movable from unmovable]:	4841		  868
@pollute[movable from reclaimable]:	5278		12568

@steal[unmovable from reclaimable]:	  11		   12
@steal[unmovable from movable]:		 113		   49
@steal[reclaimable from unmovable]:	  19		   34
@steal[reclaimable from movable]:	  47		   21
@steal[movable from unmovable]:		 250		  183
@steal[movable from reclaimable]:	  81		   93

The allocator appears to do a better job at keeping stealing and polluting
to the first fallback preference.  As a result, the numbers for "from
movable" - the least preferred fallback option, and most detrimental to
compactability - are down across the board.

Link: https://lkml.kernel.org/r/20250225001023.1494422-2-hannes@cmpxchg.org
Fixes: c0cd6f557b ("mm: page_alloc: fix freelist movement during block conversion")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:41 -07:00
Kemeng Shi 0a8a5b6c41 mm: swap: remove stale comment of swap_reclaim_full_clusters()
swap_reclaim_full_clusters() has no return value now, just remove the
stale comment which says swap_reclaim_full_clusters() wil return a bool
value.

Link: https://lkml.kernel.org/r/20250222160850.505274-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:40 -07:00
Kemeng Shi 2310f08942 mm, swap: correct comment in swap_usage_sub()
We will add si back to plist in swap_usage_sub(), just correct the wrong
comment which says we will remove si from plist in swap_usage_sub().

Link: https://lkml.kernel.org/r/20250222160850.505274-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:40 -07:00
Kemeng Shi 43e9bbc3bb mm, swap: remove setting SWAP_MAP_BAD for discard cluster
Before alloc from a cluster, we will aqcuire cluster's lock and make sure
it is usable by cluster_is_usable(), so there is no need to set
SWAP_MAP_BAD for cluster to be discarded.

Link: https://lkml.kernel.org/r/20250222160850.505274-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:40 -07:00
Sergey Senozhatsky 44f7641349 zsmalloc: introduce new object mapping API
Current object mapping API is a little cumbersome.  First, it's
inconsistent, sometimes it returns with page-faults disabled and sometimes
with page-faults enabled.  Second, and most importantly, it enforces
atomicity restrictions on its users.  zs_map_object() has to return a
liner object address which is not always possible because some objects
span multiple physical (non-contiguous) pages.  For such objects zsmalloc
uses a per-CPU buffer to which object's data is copied before a pointer to
that per-CPU buffer is returned back to the caller.  This leads to
another, final, issue - extra memcpy().  Since the caller gets a pointer
to per-CPU buffer it can memcpy() data only to that buffer, and during
zs_unmap_object() zsmalloc will memcpy() from that per-CPU buffer to
physical pages that object in question spans across.

New API splits functions by access mode:
- zs_obj_read_begin(handle, local_copy)
  Returns a pointer to handle memory.  For objects that span two
  physical pages a local_copy buffer is used to store object's
  data before the address is returned to the caller.  Otherwise
  the object's page is kmap_local mapped directly.

- zs_obj_read_end(handle, buf)
  Unmaps the page if it was kmap_local mapped by zs_obj_read_begin().

- zs_obj_write(handle, buf, len)
  Copies len-bytes from compression buffer to handle memory
  (takes care of objects that span two pages).  This does not
  need any additional (e.g. per-CPU) buffers and writes the data
  directly to zsmalloc pool pages.

In terms of performance, on a synthetic and completely reproducible
test that allocates fixed number of objects of fixed sizes and
iterates over those objects, first mapping in RO then in RW mode:

OLD API
=======

3 first results out of 10

  369,205,778      instructions        #    0.80  insn per cycle
   40,467,926      branches            #  113.732 M/sec

  369,002,122      instructions        #    0.62  insn per cycle
   40,426,145      branches            #  189.361 M/sec

  369,036,706      instructions        #    0.63  insn per cycle
   40,430,860      branches            #  204.105 M/sec

[..]

NEW API
=======

3 first results out of 10

  265,799,293      instructions        #    0.51  insn per cycle
   29,834,567      branches            #  170.281 M/sec

  265,765,970      instructions        #    0.55  insn per cycle
   29,829,019      branches            #  161.602 M/sec

  265,764,702      instructions        #    0.51  insn per cycle
   29,828,015      branches            #  189.677 M/sec

[..]

T-test on all 10 runs
=====================

Difference at 95.0% confidence
   -1.03219e+08 +/- 55308.7
   -27.9705% +/- 0.0149878%
   (Student's t, pooled s = 58864.4)

The old API will stay around until the remaining users switch to the new
one.  After that we'll also remove zsmalloc per-CPU buffer and CPU hotplug
handling.

The split of map(RO) and map(WO) into read_{begin/end}/write is suggested
by Yosry Ahmed.

Link: https://lkml.kernel.org/r/20250303022425.285971-15-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Suggested-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:36 -07:00
Sergey Senozhatsky e27af3f936 zsmalloc: sleepable zspage reader-lock
In order to implement preemptible object mapping we need a zspage lock
that satisfies several preconditions:
- it should be reader-write type of a lock
- it should be possible to hold it from any context, but also being
  preemptible if the context allows it
- we never sleep while acquiring but can sleep while holding in read
  mode

An rwsemaphore doesn't suffice, due to atomicity requirements, rwlock
doesn't satisfy due to reader-preemptability requirement.  It's also worth
to mention, that per-zspage rwsem is a little too memory heavy (we can
easily have double digits megabytes used only on rwsemaphores).

Switch over from rwlock_t to a atomic_t-based implementation of a
reader-writer semaphore that satisfies all of the preconditions.

The spin-lock based zspage_lock is suggested by Hillf Danton.

Link: https://lkml.kernel.org/r/20250303022425.285971-14-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Suggested-by: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:35 -07:00
Sergey Senozhatsky 0d6fa44e4e zsmalloc: rename pool lock
The old name comes from the times when the pool did not have compaction
(defragmentation).  Rename it to ->lock because these days it synchronizes
not only migration.

Link: https://lkml.kernel.org/r/20250303022425.285971-13-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:35 -07:00
Colin Ian King 9fa26fb554 mm/mincore: improve performance by adding an unlikely hint
Adding an unlikely() hint on the masked start comparison error return path
improves run-time performance of the mincore system call.

Benchmarking on an i9-12900 shows an improvement of 7ns on mincore calls
on a 256KB mmap'd region where 50% of the pages we resident.  Improvement
was from ~970 ns down to 963 ns, so a small ~0.7% improvement.

Results based on running 20 tests with turbo disabled (to reduce clock
freq turbo changes), with 10 second run per test and comparing the number
of mincores calls per second.  The % standard deviation of the 20 tests
was ~0.10%, so results are reliable.

Link: https://lkml.kernel.org/r/20250219083607.5183-1-colin.i.king@gmail.com
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Cc: Matthew Wilcow <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:32 -07:00
SeongJae Park f809b9f304 mm/damon: implement a new DAMOS filter type for unmapped pages
Patch series "mm/damon: introduce DAMOS filter type for unmapped pages".

User decides whether their memory will be mapped or unmapped.  It implies
that the two types of memory can have different characteristics and
management requirements.  Provide the DAMON-observaibility DAMOS-operation
capability for the different types by introducing a new DAMOS filter type
for unmapped pages.


This patch (of 2):

Implement yet another DAMOS filter type for unmapped pages on DAMON kernel
API, and add support of it from the physical address space DAMON
operations set (paddr).  Since it is for only unmapped pages, support from
the virtual address spaces DAMON operations set (vaddr) is not required.

Link: https://lkml.kernel.org/r/20250219220146.133650-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250219220146.133650-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:32 -07:00
Frank van der Linden 474fe91f21 mm/hugetlb: move hugetlb CMA code in to its own file
hugetlb.c contained a number of CONFIG_CMA ifdefs, and the code inside
them was large enough to merit being in its own file, so move it, cleaning
up things a bit.

Hide some direct variable access behind functions to accommodate the move.

No functional change intended.

Link: https://lkml.kernel.org/r/20250228182928.2645936-28-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:31 -07:00
Frank van der Linden d2d7867140 mm/hugetlb: enable bootmem allocation from CMA areas
If hugetlb_cma_only is enabled, we know that hugetlb pages can only be
allocated from CMA.  Now that there is an interface to do early
reservations from a CMA area (returning memblock memory), it can be used
to allocate hugetlb pages from CMA.

This also allows for doing pre-HVO on these pages (if enabled).

Make sure to initialize the page structures and associated data correctly.
Create a flag to signal that a hugetlb page has been allocated from CMA
to make things a little easier.

Some configurations of powerpc have a special hugetlb bootmem allocator,
so introduce a boolean arch_specific_huge_bootmem_alloc that returns true
if such an allocator is present.  In that case, CMA bootmem allocations
can't be used, so check that function before trying.

Link: https://lkml.kernel.org/r/20250228182928.2645936-27-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:31 -07:00
Frank van der Linden f866cfcec2 mm/hugetlb: add hugetlb_cma_only cmdline option
Add an option to force hugetlb gigantic pages to be allocated using CMA
only (if hugetlb_cma is enabled).  This avoids a fallback to allocation
from the rest of system memory if the CMA allocation fails.  This makes
the size of hugetlb_cma a hard upper boundary for gigantic hugetlb page
allocations.

This is useful because, with a large CMA area, the kernel's unmovable
allocations will have less room to work with and it is undesirable for new
hugetlb gigantic page allocations to be done from that remaining area.  It
will eat in to the space available for unmovable allocations, leading to
unwanted system behavior (OOMs because the kernel fails to do unmovable
allocations).

So, with this enabled, an administrator can force a hard upper bound for
runtime gigantic page allocations, and have more predictable system
behavior.

Link: https://lkml.kernel.org/r/20250228182928.2645936-26-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:31 -07:00
Frank van der Linden 85abcd0236 mm/cma: introduce interface for early reservations
It can be desirable to reserve memory in a CMA area before it is
activated, early in boot.  Such reservations would effectively be memblock
allocations, but they can be returned to the CMA area later.  This
functionality can be used to allow hugetlb bootmem allocations from a
hugetlb CMA area.

A new interface, cma_reserve_early is introduced.  This allows for
pageblock-aligned reservations.  These reservations are skipped during the
initial handoff of pages in a CMA area to the buddy allocator.  The caller
is responsible for making sure that the page structures are set up, and
that the migrate type is set correctly, as with other memblock allocations
that stick around.  If the CMA area fails to activate (because it
intersects with multiple zones), the reserved memory is not given to the
buddy allocator, the caller needs to take care of that.

Link: https://lkml.kernel.org/r/20250228182928.2645936-25-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:30 -07:00
Frank van der Linden 9320fa2717 mm/cma: introduce a cma validate function
Define a function to check if a CMA area is valid, which means: do its
ranges not cross any zone boundaries.  Store the result in the newly
created flags for each CMA area, so that multiple calls are dealt with.

This allows for checking the validity of a CMA area early, which is needed
later in order to be able to allocate hugetlb bootmem pages from it with
pre-HVO.

Link: https://lkml.kernel.org/r/20250228182928.2645936-24-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:30 -07:00
Frank van der Linden b51d3db91d mm/cma: simplify zone intersection check
cma_activate_area walks all pages in the area, checking their zone
individually to see if the area resides in more than one zone.

Make this a little more efficient by using the recently introduced
pfn_range_intersects_zones() function.  Store the NUMA node id (if any) in
the cma structure to facilitate this.

Link: https://lkml.kernel.org/r/20250228182928.2645936-23-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:30 -07:00
Frank van der Linden b1222550fb mm/hugetlb: do pre-HVO for bootmem allocated pages
For large systems, the overhead of vmemmap pages for hugetlb is
substantial.  It's about 1.5% of memory, which is about 45G for a 3T
system.  If you want to configure most of that system for hugetlb (e.g. 
to use as backing memory for VMs), there is a chance of running out of
memory on boot, even though you know that the 45G will become available
later.

To avoid this scenario, and since it's a waste to first allocate and then
free that 45G during boot, do pre-HVO for hugetlb bootmem allocated pages
('gigantic' pages).

pre-HVO is done by adding functions that are called from
sparse_init_nid_early and sparse_init_nid_late.  The first is called
before memmap allocation, so it takes care of allocating memmap HVO-style.
The second verifies that all bootmem pages look good, specifically it
checks that they do not intersect with multiple zones.  This can only be
done from sparse_init_nid_late path, when zones have been initialized.

The hugetlb page size must be aligned to the section size, and aligned to
the size of memory described by the number of page structures contained in
one PMD (since pre-HVO is not prepared to split PMDs).  This should be
true for most 'gigantic' pages, it is for 1G pages on x86, where both of
these alignment requirements are 128M.

This will only have an effect if hugetlb_bootmem_alloc was called early in
boot.  If not, it won't do anything, and HVO for bootmem hugetlb pages
works as before.

Link: https://lkml.kernel.org/r/20250228182928.2645936-20-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:29 -07:00
Frank van der Linden eefd3d024a mm/hugetlb_vmemmap: fix hugetlb_vmemmap_restore_folios definition
Make the hugetlb_vmemmap_restore_folios definition inline for the
!CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP case, so that including this file in
files other than hugetlb_vmemmap.c will work.

Link: https://lkml.kernel.org/r/20250228182928.2645936-19-fvdl@google.com
Fixes: cfb8c75099 ("hugetlb: perform vmemmap restoration on a list of pages")
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:29 -07:00
Frank van der Linden 752fe17af6 mm/hugetlb: add pre-HVO framework
Define flags for pre-HVOed bootmem hugetlb pages, and act on them.

The most important flag is the HVO flag, signalling that a bootmem
allocated gigantic page has already been HVO-ed.  If this flag is seen by
the hugetlb bootmem gather code, the page is marked as HVO optimized.  The
HVO code will then not try to optimize it again.  Instead, it will just
map the tail page mirror pages read-only, completing the HVO steps.

No functional change, as nothing sets the flags yet.

Link: https://lkml.kernel.org/r/20250228182928.2645936-18-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:29 -07:00
Frank van der Linden 91ec71872a mm/hugetlb: move huge_boot_pages list init to hugetlb_bootmem_alloc
Instead of initializing the per-node hugetlb bootmem pages list from the
alloc function, we can now do it in a somewhat cleaner way, since there is
an explicit hugetlb_bootmem_alloc function.  Initialize the lists there.

Link: https://lkml.kernel.org/r/20250228182928.2645936-17-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:28 -07:00
Frank van der Linden d58b249820 mm/hugetlb: deal with multiple calls to hugetlb_bootmem_alloc
Architectures that want pre-HVO of hugetlb vmemmap pages will need to call
hugetlb_bootmem_alloc from an earlier spot in boot (before sparse_init). 
To facilitate some architectures doing this, protect hugetlb_bootmem_alloc
against multiple calls.

Also provide a helper function to check if it's been called, so that the
early HVO code, to be added later, can see if there is anything to do.

Link: https://lkml.kernel.org/r/20250228182928.2645936-16-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:28 -07:00
Frank van der Linden 9eb6207b78 mm/sparse: add vmemmap_*_hvo functions
Add a few functions to enable early HVO:

vmemmap_populate_hvo
vmemmap_undo_hvo
vmemmap_wrprotect_hvo

The populate and undo functions are expected to be used in early init,
from the sparse_init_nid_early() function.  The wrprotect function is to
be used, potentially, later.

To implement these functions, mostly re-use the existing compound pages
vmemmap logic used by DAX.  vmemmap_populate_address has its argument
changed a bit in this commit: the page structure passed in to be reused in
the mapping is replaced by a PFN and a flag.  The flag indicates whether
an extra ref should be taken on the vmemmap page containing the head page
structure.  Taking the ref is appropriate to for DAX / ZONE_DEVICE, but
not for HugeTLB HVO.

The HugeTLB vmemmap optimization maps tail page structure pages read-only.
The vmemmap_wrprotect_hvo function that does this is implemented
separately, because it cannot be guaranteed that reserved page structures
will not be write accessed during memory initialization.  Even with
CONFIG_DEFERRED_STRUCT_PAGE_INIT, they might still be written to (if they
are at the bottom of a zone).  So, vmemmap_populate_hvo leaves the tail
page structure pages RW initially, and then later during initialization,
after memmap init is fully done, vmemmap_wrprotect_hvo must be called to
finish the job.

Subsequent commits will use these functions for early HugeTLB HVO.

Link: https://lkml.kernel.org/r/20250228182928.2645936-15-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:28 -07:00
Frank van der Linden 14ed3a595f mm/hugetlb: check bootmem pages for zone intersections
Bootmem hugetlb pages are allocated using memblock, which isn't (and
mostly can't be) aware of zones.

So, they may end up crossing zone boundaries.  This would create
confusion, a hugetlb page that is part of multiple zones is bad.  Worse,
HVO might then end up stealthily re-assigning pages to a different zone
when a hugetlb page is freed, since the tail page structures beyond the
first vmemmap page would inherit the zone of the first page structures.

While the chance of this happening is low, you can definitely create a
configuration where this happens (especially using ZONE_MOVABLE).

To avoid this issue, check if bootmem hugetlb pages intersect with
multiple zones during the gather phase, and discard them, handing them to
the page allocator, if they do.  Record the number of invalid bootmem
pages per node and subtract them from the number of available pages at the
end, making it easier to do these checks in multiple places later on.

Link: https://lkml.kernel.org/r/20250228182928.2645936-14-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:28 -07:00
Frank van der Linden d69d8261a9 mm: define __init_reserved_page_zone function
Sometimes page structs must be unconditionally initialized as reserved,
regardless of DEFERRED_STRUCT_PAGE_INIT.

Define a function, __init_reserved_page_zone, containing code that already
did all of the work in init_reserved_page, and make it available for use.

Link: https://lkml.kernel.org/r/20250228182928.2645936-13-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:27 -07:00
Frank van der Linden 3d61909cb7 mm/hugetlb: set migratetype for bootmem folios
The pageblocks that back memblock allocated hugetlb folios might not have
the migrate type set, in the CONFIG_DEFERRED_STRUCT_PAGE_INIT case.

memblock allocated hugetlb folios might be given to the buddy allocator
eventually (if nr_hugepages is lowered), so make sure that the migrate
type for the pageblocks contained in them is set when initializing them. 
Set it to the default that memmap init also uses (MIGRATE_MOVABLE).

Link: https://lkml.kernel.org/r/20250228182928.2645936-12-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:27 -07:00
Frank van der Linden d65917c423 mm/sparse: allow for alternate vmemmap section init at boot
Add functions that are called just before the per-section memmap is
initialized and just before the memmap page structures are initialized. 
They are called sparse_vmemmap_init_nid_early and
sparse_vmemmap_init_nid_late, respectively.

This allows for mm subsystems to add calls to initialize memmap and page
structures in a specific way, if using SPARSEMEM_VMEMMAP.  Specifically,
hugetlb can pre-HVO bootmem allocated pages that way, so that no time and
resources are wasted on allocating vmemmap pages, only to free them later
(and possibly unnecessarily running the system out of memory in the
process).

Refactor some code and export a few convenience functions for external
use.

In sparse_init_nid, skip any sections that are already initialized, e.g. 
they have been initialized by sparse_vmemmap_init_nid_early already.

The hugetlb code to use these functions will be added in a later commit.

Export section_map_size, as any alternate memmap init code will want to
use it.

The internal config option to enable this is SPARSEMEM_VMEMMAP_PREINIT,
which is selected if an architecture-specific option,
ARCH_WANT_HUGETLB_VMEMMAP_PREINIT, is set.  In the future, if other
subsystems want to do preinit too, they can do it in a similar fashion.

The internal config option is there because a section flag is used, and
the number of flags available is architecture-dependent (see mmzone.h). 
Architecures can decide if there is room for the flag when enabling
options that select SPARSEMEM_VMEMMAP_PREINIT.

Fortunately, as of right now, all sparse vmemmap using architectures do
have room.

Link: https://lkml.kernel.org/r/20250228182928.2645936-11-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:27 -07:00
Frank van der Linden 5b47c02967 mm/hugetlb: convert cmdline parameters from setup to early
Convert the cmdline parameters (hugepagesz, hugepages, default_hugepagesz
and hugetlb_free_vmemmap) to early parameters.

Since parse_early_param might run before MMU setups on some platforms
(powerpc), validation of huge page sizes as specified in command line
parameters would fail.  So instead, for the hstate-related values, just
record the them and parse them on demand, from hugetlb_bootmem_alloc.

The allocation of hugetlb bootmem pages is now done in
hugetlb_bootmem_alloc, which is called explicitly at the start of
mm_core_init().  core_initcall would be too late, as that happens with
memblock already torn down.

This change will allow earlier allocation and initialization of bootmem
hugetlb pages later on.

No functional change intended.

Link: https://lkml.kernel.org/r/20250228182928.2645936-8-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:26 -07:00
Frank van der Linden de55996d71 mm/hugetlb: use online nodes for bootmem allocation
Later commits will move hugetlb bootmem allocation to earlier in init,
when N_MEMORY has not yet been set on nodes.  Use online nodes instead. 
At most, this wastes just a few cycles once during boot (and most likely
none).

Link: https://lkml.kernel.org/r/20250228182928.2645936-7-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:26 -07:00
Frank van der Linden 992e5491b6 mm/hugetlb: remove redundant __ClearPageReserved
In hugetlb_folio_init_tail_vmemmap, the reserved flag is cleared for the
tail page just before it is zeroed out, which is redundant.  Remove the
__ClearPageReserved call.

Link: https://lkml.kernel.org/r/20250228182928.2645936-6-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:25 -07:00
Frank van der Linden 3dda0103e8 mm, hugetlb: use cma_declare_contiguous_multi
hugetlb_cma is fine with using multiple CMA ranges, as long as it can get
its gigantic pages allocated from them.  So, use
cma_declare_contiguous_multi to allow for multiple ranges, increasing the
chances of getting what we want on systems with gaps in physical memory.

Link: https://lkml.kernel.org/r/20250228182928.2645936-5-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:25 -07:00
Frank van der Linden 624ab90b7b mm/cma: introduce cma_intersects function
Now that CMA areas can have multiple physical ranges, code can't assume a
CMA struct represents a base_pfn plus a size, as returned from
cma_get_base.

Most cases are ok though, since they all explicitly refer to CMA areas
that were created using existing interfaces (cma_declare_contiguous_nid or
cma_init_reserved_mem), which guarantees they have just one physical
range.

An exception is the s390 code, which walks all CMA ranges to see if they
intersect with a range of memory that is about to be hotremoved.  So, in
the future, it might run in to multi-range areas.  To keep this check
working, define a cma_intersects function.  This just checks if a physaddr
range intersects any of the ranges.  Use it in the s390 check.

Link: https://lkml.kernel.org/r/20250228182928.2645936-4-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:25 -07:00
Frank van der Linden c009da4258 mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory. 
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.

This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line.  If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.

hugetlb_cma doesn't need the entire area to be one physically contiguous
range.  It just cares about being able to get physically contiguous chunks
of a certain size (e.g.  1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.

Multi-range support is implemented by introducing an array of ranges,
instead of just one big one.  Each range has its own bitmap.  Effectively,
the allocate and release operations work as before, just per-range.  So,
instead of going through one large bitmap, they now go through a number of
smaller ones.

The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.

Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used.  The other
interfaces will work like before, creating only CMA areas with 1 range.

cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:

0) Try cma_declare_contiguous_nid, which will use only one
   region. If this succeeds, return. This makes sure that for
   all the cases that currently work, the behavior remains
   unchanged even if the caller switches from
   cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
   a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
   up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.

Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:25 -07:00
Frank van der Linden 7365ff2c8e mm/cma: export total and free number of pages for CMA areas
Patch series "hugetlb/CMA improvements for large systems", v5.

On large systems, we observed some issues with hugetlb and CMA:

1) When specifying a large number of hugetlb boot pages (hugepages= on
   the commandline), the kernel may run out of memory before it even gets
   to HVO.  For example, if you have a 3072G system, and want to use 3024
   1G hugetlb pages for VMs, that should leave you plenty of space for the
   hypervisor, provided you have the hugetlb vmemmap optimization (HVO)
   enabled.  However, since the vmemmap pages are always allocated first,
   and then later in boot freed, you will actually run yourself out of
   memory before you can do HVO.  This means not getting all the hugetlb
   pages you want, and worse, failure to boot if there is an allocation
   failure in the system from which it can't recover.

2) There is a system setup where you might want to use hugetlb_cma with
   a large value (say, again, 3024 out of 3072G like above), and then
   lower that if system usage allows it, to make room for non-hugetlb
   processes.  For this, a variation of the problem above applies: the
   kernel runs out of unmovable space to allocate from before you finish
   boot, since your CMA area takes up all the space.

3) CMA wants to use one big contiguous area for allocations.  Which
   fails if you have the aforementioned 3T system with a gap in the middle
   of physical memory (like the < 40bits BIOS DMA area seen on some AMD
   systems).  You then won't be able to set up a CMA area for one of the
   NUMA nodes, leading to loss of half of your hugetlb CMA area.

4) Under the scenario mentioned in 2), when trying to grow the number
   of hugetlb pages after dropping it for a while, new CMA allocations may
   fail occasionally.  This is not unexpected, some transient references
   on pages may prevent cma_alloc from succeeding under memory pressure. 
   However, the hugetlb code then falls back to a normal contiguous alloc,
   which may end up succeeding.  This is not always desired behavior.  If
   you have a large CMA area, then the kernel has a restricted amount of
   memory it can do unmovable allocations from (a well known issue).  A
   normal contiguous alloc may eat further in to this space.


To resolve these issues, do the following:
* Add hooks to the section init code to do custom initialization of
  memmap pages.  Hugetlb bootmem (memblock) allocated pages can then be
  pre-HVOed.  This avoids allocating a large number of vmemmap pages early
  in boot, only to have them be freed again later, and also avoids running
  out of memory as described under 1).  Using these hooks for hugetlb is
  optional.  It requires moving hugetlb bootmem allocation to an earlier
  spot by the architecture.  This has been enabled on x86.
* hugetlb_cma doesn't care about the CMA area it uses being one large
  contiguous range.  Multiple smaller ranges are fine.  The only
  requirements are that the areas should be on one NUMA node, and
  individual gigantic pages should be allocatable from them.  So,
  implement multi-range support for CMA, avoiding issue 3).
* Introduce a hugetlb_cma_only option on the commandline.  This only
  allows allocations from CMA for gigantic pages, if hugetlb_cma= is also
  specified.
* With hugetlb_cma_only active, it also makes sense to be able to
  pre-allocate gigantic hugetlb pages at boot time from the CMA area(s). 
  Add a rudimentary early CMA allocation interface, that just grabs a
  piece of memblock-allocated space from the CMA area, which gets marked
  as allocated in the CMA bitmap when the CMA area is initialized.  With
  this, hugepages= can be supported with hugetlb_cma=, making scenario 2)
  work.

Additionally, fix some minor bugs, with one worth mentioning: since
hugetlb gigantic bootmem pages are allocated by memblock, they may span
multiple zones, as memblock doesn't (and mostly can't) know about zones. 
This can cause problems.  A hugetlb page spanning multiple zones is bad,
and it's worse with HVO, when the de-HVO step effectively sneakily
re-assigns pages to a different zone than originally configured, since the
tail pages all inherit the zone from the first 60 tail pages.  This
condition is not common, but can be easily reproduced using ZONE_MOVABLE. 
To fix this, add checks to see if gigantic bootmem pages intersect with
multiple zones, and do not use them if they do, giving them back to the
page allocator instead.

The first patch is kind of along for the ride, except that maintaining an
available_count for a CMA area is convenient for the multiple range
support.


This patch (of 27):

In addition to the number of allocations and releases, system management
software may like to be aware of the size of CMA areas, and how many pages
are available in it.  This information is currently not available, so
export it in total_page and available_pages, respectively.

The name 'available_pages' was picked over 'free_pages' because 'free'
implies that the pages are unused.  But they might not be, they just
haven't been used by cma_alloc

The number of available pages is tracked regardless of CONFIG_CMA_SYSFS,
allowing for a few minor shortcuts in the code, avoiding bitmap
operations.

Link: https://lkml.kernel.org/r/20250228182928.2645936-2-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:24 -07:00
Ryan Roberts 86758b5048 mm/ioremap: pass pgprot_t to ioremap_prot() instead of unsigned long
ioremap_prot() currently accepts pgprot_val parameter as an unsigned long,
thus implicitly assuming that pgprot_val and pgprot_t could never be
bigger than unsigned long.  But this assumption soon will not be true on
arm64 when using D128 pgtables.  In 128 bit page table configuration,
unsigned long is 64 bit, but pgprot_t is 128 bit.

Passing platform abstracted pgprot_t argument is better as compared to
size based data types.  Let's change the parameter to directly pass
pgprot_t like another similar helper generic_ioremap_prot().

Without this change in place, D128 configuration does not work on arm64 as
the top 64 bits gets silently stripped when passing the protection value
to this function.

Link: https://lkml.kernel.org/r/20250218101954.415331-1-anshuman.khandual@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Co-developed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:23 -07:00
Suren Baghdasaryan 3104138517 mm: make vma cache SLAB_TYPESAFE_BY_RCU
To enable SLAB_TYPESAFE_BY_RCU for vma cache we need to ensure that
object reuse before RCU grace period is over will be detected by
lock_vma_under_rcu().

Current checks are sufficient as long as vma is detached before it is
freed.  The only place this is not currently happening is in exit_mmap(). 
Add the missing vma_mark_detached() in exit_mmap().

Another issue which might trick lock_vma_under_rcu() during vma reuse is
vm_area_dup(), which copies the entire content of the vma into a new one,
overriding new vma's vm_refcnt and temporarily making it appear as
attached.  This might trick a racing lock_vma_under_rcu() to operate on a
reused vma if it found the vma before it got reused.  To prevent this
situation, we should ensure that vm_refcnt stays at detached state (0)
when it is copied and advances to attached state only after it is added
into the vma tree.  Introduce vm_area_init_from() which preserves new
vma's vm_refcnt and use it in vm_area_dup().  Since all vmas are in
detached state with no current readers when they are freed,

lock_vma_under_rcu() will not be able to take vm_refcnt after vma got
detached even if vma is reused. vma_mark_attached() in modified to
include a release fence to ensure all stores to the vma happen before
vm_refcnt gets initialized.

Finally, make vm_area_cachep SLAB_TYPESAFE_BY_RCU. This will facilitate
vm_area_struct reuse and will minimize the number of call_rcu() calls.

[surenb@google.com: remove atomic_set_release() usage in tools/]
  Link: https://lkml.kernel.org/r/20250217054351.2973666-1-surenb@google.com
Link: https://lkml.kernel.org/r/20250213224655.1680278-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:21 -07:00
Suren Baghdasaryan e49510bf00 mm: prepare lock_vma_under_rcu() for vma reuse possibility
Once we make vma cache SLAB_TYPESAFE_BY_RCU, it will be possible for a vma
to be reused and attached to another mm after lock_vma_under_rcu() locks
the vma.  lock_vma_under_rcu() should ensure that vma_start_read() is
using the original mm and after locking the vma it should ensure that
vma->vm_mm has not changed from under us.

Link: https://lkml.kernel.org/r/20250213224655.1680278-17-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:21 -07:00
Suren Baghdasaryan 3dd98c5c44 mm/debug: print vm_refcnt state when dumping the vma
vm_refcnt encodes a number of useful states:
- whether vma is attached or detached
- the number of current vma readers
- presence of a vma writer
Let's include it in the vma dump.

Link: https://lkml.kernel.org/r/20250213224655.1680278-15-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:20 -07:00
Suren Baghdasaryan f35ab95ca0 mm: replace vm_lock and detached flag with a reference count
rw_semaphore is a sizable structure of 40 bytes and consumes considerable
space for each vm_area_struct.  However vma_lock has two important
specifics which can be used to replace rw_semaphore with a simpler
structure:

1. Readers never wait.  They try to take the vma_lock and fall back to
   mmap_lock if that fails.

2. Only one writer at a time will ever try to write-lock a vma_lock
   because writers first take mmap_lock in write mode.  Because of these
   requirements, full rw_semaphore functionality is not needed and we can
   replace rw_semaphore and the vma->detached flag with a refcount
   (vm_refcnt).

When vma is in detached state, vm_refcnt is 0 and only a call to
vma_mark_attached() can take it out of this state.  Note that unlike
before, now we enforce both vma_mark_attached() and vma_mark_detached() to
be done only after vma has been write-locked.  vma_mark_attached() changes
vm_refcnt to 1 to indicate that it has been attached to the vma tree. 
When a reader takes read lock, it increments vm_refcnt, unless the top
usable bit of vm_refcnt (0x40000000) is set, indicating presence of a
writer.  When writer takes write lock, it sets the top usable bit to
indicate its presence.  If there are readers, writer will wait using newly
introduced mm->vma_writer_wait.  Since all writers take mmap_lock in write
mode first, there can be only one writer at a time.  The last reader to
release the lock will signal the writer to wake up.  refcount might
overflow if there are many competing readers, in which case read-locking
will fail.  Readers are expected to handle such failures.

In summary:
1. all readers increment the vm_refcnt;
2. writer sets top usable (writer) bit of vm_refcnt;
3. readers cannot increment the vm_refcnt if the writer bit is set;
4. in the presence of readers, writer must wait for the vm_refcnt to drop
to 1 (plus the VMA_LOCK_OFFSET writer bit), indicating an attached vma
with no readers;
5. vm_refcnt overflow is handled by the readers.

While this vm_lock replacement does not yet result in a smaller
vm_area_struct (it stays at 256 bytes due to cacheline alignment), it
allows for further size optimization by structure member regrouping to
bring the size of vm_area_struct below 192 bytes.

[surenb@google.com: fix a crash due to vma_end_read() that should have been removed]
  Link: https://lkml.kernel.org/r/20250220200208.323769-1-surenb@google.com
Link: https://lkml.kernel.org/r/20250213224655.1680278-13-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:20 -07:00
Suren Baghdasaryan 45ad9f5290 mm: uninline the main body of vma_start_write()
vma_start_write() is used in many places and will grow in size very soon. 
It is not used in performance critical paths and uninlining it should
limit the future code size growth.  No functional changes.

Link: https://lkml.kernel.org/r/20250213224655.1680278-10-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:19 -07:00
Suren Baghdasaryan 7440adb405 mm: allow vma_start_read_locked/vma_start_read_locked_nested to fail
With upcoming replacement of vm_lock with vm_refcnt, we need to handle a
possibility of vma_start_read_locked/vma_start_read_locked_nested failing
due to refcount overflow.  Prepare for such possibility by changing these
APIs and adjusting their users.

Link: https://lkml.kernel.org/r/20250213224655.1680278-8-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:18 -07:00
Suren Baghdasaryan fe605930f0 mm: mark vmas detached upon exit
When exit_mmap() removes vmas belonging to an exiting task, it does not
mark them as detached since they can't be reached by other tasks and they
will be freed shortly.  Once we introduce vma reuse, all vmas will have to
be in detached state before they are freed to ensure vma when reused is in
a consistent state.  Add missing vma_mark_detached() before freeing the
vma.

Link: https://lkml.kernel.org/r/20250213224655.1680278-6-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:18 -07:00
Suren Baghdasaryan 55e50223bf mm: introduce vma_iter_store_attached() to use with attached vmas
vma_iter_store() functions can be used both when adding a new vma and when
updating an existing one.  However for existing ones we do not need to
mark them attached as they are already marked that way.  With
vma->detached being a separate flag, double-marking a vmas as attached or
detached is not an issue because the flag will simply be overwritten with
the same value.  However once we fold this flag into the refcount later in
this series, re-attaching or re-detaching a vma becomes an issue since
these operations will be incrementing/decrementing a refcount.

Introduce vma_iter_store_new() and vma_iter_store_overwrite() to replace
vma_iter_store() and avoid re-attaching a vma during vma update.  Add
assertions in vma_mark_attached()/vma_mark_detached() to catch invalid
usage.  Update vma tests to check for vma detached state correctness.

Link: https://lkml.kernel.org/r/20250213224655.1680278-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:18 -07:00
Suren Baghdasaryan 8ef95d8f15 mm: mark vma as detached until it's added into vma tree
Current implementation does not set detached flag when a VMA is first
allocated.  This does not represent the real state of the VMA, which is
detached until it is added into mm's VMA tree.  Fix this by marking new
VMAs as detached and resetting detached flag only after VMA is added into
a tree.

Introduce vma_mark_attached() to make the API more readable and to
simplify possible future cleanup when vma->vm_mm might be used to indicate
detached vma and vma_mark_attached() will need an additional mm parameter.

Link: https://lkml.kernel.org/r/20250213224655.1680278-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:17 -07:00
Suren Baghdasaryan b2ae5fccb8 mm: introduce vma_start_read_locked{_nested} helpers
Patch series "reimplement per-vma lock as a refcount", v10.

Back when per-vma locks were introduces, vm_lock was moved out of
vm_area_struct in [1] because of the performance regression caused by
false cacheline sharing.  Recent investigation [2] revealed that the
regressions is limited to a rather old Broadwell microarchitecture and
even there it can be mitigated by disabling adjacent cacheline
prefetching, see [3].

Splitting single logical structure into multiple ones leads to more
complicated management, extra pointer dereferences and overall less
maintainable code.  When that split-away part is a lock, it complicates
things even further.  With no performance benefits, there are no reasons
for this split.  Merging the vm_lock back into vm_area_struct also allows
vm_area_struct to use SLAB_TYPESAFE_BY_RCU later in this patchset.

This patchset:

1. moves vm_lock back into vm_area_struct, aligning it at the
   cacheline boundary and changing the cache to be cacheline-aligned to
   minimize cacheline sharing;

2. changes vm_area_struct initialization to mark new vma as detached
   until it is inserted into vma tree;

3. replaces vm_lock and vma->detached flag with a reference counter;

4. regroups vm_area_struct members to fit them into 3 cachelines;

5. changes vm_area_struct cache to SLAB_TYPESAFE_BY_RCU to allow for
   their reuse and to minimize call_rcu() calls.

Pagefault microbenchmarks show performance improvement:
Hmean     faults/cpu-1    507926.5547 (   0.00%)   506519.3692 *  -0.28%*
Hmean     faults/cpu-4    479119.7051 (   0.00%)   481333.6802 *   0.46%*
Hmean     faults/cpu-7    452880.2961 (   0.00%)   455845.6211 *   0.65%*
Hmean     faults/cpu-12   347639.1021 (   0.00%)   352004.2254 *   1.26%*
Hmean     faults/cpu-21   200061.2238 (   0.00%)   229597.0317 *  14.76%*
Hmean     faults/cpu-30   145251.2001 (   0.00%)   164202.5067 *  13.05%*
Hmean     faults/cpu-48   106848.4434 (   0.00%)   120641.5504 *  12.91%*
Hmean     faults/cpu-56    92472.3835 (   0.00%)   103464.7916 *  11.89%*
Hmean     faults/sec-1    507566.1468 (   0.00%)   506139.0811 *  -0.28%*
Hmean     faults/sec-4   1880478.2402 (   0.00%)  1886795.6329 *   0.34%*
Hmean     faults/sec-7   3106394.3438 (   0.00%)  3140550.7485 *   1.10%*
Hmean     faults/sec-12  4061358.4795 (   0.00%)  4112477.0206 *   1.26%*
Hmean     faults/sec-21  3988619.1169 (   0.00%)  4577747.1436 *  14.77%*
Hmean     faults/sec-30  3909839.5449 (   0.00%)  4311052.2787 *  10.26%*
Hmean     faults/sec-48  4761108.4691 (   0.00%)  5283790.5026 *  10.98%*
Hmean     faults/sec-56  4885561.4590 (   0.00%)  5415839.4045 *  10.85%*


This patch (of 18):

Introduce helper functions which can be used to read-lock a VMA when
holding mmap_lock for read.  Replace direct accesses to vma->vm_lock with
these new helpers.

Link: https://lkml.kernel.org/r/20250213224655.1680278-1-surenb@google.com
Link: https://lkml.kernel.org/r/20250213224655.1680278-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Tested-by: Shivank Garg <shivankg@amd.com>
  Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:17 -07:00
Barry Song 2f9b43d617 mm: avoid splitting pmd for lazyfree pmd-mapped THP in try_to_unmap
The try_to_unmap_one() function currently handles PMD-mapped THPs
inefficiently.  It first splits the PMD into PTEs, copies the dirty state
from the PMD to the PTEs, iterates over the PTEs to locate the dirty
state, and then marks the THP as swap-backed.  This process involves
unnecessary PMD splitting and redundant iteration.  Instead, this
functionality can be efficiently managed in
__discard_anon_folio_pmd_locked(), avoiding the extra steps and improving
performance.

The following microbenchmark redirties folios after invoking MADV_FREE,
then measures the time taken to perform memory reclamation (actually set
those folios swapbacked again) on the redirtied folios.

 #include <stdio.h>
 #include <sys/mman.h>
 #include <string.h>
 #include <time.h>

 #define SIZE 128*1024*1024  // 128 MB

 int main(int argc, char *argv[])
 {
 	while(1) {
 		volatile int *p = mmap(0, SIZE, PROT_READ | PROT_WRITE,
 				MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

 		memset((void *)p, 1, SIZE);
 		madvise((void *)p, SIZE, MADV_FREE);
 		/* redirty after MADV_FREE */
 		memset((void *)p, 1, SIZE);

		clock_t start_time = clock();
 		madvise((void *)p, SIZE, MADV_PAGEOUT);
 		clock_t end_time = clock();

 		double elapsed_time = (double)(end_time - start_time) / CLOCKS_PER_SEC;
 		printf("Time taken by reclamation: %f seconds\n", elapsed_time);

 		munmap((void *)p, SIZE);
 	}
 	return 0;
 }

Testing results are as below,
w/o patch:
~ # ./a.out
Time taken by reclamation: 0.007300 seconds
Time taken by reclamation: 0.007226 seconds
Time taken by reclamation: 0.007295 seconds
Time taken by reclamation: 0.007731 seconds
Time taken by reclamation: 0.007134 seconds
Time taken by reclamation: 0.007285 seconds
Time taken by reclamation: 0.007720 seconds
Time taken by reclamation: 0.007128 seconds
Time taken by reclamation: 0.007710 seconds
Time taken by reclamation: 0.007712 seconds
Time taken by reclamation: 0.007236 seconds
Time taken by reclamation: 0.007690 seconds
Time taken by reclamation: 0.007174 seconds
Time taken by reclamation: 0.007670 seconds
Time taken by reclamation: 0.007169 seconds
Time taken by reclamation: 0.007305 seconds
Time taken by reclamation: 0.007432 seconds
Time taken by reclamation: 0.007158 seconds
Time taken by reclamation: 0.007133 seconds
…

w/ patch

~ # ./a.out
Time taken by reclamation: 0.002124 seconds
Time taken by reclamation: 0.002116 seconds
Time taken by reclamation: 0.002150 seconds
Time taken by reclamation: 0.002261 seconds
Time taken by reclamation: 0.002137 seconds
Time taken by reclamation: 0.002173 seconds
Time taken by reclamation: 0.002063 seconds
Time taken by reclamation: 0.002088 seconds
Time taken by reclamation: 0.002169 seconds
Time taken by reclamation: 0.002124 seconds
Time taken by reclamation: 0.002111 seconds
Time taken by reclamation: 0.002224 seconds
Time taken by reclamation: 0.002297 seconds
Time taken by reclamation: 0.002260 seconds
Time taken by reclamation: 0.002246 seconds
Time taken by reclamation: 0.002272 seconds
Time taken by reclamation: 0.002277 seconds
Time taken by reclamation: 0.002462 seconds
…

This patch significantly speeds up try_to_unmap_one() by allowing it
to skip redirtied THPs without splitting the PMD.

Link: https://lkml.kernel.org/r/20250214093015.51024-5-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: Lance Yang <ioworker0@gmail.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Lance Yang <ioworker0@gmail.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mauricio Faria de Oliveira <mfo@canonical.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shaoqin Huang <shahuang@redhat.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:17 -07:00
Barry Song 354dffd295 mm: support batched unmap for lazyfree large folios during reclamation
Currently, the PTEs and rmap of a large folio are removed one at a time. 
This is not only slow but also causes the large folio to be unnecessarily
added to deferred_split, which can lead to races between the
deferred_split shrinker callback and memory reclamation.  This patch
releases all PTEs and rmap entries in a batch.  Currently, it only handles
lazyfree large folios.

The below microbench tries to reclaim 128MB lazyfree large folios
whose sizes are 64KiB:

 #include <stdio.h>
 #include <sys/mman.h>
 #include <string.h>
 #include <time.h>

 #define SIZE 128*1024*1024  // 128 MB

 unsigned long read_split_deferred()
 {
 	FILE *file = fopen("/sys/kernel/mm/transparent_hugepage"
			"/hugepages-64kB/stats/split_deferred", "r");
 	if (!file) {
 		perror("Error opening file");
 		return 0;
 	}

 	unsigned long value;
 	if (fscanf(file, "%lu", &value) != 1) {
 		perror("Error reading value");
 		fclose(file);
 		return 0;
 	}

 	fclose(file);
 	return value;
 }

 int main(int argc, char *argv[])
 {
 	while(1) {
 		volatile int *p = mmap(0, SIZE, PROT_READ | PROT_WRITE,
 				MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

 		memset((void *)p, 1, SIZE);

 		madvise((void *)p, SIZE, MADV_FREE);

 		clock_t start_time = clock();
 		unsigned long start_split = read_split_deferred();
 		madvise((void *)p, SIZE, MADV_PAGEOUT);
 		clock_t end_time = clock();
 		unsigned long end_split = read_split_deferred();

 		double elapsed_time = (double)(end_time - start_time) / CLOCKS_PER_SEC;
 		printf("Time taken by reclamation: %f seconds, split_deferred: %ld\n",
 			elapsed_time, end_split - start_split);

 		munmap((void *)p, SIZE);
 	}
 	return 0;
 }

w/o patch:
~ # ./a.out
Time taken by reclamation: 0.177418 seconds, split_deferred: 2048
Time taken by reclamation: 0.178348 seconds, split_deferred: 2048
Time taken by reclamation: 0.174525 seconds, split_deferred: 2048
Time taken by reclamation: 0.171620 seconds, split_deferred: 2048
Time taken by reclamation: 0.172241 seconds, split_deferred: 2048
Time taken by reclamation: 0.174003 seconds, split_deferred: 2048
Time taken by reclamation: 0.171058 seconds, split_deferred: 2048
Time taken by reclamation: 0.171993 seconds, split_deferred: 2048
Time taken by reclamation: 0.169829 seconds, split_deferred: 2048
Time taken by reclamation: 0.172895 seconds, split_deferred: 2048
Time taken by reclamation: 0.176063 seconds, split_deferred: 2048
Time taken by reclamation: 0.172568 seconds, split_deferred: 2048
Time taken by reclamation: 0.171185 seconds, split_deferred: 2048
Time taken by reclamation: 0.170632 seconds, split_deferred: 2048
Time taken by reclamation: 0.170208 seconds, split_deferred: 2048
Time taken by reclamation: 0.174192 seconds, split_deferred: 2048
...

w/ patch:
~ # ./a.out
Time taken by reclamation: 0.074231 seconds, split_deferred: 0
Time taken by reclamation: 0.071026 seconds, split_deferred: 0
Time taken by reclamation: 0.072029 seconds, split_deferred: 0
Time taken by reclamation: 0.071873 seconds, split_deferred: 0
Time taken by reclamation: 0.073573 seconds, split_deferred: 0
Time taken by reclamation: 0.071906 seconds, split_deferred: 0
Time taken by reclamation: 0.073604 seconds, split_deferred: 0
Time taken by reclamation: 0.075903 seconds, split_deferred: 0
Time taken by reclamation: 0.073191 seconds, split_deferred: 0
Time taken by reclamation: 0.071228 seconds, split_deferred: 0
Time taken by reclamation: 0.071391 seconds, split_deferred: 0
Time taken by reclamation: 0.071468 seconds, split_deferred: 0
Time taken by reclamation: 0.071896 seconds, split_deferred: 0
Time taken by reclamation: 0.072508 seconds, split_deferred: 0
Time taken by reclamation: 0.071884 seconds, split_deferred: 0
Time taken by reclamation: 0.072433 seconds, split_deferred: 0
Time taken by reclamation: 0.071939 seconds, split_deferred: 0
...

Link: https://lkml.kernel.org/r/20250214093015.51024-4-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mauricio Faria de Oliveira <mfo@canonical.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shaoqin Huang <shahuang@redhat.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:16 -07:00
Barry Song 2f4ab3ac10 mm: support tlbbatch flush for a range of PTEs
This patch lays the groundwork for supporting batch PTE unmapping in
try_to_unmap_one().  It introduces range handling for TLB batch flushing,
with the range currently set to the size of PAGE_SIZE.

The function __flush_tlb_range_nosync() is architecture-specific and is
only used within arch/arm64.  This function requires the mm structure
instead of the vma structure.  To allow its reuse by
arch_tlbbatch_add_pending(), which operates with mm but not vma, this
patch modifies the argument of __flush_tlb_range_nosync() to take mm as
its parameter.

Link: https://lkml.kernel.org/r/20250214093015.51024-3-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shaoqin Huang <shahuang@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mauricio Faria de Oliveira <mfo@canonical.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:16 -07:00
Barry Song faeb2831b5 mm: set folio swapbacked iff folios are dirty in try_to_unmap_one
Patch series "mm: batched unmap lazyfree large folios during reclamation",
v4.

Commit 735ecdfaf4 ("mm/vmscan: avoid split lazyfree THP during
shrink_folio_list()") prevents the splitting of MADV_FREE'd THP in
madvise.c.  

However, those folios are still added to the deferred_split list in
try_to_unmap_one() because we are unmapping PTEs and removing rmap entries
one by one.

Firstly, this has rendered the following counter somewhat confusing,
/sys/kernel/mm/transparent_hugepage/hugepages-size/stats/split_deferred
The split_deferred counter was originally designed to track operations
such as partial unmap or madvise of large folios.  However, in practice,
most split_deferred cases arise from memory reclamation of aligned
lazyfree mTHPs as observed by Tangquan.  This discrepancy has made the
split_deferred counter highly misleading.

Secondly, this approach is slow because it requires iterating through each
PTE and removing the rmap one by one for a large folio.  In fact, all PTEs
of a pte-mapped large folio should be unmapped at once, and the entire
folio should be removed from the rmap as a whole.

Thirdly, it also increases the risk of a race condition where lazyfree
folios are incorrectly set back to swapbacked, as a speculative folio_get
may occur in the shrinker's callback.

deferred_split_scan() might call folio_try_get(folio) since we have added
the folio to split_deferred list while removing rmap for the 1st subpage,
and while we are scanning the 2nd to nr_pages PTEs of this folio in
try_to_unmap_one(), the entire mTHP could be transitioned back to
swap-backed because the reference count is incremented, which can make
"ref_count == 1 + map_count" within try_to_unmap_one() false.

   /*
    * The only page refs must be one from isolation
    * plus the rmap(s) (dropped by discard:).
    */
   if (ref_count == 1 + map_count &&
       (!folio_test_dirty(folio) ||
        ...
        (vma->vm_flags & VM_DROPPABLE))) {
           dec_mm_counter(mm, MM_ANONPAGES);
           goto discard;
   }

This patchset resolves the issue by marking only genuinely dirty folios as
swap-backed, as suggested by David, and transitioning to batched unmapping
of entire folios in try_to_unmap_one().  Consequently, the deferred_split
count drops to zero, and memory reclamation performance improves
significantly — reclaiming 64KiB lazyfree large folios is now 2.5x
faster(The specific data is embedded in the changelog of patch 3/4).

By the way, while the patchset is primarily aimed at PTE-mapped large
folios, Baolin and Lance also found that try_to_unmap_one() handles
lazyfree redirtied PMD-mapped large folios inefficiently — it splits the
PMD into PTEs and iterates over them.  This patchset removes the
unnecessary splitting, enabling us to skip redirtied PMD-mapped large
folios 3.5X faster during memory reclamation.  (The specific data can be
found in the changelog of patch 4/4).


This patch (of 4):

The refcount may be temporarily or long-term increased, but this does not
change the fundamental nature of the folio already being lazy- freed. 
Therefore, we only reset 'swapbacked' when we are certain the folio is
dirty and not droppable.

Link: https://lkml.kernel.org/r/20250214093015.51024-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20250214093015.51024-2-21cnbao@gmail.com
Fixes: 6c8e2a2569 ("mm: fix race between MADV_FREE reclaim and blkdev direct IO read")
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Lance Yang <ioworker0@gmail.com>
Cc: Mauricio Faria de Oliveira <mfo@canonical.com>
Cc: Chis Li <chrisl@kernel.org> (Google)
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Shaoqin Huang <shahuang@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:16 -07:00
Guanjun b23ceebd63 filemap: remove redundant folio_test_large check in filemap_free_folio
The folio_test_large() check in filemap_free_folio() is unnecessary
because folio_nr_pages(), which is called internally already performs this
check.  Removing the redundant condition simplifies the code and avoids
double validation.

This change improves code readability and reduces unnecessary operations
in the folio freeing path.

Link: https://lkml.kernel.org/r/20250213055612.490993-1-guanjun@linux.alibaba.com
Signed-off-by: Guanjun <guanjun@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:16 -07:00
Lorenzo Stoakes f807123d57 mm: allow guard regions in file-backed and read-only mappings
Patch series "mm: permit guard regions for file-backed/shmem mappings".

The guard regions feature was initially implemented to support anonymous
mappings only, excluding shmem.

This was done so as to introduce the feature carefully and incrementally
and to be conservative when considering the various caveats and corner
cases that are applicable to file-backed mappings but not to anonymous
ones.

Now this feature has landed in 6.13, it is time to revisit this and to
extend this functionality to file-backed and shmem mappings.

In order to make this maximally useful, and since one may map file-backed
mappings read-only (for instance ELF images), we also remove the
restriction on read-only mappings and permit the establishment of guard
regions in any non-hugetlb, non-mlock()'d mapping.

It is permissible to permit the establishment of guard regions in
read-only mappings because the guard regions only reduce access to the
mapping, and when removed simply reinstate the existing attributes of the
underlying VMA, meaning no access violations can occur.

While the change in kernel code introduced in this series is small, the
majority of the effort here is spent in extending the testing to assert
that the feature works correctly across numerous file-backed mapping
scenarios.

Every single guard region self-test performed against anonymous memory
(which is relevant and not anon-only) has now been updated to also be
performed against shmem and a mapping of a file in the working directory.

This confirms that all cases also function correctly for file-backed guard
regions.

In addition a number of other tests are added for specific file-backed
mapping scenarios.

There are a number of other concerns that one might have with regard to
guard regions, addressed below:

Readahead
~~~~~~~~~

Readahead is a process through which the page cache is populated on the
assumption that sequential reads will occur, thus amortising I/O and,
through a clever use of the PG_readahead folio flag establishing during
major fault and checked upon minor fault, provides for asynchronous I/O to
occur as dat is processed, reducing I/O stalls as data is faulted in.

Guard regions do not alter this mechanism which operates at the folio and
fault level, but does of course prevent the faulting of folios that would
otherwise be mapped.

In the instance of a major fault prior to a guard region, synchronous
readahead will occur including populating folios in the page cache which
the guard regions will, in the case of the mapping in question, prevent
access to.

In addition, if PG_readahead is placed in a folio that is now
inaccessible, this will prevent asynchronous readahead from occurring as
it would otherwise do.

However, there are mechanisms for heuristically resetting this within
readahead regardless, which will 'recover' correct readahead behaviour.

Readahead presumes sequential data access, the presence of a guard region
clearly indicates that, at least in the guard region, no such sequential
access will occur, as it cannot occur there.

So this should have very little impact on any real workload.  The far more
important point is as to whether readahead causes incorrect or
inappropriate mapping of ranges disallowed by the presence of guard
regions - this is not the case, as readahead does not 'pre-fault' memory
in this fashion.

At any rate, any mechanism which would attempt to do so would hit the
usual page fault paths, which correctly handle PTE markers as with
anonymous mappings.

Fault-Around
~~~~~~~~~~~~

The fault-around logic, in a similar vein to readahead, attempts to
improve efficiency with regard to file-backed memory mappings, however it
differs in that it does not try to fetch folios into the page cache that
are about to be accessed, but rather pre-maps a range of folios around the
faulting address.

Guard regions making use of PTE markers makes this relatively trivial, as
this case is already handled - see filemap_map_folio_range() and
filemap_map_order0_folio() - in both instances, the solution is to simply
keep the established page table mappings and let the fault handler take
care of PTE markers, as per the comment:

	/*
	 * NOTE: If there're PTE markers, we'll leave them to be
	 * handled in the specific fault path, and it'll prohibit
	 * the fault-around logic.
	 */

This works, as establishing guard regions results in page table mappings
with PTE markers, and clearing them removes them.

Truncation
~~~~~~~~~~

File truncation will not eliminate existing guard regions, as the
truncation operation will ultimately zap the range via
unmap_mapping_range(), which specifically excludes PTE markers.

Zapping
~~~~~~~

Zapping is, as with anonymous mappings, handled by zap_nonpresent_ptes(),
which specifically deals with guard entries, leaving them intact except in
instances such as process teardown or munmap() where they need to be
removed.

Reclaim
~~~~~~~

When reclaim is performed on file-backed folios, it ultimately invokes
try_to_unmap_one() via the rmap.  If the folio is non-large, then
map_pte() will ultimately abort the operation for the guard region
mapping.  If large, then check_pte() will determine that this is a
non-device private entry/device-exclusive entry 'swap' PTE and thus abort
the operation in that instance.

Therefore, no odd things happen in the instance of reclaim being attempted
upon a file-backed guard region.

Hole Punching
~~~~~~~~~~~~~

This updates the page cache and ultimately invokes unmap_mapping_range(),
which explicitly leaves PTE markers in place.

Because the establishment of guard regions zapped any existing mappings to
file-backed folios, once the guard regions are removed then the
hole-punched region will be faulted in as usual and everything will behave
as expected.


One thing to note with this series is that it now implies file-backed
VMAs which install guard regions will now have an anon_vma installed if
not already present (i.e.  if not post-CoW MAP_PRIVATE).

I have audited kernel source for instances of vma->anon_vma checks and
found nowhere where this would be problematic for pure file-backed
mappings.

I also discussed (off-list) with Matthew who confirmed he can't see any
issue with this.

In effect, we treat these VMAs as if they are MAP_PRIVATE, only with 0
CoW'd pages.  As a result, the rmap never has a reason to reference the
anon_vma from folios at any point and thus no unexpected or weird
behaviour results.

The anon_vma logic tries to avoid unnecessary anon_vma propagation on
fork so we ought to at least minimise overhead.

However, this is still overhead, and unwelcome overhead.

The whole reason we do this (in madvise_guard_install()) is to ensure
that fork _copies page tables_.  Otherwise, in vma_needs_copy(),
nothing will indicate that we should do so.

This was already an unpleasant thing to have to do, but without a new
VMA flag we really have no reasonable means of ensuring this happens.

Going forward, I intend to add a new VMA flag, VM_MAYBE_GUARDED or
something like this.

This would have specific behaviour - for the purposes of merging, it
would be ignored.  However on both split and merge, it will be
propagated.  It is therefore 'sticky'.

This is to avoid having to traverse page tables to determine which
parts of a VMA contain guard regions and of course to maintain the
desirable qualities of guard regions - the lack of VMA propagation (+
thus slab allocations of VMAs).

Adding this flag and adjusting vma_needs_copy() to reference it would
resolve the issue.

However :) we have a VMA flag space issue, so it'd render this a 64-bit
feature only.

Having discussed with Matthew a plan by which to perhaps extend
available flags for 32-bit we may going forward be able to avoid this. 
But this may be a longer term project.

In the meantime, we'd have to resort to the anon_vma hack for 32-bit,
using the flag for 64-bit.  The issue with this however is if we do
then intend to allow the flag to enable /proc/$pid/maps visibility
(something this could allow), it would also end up being 64-bit only
which would be a pity.

Regardless - I wanted to highlight this behaviour as it is perhaps
somewhat surprising.


This patch (of 4):

There is no reason to disallow guard regions in file-backed mappings -
readahead and fault-around both function correctly in the presence of PTE
markers, equally other operations relating to memory-mapped files function
correctly.

Additionally, read-only mappings if introducing guard-regions, only
restrict the mapping further, which means there is no violation of any
access rights by permitting this to be so.

Removing this restriction allows for read-only mapped files (such as
executable files) correctly which would otherwise not be permitted.

Link: https://lkml.kernel.org/r/cover.1739469950.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/d885cb259174736c2830a5dfe07f81b214ef3faa.1739469950.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:14 -07:00
Wei Yang bf40aa2141 mm/mm_init.c: use round_up() to calculate usermap size
Since pageblock_nr_pages and BITS_PER_LONG are power of 2, we could use
round_up() to calculate it.

Also we have renamed blockflags to pageblock_flags, adjust the comment
accordingly.

Link: https://lkml.kernel.org/r/20250212013818.873-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Suggested-by: Shivank Garg <shivankg@amd.com>
Reviewed-by: Shivank Garg <shivankg@amd.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:14 -07:00
Wei Yang 4bc2e699e3 mm/mm_init.c: only align start of ZONE_MOVABLE on nodes with memory
At the beginning of find_zone_movable_pfns_for_nodes(), it has properly
set node_states[N_MEMORY] in early_calculate_totalpages().

Instead of iterating over all possible nodes, we can just do the alignment
on nodes with memory.

Link: https://lkml.kernel.org/r/20250211082900.10877-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dev Jain <dev.jain@arm.com>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:13 -07:00
Usama Arif ea1f204ba2 mm/damon/sysfs-schemes: add files for setting damos_filter->sz_range
Add min and max files for damon filters to let the userspace decide the
min/max folio size to operate on.  This will be needed to decide what
folio sizes to give pa_stat for.

Link: https://lkml.kernel.org/r/20250211124437.278873-3-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:12 -07:00
Usama Arif 0431c42622 mm/damon: introduce DAMOS filter type hugepage_size
Patch series "mm/damon: add support for hugepage_size DAMOS filter", v5.

hugepage_size DAMOS filter can be used to gather statistics to check if
memory regions of specific access tempratures are backed by hugepages of a
size in a specific range.  This filter can help to observe and prove the
effectivenes of different schemes for shrinking/collapsing hugepages.


This patch (of 4):

This is to gather statistics to check if memory regions of specific access
tempratures are backed by pages of a size in a specific range.  This
filter can help to observe and prove the effectivenes of different schemes
for shrinking/collapsing hugepages.

[sj@kernel.org: add kernel-doc comment for damos_filter->sz_range]
  Link: https://lkml.kernel.org/r/20250218223058.52459-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250211124437.278873-1-usamaarif642@gmail.com
Link: https://lkml.kernel.org/r/20250211124437.278873-2-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Usama Arif <usamaarif642@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:12 -07:00
Brendan Jackman 026e8b55aa mm/mmu_gather: update comment on RCU freeing
Some recent discussion on LMKL [0] brought up some interesting and useful
additional context on RCU-freeing for pagetables.

Note down some extra info in here, in particular a) be concrete about the
reason why an arch might not have an IPI and b) add the interesting
paravirt details.

[0] https://lore.kernel.org/linux-kernel/20250206044346.3810242-2-riel@surriel.com/

Link: https://lkml.kernel.org/r/20250211-mmugather-comment-v1-1-1ac1e0c765d2@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Brendan Jackman <jackmanb@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:12 -07:00
Lorenzo Stoakes a4811f53bb mm: provide mapping_wrprotect_range() function
In the fb_defio video driver, page dirty state is used to determine when
frame buffer pages have been changed, allowing for batched, deferred I/O
to be performed for efficiency.

This implementation had only one means of doing so effectively - the use
of the folio_mkclean() function.

However, this use of the function is inappropriate, as the fb_defio
implementation allocates kernel memory to back the framebuffer, and then
is forced to specified page->index, mapping fields in order to permit the
folio_mkclean() rmap traversal to proceed correctly.

It is not correct to specify these fields on kernel-allocated memory, and
moreover since these are not folios, page->index, mapping are deprecated
fields, soon to be removed.

We therefore need to provide a means by which we can correctly traverse
the reverse mapping and write-protect mappings for a page backing an
address_space page cache object at a given offset.

This patch provides this - mapping_wrprotect_range() - which allows for
this operation to be performed for a specified address_space, offset, PFN
and size, without requiring a folio nor, of course, an inappropriate use
of page->index, mapping.

With this provided, we can subsequently adjust the fb_defio implementation
to make use of this function and avoid incorrect invocation of
folio_mkclean() and more importantly, incorrect manipulation of
page->index and mapping fields.

Link: https://lkml.kernel.org/r/e5bf969d64e7f2f2ae944d42341fc8994b736a81.1739029358.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Jaya Kumar <jayakumar.lkml@gmail.com>
Cc: Kajtar Zsolt <soci@c64.rulez.org>
Cc: Maíra Canal <mcanal@igalia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Thomas Zimemrmann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:11 -07:00
Lorenzo Stoakes cedae19487 mm: refactor rmap_walk_file() to separate out traversal logic
Patch series "expose mapping wrprotect, fix fb_defio use", v3.

Right now the only means by which we can write-protect a range using the
reverse mapping is via folio_mkclean().

However this is not always the appropriate means of doing so, specifically
in the case of the framebuffer deferred I/O logic (fb_defio enabled by
CONFIG_FB_DEFERRED_IO).  There, kernel pages are mapped read-only and
write-protect faults used to batch up I/O operations.

Each time the deferred work is done, folio_mkclean() is used to mark the
framebuffer page as having had I/O performed on it.  However doing so
requires the kernel page (perhaps allocated via vmalloc()) to have its
page->mapping, index fields set so the rmap can find everything that maps
it in order to write-protect.

This is problematic as firstly, these fields should not be set for
kernel-allocated memory, and secondly these are not folios (it's not user
memory) and page->index, mapping fields are now deprecated and soon to be
removed.

The removal of these fields is imminent, rendering this series more urgent
than it might first appear.

The implementers cannot be blamed for having used this however, as there
is simply no other way of performing this operation correctly.

This series fixes this - we provide the mapping_wrprotect_range() function
to allow the reverse mapping to be used to look up mappings from the page
cache object (i.e.  its address_space pointer) at a specific offset.

The fb_defio logic already stores this offset, and can simply be expanded
to keep track of the page cache object, so the change then becomes
straight-forward.

This series should have no functional change.


This patch (of 3):

In order to permit the traversal of the reverse mapping at a specified
mapping and offset rather than those specified by an input folio, we need
to separate out the portion of the rmap file logic which deals with this
traversal from those parts of the logic which interact with the folio.

This patch achieves this by adding a new static __rmap_walk_file()
function which rmap_walk_file() invokes.

This function permits the ability to pass NULL folio, on the assumption
that the caller has provided for this correctly in the callbacks specified
in the rmap_walk_control object.

Though it provides for this, and adds debug asserts to ensure that, should
a folio be specified, these are equal to the mapping and offset specified
in the folio, there should be no functional change as a result of this
patch.

The reason for adding this is to enable for future changes to permit users
to be able to traverse mappings of userland-mapped kernel memory,
write-protecting those mappings to enable page_mkwrite() or pfn_mkwrite()
fault handlers to be retriggered on subsequent dirty.

Link: https://lkml.kernel.org/r/cover.1739029358.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/0d1acec0cba1e5a12f9b53efcabc397541c90517.1739029358.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Jaya Kumar <jayakumar.lkml@gmail.com>
Cc: Kajtar Zsolt <soci@c64.rulez.org>
Cc: Maíra Canal <mcanal@igalia.com>
Cc: Matthew Wilcox <willy@infradead.org> [English fixes]
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Thomas Zimemrmann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:11 -07:00
David Laight c2661f5fe8 mm: remove the access_ok() call from gup_fast_fallback()
Historiaclly the code relied on access_ok() to validate the address range.
Commit 26f4c32807 added an explicit wrap check before access_ok().
Commit c28b1fc703 then changed the wrap test to use check_add_overflow().
Commit 6014bc2756 relaxed the checks in x86-64's access_ok() and added
  an explicit check for TASK_SIZE here to make up for it.
That left a pointless access_ok() call with its associated 'lfence' that
can never actually fail.

So just delete the test.

Link: https://lkml.kernel.org/r/20250209174711.60889-1-david.laight.linux@gmail.com
Signed-off-by: David Laight <david.laight.linux@gmail.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:10 -07:00
Bertrand Wlodarczyk 6e80c0aaad vmscan, cleanup: add for_each_managed_zone_pgdat macro
The macro is introduced to eliminate redundancy in the repeated iteration
over managed zones in pgdat data structure, reducing the potential for
errors. This change doesn't introduce any functional modifications.
Due to concentration of the pattern in vmscan.c the macro is placed
locally in that file.

Link: https://lkml.kernel.org/r/20250210160818.686-1-bertrand.wlodarczyk@intel.com
Signed-off-by: Bertrand Wlodarczyk <bertrand.wlodarczyk@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dwaipayan Ray <dwaipayanray1@gmail.com>
Cc: Joe Perches <joe@perches.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:10 -07:00
SeongJae Park 6fa70372c8 mm/damon/core: do damos walking in entire regions granularity
damos_walk_control can be installed while DAMOS is walking the regions. 
This means the walk callback function invocations can be started from a
region at the middle of the regions list.  This makes it hard to be used
reliably.  Particularly, DAMOS tried regions update for collecting
monitoring results gets problematic results.  Increase the
walk_control_lock critical section to do walking in entire regions
granularity.

Link: https://lkml.kernel.org/r/20250210182737.134994-4-sj@kernel.org
Fixes: bf0eaba0ff ("mm/damon/core: implement damos_walk()")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:10 -07:00
SeongJae Park 40eb655b41 mm/damon/core: do not call damos_walk_control->walk() if walk is completed
damos_walk() invokes callback functions of schemes until all schemes
finishes at least one round of walks.  If there are multiple DAMOS schemes
having different apply_interval, the callback functions for longer apply
interval scheme will be called for more than a round of the walk.

The behavior is different from the document (see damos_walk() kernel-doc
comment), and not useful.  Make the behavior be same to the documented
one, by stopping invoking the callback if the walk for the given scheme is
completed.

Link: https://lkml.kernel.org/r/20250210182737.134994-3-sj@kernel.org
Fixes: bf0eaba0ff ("mm/damon/core: implement damos_walk()")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:09 -07:00
SeongJae Park c32696ca5e mm/damon/core: unset damos->walk_completed after confimed set
Patch series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors".

damos_walk() can finish working earlier or later than expected, and start
earlier than practical.  First two behaviors are clearly wrong behavior
(doesn't follow the documentation) and all three behaviors are only making
the feature useless.  Fix those.


This patch (of 3):

damos->walk_completed is only set, not unset.  This can cause next
damos_walk() finish earlier than expected.  Unset it after all
walk_completed is confirmed.

Link: https://lkml.kernel.org/r/20250210182737.134994-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250210182737.134994-2-sj@kernel.org
Fixes: bf0eaba0ff ("mm/damon/core: implement damos_walk()")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:09 -07:00
Wei Yang 8d9a2f5d8a mm/mm_init.c: use round_up() to align movable range
Since MAX_ORDER_NR_PAGES is power of 2, let's use a faster version.

Link: https://lkml.kernel.org/r/20250207100453.9989-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:09 -07:00
Lorenzo Stoakes e92b6e7bb6 mm: use READ/WRITE_ONCE() for vma->vm_flags on migrate, mprotect
According to the syzbot report referenced here, it is possible to
encounter a race between mprotect() writing to the vma->vm_flags field and
migration checking whether the VMA is locked.

There is no real problem with timing here per se, only that torn
reads/writes may occur.  Therefore, as a proximate fix, ensure both
operations READ_ONCE() and WRITE_ONCE() to avoid this.

This race is possible due to the ability to look up VMAs via the rmap,
which migration does in this case, which takes no mmap or VMA lock and
therefore does not preclude an operation to modify a VMA.

When the final update of VMA flags is performed by mprotect, this will
cause the rmap lock to be taken while the VMA is inserted on split/merge.

However the means by which we perform splits/merges in the kernel is that
we perform the split/merge operation on the VMA, acquiring/releasing locks
as needed, and only then, after having done so, modifying fields.

We should carefully examine and determine whether we can combine the two
operations so as to avoid such races, and whether it might be possible to
otherwise annotate these rmap field accesses.

Link: https://lkml.kernel.org/r/20250207172442.78836-1-lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reported-by: syzbot+c2e5712cbb14c95d4847@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/67a34e60.050a0220.50516.0040.GAE@google.com/
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:09 -07:00
SeongJae Park 94ba17adab mm/damon: avoid applying DAMOS action to same entity multiple times
'paddr' DAMON operations set can apply a DAMOS scheme's action to a large
folio multiple times in single DAMOS-regions-walk if the folio is laid on
multiple DAMON regions.  Add a field for DAMOS scheme object that can be
used by the underlying ops to know what was the last entity that the
scheme's action has applied.  The core layer unsets the field when each
DAMOS-regions-walk is done for the given scheme.  And update 'paddr' ops
to use the infrastructure to avoid the problem.

Link: https://lkml.kernel.org/r/20250207212033.45269-3-sj@kernel.org
Fixes: 57223ac295 ("mm/damon/paddr: support the pageout scheme")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Usama Arif <usamaarif642@gmail.com>
Closes: https://lore.kernel.org/20250203225604.44742-3-usamaarif642@gmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:08 -07:00
Usama Arif 3a06696305 mm/damon/ops: have damon_get_folio return folio even for tail pages
Patch series "mm/damon/paddr: fix large folios access and schemes handling".

DAMON operations set for physical address space, namely 'paddr', treats
tail pages as unaccessed always.  It can also apply DAMOS action to a
large folio multiple times within single DAMOS' regions walking.  As a
result, the monitoring output has poor quality and DAMOS works in
unexpected ways when large folios are being used.  Fix those.

The patches were parts of Usama's hugepage_size DAMOS filter patch
series[1].  The first fix has collected from there with a slight commit
message change for the subject prefix.  The second fix is re-written by SJ
and posted as an RFC before this series.  The second one also got a slight
commit message change for the subject prefix.

[1] https://lore.kernel.org/20250203225604.44742-1-usamaarif642@gmail.com
[2] https://lore.kernel.org/20250206231103.38298-1-sj@kernel.org


This patch (of 2):

This effectively adds support for large folios in damon for paddr, as
damon_pa_mkold/young won't get a null folio from this function and won't
ignore it, hence access will be checked and reported.  This also means
that larger folios will be considered for different DAMOS actions like
pageout, prioritization and migration.  As these DAMOS actions will
consider larger folios, iterate through the region at folio_size and not
PAGE_SIZE intervals.  This should not have an affect on vaddr, as
damon_young_pmd_entry considers pmd entries.

Link: https://lkml.kernel.org/r/20250207212033.45269-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250207212033.45269-2-sj@kernel.org
Fixes: a28397beb5 ("mm/damon: implement primitives for physical address space monitoring")
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:08 -07:00
Catalin Marinas 7ddeb91f5b mm: kmemleak: add support for dumping physical and __percpu object info
Patch series "mm: kmemleak: Usability improvements".

Following a recent false positive tracking that led to commit 488b5b9eca
("mm: kmemleak: fix upper boundary check for physical address objects"), I
needed kmemleak to give me more debug information about the objects it is
tracking.  This lead to the first patch of this series.  The second patch
changes the kmemleak-test module to show the raw pointers for debugging
purposes.


This patch (of 2):

Currently, echo dump=...  > /sys/kernel/debug/kmemleak only looks up the
main virtual address object tree.  However, for debugging, it's useful to
dump information about physical address and __percpu objects.

Search all three object trees for the dump= command and also print the
type of the object if not virtual: "(phys)" or "(percpu)".  In addition,
allow search by alias (pointer within the object).

Link: https://lkml.kernel.org/r/20250206114537.2597764-1-catalin.marinas@arm.com
Link: https://lkml.kernel.org/r/20250206114537.2597764-2-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:08 -07:00
Michal Hocko 9a5b183941 mm, percpu: do not consider sleepable allocations atomic
28307d938f ("percpu: make pcpu_alloc() aware of current gfp context")
has fixed a reclaim recursion for scoped GFP_NOFS context.  It has done
that by avoiding taking pcpu_alloc_mutex.  This is a correct solution as
the worker context with full GFP_KERNEL allocation/reclaim power and which
is using the same lock cannot block the NOFS pcpu_alloc caller.

On the other hand this is a very conservative approach that could lead to
failures because pcpu_alloc lockless implementation is quite limited.

We have a bug report about premature failures when scsi array of 193
devices is scanned.  Sometimes (not consistently) the scanning aborts
because the iscsid daemon fails to create the queue for a random scsi
device during the scan.  iscsid itslef is running with PR_SET_IO_FLUSHER
set so all allocations from this process context are GFP_NOIO.  This in
turn makes any pcpu_alloc lockless (without pcpu_alloc_mutex) which leads
to pre-mature failures.

It has turned out that iscsid has worked around this by dropping
PR_SET_IO_FLUSHER (https://github.com/open-iscsi/open-iscsi/pull/382) when
scanning host.  But we can do better in this case on the kernel side and
use pcpu_alloc_mutex for NOIO resp.  NOFS constrained allocation scopes
too.  We just need the WQ worker to never trigger IO/FS reclaim.  Achieve
that by enforcing scoped GFP_NOIO for the whole execution of
pcpu_balance_workfn (this will imply NOFS constrain as well).  This will
remove the dependency chain and preserve the full allocation power of the
pcpu_alloc call.

While at it make is_atomic really test for blockable allocations.

Link: https://lkml.kernel.org/r/20250206122633.167896-1-mhocko@kernel.org
Fixes: 28307d938f ("percpu: make pcpu_alloc() aware of current gfp context")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Filipe David Manana <fdmanana@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:08 -07:00
Baoquan He 1d212293ff mm/swapfile.c: open code cluster_alloc_swap()
It's only called in scan_swap_map_slots().

And also remove the stale code comment in scan_swap_map_slots() because
it's not fit for the current cluster allocation mechanism.

Link: https://lkml.kernel.org/r/20250205092721.9395-13-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:07 -07:00
Baoquan He 4ccd4154fa mm/swapfile.c: remove the incorrect code comment
Since commit eb085574a7 ("mm, swap: fix race between swapoff and some
swap operations"), the non_swap_entry() checking has been taken off from
function __swap_duplicate().  Hence, in the kernel-doc comment, the line
'swp_entry is migration entry -> EINVAL' is obsolete.  Remove that line to
avoid misleading people.

Link: https://lkml.kernel.org/r/20250205092721.9395-12-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:07 -07:00
Baoquan He c523aa8907 mm/swap: rename swap_swapcount() to swap_entry_swapped()
The new function name can reflect the real behaviour of the function more
clearly and more accurately.  And the renaming avoids the confusion
between swap_swapcount() and swp_swapcount().

Link: https://lkml.kernel.org/r/20250205092721.9395-11-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:07 -07:00
Baoquan He ac2d326828 mm/swapfile.c: remove the unneeded checking
In free_swap_and_cache_nr(), invocation of get_swap_device() has done the
checking if it's a swap entry.  So remove the redundant checking here.

Link: https://lkml.kernel.org/r/20250205092721.9395-10-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:07 -07:00
Baoquan He e89c45c700 mm/swap_state.c: remove the meaningless code comment
Since commit 8d93b41c09 ("mm: Convert add_to_swap_cache to XArray"),
there's no returned _EEXIT, so the code comment doesn't make sense any
more.

Link: https://lkml.kernel.org/r/20250205092721.9395-9-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:06 -07:00
Baoquan He a46a6bc21c mm/swapfile.c: optimize code in setup_clusters()
In the last 'for' loop inside setup_clusters(), using two local variable
'k' and 'j' are obvisouly redundant.  Using 'j' is enough and simpler.

And also move macro SWAP_CLUSTER_COLS close to its only user
setup_clusters().

Link: https://lkml.kernel.org/r/20250205092721.9395-8-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:06 -07:00
Baoquan He f80ddc148c mm/swapfile.c: update the code comment above swap_count_continued()
Now, swap_count_continued() has two callers, __swap_duplicate() and
__swap_entry_free_locked(), the relevant code comment is stale.  Update it
to reflect the current situation.

[bhe@redhat.com: v2]
  Link: https://lkml.kernel.org/r/Z6V0/UvG1fvkQ4t/@fedora
Link: https://lkml.kernel.org/r/20250205092721.9395-7-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:06 -07:00
Baoquan He b4735d94c2 mm/swap: rename swap_is_has_cache() to swap_only_has_cache()
There are two predicates in the name of swap_is_has_cache() which is
confusing.  Renaming it to remove the confusion and can better reflect its
functionality.

Link: https://lkml.kernel.org/r/20250205092721.9395-6-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:06 -07:00
Baoquan He 9b9cba7289 mm/swap: skip scanning cluster range if it's empty cluster
Since ci->lock has been taken when isolating cluster from
si->free_clusters or taking si->percpu_cluster->next[order], it's
unnecessary to scan and check the cluster range availability if i'ts empty
cluster, and this can accelerate the huge page swapping.

Link: https://lkml.kernel.org/r/20250205092721.9395-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:05 -07:00
Baoquan He 0eb7d2c337 mm/swap: remove SWAP_FLAG_PRIO_SHIFT
It doesn't make sense to have a zero value of shift.  Remove it to avoid
confusion.

Link: https://lkml.kernel.org/r/20250205092721.9395-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:05 -07:00
Baoquan He cd57a3fb37 mm/swap_state.c: optimize the code in clear_shadow_from_swap_cache()
Use ALIGN to achieve the same effect and simplify the code.

Link: https://lkml.kernel.org/r/20250205092721.9395-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:05 -07:00
Baoquan He 81fe88a946 mm/swap_state.c: fix the obsolete code comment
Patch series "Tiny cleanup and improvements about SWAP code".

These are all made during review and from reading the patchset "[PATCH v3
00/13] mm, swap: rework of swap allocator locks" from Kairui.


This patch (of 12):

Since commit 85a1333417 ("mm/swap: use dedicated entry for swap in
folio"), there's a dedicated field in folio for swap entry.  Let's update
the code comment above add_to_swap_cache() accordingly.

Link: https://lkml.kernel.org/r/20250205092721.9395-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20250205092721.9395-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Cc: Baoquan he <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org> (Google)
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:05 -07:00
Liu Ye 33c9b01ed2 mm/memfd: fix spelling and grammatical issues
The comment "If a private mapping then writability is irrelevant" contains
a typo.  It should be "If a private mapping then writability is
irrelevant".  The comment "SEAL_EXEC implys SEAL_WRITE, making W^X from
the start." contains a typo.  It should be "SEAL_EXEC implies SEAL_WRITE,
making W^X from the start."

Link: https://lkml.kernel.org/r/20250206060958.98010-1-liuye@kylinos.cn
Signed-off-by: Liu Ye <liuye@kylinos.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:04 -07:00
SeongJae Park 4000e3d0a3 mm/madvise: remove redundant mmap_lock operations from process_madvise()
Optimize redundant mmap lock operations from process_madvise() by directly
doing the mmap locking first, and then the remaining works for all ranges
in the loop.

[akpm@linux-foundation.org: update comment, per Lorenzo]
Link: https://lkml.kernel.org/r/20250206061517.2958-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Liam R. Howlett <howlett@gmail.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:04 -07:00
SeongJae Park 457753da64 mm/madvise: split out madvise() behavior execution
Split out the madvise behavior applying logic from do_madvise() to make
it easier to reuse from the following change.

Link: https://lkml.kernel.org/r/20250206061517.2958-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <howlett@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:04 -07:00
SeongJae Park dbb0020bbc mm/madvise: split out madvise input validity check
Split out the madvise parameters validation logic from do_madvise(), for
easy reuse of the logic from a future change.

Link: https://lkml.kernel.org/r/20250206061517.2958-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Liam R. Howlett <howlett@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:04 -07:00
SeongJae Park 4cc39f91ef mm/madvise: split out mmap locking operations for madvise()
Patch series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()".

process_madvise() calls do_madvise() for each address range.  Then, each
do_madvise() invocation holds and releases same mmap_lock.  Optimize the
redundant lock operations by splitting do_madvise() internal logic
including the mmap_lock operations, and calling the small logic directly
from process_madvise() in a sequence that removes the redundant locking. 
As a result of this change, process_madvise() becomes more efficient and
less racy in terms of its results and latency.

Note that the potential downside of this series is that other mmap_lock
holders may take more time due to the increased length of mmap_lock
critical section for process_madvise() calls.  But there is maximum limit
in the kernel space (IOV_MAX), and userspace can control the critical
section length by setting the request size.  Hence, the downside would be
limited and controllable.

Evaluation
==========

I measured the time to apply MADV_DONTNEED advice to 256 MiB memory using
multiple madvise() calls, 4 KiB per each call.  I also do the same with
process_madvise(), but with varying batch size (vlen) from 1 to 1024.  The
source code for the measurement is available at GitHub[1].  Because the
microbenchmark result is not that stable, I ran each configuration five
times and use the average.

The measurement results are as below.  'sz_batches' column shows the batch
size of process_madvise() calls.  '0' batch size is for madvise() calls
case.  'before' and 'after' columns are the measured time to apply
MADV_DONTNEED to the 256 MiB memory buffer in nanoseconds, on kernels that
built without and with the last patch of this series, respectively.  So
lower value means better efficiency.  'after/before' column is the ratio
of 'after' to 'before'.

    sz_batches  before       after        after/before
    0           146294215.2  121280536.2  0.829017989769427
    1           165851018.8  136305598.2  0.821855658085351
    2           129469321.2  103740383.6  0.801273866569094
    4           110369232.4  87835896.2   0.795836795182785
    8           102906232.4  77420920.2   0.752344327397609
    16          97551017.4   74959714.4   0.768415506038587
    32          94809848.2   71200848.4   0.750985786305689
    64          96087575.6   72593180     0.755489765942227
    128         96154163.8   68517055.4   0.712575022154163
    256         92901257.6   69054216.6   0.743307662177439
    512         93646170.8   67053296.2   0.716028168874151
    1024        92663219.2   70168196.8   0.75723892830177

Despite the unstable nature of the test program, the trend is as we
expect.  The measurement shows this patchset reduces the process_madvise()
latency, proportional to the batching size.  The latency gain was about
20% with the batch size 2, and it has increased to about 28% with the
batch size 512, since more number of mmap locking is reduced with larger
batch size.

Note that the standard devitation of the measurements for each sz_batches
configuration ranged from 1.9% to 7.2%.  That is, this result is not very
stable.  The average of the standard deviations for different batch sizes
were 4.62% and 4.70% for the 'before' and 'after' kernel measurements.

Also note that this patch has somehow decreased latencies of madvise() and
single batch size process_madvise().  Seems this code path is small enough
to significantly be affected by compiler optimizations including inlining
of split-out functions.  Please focus on only the improvement amount that
changed by the batch size.

[1] https://github.com/sjp38/eval_proc_madvise


This patch (of 4):

Split out the madvise behavior-dependent mmap_lock operations from
do_madvise(), for easier reuse of the logic in an upcoming change.

[lorenzo.stoakes@oracle.com: fix madvise_[un]lock() issue]
  Link: https://lkml.kernel.org/r/2f448f7b-1da7-4099-aa9e-0179d47fde40@lucifer.local
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20250206061517.2958-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250206061517.2958-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Liam R. Howlett <howlett@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:04 -07:00
Suren Baghdasaryan 93d5440ece alloc_tag: uninline code gated by mem_alloc_profiling_key in page allocator
When a sizable code section is protected by a disabled static key, that
code gets into the instruction cache even though it's not executed and
consumes the cache, increasing cache misses. This can be remedied by
moving such code into a separate uninlined function.
On a Pixel6 phone, page allocation profiling overhead measured with
CONFIG_MEM_ALLOC_PROFILING=y and profiling disabled is:

             baseline             modified
Big core     4.93%                1.53%
Medium core  4.39%                1.41%
Little core  1.02%                0.36%

This improvement comes at the expense of the configuration when profiling
gets enabled, since there is now an additional function call. The overhead
from this additional call on Pixel6 is:

Big core     0.24%
Middle core  0.63%
Little core  1.1%

However this is negligible when compared with the overall overhead of the
memory allocation profiling when it is enabled.
On x86 this patch does not make noticeable difference because the overhead
with mem_alloc_profiling_key disabled is much lower (under 1%) to start
with, so any improvement is less visible and hard to distinguish from the
noise. The overhead from additional call when profiling is enabled is also
within noise levels.

Link: https://lkml.kernel.org/r/20250201231803.2661189-3-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: David Wang <00107082@163.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Minchan Kim <minchan@google.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:03 -07:00
Suren Baghdasaryan a642b27b99 alloc_tag: uninline code gated by mem_alloc_profiling_key in slab allocator
When a sizable code section is protected by a disabled static key, that
code gets into the instruction cache even though it's not executed and
consumes the cache, increasing cache misses.  This can be remedied by
moving such code into a separate uninlined function.  On a Pixel6 phone,
slab allocation profiling overhead measured with
CONFIG_MEM_ALLOC_PROFILING=y and profiling disabled is:

             baseline             modified
Big core     3.31%                0.17%
Medium core  3.79%                0.57%
Little core  6.68%                1.28%

This improvement comes at the expense of the configuration when profiling
gets enabled, since there is now an additional function call.  The
overhead from this additional call on Pixel6 is:

Big core     0.66%
Middle core  1.23%
Little core  2.42%

However this is negligible when compared with the overall overhead of the
memory allocation profiling when it is enabled.

On x86 this patch does not make noticeable difference because the overhead
with mem_alloc_profiling_key disabled is much lower (under 1%) to start
with, so any improvement is less visible and hard to distinguish from the
noise.  The overhead from additional call when profiling is enabled is
also within noise levels.

Link: https://lkml.kernel.org/r/20250201231803.2661189-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: David Wang <00107082@163.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Minchan Kim <minchan@google.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:03 -07:00
Suren Baghdasaryan 51ff4d7486 mm: avoid extra mem_alloc_profiling_enabled() checks
Refactor code to avoid extra mem_alloc_profiling_enabled() checks inside
pgalloc_tag_get() function which is often called after that check was
already done.

Link: https://lkml.kernel.org/r/20250201231803.2661189-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: David Wang <00107082@163.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Minchan Kim <minchan@google.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:03 -07:00
Lorenzo Stoakes c372473a54 mm: completely abstract unnecessary adj_start calculation
The adj_start calculation has been a constant source of confusion in the
VMA merge code.

There are two cases to consider, one where we adjust the start of the
vmg->middle VMA (i.e.  the vmg->__adjust_middle_start merge flag is set),
in which case adj_start is calculated as:

(1) adj_start = vmg->end - vmg->middle->vm_start

And the case where we adjust the start of the vmg->next VMA (i.e.  the
vmg->__adjust_next_start merge flag is set), in which case adj_start is
calculated as:

(2) adj_start = -(vmg->middle->vm_end - vmg->end)

We apply (1) thusly:

vmg->middle->vm_start =
	vmg->middle->vm_start + vmg->end - vmg->middle->vm_start

Which simplifies to:

vmg->middle->vm_start = vmg->end

Similarly, we apply (2) as:

vmg->next->vm_start =
	vmg->next->vm_start + -(vmg->middle->vm_end - vmg->end)

Noting that for these VMAs to be mergeable vmg->middle->vm_end ==
vmg->next->vm_start and so this simplifies to:

vmg->next->vm_start =
	vmg->next->vm_start + -(vmg->next->vm_start - vmg->end)

Which simplifies to:

vmg->next->vm_start = vmg->end

Therefore in each case, we simply need to adjust the start of the VMA to
vmg->end (!) and can do away with this adj_start calculation.  The only
caveat is that we must ensure we update the vm_pgoff field correctly.

We therefore abstract this entire calculation to a new function
vmg_adjust_set_range() which performs this calculation and sets the
adjusted VMA's new range using the general vma_set_range() function.

We also must update vma_adjust_trans_huge() which expects the
now-abstracted adj_start parameter.  It turns out this is wholly
unnecessary.

In vma_adjust_trans_huge() the relevant code is:

	if (adjust_next > 0) {
		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
		unsigned long nstart = next->vm_start;
		nstart += adjust_next;
		split_huge_pmd_if_needed(next, nstart);
	}

The only case where this is relevant is when vmg->__adjust_middle_start is
specified (in which case adj_next would have been positive), i.e.  the one
in which the vma specified is vmg->prev and this the sought 'next' VMA
would be vmg->middle.

We can therefore eliminate the find_vma() invocation altogether and simply
provide the vmg->middle VMA in this instance, or NULL otherwise.

Again we have an adj_next offset calculation:

next->vm_start + vmg->end - vmg->middle->vm_start

Where next == vmg->middle this simplifies to vmg->end as previously
demonstrated.

Therefore nstart is equal to vmg->end, which is already passed to
vma_adjust_trans_huge() via the 'end' parameter and so this code (rather
delightfully) simplifies to:

	if (next)
		split_huge_pmd_if_needed(next, end);

With these changes in place, it becomes silly for commit_merge() to return
vmg->target, as it is always the same and threaded through vmg, so we
finally change commit_merge() to return an error value once again.

This patch has no change in functional behaviour.

Link: https://lkml.kernel.org/r/7bce2cd4b5afb56211822835d145471280c3dccc.1738326519.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:02 -07:00
Lorenzo Stoakes 0e5ffe9b2b mm: make vmg->target consistent and further simplify commit_merge()
It is confusing for vmg->target to sometimes be the target merged VMA and
in one case not.

Fix this by having commit_merge() use its awareness of the
vmg->_adjust_next_start case to know that it is manipulating a separate
vma, abstracted in the 'vma' local variable.

Place removal and adjust VMA determination logic into
init_multi_vma_prep(), as the flags give us enough information to do so,
and since this is the function that sets up the vma_prepare struct it
makes sense to do so here.

Doing this significantly simplifies commit_merge(), allowing us to
eliminate the 'merge_target' handling, initialise the VMA iterator in a
more sensible place and simply return vmg->target consistently.

This also allows us to simplify setting vmg->target in
vma_merge_existing_range() since we are then left only with two cases -
merge left (or both) where the target is vmg->prev or merge right in which
the target is vmg->next.

This makes it easy for somebody reading the code to know what VMA will
actually be the one returned and merged into and removes a great deal of
the confusing 'adjust' nonsense.

This patch has no change in functional behaviour.

Link: https://lkml.kernel.org/r/50f96e31ab1980eaaf1006e34a4f6e6dad9320b8.1738326519.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:02 -07:00
Lorenzo Stoakes fe3e9cf0d7 mm: eliminate adj_start parameter from commit_merge()
Introduce internal vmg->__adjust_middle_start and vmg->__adjust_next_start
merge flags, enabling us to indicate to commit_merge() that we are
performing a merge which either spans only part of vmg->middle, or part of
vmg->next respectively.

In the former instance, we change the start of vmg->middle to match the
attributes of vmg->prev, without spanning all of vmg->middle.

This implies that vmg->prev->vm_end and vmg->middle->vm_start are both
increased to form the new merged VMA (vmg->prev) and the new subsequent
VMA (vmg->middle).

In the latter case, we change the end of vmg->middle to match the
attributes of vmg->next, without spanning all of vmg->next.

This implies that vmg->middle->vm_end and vmg->next->vm_start are both
decreased to form the new merged VMA (vmg->next) and the new prior VMA
(vmg->middle).

Since we now have a stable set of prev, middle, next VMAs threaded through
vmg and with these flags set know what is happening, we can perform the
calculation in commit_merge() instead.

This allows us to drop the confusing adj_start parameter and instead pass
semantic information to commit_merge().

In the latter case the -(middle->vm_end - start) calculation becomes
-(middle->vm-end - vmg->end), however this is correct as vmg->end is set
to the start parameter.

This is because in this case (rather confusingly), we manipulate
vmg->middle, but ultimately return vmg->next, whose range will be
correctly specified.  At this point vmg->start, end is the new range for
the prior VMA rather than the merged one.

This patch has no change in functional behaviour.

Link: https://lkml.kernel.org/r/bcec0cd980b373a5eb02236cb033034ce1effe42.1738326519.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:02 -07:00
Lorenzo Stoakes 6ab2d9c7c6 mm: further refactor commit_merge()
The current VMA merge mechanism contains a number of confusing mechanisms
around removal of VMAs on merge and the shrinking of the VMA adjacent to
vma->target in the case of merges which result in a partial merge with
that adjacent VMA.

Since we now have a STABLE set of VMAs - prev, middle, next - we are now
able to have the caller of commit_merge() explicitly tell us which VMAs
need deleting, using newly introduced internal VMA merge flags.

Doing so allows us to embed this state within the VMG and remove the
confusing remove, remove2 parameters from commit_merge().

We additionally are able to eliminate the highly confusing and misleading
'expanded' parameter - a parameter that in reality refers to whether or
not the return VMA is the target one or the one immediately adjacent.

We can infer which is the case from whether or not the adj_start parameter
is negative.  This also allows us to simplify further logic around
iterator configuration and VMA iterator stores.

Doing so means we can also eliminate the adjust parameter, as we are able
to infer which VMA ought to be adjusted from adj_start - a positive value
implies we adjust the start of 'middle', a negative one implies we adjust
the start of 'next'.

We are then able to have commit_merge() explicitly return the target VMA,
or NULL on inability to pre-allocate memory.  Errors were previously
filtered so behaviour does not change.

We additionally move from the slightly odd use of a bitwise-flag enum
vmg->merge_flags field to vmg bitfields.

This patch has no change in functional behaviour.

Link: https://lkml.kernel.org/r/7bf2ed24af68aac18672b7acebbd9102f48c5b03.1738326519.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:02 -07:00
Lorenzo Stoakes 3a75ccba04 mm: simplify vma merge structure and expand comments
Patch series "mm: further simplify VMA merge operation", v3.

While significant efforts have been made to improve the VMA merge
operation, there remains remnants of the bad (or rather confusing) old
days, which make the code difficult to understand, more bug prone and thus
harder to modify.

This series attempts to significantly improve matters in a number of
respects - with a focus on simplifying the commit_merge() function which
actually actions the merge operation - and importantly, adjusting the two
most confusing merge cases - those in which we 'adjust' the VMA
immediately adjacent to the one being merged.

One source of confusion are the VMAs being threaded through the operation
themselves - vmg->prev, vmg->vma and vmg->next.

At the start of the operation, vmg->vma is either NULL if a new VMA is
propose to be added, or if not then a pointer to an existing VMA being
modified, and prev/next are (perhaps not present) VMAs sat immediately
before and after the range specified in vmg->start, end, respectively.

However, during the VMA merge operation, we change vmg->start, end and
pgoff to span the newly merged range and vmg->vma to either be:

a.  The ultimately returned VMA (in most cases) or b.  A VMA which we will
manipulate, but ultimately instead return vmg->next.

Case b.  especially here is confusing for somebody reading this code, but
the fact we update this state, along with vmg->start, end, pgoff only
makes matters worse.

We simplify things by replacing vmg->vma with vmg->middle and never
changing it - this is always either NULL (for a new VMA) or the VMA being
modified between vmg->prev and vmg->next.

We further simplify by placing the merged VMA in a new vmg->target field -
whether case b.  above is the case or not.  The reader of the code can now
simply rely on vmg->middle being the middle VMA and vmg->target being the
ultimately merged VMA.

We additionally tackle the confusing cases where we 'adjust' VMAs other
than the one we ultimately return as the merged VMA (this includes case b.
above).  These are:

(1)
	    merge
	<----------->
	|------||--------|    |------------|---|
	| prev || middle | -> |   target   | m |
	|------||--------|    |------------|---|

In which case middle must be adjusted so middle->vm_start is increased as
well as performing the merge.

(2) (equivalent to case b. above)

            <------------->
	|---------||------|    |---|-------------|
	|  middle || next | -> | m |   target    |
	|---------||------|    |---|-------------|

In which case next must be adjusted so next->vm_start is decreased as well
as performing the merge.

This cases have previously been performed by calculating and passing
around a dubious and confusing 'adj_start' parameter along side a pointer
to an 'adjust' VMA indicating which VMA requires additional adjustment
(middle in case 1 and next in case 2).

With the VMG structure in place we are able to avoid this by simply
setting a merge flag to describe each case:

(1) Sets the vmg->__adjust_middle_start flag
(2) Sets the vmg->__adjust_next_start flag

By doing so it turns out we can vastly simplify the logic and calculate
what is required to perform the operation.

Taken together the refactorings make it far easier to understand what is
being done even in these more confusing cases, make the code far more
maintainable, debuggable, and testable, providing more internal state
indicating what is happening in the merge operation.

The changes have no functional net impact on the merge operation and
everything should still behave as it did before.


This patch (of 5):

The merge code, while much improved, still has a number of points of
confusion.  As part of a broader series cleaning this up to make this more
maintainable, we start by addressing some confusion around
vma_merge_struct fields.

So far, the caller either provides no vmg->vma (a new VMA) or supplies the
existing VMA which is being altered, setting vmg->start,end,pgoff to the
proposed VMA dimensions.

vmg->vma is then updated, as are vmg->start,end,pgoff as the merge process
proceeds and the appropriate merge strategy is determined.

This is rather confusing, as vmg->vma starts off as the 'middle' VMA
between vmg->prev,next, but becomes the 'target' VMA, except in one
specific edge case (merge next, shrink middle).

Int his patch we introduce vmg->middle to describe the VMA that is between
vmg->prev and vmg->next, and does NOT change during the merge operation.

We replace vmg->vma with vmg->target, and use this only during the merge
operation itself.

Aside from the merge right, shrink middle case, this becomes the VMA that
forms the basis of the VMA that is returned.  This edge case can be
addressed in a future commit.

We also add a number of comments to explain what is going on.

Finally, we adjust the ASCII diagrams showing each merge case in
vma_merge_existing_range() to be clearer - the arrow range previously
showed the vmg->start, end spanned area, but it is clearer to change this
to show the final merged VMA.

This patch has no change in functional behaviour.

Link: https://lkml.kernel.org/r/cover.1738326519.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/4dfe60f1419d55e5d0516f56349695d73a57184c.1738326519.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:01 -07:00
Yosry Ahmed 6df8bae8e8 mm: zbud: remove zbud
The zbud compressed pages allocator is rarely used, most users use
zsmalloc.  zbud consumes much more memory (only stores 1 or 2 compressed
pages per physical page).  The only advantage of zbud is a marginal
performance improvement that by no means justify the memory overhead.

Historically, zsmalloc had significantly worse latency than zbud and
z3fold but offered better memory savings.  This is no longer the case as
shown by a simple recent analysis [1].  In a kernel build test on tmpfs in
a limited cgroup, zbud 2-3% less time than zsmalloc, but at the cost of
using ~32% more memory (1.5G vs 1.13G).  The tradeoff does not make sense
for zbud in any practical scenario.

The only alleged advantage of zbud is not having the dependency on
CONFIG_MMU, but CONFIG_SWAP already depends on CONFIG_MMU anyway, and zbud
is only used by zswap.

Remove zbud after z3fold's removal, leaving zsmalloc as the one and only
zpool allocator.  Leave the removal of the zpool API (and its associated
config options) to a followup cleanup after no more allocators show up.

Deprecating zbud for a few cycles before removing it was initially
proposed [2], like z3fold was marked as deprecated for 2 cycles [3]. 
However, Johannes rightfully pointed out that the 2 cycles is too short
for most downstream consumers, and z3fold was deprecated first only as a
courtesy anyway.

[1]https://lore.kernel.org/lkml/CAJD7tkbRF6od-2x_L8-A1QL3=2Ww13sCj4S3i4bNndqF+3+_Vg@mail.gmail.com/
[2]https://lore.kernel.org/lkml/Z5gdnSX5Lv-nfjQL@google.com/
[3]https://lore.kernel.org/lkml/20240904233343.933462-1-yosryahmed@google.com/

Link: https://lkml.kernel.org/r/20250129180633.3501650-3-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:01 -07:00
Yosry Ahmed 58ba73e521 mm: z3fold: remove z3fold
Patch series "mm: zswap: remove z3fold and zbud", v2.

After 2 cycles of deprecating z3fold, remove it as well as zbud (rationale
in specific patches).


This patch (of 2):

Z3fold has been marked as deprecated for 2 cycles and no one complained,
as expected.  As there are no known users, remove the code now.

Link: https://lkml.kernel.org/r/20250129180633.3501650-1-yosry.ahmed@linux.dev
Link: https://lkml.kernel.org/r/20250129180633.3501650-2-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:01 -07:00
Hao Zhang 350dce38eb mm/vmscan: extract calculated pressure balance as a function
Extract pressure balance calculation into a function.This doesn't change
current behaviour.

[akpm@linux-foundation.org: 80-col wrapping]
Link: https://lkml.kernel.org/r/tencent_735DB36A2306C08B8568049E4C0B99716C07@qq.com
Signed-off-by: Hao Zhang <zhanghao1@kylinos.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:01 -07:00
David Hildenbrand b8932ca8b9 mm/rmap: avoid -EBUSY from make_device_exclusive()
Failing to obtain the folio lock, for example because the folio is
concurrently getting migrated or swapped out, can easily make the callers
fail: for example, the hmm selftest can sometimes be observed to fail
because of this.  Instead of forcing the caller to retry, let's simply
retry in this to-be-expected case.

Similarly, avoid spurious failures simply because we raced with someone
(e.g., swapout) modifying the page table such that our folio_walk fails.

Simply unconditionally lock the folio, and retry GUP if our folio_walk
fails.  Note that the folio_walk repeatedly failing is not something we
expect.

Note that we might want to avoid grabbing the folio lock at some point;
for now, keep that as is and only unconditionally lock the folio.

With this change, the hmm selftests don't fail simply because the folio is
already locked.  While this fixes the selftests in some cases, it's likely
not something that deserves a "Fixes:".

Link: https://lkml.kernel.org/r/20250210193801.781278-18-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:00 -07:00
David Hildenbrand f495bd7e0d mm/rmap: keep mapcount untouched for device-exclusive entries
Now that conversion to device-exclusive does no longer perform an rmap
walk and all page_vma_mapped_walk() users were taught to properly handle
device-exclusive entries, let's treat device-exclusive entries just as if
they would be present, similar to how we handle device-private entries
already.

This fixes swapout/migration/split/hwpoison of folios with
device-exclusive entries.

We only had to take care of page_vma_mapped_walk() users, because these
traditionally assume pte_present().  Other page table walkers already have
to handle !pte_present(), and some of them might simply skip them (e.g.,
MADV_PAGEOUT) if they are not specialized on them.  This change doesn't
modify the latter.

Note that while folios with device-exclusive PTEs can now get migrated,
khugepaged will not collapse a THP if there is device-exclusive PTE. 
Doing so might also not be desired if the device frequently performs
atomics to the same page.  Similarly, KSM will never merge order-0 folios
that are device-exclusive.

Link: https://lkml.kernel.org/r/20250210193801.781278-17-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:00 -07:00
David Hildenbrand 1f3ac4c577 mm/damon: handle device-exclusive entries correctly in damon_folio_mkold_one()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

damon_folio_mkold_one() is not prepared for that and calls
damon_ptep_mkold() with PFN swap PTEs.  Teach damon_ptep_mkold() to deal
with these PFN swap PTEs.  Note that device-private entries are so far not
applicable on that path, as damon_get_folio() filters out non-lru folios.

Should we just skip PFN swap PTEs completely?  Possible, but it seems
straight forward to just handle it correctly.

Note that we could currently only run into this case with device-exclusive
entries on THPs.  We still adjust the mapcount on conversion to
device-exclusive; this makes the rmap walk abort early for small folios,
because we'll always have !folio_mapped() with a single device-exclusive
entry.  We'll adjust the mapcount logic once all page_vma_mapped_walk()
users can properly handle device-exclusive entries.

Link: https://lkml.kernel.org/r/20250210193801.781278-16-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:00 -07:00
David Hildenbrand 39628c39ba mm/damon: handle device-exclusive entries correctly in damon_folio_young_one()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

damon_folio_young_one() is not prepared for that, so teach it about these
PFN swap PTEs.  Note that device-private entries are so far not applicable
on that path, as we expect ZONE_DEVICE pages so far only in migration code
when it comes to the RMAP.

The impact is rather small: we'd be calling pte_young() on a non-present
PTE, which is not really defined to have semantic.

Note that we could currently only run into this case with device-exclusive
entries on THPs.  We still adjust the mapcount on conversion to
device-exclusive; this makes the rmap walk abort early for small folios,
because we'll always have !folio_mapped() with a single device-exclusive
entry.  We'll adjust the mapcount logic once all page_vma_mapped_walk()
users can properly handle device-exclusive entries.

Link: https://lkml.kernel.org/r/20250210193801.781278-15-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:00 -07:00
David Hildenbrand 3faa3ebc89 mm/page_idle: handle device-exclusive entries correctly in page_idle_clear_pte_refs_one()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

page_idle_clear_pte_refs_one() is not prepared for that, so let's teach it
what to do with these PFN swap PTEs.  Note that device-private entries are
so far not applicable on that path, as page_idle_get_folio() filters out
non-lru folios.

Should we just skip PFN swap PTEs completely?  Possible, but it seems
straight forward to just handle them correctly.

Note that we could currently only run into this case with device-exclusive
entries on THPs.  We still adjust the mapcount on conversion to
device-exclusive; this makes the rmap walk abort early for small folios,
because we'll always have !folio_mapped() with a single device-exclusive
entry.  We'll adjust the mapcount logic once all page_vma_mapped_walk()
users can properly handle device-exclusive entries.

Link: https://lkml.kernel.org/r/20250210193801.781278-14-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:59 -07:00
David Hildenbrand bd1f2b2ace mm/rmap: handle device-exclusive entries correctly in page_vma_mkclean_one()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

page_vma_mkclean_one() is not prepared for that, so teach it about these
PFN swap PTEs.  Note that device-private entries are so far not applicable
on that path, as we expect ZONE_DEVICE pages so far only in migration code
when it comes to the RMAP.

Note that we could currently only run into this case with device-exclusive
entries on THPs.  We still adjust the mapcount on conversion to
device-exclusive; this makes the rmap walk abort early for small folios,
because we'll always have !folio_mapped() with a single device-exclusive
entry.  We'll adjust the mapcount logic once all page_vma_mapped_walk()
users can properly handle device-exclusive entries.

Link: https://lkml.kernel.org/r/20250210193801.781278-13-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:59 -07:00
David Hildenbrand bf983108be mm/rmap: handle device-exclusive entries correctly in try_to_migrate_one()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

try_to_migrate_one() is not prepared for that, so teach it about these PFN
swap PTEs.  We already handle device-private entries by specializing on
the folio, so we can reshuffle that code to make it work on the PFN swap
PTEs instead.

Get rid of the folio_is_device_private() handling.  Note that we never
currently expect device-private folios with HWPoison flag set at that
point, so add a warning in case that ever changes and we can figure out
what the right thing to do is.

Note that we could currently only run into this case with device-exclusive
entries on THPs.  We still adjust the mapcount on conversion to
device-exclusive; this makes the rmap walk abort early for small folios,
because we'll always have !folio_mapped() with a single device-exclusive
entry.  We'll adjust the mapcount logic once all page_vma_mapped_walk()
users can properly handle device-exclusive entries.

Further note that try_to_migrate() calls MMU notifiers and holds the folio
lock, so any device-exclusive users should be properly prepared for a
device-exclusive PTE to "vanish".

Link: https://lkml.kernel.org/r/20250210193801.781278-12-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:59 -07:00
David Hildenbrand 6552929560 mm/rmap: handle device-exclusive entries correctly in try_to_unmap_one()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

try_to_unmap_one() is not prepared for that, so teach it about these PFN
swap PTEs.  Note that device-private entries are so far not applicable on
that path, as we expect ZONE_DEVICE pages so far only in migration code
when it comes to the RMAP.

Note that we could currently only run into this case with device-exclusive
entries on THPs.  We still adjust the mapcount on conversion to
device-exclusive; this makes the rmap walk abort early for small folios,
because we'll always have !folio_mapped() with a single device-exclusive
entry.  We'll adjust the mapcount logic once all page_vma_mapped_walk()
users can properly handle device-exclusive entries.

Further note that try_to_unmap() calls MMU notifiers and holds the folio
lock, so any device-exclusive users should be properly prepared for a
device-exclusive PTE to "vanish".

Link: https://lkml.kernel.org/r/20250210193801.781278-11-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:59 -07:00
David Hildenbrand 789cfc6699 mm/ksm: handle device-exclusive entries correctly in write_protect_page()
Ever since commit b756a3b5e7 ("mm: device exclusive memory access") we
can return with a device-exclusive entry from page_vma_mapped_walk().

write_protect_page() is not prepared for that, so teach it about these PFN
swap PTEs.  Note that device-private entries are so far not applicable on
that path, because GUP would never have returned such folios (conversion
to device-private happens by page migration, not in-place conversion of
the PTE).

There is a race between performing the folio_walk (which fails on
non-present PTEs) and locking the folio to look it up using
page_vma_mapped_walk() again, so this is likely a fix (unless something
else could prevent that race, but it doesn't look like).  In the future it
could be handled if ever required, for now just give up and ignore them
like folio_walk would.

Link: https://lkml.kernel.org/r/20250210193801.781278-10-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:58 -07:00
David Hildenbrand 7b2e497a42 mm/page_vma_mapped: device-exclusive entries are not migration entries
It's unclear why they would be considered migration entries; they are not.

Likely we'll never really trigger that case in practice, because migration
(including folio split) of a folio that has device-exclusive entries is
never started, as we would detect "additional references":
device-exclusive entries adjust the mapcount, but not the refcount.

Link: https://lkml.kernel.org/r/20250210193801.781278-8-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:58 -07:00
David Hildenbrand c25465eb76 mm: use single SWP_DEVICE_EXCLUSIVE entry type
There is no need for the distinction anymore; let's merge the readable and
writable device-exclusive entries into a single device-exclusive entry
type.

Link: https://lkml.kernel.org/r/20250210193801.781278-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Simona Vetter <simona.vetter@ffwll.ch>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:58 -07:00
David Hildenbrand 9a91459214 mm/memory: detect writability in restore_exclusive_pte() through can_change_pte_writable()
Let's do it just like mprotect write-upgrade or during NUMA-hinting faults
on PROT_NONE PTEs: detect if the PTE can be writable by using
can_change_pte_writable().

Set the PTE only dirty if the folio is dirty: we might not necessarily
have a write access, and setting the PTE writable doesn't require setting
the PTE dirty.

From a CPU perspective, these entries are clean.  So only set the PTE
dirty if the folios is dirty.

With this change in place, there is no need to have separate readable and
writable device-exclusive entry types, and we'll merge them next
separately.

Note that, during fork(), we first convert the device-exclusive entries
back to ordinary PTEs, and we only ever allow conversion of writable PTEs
to device-exclusive -- only mprotect can currently change them to
readable-device-exclusive.  Consequently, we always expect
PageAnonExclusive(page)==true and can_change_pte_writable()==true, unless
we are dealing with soft-dirty tracking or uffd-wp.  But reusing
can_change_pte_writable() for now is cleaner.

Link: https://lkml.kernel.org/r/20250210193801.781278-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:58 -07:00
David Hildenbrand 438354724f mm/rmap: implement make_device_exclusive() using folio_walk instead of rmap walk
We require a writable PTE and only support anonymous folio: we can only
have exactly one PTE pointing at that page, which we can just lookup using
a folio walk, avoiding the rmap walk and the anon VMA lock.

So let's stop doing an rmap walk and perform a folio walk instead, so we
can easily just modify a single PTE and avoid relying on rmap/mapcounts.

We now effectively work on a single PTE instead of multiple PTEs of a
large folio, allowing for conversion of individual PTEs from non-exclusive
to device-exclusive -- note that the opposite direction always works on
single PTEs: restore_exclusive_pte().

With this change, device-exclusive handling is fully compatible with THPs
/ large folios.  We still require PMD-sized THPs to get PTE-mapped, and
supporting PMD-mapped THP (without the PTE-remapping) is a different
endeavour that might not be worth it at this point: it might even have
negative side-effects [1].

This gets rid of the "folio_mapcount()" usage and let's us fix ordinary
rmap walks (migration/swapout) next.  Spell out that messing with the
mapcount is wrong and must be fixed.

[1] https://lkml.kernel.org/r/Z5tI-cOSyzdLjoe_@phenom.ffwll.local

Link: https://lkml.kernel.org/r/20250210193801.781278-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:57 -07:00
David Hildenbrand 599b684a78 mm/rmap: convert make_device_exclusive_range() to make_device_exclusive()
The single "real" user in the tree of make_device_exclusive_range() always
requests making only a single address exclusive.  The current
implementation is hard to fix for properly supporting anonymous THP /
large folios and for avoiding messing with rmap walks in weird ways.

So let's always process a single address/page and return folio + page to
minimize page -> folio lookups.  This is a preparation for further
changes.

Reject any non-anonymous or hugetlb folios early, directly after GUP.

While at it, extend the documentation of make_device_exclusive() to
clarify some things.

Link: https://lkml.kernel.org/r/20250210193801.781278-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Simona Vetter <simona.vetter@ffwll.ch>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:57 -07:00
David Hildenbrand bc3fe6805c mm/rmap: reject hugetlb folios in folio_make_device_exclusive()
Even though FOLL_SPLIT_PMD on hugetlb now always fails with -EOPNOTSUPP,
let's add a safety net in case FOLL_SPLIT_PMD usage would ever be
reworked.

In particular, before commit 9cb28da546 ("mm/gup: handle hugetlb in the
generic follow_page_mask code"), GUP(FOLL_SPLIT_PMD) would just have
returned a page.  In particular, hugetlb folios that are not PMD-sized
would never have been prone to FOLL_SPLIT_PMD.

hugetlb folios can be anonymous, and page_make_device_exclusive_one() is
not really prepared for handling them at all.  So let's spell that out.

Link: https://lkml.kernel.org/r/20250210193801.781278-3-david@redhat.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:57 -07:00
David Hildenbrand 8977752c80 mm/gup: reject FOLL_SPLIT_PMD with hugetlb VMAs
Patch series "mm: fixes for device-exclusive entries (hmm)", v2.

Discussing the PageTail() call in make_device_exclusive_range() with
Willy, I recently discovered [1] that device-exclusive handling does not
properly work with THP, making the hmm-tests selftests fail if THPs are
enabled on the system.

Looking into more details, I found that hugetlb is not properly fenced,
and I realized that something that was bugging me for longer -- how
device-exclusive entries interact with mapcounts -- completely breaks
migration/swapout/split/hwpoison handling of these folios while they have
device-exclusive PTEs.

The program below can be used to allocate 1 GiB worth of pages and making
them device-exclusive on a kernel with CONFIG_TEST_HMM.

Once they are device-exclusive, these folios cannot get swapped out
(proc$pid/smaps_rollup will always indicate 1 GiB RSS no matter how much
one forces memory reclaim), and when having a memory block onlined to
ZONE_MOVABLE, trying to offline it will loop forever and complain about
failed migration of a page that should be movable.

# echo offline > /sys/devices/system/memory/memory136/state
# echo online_movable > /sys/devices/system/memory/memory136/state
# ./hmm-swap &
... wait until everything is device-exclusive
# echo offline > /sys/devices/system/memory/memory136/state
[  285.193431][T14882] page: refcount:2 mapcount:0 mapping:0000000000000000
  index:0x7f20671f7 pfn:0x442b6a
[  285.196618][T14882] memcg:ffff888179298000
[  285.198085][T14882] anon flags: 0x5fff0000002091c(referenced|uptodate|
  dirty|active|owner_2|swapbacked|node=1|zone=3|lastcpupid=0x7ff)
[  285.201734][T14882] raw: ...
[  285.204464][T14882] raw: ...
[  285.207196][T14882] page dumped because: migration failure
[  285.209072][T14882] page_owner tracks the page as allocated
[  285.210915][T14882] page last allocated via order 0, migratetype
  Movable, gfp_mask 0x140dca(GFP_HIGHUSER_MOVABLE|__GFP_COMP|__GFP_ZERO),
  id 14926, tgid 14926 (hmm-swap), ts 254506295376, free_ts 227402023774
[  285.216765][T14882]  post_alloc_hook+0x197/0x1b0
[  285.218874][T14882]  get_page_from_freelist+0x76e/0x3280
[  285.220864][T14882]  __alloc_frozen_pages_noprof+0x38e/0x2740
[  285.223302][T14882]  alloc_pages_mpol+0x1fc/0x540
[  285.225130][T14882]  folio_alloc_mpol_noprof+0x36/0x340
[  285.227222][T14882]  vma_alloc_folio_noprof+0xee/0x1a0
[  285.229074][T14882]  __handle_mm_fault+0x2b38/0x56a0
[  285.230822][T14882]  handle_mm_fault+0x368/0x9f0
...

This series fixes all issues I found so far.  There is no easy way to fix
without a bigger rework/cleanup.  I have a bunch of cleanups on top (some
previous sent, some the result of the discussion in v1) that I will send
out separately once this landed and I get to it.

I wish we could just use some special present PROT_NONE PTEs instead of
these (non-present, non-none) fake-swap entries; but that just results in
the same problem we keep having (lack of spare PTE bits), and staring at
other similar fake-swap entries, that ship has sailed.

With this series, make_device_exclusive() doesn't actually belong into
mm/rmap.c anymore, but I'll leave moving that for another day.

I only tested this series with the hmm-tests selftests due to lack of HW,
so I'd appreciate some testing, especially if the interaction between two
GPUs wanting a device-exclusive entry works as expected.

<program>
#include <stdio.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/ioctl.h>

#define HMM_DMIRROR_EXCLUSIVE _IOWR('H', 0x05, struct hmm_dmirror_cmd)

struct hmm_dmirror_cmd {
	__u64 addr;
	__u64 ptr;
	__u64 npages;
	__u64 cpages;
	__u64 faults;
};

const size_t size = 1 * 1024 * 1024 * 1024ul;
const size_t chunk_size = 2 * 1024 * 1024ul;

int main(void)
{
	struct hmm_dmirror_cmd cmd;
	size_t cur_size;
	int fd, ret;
	char *addr, *mirror;

	fd = open("/dev/hmm_dmirror1", O_RDWR, 0);
	if (fd < 0) {
		perror("open failed\n");
		exit(1);
	}

	addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
		    MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
	if (addr == MAP_FAILED) {
		perror("mmap failed\n");
		exit(1);
	}
	madvise(addr, size, MADV_NOHUGEPAGE);
	memset(addr, 1, size);

	mirror = malloc(chunk_size);

	for (cur_size = 0; cur_size < size; cur_size += chunk_size) {
		cmd.addr = (uintptr_t)addr + cur_size;
		cmd.ptr = (uintptr_t)mirror;
		cmd.npages = chunk_size / getpagesize();
		ret = ioctl(fd, HMM_DMIRROR_EXCLUSIVE, &cmd);
		if (ret) {
			perror("ioctl failed\n");
			exit(1);
		}
	}
	pause();
	return 0;
}
</program>

[1] https://lkml.kernel.org/r/25e02685-4f1d-47fa-be5b-01ff85bb0ce2@redhat.com


This patch (of 17):

We only have two FOLL_SPLIT_PMD users.  While uprobe refuses hugetlb
early, make_device_exclusive_range() can end up getting called on hugetlb
VMAs.

Right now, this means that with a PMD-sized hugetlb page, we can end up
calling split_huge_pmd(), because pmd_trans_huge() also succeeds with
hugetlb PMDs.

For example, using a modified hmm-test selftest one can trigger:

[  207.017134][T14945] ------------[ cut here ]------------
[  207.018614][T14945] kernel BUG at mm/page_table_check.c:87!
[  207.019716][T14945] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[  207.021072][T14945] CPU: 3 UID: 0 PID: ...
[  207.023036][T14945] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
[  207.024834][T14945] RIP: 0010:page_table_check_clear.part.0+0x488/0x510
[  207.026128][T14945] Code: ...
[  207.029965][T14945] RSP: 0018:ffffc9000cb8f348 EFLAGS: 00010293
[  207.031139][T14945] RAX: 0000000000000000 RBX: 00000000ffffffff RCX: ffffffff8249a0cd
[  207.032649][T14945] RDX: ffff88811e883c80 RSI: ffffffff8249a357 RDI: ffff88811e883c80
[  207.034183][T14945] RBP: ffff888105c0a050 R08: 0000000000000005 R09: 0000000000000000
[  207.035688][T14945] R10: 00000000ffffffff R11: 0000000000000003 R12: 0000000000000001
[  207.037203][T14945] R13: 0000000000000200 R14: 0000000000000001 R15: dffffc0000000000
[  207.038711][T14945] FS:  00007f2783275740(0000) GS:ffff8881f4980000(0000) knlGS:0000000000000000
[  207.040407][T14945] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  207.041660][T14945] CR2: 00007f2782c00000 CR3: 0000000132356000 CR4: 0000000000750ef0
[  207.043196][T14945] PKRU: 55555554
[  207.043880][T14945] Call Trace:
[  207.044506][T14945]  <TASK>
[  207.045086][T14945]  ? __die+0x51/0x92
[  207.045864][T14945]  ? die+0x29/0x50
[  207.046596][T14945]  ? do_trap+0x250/0x320
[  207.047430][T14945]  ? do_error_trap+0xe7/0x220
[  207.048346][T14945]  ? page_table_check_clear.part.0+0x488/0x510
[  207.049535][T14945]  ? handle_invalid_op+0x34/0x40
[  207.050494][T14945]  ? page_table_check_clear.part.0+0x488/0x510
[  207.051681][T14945]  ? exc_invalid_op+0x2e/0x50
[  207.052589][T14945]  ? asm_exc_invalid_op+0x1a/0x20
[  207.053596][T14945]  ? page_table_check_clear.part.0+0x1fd/0x510
[  207.054790][T14945]  ? page_table_check_clear.part.0+0x487/0x510
[  207.055993][T14945]  ? page_table_check_clear.part.0+0x488/0x510
[  207.057195][T14945]  ? page_table_check_clear.part.0+0x487/0x510
[  207.058384][T14945]  __page_table_check_pmd_clear+0x34b/0x5a0
[  207.059524][T14945]  ? __pfx___page_table_check_pmd_clear+0x10/0x10
[  207.060775][T14945]  ? __pfx___mutex_unlock_slowpath+0x10/0x10
[  207.061940][T14945]  ? __pfx___lock_acquire+0x10/0x10
[  207.062967][T14945]  pmdp_huge_clear_flush+0x279/0x360
[  207.064024][T14945]  split_huge_pmd_locked+0x82b/0x3750
...

Before commit 9cb28da546 ("mm/gup: handle hugetlb in the generic
follow_page_mask code"), we would have ignored the flag; instead, let's
simply refuse the combination completely in check_vma_flags(): the caller
is likely not prepared to handle any hugetlb folios.

We'll teach make_device_exclusive_range() separately to ignore any hugetlb
folios as a future-proof safety net.

Link: https://lkml.kernel.org/r/20250210193801.781278-1-david@redhat.com
Link: https://lkml.kernel.org/r/20250210193801.781278-2-david@redhat.com
Fixes: 9cb28da546 ("mm/gup: handle hugetlb in the generic follow_page_mask code")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:57 -07:00
Zi Yan 9b2f764933 mm/huge_memory: allow split shmem large folio to any lower order
Commit 4d684b5f92ba ("mm: shmem: add large folio support for tmpfs") has
added large folio support to shmem.  Remove the restriction in
split_huge_page*().

Link: https://lkml.kernel.org/r/20250122161928.1240637-2-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <yang@os.amperecomputing.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:56 -07:00
Carlos Llamas 5f6084f95b mm/oom_kill: fix trivial typo in comment
Update 'give' -> 'given' in the description of oom_reap_task_mm().

Link: https://lkml.kernel.org/r/20250123193523.1496909-1-cmllamas@google.com
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:55 -07:00
Johannes Weiner 89ce924f0b mm: memcontrol: move memsw charge callbacks to v1
The interweaving of two entirely different swap accounting strategies has
been one of the more confusing parts of the memcg code.  Split out the v1
code to clarify the implementation and a handful of callsites, and to
avoid building the v1 bits when !CONFIG_MEMCG_V1.

   text	  data	   bss	   dec	   hex	filename
  39253	  6446	  4160	 49859	  c2c3	mm/memcontrol.o.old
  38877	  6382	  4160	 49419	  c10b	mm/memcontrol.o

Link: https://lkml.kernel.org/r/20250124054132.45643-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Balbir Singh <balbirs@nvidia.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:55 -07:00
Johannes Weiner 0d892bbbfa mm: memcontrol: move stray ratelimit bits to v1
41213dd0f8 ("memcg: move mem_cgroup_event_ratelimit to v1 code") left
this one behind.  There are no v2 references.

Link: https://lkml.kernel.org/r/20250124043859.18808-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:55 -07:00
Johannes Weiner 75fe8ec238 mm: memcontrol: unshare v2-only charge API bits again
6b611388b6 ("memcg-v1: remove charge move code") removed the remaining
v1 callers.

Link: https://lkml.kernel.org/r/20250124043859.18808-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:55 -07:00
Chen Ridong 610dc18c50 memcg: add CONFIG_MEMCG_V1 for 'local' functions
Add CONFIG_MEMCG_V1 for the 'local' functions, which are only used in
memcg v1, so that they won't be built for v2.

Link: https://lkml.kernel.org/r/20250124073514.2375622-5-chenridong@huaweicloud.com
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: David Finkel <davidf@vimeo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:54 -07:00
Chen Ridong bc812d1905 memcg: factor out the replace_stock_objcg function
Factor out the 'replace_stock_objcg' function to make the code more
cohesive.

Link: https://lkml.kernel.org/r/20250124073514.2375622-4-chenridong@huaweicloud.com
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Finkel <davidf@vimeo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:54 -07:00
Chen Ridong 2059c8e320 memcg: call the free function when allocation of pn fails
The 'free_mem_cgroup_per_node_info' function is used to free the
'mem_cgroup_per_node' struct.  Using 'pn' as the input for the
free_mem_cgroup_per_node_info function will be much clearer.  Call
'free_mem_cgroup_per_node_info' when 'alloc_mem_cgroup_per_node_info'
fails, to free 'pn' as a whole, which makes the code more cohesive.

Link: https://lkml.kernel.org/r/20250124073514.2375622-3-chenridong@huaweicloud.com
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: David Finkel <davidf@vimeo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:54 -07:00
Chen Ridong 1c81f1a699 memcg: use OFP_PEAK_UNSET instead of -1
Patch series "Some cleanup for memcg", v4.


This patch (of 4):

The 'OFP_PEAK_UNSET' has been defined, use it instead of '-1'.

Link: https://lkml.kernel.org/r/20250124073514.2375622-1-chenridong@huaweicloud.com
Link: https://lkml.kernel.org/r/20250124073514.2375622-2-chenridong@huaweicloud.com
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: David Finkel <davidf@vimeo.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:05:54 -07:00
Kirill A. Shutemov 800f1059c9 mm/page_alloc: fix memory accept before watermarks gets initialized
Watermarks are initialized during the postcore initcall.  Until then, all
watermarks are set to zero.  This causes cond_accept_memory() to
incorrectly skip memory acceptance because a watermark of 0 is always met.

This can lead to a premature OOM on boot.

To ensure progress, accept one MAX_ORDER page if the watermark is zero.

Link: https://lkml.kernel.org/r/20250310082855.2587122-1-kirill.shutemov@linux.intel.com
Fixes: dcdfdd40fa ("mm: Add support for unaccepted memory")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Reported-by: Farrah Chen <farrah.chen@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: <stable@vger.kernel.org>	[6.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:26 -07:00
Shakeel Butt 9f01b49544 memcg: drain obj stock on cpu hotplug teardown
Currently on cpu hotplug teardown, only memcg stock is drained but we
need to drain the obj stock as well otherwise we will miss the stats
accumulated on the target cpu as well as the nr_bytes cached. The stats
include MEMCG_KMEM, NR_SLAB_RECLAIMABLE_B & NR_SLAB_UNRECLAIMABLE_B. In
addition we are leaking reference to struct obj_cgroup object.

Link: https://lkml.kernel.org/r/20250310230934.2913113-1-shakeel.butt@linux.dev
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:25 -07:00
Zi Yan 14efb47935 mm/huge_memory: drop beyond-EOF folios with the right number of refs
When an after-split folio is large and needs to be dropped due to EOF,
folio_put_refs(folio, folio_nr_pages(folio)) should be used to drop all
page cache refs.  Otherwise, the folio will not be freed, causing memory
leak.

This leak would happen on a filesystem with blocksize > page_size and a
truncate is performed, where the blocksize makes folios split to >0 order
ones, causing truncated folios not being freed.

Link: https://lkml.kernel.org/r/20250310155727.472846-1-ziy@nvidia.com
Fixes: c010d47f10 ("mm: thp: split huge page to any lower order pages")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reported-by: Hugh Dickins <hughd@google.com>
Closes: https://lore.kernel.org/all/fcbadb7f-dd3e-21df-f9a7-2853b53183c4@google.com/
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberalin <mcgrof@kernel.org>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:25 -07:00
Raphael S. Carvalho 182db972c9 mm: fix error handling in __filemap_get_folio() with FGP_NOWAIT
original report:
https://lore.kernel.org/all/CAKhLTr1UL3ePTpYjXOx2AJfNk8Ku2EdcEfu+CH1sf3Asr=B-Dw@mail.gmail.com/T/

When doing buffered writes with FGP_NOWAIT, under memory pressure, the
system returned ENOMEM despite there being plenty of available memory, to
be reclaimed from page cache.  The user space used io_uring interface,
which in turn submits I/O with FGP_NOWAIT (the fast path).

retsnoop pointed to iomap_get_folio:

00:34:16.180612 -> 00:34:16.180651 TID/PID 253786/253721
(reactor-1/combined_tests):

                    entry_SYSCALL_64_after_hwframe+0x76
                    do_syscall_64+0x82
                    __do_sys_io_uring_enter+0x265
                    io_submit_sqes+0x209
                    io_issue_sqe+0x5b
                    io_write+0xdd
                    xfs_file_buffered_write+0x84
                    iomap_file_buffered_write+0x1a6
    32us [-ENOMEM]  iomap_write_begin+0x408
iter=&{.inode=0xffff8c67aa031138,.len=4096,.flags=33,.iomap={.addr=0xffffffffffffffff,.length=4096,.type=1,.flags=3,.bdev=0x…
pos=0 len=4096 foliop=0xffffb32c296b7b80
!    4us [-ENOMEM]  iomap_get_folio
iter=&{.inode=0xffff8c67aa031138,.len=4096,.flags=33,.iomap={.addr=0xffffffffffffffff,.length=4096,.type=1,.flags=3,.bdev=0x…
pos=0 len=4096

This is likely a regression caused by 66dabbb65d ("mm: return an ERR_PTR
from __filemap_get_folio"), which moved error handling from
io_map_get_folio() to __filemap_get_folio(), but broke FGP_NOWAIT
handling, so ENOMEM is being escaped to user space.  Had it correctly
returned -EAGAIN with NOWAIT, either io_uring or user space itself would
be able to retry the request.

It's not enough to patch io_uring since the iomap interface is the one
responsible for it, and pwritev2(RWF_NOWAIT) and AIO interfaces must
return the proper error too.

The patch was tested with scylladb test suite (its original reproducer),
and the tests all pass now when memory is pressured.

Link: https://lkml.kernel.org/r/20250224143700.23035-1-raphaelsc@scylladb.com
Fixes: 66dabbb65d ("mm: return an ERR_PTR from __filemap_get_folio")
Signed-off-by: Raphael S. Carvalho <raphaelsc@scylladb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:25 -07:00
Muchun Song 73f839b6d2 mm: memcontrol: fix swap counter leak from offline cgroup
Commit 6769183166 removed the parameter of id from swap_cgroup_record()
and get the memcg id from mem_cgroup_id(folio_memcg(folio)).  However, the
caller of it may update a different memcg's counter instead of
folio_memcg(folio).

E.g.  in the caller of mem_cgroup_swapout(), @swap_memcg could be
different with @memcg and update the counter of @swap_memcg, but
swap_cgroup_record() records the wrong memcg's ID.  When it is uncharged
from __mem_cgroup_uncharge_swap(), the swap counter will leak since the
wrong recorded ID.

Fix it by bringing the parameter of id back.

Link: https://lkml.kernel.org/r/20250306023133.44838-1-songmuchun@bytedance.com
Fixes: 6769183166 ("mm/swap_cgroup: decouple swap cgroup recording and clearing")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:24 -07:00
Dev Jain 8c6ff7f181 mm/vma: do not register private-anon mappings with khugepaged during mmap
We already are registering private-anon VMAs with khugepaged during fault
time, in do_huge_pmd_anonymous_page().  Commit "register suitable readonly
file vmas for khugepaged" moved the khugepaged registration logic from
shmem_mmap to the generic mmap path.

The userspace-visible effect should be this: khugepaged will unnecessarily
scan mm's which haven't yet faulted in.  Note that it won't actually
collapse because all PTEs are none.

Now that I think about it, the mm is going to have a file VMA anyways
during fork+exec, so the mm already gets registered during mmap due to the
non-anon case (I *think*), so at least one of either the mmap registration
or fault-time registration is redundant.

Make this logic specific for non-anon mappings.

Link: https://lkml.kernel.org/r/20250306063037.16299-1-dev.jain@arm.com
Fixes: 613bec092f ("mm: mmap: register suitable readonly file vmas for khugepaged")
Signed-off-by: Dev Jain <dev.jain@arm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:24 -07:00
Zi Yan 60cf233b58 mm/migrate: fix shmem xarray update during migration
A shmem folio can be either in page cache or in swap cache, but not at the
same time.  Namely, once it is in swap cache, folio->mapping should be
NULL, and the folio is no longer in a shmem mapping.

In __folio_migrate_mapping(), to determine the number of xarray entries to
update, folio_test_swapbacked() is used, but that conflates shmem in page
cache case and shmem in swap cache case.  It leads to xarray multi-index
entry corruption, since it turns a sibling entry to a normal entry during
xas_store() (see [1] for a userspace reproduction).  Fix it by only using
folio_test_swapcache() to determine whether xarray is storing swap cache
entries or not to choose the right number of xarray entries to update.

[1] https://lore.kernel.org/linux-mm/Z8idPCkaJW1IChjT@casper.infradead.org/

Note:
In __split_huge_page(), folio_test_anon() && folio_test_swapcache() is
used to get swap_cache address space, but that ignores the shmem folio in
swap cache case.  It could lead to NULL pointer dereferencing when a
in-swap-cache shmem folio is split at __xa_store(), since
!folio_test_anon() is true and folio->mapping is NULL.  But fortunately,
its caller split_huge_page_to_list_to_order() bails out early with EBUSY
when folio->mapping is NULL.  So no need to take care of it here.

Link: https://lkml.kernel.org/r/20250305200403.2822855-1-ziy@nvidia.com
Fixes: fc346d0a70 ("mm: migrate high-order folios in swap cache correctly")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reported-by: Liu Shixin <liushixin2@huawei.com>
Closes: https://lore.kernel.org/all/28546fb4-5210-bf75-16d6-43e1f8646080@huawei.com/
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:24 -07:00
Jinjiang Tu cb402bbdab mm/hugetlb: fix surplus pages in dissolve_free_huge_page()
In dissolve_free_huge_page(), free huge pages are dissolved without
adjusting surplus count. However, free huge pages may be accounted as
surplus pages, and will lead to wrong surplus count.

I reproduce this issue on qemu. The steps are:
1) Node1 is memory-less at first. Hot-add memory to node1 by executing
the two commands in qemu monitor:
  object_add memory-backend-ram,id=mem1,size=1G
  device_add pc-dimm,id=dimm1,memdev=mem1,node=1
2) online one memory block of Node1 with:
  echo online_movable > /sys/devices/system/node/node1/memoryX/state
3) create 64 huge pages for node1
4) run a program to reserve (don't consume) all the huge pages
5) echo 0 > nr_huge_pages for node1. After this step, free huge pages in
Node1 are surplus.
6) create 80 huge pages for node0
7) offline memory of node1, The memory range to offline contains the free
surplus huge pages created in step3) ~ step5)
  echo offline > /sys/devices/system/node/node1/memoryX/state
8) kill the program in step 4)

The result:
           Node0     Node1
total       80        0
free        80        0
surplus     0         61

To fix it, adjust surplus when destroying huge pages if the node has
surplus pages in dissolve_free_hugetlb_folio().

The result with this patch:
           Node0     Node1
total       80        0
free        80        0
surplus     0         0

Link: https://lkml.kernel.org/r/20250304132106.2872754-1-tujinjiang@huawei.com
Fixes: c8721bbbdd ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Signed-off-by: Jinjiang Tu <tujinjiang@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Jinjiang Tu <tujinjiang@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:23 -07:00
SeongJae Park 73d7a69de2 mm/damon/core: initialize damos->walk_completed in damon_new_scheme()
The function for allocating and initialize a 'struct damos' object,
damon_new_scheme(), is not initializing damos->walk_completed field.  Only
damos_walk_complete() is setting the field.  Hence the field will be
eventually set and used correctly from second damos_walk() call for the
scheme.  But the first damos_walk() could mistakenly not walk on the
regions.  Actually, a common usage of DAMOS for taking an access pattern
snapshot is installing a monitoring-purpose DAMOS scheme, doing
damos_walk() to retrieve the snapshot, and then removing the scheme. 
DAMON user-space tool (damo) also gets runtime snapshot in the way.  Hence
the problem can continuously happen in such use cases.  Initialize it
properly in the allocation function.

Link: https://lkml.kernel.org/r/20250228174450.41472-1-sj@kernel.org
Fixes: bf0eaba0ff ("mm/damon/core: implement damos_walk()")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:23 -07:00
SeongJae Park 39a326e6da mm/damon: respect core layer filters' allowance decision on ops layer
Filtering decisions are made in filters evaluation order.  Once a decision
is made by a filter, filters that scheduled to be evaluated after the
decision-made filter should just respect it.  This is the intended and
documented behavior.  Since core layer-handled filters are evaluated
before operations layer-handled filters, decisions made on core layer
should respected by ops layer.

In case of reject filters, the decision is respected, since core
layer-rejected regions are not passed to ops layer.  But in case of allow
filters, ops layer filters don't know if the region has passed to them
because it was allowed by core filters or just because it didn't match to
any core layer.  The current wrong implementation assumes it was due to
not matched by any core filters.  As a reuslt, the decision is not
respected.  Pass the missing information to ops layer using a new filed in
'struct damos', and make the ops layer filters respect it.

Link: https://lkml.kernel.org/r/20250228175336.42781-1-sj@kernel.org
Fixes: 491fee286e ("mm/damon/core: support damos_filter->allow")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:23 -07:00
Dave Hansen 665575cff0 filemap: move prefaulting out of hot write path
There is a generic anti-pattern that shows up in the VFS and several
filesystems where the hot write paths touch userspace twice when they
could get away with doing it once.

Dave Chinner suggested that they should all be fixed up[1].  I agree[2]. 
But, the series to do that fixup spans a bunch of filesystems and a lot of
people.  This patch fixes common code that absolutely everyone uses.  It
has measurable performance benefits[3].

I think this patch can go in and not be held up by the others.

I will post them separately to their separate maintainers for
consideration. But, honestly, I'm not going to lose any sleep if
the maintainers don't pick those up.

1. https://lore.kernel.org/all/Z5f-x278Z3wTIugL@dread.disaster.area/
2. https://lore.kernel.org/all/20250129181749.C229F6F3@davehans-spike.ostc.intel.com/
3. https://lore.kernel.org/all/202502121529.d62a409e-lkp@intel.com/


This patch:

There is a bit of a sordid history here. I originally wrote
998ef75ddb ("fs: do not prefault sys_write() user buffer pages")
to fix a performance issue that showed up on early SMAP hardware.
But that was reverted with 00a3d660cb because it exposed an
underlying filesystem bug.

This is a reimplementation of the original commit along with some
simplification and comment improvements.

The basic problem is that the generic write path has two userspace
accesses: one to prefault the write source buffer and then another to
perform the actual write. On x86, this means an extra STAC/CLAC pair.
These are relatively expensive instructions because they function as
barriers.

Keep the prefaulting behavior but move it into the slow path that gets
run when the write did not make any progress. This avoids livelocks
that can happen when the write's source and destination target the
same folio. Contrary to the existing comments, the fault-in does not
prevent deadlocks. That's accomplished by using an "atomic" usercopy
that disables page faults.

The end result is that the generic write fast path now touches
userspace once instead of twice.

0day has shown some improvements on a couple of microbenchmarks:

	https://lore.kernel.org/all/202502121529.d62a409e-lkp@intel.com/

Link: https://lkml.kernel.org/r/20250228203722.CAEB63AC@davehans-spike.ostc.intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/yxyuijjfd6yknryji2q64j3keq2ygw6ca6fs5jwyolklzvo45s@4u63qqqyosy2/
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 17:40:23 -07:00
Amir Goldstein 252256e416 Revert "fanotify: disable readahead if we have pre-content watches"
This reverts commit fac84846a2.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/20250312073852.2123409-7-amir73il@gmail.com
2025-03-13 16:31:12 +01:00
Amir Goldstein 4f4dc3a937 Revert "mm: don't allow huge faults for files with pre content watches"
This reverts commit 20bf82a898.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/20250312073852.2123409-6-amir73il@gmail.com
2025-03-13 16:31:00 +01:00
Amir Goldstein 955fbe0ef1 Revert "fsnotify: generate pre-content permission event on page fault"
This reverts commit 8392bc2ff8.

In the use case of buffered write whose input buffer is mmapped file on a
filesystem with a pre-content mark, the prefaulting of the buffer can
happen under the filesystem freeze protection (obtained in vfs_write())
which breaks assumptions of pre-content hook and introduces potential
deadlock of HSM handler in userspace with filesystem freezing.

Now that we have pre-content hooks at file mmap() time, disable the
pre-content event hooks on page fault to avoid the potential deadlock.

Reported-by: syzbot+7229071b47908b19d5b7@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-fsdevel/7ehxrhbvehlrjwvrduoxsao5k3x4aw275patsb3krkwuq573yv@o2hskrfawbnc/
Fixes: 8392bc2ff8 ("fsnotify: generate pre-content permission event on page fault")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/20250312073852.2123409-5-amir73il@gmail.com
2025-03-13 16:30:55 +01:00
Amir Goldstein 066e053fe2 fsnotify: add pre-content hooks on mmap()
Pre-content hooks in page faults introduces potential deadlock of HSM
handler in userspace with filesystem freezing.

The requirement with pre-content event is that for every accessed file
range an event covering at least this range will be generated at least
once before the file data is accesses.

In preparation to disabling pre-content event hooks on page faults,
add pre-content hooks at mmap() variants for the entire mmaped range,
so HSM can fill content when user requests to map a portion of the file.

Note that exec() variant also calls vm_mmap_pgoff() internally to map
code sections, so pre-content hooks are also generated in this case.

Link: https://lore.kernel.org/linux-fsdevel/7ehxrhbvehlrjwvrduoxsao5k3x4aw275patsb3krkwuq573yv@o2hskrfawbnc/
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/20250312073852.2123409-2-amir73il@gmail.com
2025-03-12 17:57:32 +01:00
Tejun Heo b0543d50c4 mm: Fix a build breakage in memcontrol-v1.c
While adding a deprecation message, fd4fd0a869 ("mm: Add transformation
message for per-memcg swappiness") missed the semicolon after the new
pr_info_once() statement causing build breakage when CONFIG_MEMCG_V1 is
enabled. Fix it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Fixes: fd4fd0a869 ("mm: Add transformation message for per-memcg swappiness")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202503120710.guZkJx0h-lkp@intel.com/
2025-03-11 13:56:11 -10:00
Dave Airlie 626fb11566 Linux 6.14-rc6
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmfOKBUeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG1aQH/iC+Oyij4VxAjBek
 BOXIT/p6CwlIXb8ObiWWcRjDPizlcxb3RaV8J2RO+IqaQ2wltxpFANq2G7Re2FPm
 SNcEpIURAOVcxHGedcfFA91srO5F4FzNTO8LVp7MIbcgMYy3pdk+dbZmi6A691R+
 t9pb74m+MAnF1o/MUx7pUlhAT/4ymuuR0F7WCSg4h0Xwe5m0nlJY89kJBC7PCjyd
 n3mdhsz3rDSLmt/z/T7HGD89r8sYSvm9cOKtL3ELgGTrm7boQV8ii9Y9w04DI8PQ
 JmIernugcCxmhH36mVUAHgJf2+/T388xFUh/D5+skeUOUZpaJZG866rnb32WpsHc
 eWLFUeg=
 =Wypt
 -----END PGP SIGNATURE-----

Backmerge tag 'v6.14-rc6' into drm-next

This is a backmerge from Linux 6.14-rc6, needed for the nova PR.

Signed-off-by: Dave Airlie <airlied@redhat.com>
2025-03-12 09:43:12 +10:00
Michal Koutný fd4fd0a869 mm: Add transformation message for per-memcg swappiness
The concept of per-memcg swappiness has never landed well in memcg for
cgroup v2. Add a message to users who use it on v1 hierarchy.
Decreased swappiness transforms to memory.swap.max=0 whereas
increased swappiness transforms into active memory.reclaim operation.

Link: https://lore.kernel.org/r/1577252208-32419-1-git-send-email-teawater@gmail.com/
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2025-03-11 09:22:54 -10:00
Linus Torvalds 1110ce6a1e 33 hotfixes. 24 are cc:stable and the remainder address post-6.13 issues
or aren't considered necessary for -stable kernels.
 
 26 are for MM and 7 are for non-MM.
 
 - "mm: memory_failure: unmap poisoned folio during migrate properly"
   from Ma Wupeng fixes a couple of two year old bugs involving the
   migration of hwpoisoned folios.
 
 - "selftests/damon: three fixes for false results" from SeongJae Park
   fixes three one year old bugs in the SAMON selftest code.
 
 The remainder are singletons and doubletons.  Please see the individual
 changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ8zgnAAKCRDdBJ7gKXxA
 jmTzAP9LsTIpkPkRXDpwxPR/Si5KPwOkE6sGj4ETEqbX3vUvcAEA/Lp7oafc7Vqr
 XxlC1VFush1ZK29Tecxzvnapl2/VSAs=
 =zBvY
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2025-03-08-16-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc fixes from Andrew Morton:
 "33 hotfixes. 24 are cc:stable and the remainder address post-6.13
  issues or aren't considered necessary for -stable kernels.

  26 are for MM and 7 are for non-MM.

   - "mm: memory_failure: unmap poisoned folio during migrate properly"
     from Ma Wupeng fixes a couple of two year old bugs involving the
     migration of hwpoisoned folios.

   - "selftests/damon: three fixes for false results" from SeongJae Park
     fixes three one year old bugs in the SAMON selftest code.

  The remainder are singletons and doubletons. Please see the individual
  changelogs for details"

* tag 'mm-hotfixes-stable-2025-03-08-16-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (33 commits)
  mm/page_alloc: fix uninitialized variable
  rapidio: add check for rio_add_net() in rio_scan_alloc_net()
  rapidio: fix an API misues when rio_add_net() fails
  MAINTAINERS: .mailmap: update Sumit Garg's email address
  Revert "mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone"
  mm: fix finish_fault() handling for large folios
  mm: don't skip arch_sync_kernel_mappings() in error paths
  mm: shmem: remove unnecessary warning in shmem_writepage()
  userfaultfd: fix PTE unmapping stack-allocated PTE copies
  userfaultfd: do not block on locking a large folio with raised refcount
  mm: zswap: use ATOMIC_LONG_INIT to initialize zswap_stored_pages
  mm: shmem: fix potential data corruption during shmem swapin
  mm: fix kernel BUG when userfaultfd_move encounters swapcache
  selftests/damon/damon_nr_regions: sort collected regiosn before checking with min/max boundaries
  selftests/damon/damon_nr_regions: set ops update for merge results check to 100ms
  selftests/damon/damos_quota: make real expectation of quota exceeds
  include/linux/log2.h: mark is_power_of_2() with __always_inline
  NFS: fix nfs_release_folio() to not deadlock via kcompactd writeback
  mm, swap: avoid BUG_ON in relocate_cluster()
  mm: swap: use correct step in loop to wait all clusters in wait_for_allocation()
  ...
2025-03-08 14:34:06 -10:00
Ingo Molnar f23ecef20a Merge branch 'locking/urgent' into locking/core, to pick up locking fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-03-08 00:54:06 +01:00
Linus Torvalds 21e4543a2e slab fixes for 6.14-rc5
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmfLZNwACgkQu+CwddJF
 iJphfAgAhdxxEauNscZhXTrFn8nNSu4znrWnt3jZIxCX+rg67wteB2FXChKG7c8f
 38X7rtFH0mOdtvUsZADQEZ0BUmnGb/CJBTVwTMYQ/h57DmWKI6MdiJ0ddlB1beuY
 lIGvjE/cHajbuz7mTlgLtpqR83sk7ADckap4Pa04t0FgRepDbtad/XEP/BLuvN9G
 zme5x+7SOpSRBLsnKWJW87GgR3cs2XlfxUHaWQ4xiGEpaW5YSr0hec5M4YiriQ5f
 kARYtyFyX/lIwWlJGQwlkYlyES5W8KlAIau+1olGjqTgB6nMODqFfnVO/YA1q/uU
 zJJZolaO7kJBBv1AaRKxu5Rl2EpBvQ==
 =H1UU
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-6.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab fix from Vlastimil Babka:

 - Stable fix for kmem_cache_destroy() called from a WQ_MEM_RECLAIM
   workqueue causing a warning due to the new kvfree_rcu_barrier()
   (Uladzislau Rezki)

* tag 'slab-for-6.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
  mm/slab/kvfree_rcu: Switch to WQ_MEM_RECLAIM wq
2025-03-07 12:22:41 -10:00
Linus Torvalds 00a7d39898 fs/pipe: add simpler helpers for common cases
The fix to atomically read the pipe head and tail state when not holding
the pipe mutex has caused a number of headaches due to the size change
of the involved types.

It turns out that we don't have _that_ many places that access these
fields directly and were affected, but we have more than we strictly
should have, because our low-level helper functions have been designed
to have intimate knowledge of how the pipes work.

And as a result, that random noise of direct 'pipe->head' and
'pipe->tail' accesses makes it harder to pinpoint any actual potential
problem spots remaining.

For example, we didn't have a "is the pipe full" helper function, but
instead had a "given these pipe buffer indexes and this pipe size, is
the pipe full".  That's because some low-level pipe code does actually
want that much more complicated interface.

But most other places literally just want a "is the pipe full" helper,
and not having it meant that those places ended up being unnecessarily
much too aware of this all.

It would have been much better if only the very core pipe code that
cared had been the one aware of this all.

So let's fix it - better late than never.  This just introduces the
trivial wrappers for "is this pipe full or empty" and to get how many
pipe buffers are used, so that instead of writing

        if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))

the places that literally just want to know if a pipe is full can just
say

        if (pipe_is_full(pipe))

instead.  The existing trivial cases were converted with a 'sed' script.

This cuts down on the places that access pipe->head and pipe->tail
directly outside of the pipe code (and core splice code) quite a lot.

The splice code in particular still revels in doing the direct low-level
accesses, and the fuse fuse_dev_splice_write() code also seems a bit
unnecessarily eager to go very low-level, but it's at least a bit better
than it used to be.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-03-06 18:25:35 -10:00
Matthew Brost 1afaeb8293 mm/migrate: Trylock device page in do_swap_page
Avoid multiple CPU page faults to the same device page racing by trying
to lock the page in do_swap_page before taking an extra reference to the
page. This prevents scenarios where multiple CPU page faults each take
an extra reference to a device page, which could abort migration in
folio_migrate_mapping. With the device page being locked in
do_swap_page, the migrate_vma_* functions need to be updated to avoid
locking the fault_page argument.

Prior to this change, a livelock scenario could occur in Xe's (Intel GPU
DRM driver) SVM implementation if enough threads faulted the same device
page.

v3:
 - Put page after unlocking page (Alistair)
 - Warn on spliting a TPH which is fault page (Alistair)
 - Warn on dst page == fault page (Alistair)
v6:
 - Add more verbose comment around THP (Alistair)
v7:
 - Fix migrate_device_finalize alignment (Checkpatch)

Cc: Alistair Popple <apopple@nvidia.com>
Cc: Philip Yang <Philip.Yang@amd.com>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Suggested-by: Simona Vetter <simona.vetter@ffwll.ch>
Signed-off-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20250306012657.3505757-4-matthew.brost@intel.com
2025-03-06 11:35:24 -08:00
Matthew Brost a14fa8ec9d mm/migrate: Add migrate_device_pfns
Add migrate_device_pfns which prepares an array of pre-populated device
pages for migration. This is needed for eviction of known set of
non-contiguous devices pages to cpu pages which is a common case for SVM
in DRM drivers using TTM.

v2:
 - s/migrate_device_vma_range/migrate_device_prepopulated_range
 - Drop extra mmu invalidation (Vetter)
v3:
 - s/migrate_device_prepopulated_range/migrate_device_pfns (Alistar)
 - Use helper to lock device pages (Alistar)
 - Update commit message with why this is required (Alistar)

Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20250306012657.3505757-3-matthew.brost@intel.com
2025-03-06 11:35:23 -08:00
Lilith Gkini 747e2cf137 slub: Handle freelist cycle in on_freelist()
The on_freelist() doesn't have a way to handle the edgecase of having a
full freelist that doesn't end in NULL and instead has another valid
pointer in the slab as a result of a Use-After-Free or anything similar.

This case won't get caught by check_valid_pointer() and it will result in
nr incrementing to `slab->objects + 1`, corrupting the slab->inuse entry
later in the code by setting it to -1.

Add an if check to detect that case, report it and handle the freelist
and slab appropriately, as is the standard process in these situations.

Furthermore change the return type of the function from int to bool as
per coding style guidelines.

Also move the `break;` line inside the `if (object) {` to make it more
obvious that the code breaks the while loop in that branch.

Signed-off-by: Lilith Persefoni Gkini <lilithgkini@proton.me>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-06 09:39:53 +01:00
Hao Zhang 8fe9ed44dc mm/page_alloc: fix uninitialized variable
The variable "compact_result" is not initialized in function
__alloc_pages_slowpath().  It causes should_compact_retry() to use an
uninitialized value.

Initialize variable "compact_result" with the value COMPACT_SKIPPED.

BUG: KMSAN: uninit-value in __alloc_pages_slowpath+0xee8/0x16c0 mm/page_alloc.c:4416
 __alloc_pages_slowpath+0xee8/0x16c0 mm/page_alloc.c:4416
 __alloc_frozen_pages_noprof+0xa4c/0xe00 mm/page_alloc.c:4752
 alloc_pages_mpol+0x4cd/0x890 mm/mempolicy.c:2270
 alloc_frozen_pages_noprof mm/mempolicy.c:2341 [inline]
 alloc_pages_noprof mm/mempolicy.c:2361 [inline]
 folio_alloc_noprof+0x1dc/0x350 mm/mempolicy.c:2371
 filemap_alloc_folio_noprof+0xa6/0x440 mm/filemap.c:1019
 __filemap_get_folio+0xb9a/0x1840 mm/filemap.c:1970
 grow_dev_folio fs/buffer.c:1039 [inline]
 grow_buffers fs/buffer.c:1105 [inline]
 __getblk_slow fs/buffer.c:1131 [inline]
 bdev_getblk+0x2c9/0xab0 fs/buffer.c:1431
 getblk_unmovable include/linux/buffer_head.h:369 [inline]
 ext4_getblk+0x3b7/0xe50 fs/ext4/inode.c:864
 ext4_bread_batch+0x9f/0x7d0 fs/ext4/inode.c:933
 __ext4_find_entry+0x1ebb/0x36c0 fs/ext4/namei.c:1627
 ext4_lookup_entry fs/ext4/namei.c:1729 [inline]
 ext4_lookup+0x189/0xb40 fs/ext4/namei.c:1797
 __lookup_slow+0x538/0x710 fs/namei.c:1793
 lookup_slow+0x6a/0xd0 fs/namei.c:1810
 walk_component fs/namei.c:2114 [inline]
 link_path_walk+0xf29/0x1420 fs/namei.c:2479
 path_openat+0x30f/0x6250 fs/namei.c:3985
 do_filp_open+0x268/0x600 fs/namei.c:4016
 do_sys_openat2+0x1bf/0x2f0 fs/open.c:1428
 do_sys_open fs/open.c:1443 [inline]
 __do_sys_openat fs/open.c:1459 [inline]
 __se_sys_openat fs/open.c:1454 [inline]
 __x64_sys_openat+0x2a1/0x310 fs/open.c:1454
 x64_sys_call+0x36f5/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:258
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Local variable compact_result created at:
 __alloc_pages_slowpath+0x66/0x16c0 mm/page_alloc.c:4218
 __alloc_frozen_pages_noprof+0xa4c/0xe00 mm/page_alloc.c:4752

Link: https://lkml.kernel.org/r/tencent_ED1032321D6510B145CDBA8CBA0093178E09@qq.com
Reported-by: syzbot+0cfd5e38e96a5596f2b6@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=0cfd5e38e96a5596f2b6
Signed-off-by: Hao Zhang <zhanghao1@kylinos.cn>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:20 -08:00
Gabriel Krisman Bertazi eae116d1f0 Revert "mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone"
Commit 96a5c186ef ("mm/page_alloc.c: don't show protection in zone's
->lowmem_reserve[] for empty zone") removes the protection of lower zones
from allocations targeting memory-less high zones.  This had an unintended
impact on the pattern of reclaims because it makes the high-zone-targeted
allocation more likely to succeed in lower zones, which adds pressure to
said zones.  I.e, the following corresponding checks in
zone_watermark_ok/zone_watermark_fast are less likely to trigger:

        if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
                return false;

As a result, we are observing an increase in reclaim and kswapd scans, due
to the increased pressure.  This was initially observed as increased
latency in filesystem operations when benchmarking with fio on a machine
with some memory-less zones, but it has since been associated with
increased contention in locks related to memory reclaim.  By reverting
this patch, the original performance was recovered on that machine.

The original commit was introduced as a clarification of the
/proc/zoneinfo output, so it doesn't seem there are usecases depending on
it, making the revert a simple solution.

For reference, I collected vmstat with and without this patch on a freshly
booted system running intensive randread io from an nvme for 5 minutes.  I
got:

rpm-6.12.0-slfo.1.2 ->  pgscan_kswapd 5629543865
Patched             ->  pgscan_kswapd 33580844

33M scans is similar to what we had in kernels predating this patch. 
These numbers is fairly representative of the workload on this machine, as
measured in several runs.  So we are talking about a 2-order of magnitude
increase.

Link: https://lkml.kernel.org/r/20250226032258.234099-1-krisman@suse.de
Fixes: 96a5c186ef ("mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone")
Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:19 -08:00
Brian Geffon 34b82f33cf mm: fix finish_fault() handling for large folios
When handling faults for anon shmem finish_fault() will attempt to install
ptes for the entire folio.  Unfortunately if it encounters a single
non-pte_none entry in that range it will bail, even if the pte that
triggered the fault is still pte_none.  When this situation happens the
fault will be retried endlessly never making forward progress.

This patch fixes this behavior and if it detects that a pte in the range
is not pte_none it will fall back to setting a single pte.

[bgeffon@google.com: tweak whitespace]
  Link: https://lkml.kernel.org/r/20250227133236.1296853-1-bgeffon@google.com
Link: https://lkml.kernel.org/r/20250226162341.915535-1-bgeffon@google.com
Fixes: 43e027e414 ("mm: memory: extend finish_fault() to support large folio")
Signed-off-by: Brian Geffon <bgeffon@google.com>
Suggested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reported-by: Marek Maslanka <mmaslanka@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:18 -08:00
Ryan Roberts 3685024edd mm: don't skip arch_sync_kernel_mappings() in error paths
Fix callers that previously skipped calling arch_sync_kernel_mappings() if
an error occurred during a pgtable update.  The call is still required to
sync any pgtable updates that may have occurred prior to hitting the error
condition.

These are theoretical bugs discovered during code review.

Link: https://lkml.kernel.org/r/20250226121610.2401743-1-ryan.roberts@arm.com
Fixes: 2ba3e6947a ("mm/vmalloc: track which page-table levels were modified")
Fixes: 0c95cba492 ("mm: apply_to_pte_range warn and fail if a large pte is encountered")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christop Hellwig <hch@infradead.org>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:18 -08:00
Ricardo Cañuelo Navarro adae46ac1e mm: shmem: remove unnecessary warning in shmem_writepage()
Although the scenario where shmem_writepage() is called with info->flags &
VM_LOCKED is unlikely to happen, it's still possible, as evidenced by
syzbot [1].  However, the warning in this case isn't necessary because the
situation is already handled correctly [2].

[2] https://lore.kernel.org/lkml/8afe1f7f-31a2-4fc0-1fbd-f9ba8a116fe3@google.com/

Link: https://lkml.kernel.org/r/20250226-20250221-warning-in-shmem_writepage-v1-1-5ad19420e17e@igalia.com
Fixes: 9a976f0c84 ("shmem: skip page split if we're not reclaiming")
Signed-off-by: Ricardo Cañuelo Navarro <rcn@igalia.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Closes: https://lore.kernel.org/lkml/ZZ9PShXjKJkVelNm@xpf.sh.intel.com/ [1]
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Florent Revest <revest@chromium.org>
Cc: Luis Chamberalin <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:18 -08:00
Suren Baghdasaryan 927e926d72 userfaultfd: fix PTE unmapping stack-allocated PTE copies
Current implementation of move_pages_pte() copies source and destination
PTEs in order to detect concurrent changes to PTEs involved in the move. 
However these copies are also used to unmap the PTEs, which will fail if
CONFIG_HIGHPTE is enabled because the copies are allocated on the stack. 
Fix this by using the actual PTEs which were kmap()ed.

Link: https://lkml.kernel.org/r/20250226185510.2732648-3-surenb@google.com
Fixes: adef440691 ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:18 -08:00
Suren Baghdasaryan 37b338eed1 userfaultfd: do not block on locking a large folio with raised refcount
Lokesh recently raised an issue about UFFDIO_MOVE getting into a deadlock
state when it goes into split_folio() with raised folio refcount. 
split_folio() expects the reference count to be exactly mapcount +
num_pages_in_folio + 1 (see can_split_folio()) and fails with EAGAIN
otherwise.

If multiple processes are trying to move the same large folio, they raise
the refcount (all tasks succeed in that) then one of them succeeds in
locking the folio, while others will block in folio_lock() while keeping
the refcount raised.  The winner of this race will proceed with calling
split_folio() and will fail returning EAGAIN to the caller and unlocking
the folio.  The next competing process will get the folio locked and will
go through the same flow.  In the meantime the original winner will be
retried and will block in folio_lock(), getting into the queue of waiting
processes only to repeat the same path.  All this results in a livelock.

An easy fix would be to avoid waiting for the folio lock while holding
folio refcount, similar to madvise_free_huge_pmd() where folio lock is
acquired before raising the folio refcount.  Since we lock and take a
refcount of the folio while holding the PTE lock, changing the order of
these operations should not break anything.

Modify move_pages_pte() to try locking the folio first and if that fails
and the folio is large then return EAGAIN without touching the folio
refcount.  If the folio is single-page then split_folio() is not called,
so we don't have this issue.  Lokesh has a reproducer [1] and I verified
that this change fixes the issue.

[1] https://github.com/lokeshgidra/uffd_move_ioctl_deadlock

[akpm@linux-foundation.org: reflow comment to 80 cols, s/end/end up/]
Link: https://lkml.kernel.org/r/20250226185510.2732648-2-surenb@google.com
Fixes: adef440691 ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:17 -08:00
Sun YangKai ea6de4f8f8 mm: zswap: use ATOMIC_LONG_INIT to initialize zswap_stored_pages
This is currently the only atomic_long_t variable initialized by
ATOMIC_INIT macro found in the kernel by using `grep -r atomic_long_t |
grep ATOMIC_INIT`

This was introduced in 6e1fa555ec, in which we modified the type of
zswap_stored_pages to atomic_long_t, but didn't change the initialization.

Link: https://lkml.kernel.org/r/20250226153253.19179-1-sunk67188@gmail.com
Fixes: 6e1fa555ec ("mm: zswap: modify zswap_stored_pages to be atomic_long_t")
Signed-off-by: Sun YangKai <sunk67188@gmail.com>
Acked-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:17 -08:00
Baolin Wang 058313515d mm: shmem: fix potential data corruption during shmem swapin
Alex and Kairui reported some issues (system hang or data corruption) when
swapping out or swapping in large shmem folios.  This is especially easy
to reproduce when the tmpfs is mount with the 'huge=within_size'
parameter.  Thanks to Kairui's reproducer, the issue can be easily
replicated.

The root cause of the problem is that swap readahead may asynchronously
swap in order 0 folios into the swap cache, while the shmem mapping can
still store large swap entries.  Then an order 0 folio is inserted into
the shmem mapping without splitting the large swap entry, which overwrites
the original large swap entry, leading to data corruption.

When getting a folio from the swap cache, we should split the large swap
entry stored in the shmem mapping if the orders do not match, to fix this
issue.

Link: https://lkml.kernel.org/r/2fe47c557e74e9df5fe2437ccdc6c9115fa1bf70.1740476943.git.baolin.wang@linux.alibaba.com
Fixes: 809bc86517 ("mm: shmem: support large folio swap out")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reported-by: Alex Xu (Hello71) <alex_y_xu@yahoo.ca>
Reported-by: Kairui Song <ryncsn@gmail.com>
Closes: https://lore.kernel.org/all/1738717785.im3r5g2vxc.none@localhost/
Tested-by: Kairui Song <kasong@tencent.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcow <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:17 -08:00
Barry Song c50f8e6053 mm: fix kernel BUG when userfaultfd_move encounters swapcache
userfaultfd_move() checks whether the PTE entry is present or a
swap entry.

- If the PTE entry is present, move_present_pte() handles folio
  migration by setting:

  src_folio->index = linear_page_index(dst_vma, dst_addr);

- If the PTE entry is a swap entry, move_swap_pte() simply copies
  the PTE to the new dst_addr.

This approach is incorrect because, even if the PTE is a swap entry,
it can still reference a folio that remains in the swap cache.

This creates a race window between steps 2 and 4.
 1. add_to_swap: The folio is added to the swapcache.
 2. try_to_unmap: PTEs are converted to swap entries.
 3. pageout: The folio is written back.
 4. Swapcache is cleared.
If userfaultfd_move() occurs in the window between steps 2 and 4,
after the swap PTE has been moved to the destination, accessing the
destination triggers do_swap_page(), which may locate the folio in
the swapcache. However, since the folio's index has not been updated
to match the destination VMA, do_swap_page() will detect a mismatch.

This can result in two critical issues depending on the system
configuration.

If KSM is disabled, both small and large folios can trigger a BUG
during the add_rmap operation due to:

 page_pgoff(folio, page) != linear_page_index(vma, address)

[   13.336953] page: refcount:6 mapcount:1 mapping:00000000f43db19c index:0xffffaf150 pfn:0x4667c
[   13.337520] head: order:2 mapcount:1 entire_mapcount:0 nr_pages_mapped:1 pincount:0
[   13.337716] memcg:ffff00000405f000
[   13.337849] anon flags: 0x3fffc0000020459(locked|uptodate|dirty|owner_priv_1|head|swapbacked|node=0|zone=0|lastcpupid=0xffff)
[   13.338630] raw: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[   13.338831] raw: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[   13.339031] head: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[   13.339204] head: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[   13.339375] head: 03fffc0000000202 fffffdffc0199f01 ffffffff00000000 0000000000000001
[   13.339546] head: 0000000000000004 0000000000000000 00000000ffffffff 0000000000000000
[   13.339736] page dumped because: VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address))
[   13.340190] ------------[ cut here ]------------
[   13.340316] kernel BUG at mm/rmap.c:1380!
[   13.340683] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[   13.340969] Modules linked in:
[   13.341257] CPU: 1 UID: 0 PID: 107 Comm: a.out Not tainted 6.14.0-rc3-gcf42737e247a-dirty #299
[   13.341470] Hardware name: linux,dummy-virt (DT)
[   13.341671] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[   13.341815] pc : __page_check_anon_rmap+0xa0/0xb0
[   13.341920] lr : __page_check_anon_rmap+0xa0/0xb0
[   13.342018] sp : ffff80008752bb20
[   13.342093] x29: ffff80008752bb20 x28: fffffdffc0199f00 x27: 0000000000000001
[   13.342404] x26: 0000000000000000 x25: 0000000000000001 x24: 0000000000000001
[   13.342575] x23: 0000ffffaf0d0000 x22: 0000ffffaf0d0000 x21: fffffdffc0199f00
[   13.342731] x20: fffffdffc0199f00 x19: ffff000006210700 x18: 00000000ffffffff
[   13.342881] x17: 6c203d2120296567 x16: 6170202c6f696c6f x15: 662866666f67705f
[   13.343033] x14: 6567617028454741 x13: 2929737365726464 x12: ffff800083728ab0
[   13.343183] x11: ffff800082996bf8 x10: 0000000000000fd7 x9 : ffff80008011bc40
[   13.343351] x8 : 0000000000017fe8 x7 : 00000000fffff000 x6 : ffff8000829eebf8
[   13.343498] x5 : c0000000fffff000 x4 : 0000000000000000 x3 : 0000000000000000
[   13.343645] x2 : 0000000000000000 x1 : ffff0000062db980 x0 : 000000000000005f
[   13.343876] Call trace:
[   13.344045]  __page_check_anon_rmap+0xa0/0xb0 (P)
[   13.344234]  folio_add_anon_rmap_ptes+0x22c/0x320
[   13.344333]  do_swap_page+0x1060/0x1400
[   13.344417]  __handle_mm_fault+0x61c/0xbc8
[   13.344504]  handle_mm_fault+0xd8/0x2e8
[   13.344586]  do_page_fault+0x20c/0x770
[   13.344673]  do_translation_fault+0xb4/0xf0
[   13.344759]  do_mem_abort+0x48/0xa0
[   13.344842]  el0_da+0x58/0x130
[   13.344914]  el0t_64_sync_handler+0xc4/0x138
[   13.345002]  el0t_64_sync+0x1ac/0x1b0
[   13.345208] Code: aa1503e0 f000f801 910f6021 97ff5779 (d4210000)
[   13.345504] ---[ end trace 0000000000000000 ]---
[   13.345715] note: a.out[107] exited with irqs disabled
[   13.345954] note: a.out[107] exited with preempt_count 2

If KSM is enabled, Peter Xu also discovered that do_swap_page() may
trigger an unexpected CoW operation for small folios because
ksm_might_need_to_copy() allocates a new folio when the folio index
does not match linear_page_index(vma, addr).

This patch also checks the swapcache when handling swap entries. If a
match is found in the swapcache, it processes it similarly to a present
PTE.
However, there are some differences. For example, the folio is no longer
exclusive because folio_try_share_anon_rmap_pte() is performed during
unmapping.
Furthermore, in the case of swapcache, the folio has already been
unmapped, eliminating the risk of concurrent rmap walks and removing the
need to acquire src_folio's anon_vma or lock.

Note that for large folios, in the swapcache handling path, we directly
return -EBUSY since split_folio() will return -EBUSY regardless if
the folio is under writeback or unmapped. This is not an urgent issue,
so a follow-up patch may address it separately.

[v-songbaohua@oppo.com: minor cleanup according to Peter Xu]
  Link: https://lkml.kernel.org/r/20250226024411.47092-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20250226001400.9129-1-21cnbao@gmail.com
Fixes: adef440691 ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:17 -08:00
Mike Snitzer ce6d9c1c2b NFS: fix nfs_release_folio() to not deadlock via kcompactd writeback
Add PF_KCOMPACTD flag and current_is_kcompactd() helper to check for it so
nfs_release_folio() can skip calling nfs_wb_folio() from kcompactd.

Otherwise NFS can deadlock waiting for kcompactd enduced writeback which
recurses back to NFS (which triggers writeback to NFSD via NFS loopback
mount on the same host, NFSD blocks waiting for XFS's call to
__filemap_get_folio):

6070.550357] INFO: task kcompactd0:58 blocked for more than 4435 seconds.

{---
[58] "kcompactd0"
[<0>] folio_wait_bit+0xe8/0x200
[<0>] folio_wait_writeback+0x2b/0x80
[<0>] nfs_wb_folio+0x80/0x1b0 [nfs]
[<0>] nfs_release_folio+0x68/0x130 [nfs]
[<0>] split_huge_page_to_list_to_order+0x362/0x840
[<0>] migrate_pages_batch+0x43d/0xb90
[<0>] migrate_pages_sync+0x9a/0x240
[<0>] migrate_pages+0x93c/0x9f0
[<0>] compact_zone+0x8e2/0x1030
[<0>] compact_node+0xdb/0x120
[<0>] kcompactd+0x121/0x2e0
[<0>] kthread+0xcf/0x100
[<0>] ret_from_fork+0x31/0x40
[<0>] ret_from_fork_asm+0x1a/0x30
---}

[akpm@linux-foundation.org: fix build]
Link: https://lkml.kernel.org/r/20250225022002.26141-1-snitzer@kernel.org
Fixes: 96780ca55e ("NFS: fix up nfs_release_folio() to try to release the page")
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Cc: Anna Schumaker <anna.schumaker@oracle.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:15 -08:00
Kemeng Shi 57d910cffa mm, swap: avoid BUG_ON in relocate_cluster()
If allocation is racy with swapoff, we may call free_cluster for cluster
already in free list and trigger BUG_ON() as following:

Allocation                        Swapoff
cluster_alloc_swap_entry
 ...
 /* may get a free cluster with offset */
 offset = xxx;
 if (offset)
  ci = lock_cluster(si, offset);

                                  ...
                                   del_from_avail_list(p, true);
                                    si->flags &= ~SWP_WRITEOK;

  alloc_swap_scan_cluster(si, ci, ...)
   ...
   /* failed to alloc entry from free entry */
   if (!cluster_alloc_range(...))
    break;
   ...
   /* add back a free cluster */
   relocate_cluster(si, ci);
    if (!ci->count)
     free_cluster(si, ci);
      VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);

To prevent the BUG_ON(), call free_cluster() for free cluster to move the
cluster to tail of list.

Check cluster is not free before calling free_cluster() in
relocate_cluster() to avoid BUG_ON().

Link: https://lkml.kernel.org/r/20250222160850.505274-4-shikemeng@huaweicloud.com
Fixes: 3b644773ee ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:15 -08:00
Kemeng Shi 7a2e7ae5d1 mm: swap: use correct step in loop to wait all clusters in wait_for_allocation()
Use correct step in loop to wait all clusters in wait_for_allocation(). 
If we miss some cluster in wait_for_allocation(), use after free may occur
as follows:

shmem_writepage                  swapoff
 folio_alloc_swap
  get_swap_pages
   scan_swap_map_slots
    cluster_alloc_swap_entry
     alloc_swap_scan_cluster
      cluster_alloc_range
       /* SWP_WRITEOK is valid */
       if (!(si->flags & SWP_WRITEOK))

                                  ...
                                  del_from_avail_list(p, true);
                                  ...
                                  /* miss the cluster in shmem_writepage */
                                  wait_for_allocation()
                                  ...
                                  try_to_unuse()

       memset(si->swap_map + start, usage, nr_pages);
       swap_range_alloc(si, nr_pages);
       ci->count += nr_pages;
       /* return a valid entry */

                                  ...
                                  exit_swap_address_space(p->type);
                                  ...

 ...
 add_to_swap_cache
  /* dereference swap_address_space(entry) which is NULL */
  xas_lock_irq(&xas);

Link: https://lkml.kernel.org/r/20250222160850.505274-3-shikemeng@huaweicloud.com
Fixes: 9a0ddeb798 ("mm, swap: hold a reference during scan and cleanup flag usage")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:15 -08:00
Kemeng Shi 51f271c194 mm: swap: add back full cluster when no entry is reclaimed
If no swap cache is reclaimed, cluster taken off from full_clusters list
will not be put in any list and we can't reclaime HAS_CACHE slots
efficiently.  Do relocate_cluster for such cluster to avoid inefficiency.

Link: https://lkml.kernel.org/r/20250224113910.522439-1-shikemeng@huaweicloud.com
Fixes: 3b644773ee ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:15 -08:00
Lorenzo Stoakes 47b16d0462 mm: abort vma_modify() on merge out of memory failure
The remainder of vma_modify() relies upon the vmg state remaining pristine
after a merge attempt.

Usually this is the case, however in the one edge case scenario of a merge
attempt failing not due to the specified range being unmergeable, but
rather due to an out of memory error arising when attempting to commit the
merge, this assumption becomes untrue.

This results in vmg->start, end being modified, and thus the proceeding
attempts to split the VMA will be done with invalid start/end values.

Thankfully, it is likely practically impossible for us to hit this in
reality, as it would require a maple tree node pre-allocation failure that
would likely never happen due to it being 'too small to fail', i.e.  the
kernel would simply keep retrying reclaim until it succeeded.

However, this scenario remains theoretically possible, and what we are
doing here is wrong so we must correct it.

The safest option is, when this scenario occurs, to simply give up the
operation.  If we cannot allocate memory to merge, then we cannot allocate
memory to split either (perhaps moreso!).

Any scenario where this would be happening would be under very extreme
(likely fatal) memory pressure, so it's best we give up early.

So there is no doubt it is appropriate to simply bail out in this
scenario.

However, in general we must if at all possible never assume VMG state is
stable after a merge attempt, since merge operations update VMG fields. 
As a result, additionally also make this clear by storing start, end in
local variables.

The issue was reported originally by syzkaller, and by Brad Spengler (via
an off-list discussion), and in both instances it manifested as a
triggering of the assert:

	VM_WARN_ON_VMG(start >= end, vmg);

In vma_merge_existing_range().

It seems at least one scenario in which this is occurring is one in which
the merge being attempted is due to an madvise() across multiple VMAs
which looks like this:

        start     end
          |<------>|
     |----------|------|
     |   vma    | next |
     |----------|------|

When madvise_walk_vmas() is invoked, we first find vma in the above
(determining prev to be equal to vma as we are offset into vma), and then
enter the loop.

We determine the end of vma that forms part of the range we are
madvise()'ing by setting 'tmp' to this value:

		/* Here vma->vm_start <= start < (end|vma->vm_end) */
		tmp = vma->vm_end;

We then invoke the madvise() operation via visit(), letting prev get
updated to point to vma as part of the operation:

		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
		error = visit(vma, &prev, start, tmp, arg);

Where the visit() function pointer in this instance is
madvise_vma_behavior().

As observed in syzkaller reports, it is ultimately madvise_update_vma()
that is invoked, calling vma_modify_flags_name() and vma_modify() in turn.

Then, in vma_modify(), we attempt the merge:

	merged = vma_merge_existing_range(vmg);
	if (merged)
		return merged;

We invoke this with vmg->start, end set to start, tmp as such:

        start  tmp
          |<--->|
     |----------|------|
     |   vma    | next |
     |----------|------|

We find ourselves in the merge right scenario, but the one in which we
cannot remove the middle (we are offset into vma).

Here we have a special case where vmg->start, end get set to perhaps
unintuitive values - we intended to shrink the middle VMA and expand the
next.

This means vmg->start, end are set to...  vma->vm_start, start.

Now the commit_merge() fails, and vmg->start, end are left like this. 
This means we return to the rest of vma_modify() with vmg->start, end
(here denoted as start', end') set as:

  start' end'
     |<-->|
     |----------|------|
     |   vma    | next |
     |----------|------|

So we now erroneously try to split accordingly.  This is where the
unfortunate stuff begins.

We start with:

	/* Split any preceding portion of the VMA. */
	if (vma->vm_start < vmg->start) {
		...
	}

This doesn't trigger as we are no longer offset into vma at the start.

But then we invoke:

	/* Split any trailing portion of the VMA. */
	if (vma->vm_end > vmg->end) {
		...
	}

Which does get invoked. This leaves us with:

  start' end'
     |<-->|
     |----|-----|------|
     | vma| new | next |
     |----|-----|------|

We then return ultimately to madvise_walk_vmas().  Here 'new' is unknown,
and putting back the values known in this function we are faced with:

        start tmp end
          |     |  |
     |----|-----|------|
     | vma| new | next |
     |----|-----|------|
      prev

Then:

		start = tmp;

So:

             start end
                |  |
     |----|-----|------|
     | vma| new | next |
     |----|-----|------|
      prev

The following code does not cause anything to happen:

		if (prev && start < prev->vm_end)
			start = prev->vm_end;
		if (start >= end)
			break;

And then we invoke:

		if (prev)
			vma = find_vma(mm, prev->vm_end);

Which is where a problem occurs - we don't know about 'new' so we
essentially look for the vma after prev, which is new, whereas we actually
intended to discover next!

So we end up with:

             start end
                |  |
     |----|-----|------|
     |prev| vma | next |
     |----|-----|------|

And we have successfully bypassed all of the checks madvise_walk_vmas()
has to ensure early exit should we end up moving out of range.

We loop around, and hit:

		/* Here vma->vm_start <= start < (end|vma->vm_end) */
		tmp = vma->vm_end;

Oh dear. Now we have:

              tmp
             start end
                |  |
     |----|-----|------|
     |prev| vma | next |
     |----|-----|------|

We then invoke:

		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
		error = visit(vma, &prev, start, tmp, arg);

Where start == tmp. That is, a zero range. This is not good.

We invoke visit() which is madvise_vma_behavior() which does not check the
range (for good reason, it assumes all checks have been done before it was
called), which in turn finally calls madvise_update_vma().

The madvise_update_vma() function calls vma_modify_flags_name() in turn,
which ultimately invokes vma_modify() with...  start == end.

vma_modify() calls vma_merge_existing_range() and finally we hit:

	VM_WARN_ON_VMG(start >= end, vmg);

Which triggers, as start == end.

While it might be useful to add some CONFIG_DEBUG_VM asserts in these
instances to catch this kind of error, since we have just eliminated any
possibility of that happening, we will add such asserts separately as to
reduce churn and aid backporting.

Link: https://lkml.kernel.org/r/20250222161952.41957-1-lorenzo.stoakes@oracle.com
Fixes: 2f1c6611b0 ("mm: introduce vma_merge_struct and abstract vma_merge(),vma_modify()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Brad Spengler <brad.spengler@opensrcsec.com>
Reported-by: Brad Spengler <brad.spengler@opensrcsec.com>
Reported-by: syzbot+46423ed8fa1f1148c6e4@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-mm/6774c98f.050a0220.25abdd.0991.GAE@google.com/
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:14 -08:00
Ge Yang 67bab13307 mm/hugetlb: wait for hugetlb folios to be freed
Since the introduction of commit c77c0a8ac4 ("mm/hugetlb: defer freeing
of huge pages if in non-task context"), which supports deferring the
freeing of hugetlb pages, the allocation of contiguous memory through
cma_alloc() may fail probabilistically.

In the CMA allocation process, if it is found that the CMA area is
occupied by in-use hugetlb folios, these in-use hugetlb folios need to be
migrated to another location.  When there are no available hugetlb folios
in the free hugetlb pool during the migration of in-use hugetlb folios,
new folios are allocated from the buddy system.  A temporary state is set
on the newly allocated folio.  Upon completion of the hugetlb folio
migration, the temporary state is transferred from the new folios to the
old folios.  Normally, when the old folios with the temporary state are
freed, it is directly released back to the buddy system.  However, due to
the deferred freeing of hugetlb pages, the PageBuddy() check fails,
ultimately leading to the failure of cma_alloc().

Here is a simplified call trace illustrating the process:
cma_alloc()
    ->__alloc_contig_migrate_range() // Migrate in-use hugetlb folios
        ->unmap_and_move_huge_page()
            ->folio_putback_hugetlb() // Free old folios
    ->test_pages_isolated()
        ->__test_page_isolated_in_pageblock()
             ->PageBuddy(page) // Check if the page is in buddy

To resolve this issue, we have implemented a function named
wait_for_freed_hugetlb_folios().  This function ensures that the hugetlb
folios are properly released back to the buddy system after their
migration is completed.  By invoking wait_for_freed_hugetlb_folios()
before calling PageBuddy(), we ensure that PageBuddy() will succeed.

Link: https://lkml.kernel.org/r/1739936804-18199-1-git-send-email-yangge1116@126.com
Fixes: c77c0a8ac4 ("mm/hugetlb: defer freeing of huge pages if in non-task context")
Signed-off-by: Ge Yang <yangge1116@126.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:14 -08:00
gao xu c3e998398d mm: fix possible NULL pointer dereference in __swap_duplicate
Add a NULL check on the return value of swp_swap_info in __swap_duplicate
to prevent crashes caused by NULL pointer dereference.

The reason why swp_swap_info() returns NULL is unclear; it may be due
to CPU cache issues or DDR bit flips.  The probability of this issue is
very small - it has been observed to occur approximately 1 in 500,000
times per week.  The stack info we encountered is as follows:

Unable to handle kernel NULL pointer dereference at virtual address
0000000000000058
[RB/E]rb_sreason_str_set: sreason_str set null_pointer
Mem abort info:
  ESR = 0x0000000096000005
  EC = 0x25: DABT (current EL), IL = 32 bits
  SET = 0, FnV = 0
  EA = 0, S1PTW = 0
  FSC = 0x05: level 1 translation fault
Data abort info:
  ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
  CM = 0, WnR = 0, TnD = 0, TagAccess = 0
  GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 39-bit VAs, pgdp=00000008a80e5000
[0000000000000058] pgd=0000000000000000, p4d=0000000000000000,
pud=0000000000000000
Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Skip md ftrace buffer dump for: 0x1609e0
...
pc : swap_duplicate+0x44/0x164
lr : copy_page_range+0x508/0x1e78
sp : ffffffc0f2a699e0
x29: ffffffc0f2a699e0 x28: ffffff8a5b28d388 x27: ffffff8b06603388
x26: ffffffdf7291fe70 x25: 0000000000000006 x24: 0000000000100073
x23: 00000000002d2d2f x22: 0000000000000008 x21: 0000000000000000
x20: 00000000002d2d2f x19: 18000000002d2d2f x18: ffffffdf726faec0
x17: 0000000000000000 x16: 0010000000000001 x15: 0040000000000001
x14: 0400000000000001 x13: ff7ffffffffffb7f x12: ffeffffffffffbff
x11: ffffff8a5c7e1898 x10: 0000000000000018 x9 : 0000000000000006
x8 : 1800000000000000 x7 : 0000000000000000 x6 : ffffff8057c01f10
x5 : 000000000000a318 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000006daf200000 x1 : 0000000000000001 x0 : 18000000002d2d2f
Call trace:
 swap_duplicate+0x44/0x164
 copy_page_range+0x508/0x1e78
 copy_process+0x1278/0x21cc
 kernel_clone+0x90/0x438
 __arm64_sys_clone+0x5c/0x8c
 invoke_syscall+0x58/0x110
 do_el0_svc+0x8c/0xe0
 el0_svc+0x38/0x9c
 el0t_64_sync_handler+0x44/0xec
 el0t_64_sync+0x1a8/0x1ac
Code: 9139c35a 71006f3f 54000568 f8797b55 (f9402ea8)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception
SMP: stopping secondary CPUs

The patch seems to only provide a workaround, but there are no more
effective software solutions to handle the bit flips problem.  This path
will change the issue from a system crash to a process exception, thereby
reducing the impact on the entire machine.

akpm: this is probably a kernel bug, but this patch keeps the system
running and doesn't reduce that bug's debuggability.

Link: https://lkml.kernel.org/r/e223b0e6ba2f4924984b1917cc717bd5@honor.com
Signed-off-by: gao xu <gaoxu2@honor.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:14 -08:00
Sebastian Andrzej Siewior 19fac3c939 dma: kmsan: export kmsan_handle_dma() for modules
kmsan_handle_dma() is used by virtio_ring() which can be built as a
module.  kmsan_handle_dma() needs to be exported otherwise building the
virtio_ring fails.

Export kmsan_handle_dma for modules.

Link: https://lkml.kernel.org/r/20250218091411.MMS3wBN9@linutronix.de
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202502150634.qjxwSeJR-lkp@intel.com/
Fixes: 7ade4f1077 ("dma: kmsan: unpoison DMA mappings")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Macro Elver <elver@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:14 -08:00
Ma Wupeng af288a426c hwpoison, memory_hotplug: lock folio before unmap hwpoisoned folio
Commit b15c87263a ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined) add page poison checks in do_migrate_range in order to make
offline hwpoisoned page possible by introducing isolate_lru_page and
try_to_unmap for hwpoisoned page.  However folio lock must be held before
calling try_to_unmap.  Add it to fix this problem.

Warning will be produced if folio is not locked during unmap:

  ------------[ cut here ]------------
  kernel BUG at ./include/linux/swapops.h:400!
  Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
  Modules linked in:
  CPU: 4 UID: 0 PID: 411 Comm: bash Tainted: G        W          6.13.0-rc1-00016-g3c434c7ee82a-dirty #41
  Tainted: [W]=WARN
  Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
  pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
  pc : try_to_unmap_one+0xb08/0xd3c
  lr : try_to_unmap_one+0x3dc/0xd3c
  Call trace:
   try_to_unmap_one+0xb08/0xd3c (P)
   try_to_unmap_one+0x3dc/0xd3c (L)
   rmap_walk_anon+0xdc/0x1f8
   rmap_walk+0x3c/0x58
   try_to_unmap+0x88/0x90
   unmap_poisoned_folio+0x30/0xa8
   do_migrate_range+0x4a0/0x568
   offline_pages+0x5a4/0x670
   memory_block_action+0x17c/0x374
   memory_subsys_offline+0x3c/0x78
   device_offline+0xa4/0xd0
   state_store+0x8c/0xf0
   dev_attr_store+0x18/0x2c
   sysfs_kf_write+0x44/0x54
   kernfs_fop_write_iter+0x118/0x1a8
   vfs_write+0x3a8/0x4bc
   ksys_write+0x6c/0xf8
   __arm64_sys_write+0x1c/0x28
   invoke_syscall+0x44/0x100
   el0_svc_common.constprop.0+0x40/0xe0
   do_el0_svc+0x1c/0x28
   el0_svc+0x30/0xd0
   el0t_64_sync_handler+0xc8/0xcc
   el0t_64_sync+0x198/0x19c
  Code: f9407be0 b5fff320 d4210000 17ffff97 (d4210000)
  ---[ end trace 0000000000000000 ]---

Link: https://lkml.kernel.org/r/20250217014329.3610326-4-mawupeng1@huawei.com
Fixes: b15c87263a ("hwpoison, memory_hotplug: allow hwpoisoned pages to be offlined")
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:13 -08:00
Ma Wupeng 773b9a6aa6 mm: memory-hotplug: check folio ref count first in do_migrate_range
If a folio has an increased reference count, folio_try_get() will acquire
it, perform necessary operations, and then release it.  In the case of a
poisoned folio without an elevated reference count (which is unlikely for
memory-failure), folio_try_get() will simply bypass it.

Therefore, relocate the folio_try_get() function, responsible for checking
and acquiring this reference count at first.

Link: https://lkml.kernel.org/r/20250217014329.3610326-3-mawupeng1@huawei.com
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:13 -08:00
Ma Wupeng b81679b163 mm: memory-failure: update ttu flag inside unmap_poisoned_folio
Patch series "mm: memory_failure: unmap poisoned folio during migrate
properly", v3.

Fix two bugs during folio migration if the folio is poisoned.


This patch (of 3):

Commit 6da6b1d4a7 ("mm/hwpoison: convert TTU_IGNORE_HWPOISON to
TTU_HWPOISON") introduce TTU_HWPOISON to replace TTU_IGNORE_HWPOISON in
order to stop send SIGBUS signal when accessing an error page after a
memory error on a clean folio.  However during page migration, anon folio
must be set with TTU_HWPOISON during unmap_*().  For pagecache we need
some policy just like the one in hwpoison_user_mappings to set this flag. 
So move this policy from hwpoison_user_mappings to unmap_poisoned_folio to
handle this warning properly.

Warning will be produced during unamp poison folio with the following log:

  ------------[ cut here ]------------
  WARNING: CPU: 1 PID: 365 at mm/rmap.c:1847 try_to_unmap_one+0x8fc/0xd3c
  Modules linked in:
  CPU: 1 UID: 0 PID: 365 Comm: bash Tainted: G        W          6.13.0-rc1-00018-gacdb4bbda7ab #42
  Tainted: [W]=WARN
  Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
  pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
  pc : try_to_unmap_one+0x8fc/0xd3c
  lr : try_to_unmap_one+0x3dc/0xd3c
  Call trace:
   try_to_unmap_one+0x8fc/0xd3c (P)
   try_to_unmap_one+0x3dc/0xd3c (L)
   rmap_walk_anon+0xdc/0x1f8
   rmap_walk+0x3c/0x58
   try_to_unmap+0x88/0x90
   unmap_poisoned_folio+0x30/0xa8
   do_migrate_range+0x4a0/0x568
   offline_pages+0x5a4/0x670
   memory_block_action+0x17c/0x374
   memory_subsys_offline+0x3c/0x78
   device_offline+0xa4/0xd0
   state_store+0x8c/0xf0
   dev_attr_store+0x18/0x2c
   sysfs_kf_write+0x44/0x54
   kernfs_fop_write_iter+0x118/0x1a8
   vfs_write+0x3a8/0x4bc
   ksys_write+0x6c/0xf8
   __arm64_sys_write+0x1c/0x28
   invoke_syscall+0x44/0x100
   el0_svc_common.constprop.0+0x40/0xe0
   do_el0_svc+0x1c/0x28
   el0_svc+0x30/0xd0
   el0t_64_sync_handler+0xc8/0xcc
   el0t_64_sync+0x198/0x19c
  ---[ end trace 0000000000000000 ]---

[mawupeng1@huawei.com: unmap_poisoned_folio(): remove shadowed local `mapping', per Miaohe]
  Link: https://lkml.kernel.org/r/20250219060653.3849083-1-mawupeng1@huawei.com
Link: https://lkml.kernel.org/r/20250217014329.3610326-1-mawupeng1@huawei.com
Link: https://lkml.kernel.org/r/20250217014329.3610326-2-mawupeng1@huawei.com
Fixes: 6da6b1d4a7 ("mm/hwpoison: convert TTU_IGNORE_HWPOISON to TTU_HWPOISON")
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Ma Wupeng <mawupeng1@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05 21:36:13 -08:00
Matthew Wilcox (Oracle) d96e2802a8 mm: Remove wait_on_page_locked()
This compatibility wrapper has no callers left, so remove it.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2025-03-04 17:02:27 +00:00
Matthew Wilcox (Oracle) e33ce6bd4e mm: Remove grab_cache_page_write_begin()
All callers have now been converted to use folios, so remove this
compatibility wrapper.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2025-03-04 17:02:25 +00:00
Matthew Wilcox (Oracle) 36e1d6344a mm: Remove wait_for_stable_page()
The last caller has been converted to call folio_wait_stable(), so
we can remove this wrapper.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2025-03-04 17:02:23 +00:00
Ingo Molnar cfdaa618de Merge branch 'x86/cpu' into x86/asm, to pick up dependent commits
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-03-04 11:19:21 +01:00
Ingo Molnar 1b4c36f9b1 Merge branch 'x86/urgent' into x86/cpu, to pick up dependent commits
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-03-04 11:15:26 +01:00
Matthew Wilcox (Oracle) a6687c8ff6 slab: Mark large folios for debugging purposes
If a user calls p = kmalloc(1024); kfree(p); kfree(p); and 'p' was the
only object in the slab, we may free the slab after the first call to
kfree().  If we do, we clear PGTY_slab and the second call to kfree()
will call free_large_kmalloc().  That will leave a trace in the logs
("object pointer: 0x%p"), but otherwise proceed to free the memory,
which is likely to corrupt the page allocator's metadata.

Allocate a new page type for large kmalloc and mark the memory with it
while it's allocated.  That lets us detect this double-free and return
without harming any data structures.

Reported-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:57:48 +01:00
Vlastimil Babka 4b183dd935 mm, slab: cleanup slab_bug() parameters
slab_err() has variadic printf arguments but instead of passing them to
slab_bug() it does vsnprintf() to a buffer and passes %s, buf.

To allow passing them directly, turn slab_bug() to __slab_bug() with a
va_list parameter, and slab_bug() a wrapper with fmt, ... parameters.
Then slab_err() can call __slab_bug() without the intermediate buffer.

Also constify fmt everywhere, which also simplifies object_err()'s
call to slab_bug().

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
2025-03-04 08:53:50 +01:00
Hyesoo Yu 3f6f32b14a mm: slub: call WARN() when detecting a slab corruption
If a slab object is corrupted or an error occurs in its internal
validation, continuing after restoration may cause other side effects.
At this point, it is difficult to debug because the problem occurred in
the past. It is useful to use WARN() to catch errors at the point of
issue because WARN() could trigger panic for system debugging when
panic_on_warn is enabled. WARN() is added where to detect the error on
slab_err and object_err.

It makes sense to only do the WARN() after printing the logs. slab_err
is splited to __slab_err that calls the WARN() and it is called after
printing logs.

Signed-off-by: Hyesoo Yu <hyesoo.yu@samsung.com>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:53:50 +01:00
Hyesoo Yu ed5ec2e952 mm: slub: Print the broken data before restoring them
Previously, the restore occurred after printing the object in slub.
After commit 47d911b02c ("slab: make check_object() more consistent"),
the bytes are printed after the restore. This information about the bytes
before the restore is highly valuable for debugging purpose.
For instance, in a event of cache issue, it displays byte patterns
by breaking them down into 64-bytes units. Without this information,
we can only speculate on how it was broken. Hence the corrupted regions
should be printed prior to the restoration process. However if an object
breaks in multiple places, the same log may be output multiple times.
Therefore the slub log is reported only once to prevent redundant printing,
by sending a parameter indicating whether an error has occurred previously.

Signed-off-by: Hyesoo Yu <hyesoo.yu@samsung.com>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:53:50 +01:00
GONG Ruiqi 539f552892 slab: Achieve better kmalloc caches randomization in kvmalloc
As revealed by this writeup[1], due to the fact that __kmalloc_node (now
renamed to __kmalloc_node_noprof) is an exported symbol and will never
get inlined, using it in kvmalloc_node (now is __kvmalloc_node_noprof)
would make the RET_IP inside always point to the same address:

    upper_caller
        kvmalloc
        kvmalloc_node
        kvmalloc_node_noprof
        __kvmalloc_node_noprof	<-- all macros all the way down here
            __kmalloc_node_noprof
                __do_kmalloc_node(.., _RET_IP_)
            ...			<-- _RET_IP_ points to

That literally means all kmalloc invoked via kvmalloc would use the same
seed for cache randomization (CONFIG_RANDOM_KMALLOC_CACHES), which makes
this hardening non-functional.

The root cause of this problem, IMHO, is that using RET_IP only cannot
identify the actual allocation site in case of kmalloc being called
inside non-inlined wrappers or helper functions. And I believe there
could be similar cases in other functions. Nevertheless, I haven't
thought of any good solution for this. So for now let's solve this
specific case first.

For __kvmalloc_node_noprof, replace __kmalloc_node_noprof and call
__do_kmalloc_node directly instead, so that RET_IP can take the return
address of kvmalloc and differentiate each kvmalloc invocation:

    upper_caller
        kvmalloc
        kvmalloc_node
        kvmalloc_node_noprof
        __kvmalloc_node_noprof	<-- all macros all the way down here
            __do_kmalloc_node(.., _RET_IP_)
        ...			<-- _RET_IP_ points to

Thanks to Tamás Koczka for the report and discussion!

Link: 908d59b573/pocs/linux/kernelctf/CVE-2024-27397_mitigation/docs/exploit.md?plain=1#L259 [1]
Reported-by: Tamás Koczka <poprdi@google.com>
Signed-off-by: GONG Ruiqi <gongruiqi1@huawei.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:53:50 +01:00
GONG Ruiqi f1157db8b5 slab: Adjust placement of __kvmalloc_node_noprof
Move __kvmalloc_node_noprof (as well as kvfree*, kvrealloc_noprof and
kmalloc_gfp_adjust for consistency) into mm/slub.c so that it can
directly invoke __do_kmalloc_node, which is needed for the next patch.

No functional changes intended.

Signed-off-by: GONG Ruiqi <gongruiqi1@huawei.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:53:50 +01:00
Kevin Brodsky 12f4888c9d mm/slab: simplify SLAB_* flag handling
SLUB is the only remaining allocator. We can therefore get rid of
the logic for allocator-specific flags:

* Merge SLAB_CACHE_FLAGS into SLAB_CORE_FLAGS.

* Remove CACHE_CREATE_MASK and instead mask out SLAB_DEBUG_FLAGS if
  !CONFIG_SLUB_DEBUG. SLAB_DEBUG_FLAGS is now defined
  unconditionally (no impact on existing code, which ignores it if
  !CONFIG_SLUB_DEBUG).

* Define SLAB_FLAGS_PERMITTED in terms of SLAB_CORE_FLAGS and
  SLAB_DEBUG_FLAGS (no functional change).

While at it also remove misleading comments that suggest that
multiple allocators are available.

Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:53:50 +01:00
Uladzislau Rezki (Sony) dfd3df31c9 mm/slab/kvfree_rcu: Switch to WQ_MEM_RECLAIM wq
Currently kvfree_rcu() APIs use a system workqueue which is
"system_unbound_wq" to driver RCU machinery to reclaim a memory.

Recently, it has been noted that the following kernel warning can
be observed:

<snip>
workqueue: WQ_MEM_RECLAIM nvme-wq:nvme_scan_work is flushing !WQ_MEM_RECLAIM events_unbound:kfree_rcu_work
  WARNING: CPU: 21 PID: 330 at kernel/workqueue.c:3719 check_flush_dependency+0x112/0x120
  Modules linked in: intel_uncore_frequency(E) intel_uncore_frequency_common(E) skx_edac(E) ...
  CPU: 21 UID: 0 PID: 330 Comm: kworker/u144:6 Tainted: G            E      6.13.2-0_g925d379822da #1
  Hardware name: Wiwynn Twin Lakes MP/Twin Lakes Passive MP, BIOS YMM20 02/01/2023
  Workqueue: nvme-wq nvme_scan_work
  RIP: 0010:check_flush_dependency+0x112/0x120
  Code: 05 9a 40 14 02 01 48 81 c6 c0 00 00 00 48 8b 50 18 48 81 c7 c0 00 00 00 48 89 f9 48 ...
  RSP: 0018:ffffc90000df7bd8 EFLAGS: 00010082
  RAX: 000000000000006a RBX: ffffffff81622390 RCX: 0000000000000027
  RDX: 00000000fffeffff RSI: 000000000057ffa8 RDI: ffff88907f960c88
  RBP: 0000000000000000 R08: ffffffff83068e50 R09: 000000000002fffd
  R10: 0000000000000004 R11: 0000000000000000 R12: ffff8881001a4400
  R13: 0000000000000000 R14: ffff88907f420fb8 R15: 0000000000000000
  FS:  0000000000000000(0000) GS:ffff88907f940000(0000) knlGS:0000000000000000
  CR2: 00007f60c3001000 CR3: 000000107d010005 CR4: 00000000007726f0
  PKRU: 55555554
  Call Trace:
   <TASK>
   ? __warn+0xa4/0x140
   ? check_flush_dependency+0x112/0x120
   ? report_bug+0xe1/0x140
   ? check_flush_dependency+0x112/0x120
   ? handle_bug+0x5e/0x90
   ? exc_invalid_op+0x16/0x40
   ? asm_exc_invalid_op+0x16/0x20
   ? timer_recalc_next_expiry+0x190/0x190
   ? check_flush_dependency+0x112/0x120
   ? check_flush_dependency+0x112/0x120
   __flush_work.llvm.1643880146586177030+0x174/0x2c0
   flush_rcu_work+0x28/0x30
   kvfree_rcu_barrier+0x12f/0x160
   kmem_cache_destroy+0x18/0x120
   bioset_exit+0x10c/0x150
   disk_release.llvm.6740012984264378178+0x61/0xd0
   device_release+0x4f/0x90
   kobject_put+0x95/0x180
   nvme_put_ns+0x23/0xc0
   nvme_remove_invalid_namespaces+0xb3/0xd0
   nvme_scan_work+0x342/0x490
   process_scheduled_works+0x1a2/0x370
   worker_thread+0x2ff/0x390
   ? pwq_release_workfn+0x1e0/0x1e0
   kthread+0xb1/0xe0
   ? __kthread_parkme+0x70/0x70
   ret_from_fork+0x30/0x40
   ? __kthread_parkme+0x70/0x70
   ret_from_fork_asm+0x11/0x20
   </TASK>
  ---[ end trace 0000000000000000 ]---
<snip>

To address this switch to use of independent WQ_MEM_RECLAIM
workqueue, so the rules are not violated from workqueue framework
point of view.

Apart of that, since kvfree_rcu() does reclaim memory it is worth
to go with WQ_MEM_RECLAIM type of wq because it is designed for
this purpose.

Fixes: 6c6c47b063 ("mm, slab: call kvfree_rcu_barrier() from kmem_cache_destroy()"),
Reported-by: Keith Busch <kbusch@kernel.org>
Closes: https://lore.kernel.org/all/Z7iqJtCjHKfo8Kho@kbusch-mbp/
Cc: stable@vger.kernel.org
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Joel Fernandes <joelagnelf@nvidia.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-03-04 08:51:53 +01:00
Linus Torvalds 9d20040d71 arm64 fixes for -rc5
- Fix a sporadic boot failure due to incorrect randomization of the
   linear map on systems that support it
 
 - Fix the zapping (both clearing the entries *and* invalidating the TLB)
   of hugetlb PTEs constructed using the contiguous bit
 -----BEGIN PGP SIGNATURE-----
 
 iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmfDdBIQHHdpbGxAa2Vy
 bmVsLm9yZwAKCRC3rHDchMFjNN0GB/9gmEOX1GwMU6wFjPYqvjWlkGCFDwrldO84
 uF9jEUbPaw3P4xHTOFyPCfEWidktqa+yDVbe90mB7GVOM+1eEZ81em1k1hYBEXbz
 Q73Nl5VrNzxX4BjOrdxxoTSaR/TKklUh5mqWfIzy1RxEnBfpr/GuDPtUn1GViCAs
 sU16Ju12UdYXn3tyHFDHpjZS9WYZskfnrvS0QvXinz0LahZrCkeaH+ptYHrTjMFx
 hxyrRQwOlqLnZWvjLOegH9AC6uyRkKDinXKhXqHYvUfcfEkQsKwM7Fpc6cviUD0Q
 X2npLNegnYxPniwmLpXfNXazPDnKVMzxb9lpqw1fZS3nAuh8XOde
 =RqDZ
 -----END PGP SIGNATURE-----

Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 fixes from Will Deacon:
 "Ryan's been hard at work finding and fixing mm bugs in the arm64 code,
  so here's a small crop of fixes for -rc5.

  The main changes are to fix our zapping of non-present PTEs for
  hugetlb entries created using the contiguous bit in the page-table
  rather than a block entry at the level above. Prior to these fixes, we
  were pulling the contiguous bit back out of the PTE in order to
  determine the size of the hugetlb page but this is clearly bogus if
  the thing isn't present and consequently both the clearing of the
  PTE(s) and the TLB invalidation were unreliable.

  Although the problem was found by code inspection, we really don't
  want this sitting around waiting to trigger and the changes are CC'd
  to stable accordingly.

  Note that the diffstat looks a lot worse than it really is;
  huge_ptep_get_and_clear() now takes a size argument from the core code
  and so all the arch implementations of that have been updated in a
  pretty mechanical fashion.

   - Fix a sporadic boot failure due to incorrect randomization of the
     linear map on systems that support it

   - Fix the zapping (both clearing the entries *and* invalidating the
     TLB) of hugetlb PTEs constructed using the contiguous bit"

* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  arm64: hugetlb: Fix flush_hugetlb_tlb_range() invalidation level
  arm64: hugetlb: Fix huge_ptep_get_and_clear() for non-present ptes
  mm: hugetlb: Add huge page size param to huge_ptep_get_and_clear()
  arm64/mm: Fix Boot panic on Ampere Altra
2025-03-01 13:44:51 -08:00
Peter Zijlstra a1b65f3f7c lockdep/mm: Fix might_fault() lockdep check of current->mm->mmap_lock
Turns out that this commit, about 10 years ago:

  9ec23531fd ("sched/preempt, mm/fault: Trigger might_sleep() in might_fault() with disabled pagefaults")

... accidentally (and unnessecarily) put the lockdep part of
__might_fault() under CONFIG_DEBUG_ATOMIC_SLEEP=y.

This is potentially notable because large distributions such as
Ubuntu are running with !CONFIG_DEBUG_ATOMIC_SLEEP.

Restore the debug check.

[ mingo: Update changelog. ]

Fixes: 9ec23531fd ("sched/preempt, mm/fault: Trigger might_sleep() in might_fault() with disabled pagefaults")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/20241104135517.536628371@infradead.org
2025-03-01 19:32:41 +01:00
Mel Gorman 496d2d2388 mm: security: Check early if HARDENED_USERCOPY is enabled
HARDENED_USERCOPY is checked within a function so even if disabled, the
function overhead still exists. Move the static check inline.

This is at best a micro-optimisation and any difference in performance
was within noise but it is relatively consistent with the init_on_*
implementations.

Suggested-by: Kees Cook <kees@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20250123221115.19722-4-mgorman@techsingularity.net
Signed-off-by: Kees Cook <kees@kernel.org>
2025-02-28 11:51:31 -08:00
Mel Gorman d2132f453e mm: security: Allow default HARDENED_USERCOPY to be set at compile time
HARDENED_USERCOPY defaults to on if enabled at compile time. Allow
hardened_usercopy= default to be set at compile time similar to
init_on_alloc= and init_on_free=. The intent is that hardening
options that can be disabled at runtime can set their default at
build time.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20250123221115.19722-3-mgorman@techsingularity.net
Signed-off-by: Kees Cook <kees@kernel.org>
2025-02-28 11:51:31 -08:00
Kees Cook 808aac63e2 uaccess: Introduce ucopysize.h
The object size sanity checking macros that uaccess.h and uio.h use
have been living in thread_info.h for historical reasons. Needing to
use jump labels for these checks, however, introduces a header include
loop under certain conditions. The dependencies for the object checking
macros are very limited, but they are used by separate header files,
so introduce a new header that can be used directly by uaccess.h and
uio.h. As a result, this also means thread_info.h (which is rather large)
and be removed from those headers.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202502281153.TG2XK5SI-lkp@intel.com/
Signed-off-by: Kees Cook <kees@kernel.org>
2025-02-28 11:51:26 -08:00
NeilBrown 88d5baf690
Change inode_operations.mkdir to return struct dentry *
Some filesystems, such as NFS, cifs, ceph, and fuse, do not have
complete control of sequencing on the actual filesystem (e.g.  on a
different server) and may find that the inode created for a mkdir
request already exists in the icache and dcache by the time the mkdir
request returns.  For example, if the filesystem is mounted twice the
directory could be visible on the other mount before it is on the
original mount, and a pair of name_to_handle_at(), open_by_handle_at()
calls could instantiate the directory inode with an IS_ROOT() dentry
before the first mkdir returns.

This means that the dentry passed to ->mkdir() may not be the one that
is associated with the inode after the ->mkdir() completes.  Some
callers need to interact with the inode after the ->mkdir completes and
they currently need to perform a lookup in the (rare) case that the
dentry is no longer hashed.

This lookup-after-mkdir requires that the directory remains locked to
avoid races.  Planned future patches to lock the dentry rather than the
directory will mean that this lookup cannot be performed atomically with
the mkdir.

To remove this barrier, this patch changes ->mkdir to return the
resulting dentry if it is different from the one passed in.
Possible returns are:
  NULL - the directory was created and no other dentry was used
  ERR_PTR() - an error occurred
  non-NULL - this other dentry was spliced in

This patch only changes file-systems to return "ERR_PTR(err)" instead of
"err" or equivalent transformations.  Subsequent patches will make
further changes to some file-systems to return a correct dentry.

Not all filesystems reliably result in a positive hashed dentry:

- NFS, cifs, hostfs will sometimes need to perform a lookup of
  the name to get inode information.  Races could result in this
  returning something different. Note that this lookup is
  non-atomic which is what we are trying to avoid.  Placing the
  lookup in filesystem code means it only happens when the filesystem
  has no other option.
- kernfs and tracefs leave the dentry negative and the ->revalidate
  operation ensures that lookup will be called to correctly populate
  the dentry.  This could be fixed but I don't think it is important
  to any of the users of vfs_mkdir() which look at the dentry.

The recommendation to use
    d_drop();d_splice_alias()
is ugly but fits with current practice.  A planned future patch will
change this.

Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: NeilBrown <neilb@suse.de>
Link: https://lore.kernel.org/r/20250227013949.536172-2-neilb@suse.de
Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-02-27 20:00:17 +01:00
Alex Williamson 62fb8adc43 mm: Provide address mask in struct follow_pfnmap_args
follow_pfnmap_start() walks the page table for a given address and
fills out the struct follow_pfnmap_args in pfnmap_args_setup().
The address mask of the page table level is already provided to this
latter function for calculating the pfn.  This address mask can also
be useful for the caller to determine the extent of the contiguous
mapping.

For example, vfio-pci now supports huge_fault for pfnmaps and is able
to insert pud and pmd mappings.  When we DMA map these pfnmaps, ex.
PCI MMIO BARs, we iterate follow_pfnmap_start() to get each pfn to test
for a contiguous pfn range.  Providing the mapping address mask allows
us to skip the extent of the mapping level.  Assuming a 1GB pud level
and 4KB page size, iterations are reduced by a factor of 256K.  In wall
clock time, mapping a 32GB PCI BAR is reduced from ~1s to <1ms.

Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: linux-mm@kvack.org
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mitchell Augustin <mitchell.augustin@canonical.com>
Tested-by: Mitchell Augustin <mitchell.augustin@canonical.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20250218222209.1382449-6-alex.williamson@redhat.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2025-02-27 11:55:54 -07:00
Ryan Roberts 02410ac72a mm: hugetlb: Add huge page size param to huge_ptep_get_and_clear()
In order to fix a bug, arm64 needs to be told the size of the huge page
for which the huge_pte is being cleared in huge_ptep_get_and_clear().
Provide for this by adding an `unsigned long sz` parameter to the
function. This follows the same pattern as huge_pte_clear() and
set_huge_pte_at().

This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, loongarch, mips,
parisc, powerpc, riscv, s390, sparc). The actual arm64 bug will be fixed
in a separate commit.

Cc: stable@vger.kernel.org
Fixes: 66b3923a1a ("arm64: hugetlb: add support for PTE contiguous bit")
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> # riscv
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com> # s390
Link: https://lore.kernel.org/r/20250226120656.2400136-2-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2025-02-27 17:40:57 +00:00
Alexei Starovoitov e8d78dbd01 mm, bpf: Use memcg in try_alloc_pages().
Unconditionally use __GFP_ACCOUNT in try_alloc_pages().
The caller is responsible to setup memcg correctly.
All BPF memory accounting is memcg based.

Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20250222024427.30294-6-alexei.starovoitov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-27 09:39:44 -08:00
Alexei Starovoitov 01d37228d3 memcg: Use trylock to access memcg stock_lock.
Teach memcg to operate under trylock conditions when spinning locks
cannot be used.

localtry_trylock might fail and this would lead to charge cache bypass
if the calling context doesn't allow spinning (gfpflags_allow_spinning).
In those cases charge the memcg counter directly and fail early if
that is not possible. This might cause a pre-mature charge failing
but it will allow an opportunistic charging that is safe from
try_alloc_pages path.

Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20250222024427.30294-5-alexei.starovoitov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-27 09:39:37 -08:00
Alexei Starovoitov 8c57b687e8 mm, bpf: Introduce free_pages_nolock()
Introduce free_pages_nolock() that can free pages without taking locks.
It relies on trylock and can be called from any context.
Since spin_trylock() cannot be used in PREEMPT_RT from hard IRQ or NMI
it uses lockless link list to stash the pages which will be freed
by subsequent free_pages() from good context.

Do not use llist unconditionally. BPF maps continuously
allocate/free, so we cannot unconditionally delay the freeing to
llist. When the memory becomes free make it available to the
kernel and BPF users right away if possible, and fallback to
llist as the last resort.

Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20250222024427.30294-4-alexei.starovoitov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-27 09:36:18 -08:00
Alexei Starovoitov 97769a53f1 mm, bpf: Introduce try_alloc_pages() for opportunistic page allocation
Tracing BPF programs execute from tracepoints and kprobes where
running context is unknown, but they need to request additional
memory. The prior workarounds were using pre-allocated memory and
BPF specific freelists to satisfy such allocation requests.
Instead, introduce gfpflags_allow_spinning() condition that signals
to the allocator that running context is unknown.
Then rely on percpu free list of pages to allocate a page.
try_alloc_pages() -> get_page_from_freelist() -> rmqueue() ->
rmqueue_pcplist() will spin_trylock to grab the page from percpu
free list. If it fails (due to re-entrancy or list being empty)
then rmqueue_bulk()/rmqueue_buddy() will attempt to
spin_trylock zone->lock and grab the page from there.
spin_trylock() is not safe in PREEMPT_RT when in NMI or in hard IRQ.
Bailout early in such case.

The support for gfpflags_allow_spinning() mode for free_page and memcg
comes in the next patches.

This is a first step towards supporting BPF requirements in SLUB
and getting rid of bpf_mem_alloc.
That goal was discussed at LSFMM: https://lwn.net/Articles/974138/

Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20250222024427.30294-3-alexei.starovoitov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-27 09:32:27 -08:00
Linus Torvalds 3d85d6c853 vfs-6.14-rc5.fixes
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZ72tGgAKCRCRxhvAZXjc
 ovLnAQCbSaNoTmAHB45Au/3klYUL2MKS0COotj9SD4braLcMuAEApO4Ec+n+D+ky
 dylGZoKNwSZCY2fJmMykN199+QISsww=
 =LqgC
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.14-rc5.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs fixes from Christian Brauner:

 - Use __readahead_folio() in fuse again to fix a UAF issue
   when using splice

 - Remove d_op->d_delete method from pidfs

 - Remove d_op->d_delete method from nsfs

 - Simplify iomap_dio_bio_iter()

 - Fix a UAF in ovl_dentry_update_reval

 - Fix a miscalulated file range for filemap_fdatawrite_range_kick()

 - Don't skip skip dirty page in folio_unmap_invalidate()

* tag 'vfs-6.14-rc5.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  iomap: Minor code simplification in iomap_dio_bio_iter()
  nsfs: remove d_op->d_delete
  pidfs: remove d_op->d_delete
  mm/truncate: don't skip dirty page in folio_unmap_invalidate()
  mm/filemap: fix miscalculated file range for filemap_fdatawrite_range_kick()
  fuse: don't truncate cached, mutated symlink
  ovl: fix UAF in ovl_dentry_update_reval by moving dput() in ovl_link_up
  fuse: revert back to __readahead_folio() for readahead
2025-02-25 09:13:13 -08:00
Jingbo Xu 9272899880
mm/truncate: don't skip dirty page in folio_unmap_invalidate()
... otherwise this is a behavior change for the previous callers of
invalidate_complete_folio2(), e.g. the page invalidation routine.

Fixes: 4a9e23159f ("mm/truncate: add folio_unmap_invalidate() helper")
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20250218120209.88093-3-jefflexu@linux.alibaba.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-02-21 14:09:47 +01:00
Jingbo Xu 8510edf191
mm/filemap: fix miscalculated file range for filemap_fdatawrite_range_kick()
iocb->ki_pos has been updated with the number of written bytes since
generic_perform_write().

Besides __filemap_fdatawrite_range() accepts the inclusive end of the
data range.

Fixes: 1d44575765 ("mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue")
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20250218120209.88093-2-jefflexu@linux.alibaba.com
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-02-21 14:09:47 +01:00
Mateusz Guzik d6ff4c8f65
fs: avoid mmap sem relocks when coredumping with many missing pages
Dumping processes with large allocated and mostly not-faulted areas is
very slow.

Borrowing a test case from Tavian Barnes:

int main(void) {
    char *mem = mmap(NULL, 1ULL << 40, PROT_READ | PROT_WRITE,
            MAP_ANONYMOUS | MAP_NORESERVE | MAP_PRIVATE, -1, 0);
    printf("%p %m\n", mem);
    if (mem != MAP_FAILED) {
            mem[0] = 1;
    }
    abort();
}

That's 1TB of almost completely not-populated area.

On my test box it takes 13-14 seconds to dump.

The profile shows:
-   99.89%     0.00%  a.out
     entry_SYSCALL_64_after_hwframe
     do_syscall_64
     syscall_exit_to_user_mode
     arch_do_signal_or_restart
   - get_signal
      - 99.89% do_coredump
         - 99.88% elf_core_dump
            - dump_user_range
               - 98.12% get_dump_page
                  - 64.19% __get_user_pages
                     - 40.92% gup_vma_lookup
                        - find_vma
                           - mt_find
                                4.21% __rcu_read_lock
                                1.33% __rcu_read_unlock
                     - 3.14% check_vma_flags
                          0.68% vma_is_secretmem
                       0.61% __cond_resched
                       0.60% vma_pgtable_walk_end
                       0.59% vma_pgtable_walk_begin
                       0.58% no_page_table
                  - 15.13% down_read_killable
                       0.69% __cond_resched
                    13.84% up_read
                 0.58% __cond_resched

Almost 29% of the time is spent relocking the mmap semaphore between
calls to get_dump_page() which find nothing.

Whacking that results in times of 10 seconds (down from 13-14).

While here make the thing killable.

The real problem is the page-sized iteration and the real fix would
patch it up instead. It is left as an exercise for the mm-familiar
reader.

Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20250119103205.2172432-1-mjguzik@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-02-21 10:25:32 +01:00
Alexei Starovoitov bd4319b6c2 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf bpf-6.14-rc4
Cross-merge bpf fixes after downstream PR (bpf-6.14-rc4).

Minor conflict:
  kernel/bpf/btf.c
Adjacent changes:
  kernel/bpf/arena.c
  kernel/bpf/btf.c
  kernel/bpf/syscall.c
  kernel/bpf/verifier.c
  mm/memory.c

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-20 18:13:57 -08:00
Jordan Rome f0b79944e6 mm: Add copy_remote_vm_str() for readng C strings from remote VM
Similar to `access_process_vm()` but specific to strings. Also chunks
reads by page and utilizes `strscpy()` for handling null termination.

The primary motivation for this change is to copy strings from
a non-current task/process in BPF. There is already a helper
`bpf_copy_from_user_task()`, which uses `access_process_vm()` but one to
handle strings would be very helpful.

Signed-off-by: Jordan Rome <linux@jordanrome.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://lore.kernel.org/bpf/20250213152125.1837400-1-linux@jordanrome.com
2025-02-19 16:57:16 -08:00
Nam Cao 53867760f5 mm/slab: Switch to use hrtimer_setup()
hrtimer_setup() takes the callback function pointer as argument and
initializes the timer completely.

Replace hrtimer_init() and the open coded initialization of
hrtimer::function with the new setup mechanism.

Patch was created by using Coccinelle.

Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/all/030065d66630068f788caf9df15756fad404e754.1738746821.git.namcao@linutronix.de
2025-02-18 10:32:32 +01:00
Brian Gerst 4b00c1160a percpu: Remove __per_cpu_load
__per_cpu_load is now always equal to __per_cpu_start.

Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250123190747.745588-15-brgerst@gmail.com
2025-02-18 10:16:00 +01:00
Waiman Long ac7af1f57a kasan: don't call find_vm_area() in a PREEMPT_RT kernel
The following bug report was found when running a PREEMPT_RT debug kernel.

 BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 140605, name: kunit_try_catch
 preempt_count: 1, expected: 0

 Call trace:
  rt_spin_lock+0x70/0x140
  find_vmap_area+0x84/0x168
  find_vm_area+0x1c/0x50
  print_address_description.constprop.0+0x2a0/0x320
  print_report+0x108/0x1f8
  kasan_report+0x90/0xc8

Since commit e30a0361b8 ("kasan: make report_lock a raw spinlock"),
report_lock was changed to raw_spinlock_t to fix another similar
PREEMPT_RT problem.  That alone isn't enough to cover other corner cases.

print_address_description() is always invoked under the report_lock.  The
context under this lock is always atomic even on PREEMPT_RT. 
find_vm_area() acquires vmap_node::busy.lock which is a spinlock_t,
becoming a sleeping lock on PREEMPT_RT and must not be acquired in atomic
context.

Don't invoke find_vm_area() on PREEMPT_RT and just print the address. 
Non-PREEMPT_RT builds remain unchanged.  Add a DEFINE_WAIT_OVERRIDE_MAP()
macro to tell lockdep that this lock nesting is allowed because the
PREEMPT_RT part (which is invalid) has been taken care of.  This macro was
first introduced in commit 0cce06ba85 ("debugobjects,locking: Annotate
debug_object_fill_pool() wait type violation").

Link: https://lkml.kernel.org/r/20250217204402.60533-1-longman@redhat.com
Fixes: e30a0361b8 ("kasan: make report_lock a raw spinlock")
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mariano Pache <npache@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:04 -08:00
Luiz Capitulino 6d7bc938ad mm: hugetlb: avoid fallback for specific node allocation of 1G pages
When using the HugeTLB kernel command-line to allocate 1G pages from a
specific node, such as:

   default_hugepagesz=1G hugepages=1:1

If node 1 happens to not have enough memory for the requested number of 1G
pages, the allocation falls back to other nodes.  A quick way to reproduce
this is by creating a KVM guest with a memory-less node and trying to
allocate 1 1G page from it.  Instead of failing, the allocation will
fallback to other nodes.

This defeats the purpose of node specific allocation.  Also, specific node
allocation for 2M pages don't have this behavior: the allocation will just
fail for the pages it can't satisfy.

This issue happens because HugeTLB calls memblock_alloc_try_nid_raw() for
1G boot-time allocation as this function falls back to other nodes if the
allocation can't be satisfied.  Use memblock_alloc_exact_nid_raw()
instead, which ensures that the allocation will only be satisfied from the
specified node.

Link: https://lkml.kernel.org/r/20250211034856.629371-1-luizcap@redhat.com
Fixes: b5389086ad ("hugetlbfs: extend the definition of hugepages parameter to support node allocation")
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Zhenguo Yao <yaozhenguo1@gmail.com>
Cc: Frank van der Linden <fvdl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:03 -08:00
Chen Ridong 99333229de memcg: avoid dead loop when setting memory.max
A softlockup issue was found with stress test:
 watchdog: BUG: soft lockup - CPU#27 stuck for 26s! [migration/27:181]
 CPU: 27 UID: 0 PID: 181 Comm: migration/27 6.14.0-rc2-next-20250210 #1
 Stopper: multi_cpu_stop <- stop_machine_from_inactive_cpu
 RIP: 0010:stop_machine_yield+0x2/0x10
 RSP: 0000:ff4a0dcecd19be48 EFLAGS: 00000246
 RAX: ffffffff89c0108f RBX: ff4a0dcec03afe44 RCX: 0000000000000000
 RDX: ff1cdaaf6eba5808 RSI: 0000000000000282 RDI: ff1cda80c1775a40
 RBP: 0000000000000001 R08: 00000011620096c6 R09: 7fffffffffffffff
 R10: 0000000000000001 R11: 0000000000000100 R12: ff1cda80c1775a40
 R13: 0000000000000000 R14: 0000000000000001 R15: ff4a0dcec03afe20
 FS:  0000000000000000(0000) GS:ff1cdaaf6eb80000(0000)
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000000 CR3: 00000025e2c2a001 CR4: 0000000000773ef0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 PKRU: 55555554
 Call Trace:
  multi_cpu_stop+0x8f/0x100
  cpu_stopper_thread+0x90/0x140
  smpboot_thread_fn+0xad/0x150
  kthread+0xc2/0x100
  ret_from_fork+0x2d/0x50

The stress test involves CPU hotplug operations and memory control group
(memcg) operations. The scenario can be described as follows:

 echo xx > memory.max 	cache_ap_online			oom_reaper
 (CPU23)						(CPU50)
 xx < usage		stop_machine_from_inactive_cpu
 for(;;)			// all active cpus
 trigger OOM		queue_stop_cpus_work
 // waiting oom_reaper
 			multi_cpu_stop(migration/xx)
 			// sync all active cpus ack
 			// waiting cpu23 ack
 			// CPU50 loops in multi_cpu_stop
 							waiting cpu50

Detailed explanation:
1. When the usage is larger than xx, an OOM may be triggered. If the
   process does not handle with ths kill signal immediately, it will loop
   in the memory_max_write.
2. When cache_ap_online is triggered, the multi_cpu_stop is queued to the
   active cpus. Within the multi_cpu_stop function,  it attempts to
   synchronize the CPU states. However, the CPU23 didn't acknowledge
   because it is stuck in a loop within the for(;;).
3. The oom_reaper process is blocked because CPU50 is in a loop, waiting
   for CPU23 to acknowledge the synchronization request.
4. Finally, it formed cyclic dependency and lead to softlockup and dead
   loop.

To fix this issue, add cond_resched() in the memory_max_write, so that it
will not block migration task.

Link: https://lkml.kernel.org/r/20250211081819.33307-1-chenridong@huaweicloud.com
Fixes: b6e6edcfa4 ("mm: memcontrol: reclaim and OOM kill when shrinking memory.max below usage")
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:03 -08:00
Qi Zheng f39edcf634 mm: pgtable: fix incorrect reclaim of non-empty PTE pages
In zap_pte_range(), if the pte lock was released midway, the pte entries
may be refilled with physical pages by another thread, which may cause a
non-empty PTE page to be reclaimed and eventually cause the system to
crash.

To fix it, fall back to the slow path in this case to recheck if all pte
entries are still none.

Link: https://lkml.kernel.org/r/20250211072625.89188-1-zhengqi.arch@bytedance.com
Fixes: 6375e95f38 ("mm: pgtable: reclaim empty PTE page in madvise(MADV_DONTNEED)")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reported-by: Christian Brauner <brauner@kernel.org>
Closes: https://lore.kernel.org/all/20250207-anbot-bankfilialen-acce9d79a2c7@brauner/
Reported-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Closes: https://lore.kernel.org/all/152296f3-5c81-4a94-97f3-004108fba7be@gmx.com/
Tested-by: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:03 -08:00
David Hildenbrand 41cddf83d8 mm/migrate_device: don't add folio to be freed to LRU in migrate_device_finalize()
If migration succeeded, we called
folio_migrate_flags()->mem_cgroup_migrate() to migrate the memcg from the
old to the new folio.  This will set memcg_data of the old folio to 0.

Similarly, if migration failed, memcg_data of the dst folio is left unset.

If we call folio_putback_lru() on such folios (memcg_data == 0), we will
add the folio to be freed to the LRU, making memcg code unhappy.  Running
the hmm selftests:

  # ./hmm-tests
  ...
  #  RUN           hmm.hmm_device_private.migrate ...
  [  102.078007][T14893] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x7ff27d200 pfn:0x13cc00
  [  102.079974][T14893] anon flags: 0x17ff00000020018(uptodate|dirty|swapbacked|node=0|zone=2|lastcpupid=0x7ff)
  [  102.082037][T14893] raw: 017ff00000020018 dead000000000100 dead000000000122 ffff8881353896c9
  [  102.083687][T14893] raw: 00000007ff27d200 0000000000000000 00000001ffffffff 0000000000000000
  [  102.085331][T14893] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled())
  [  102.087230][T14893] ------------[ cut here ]------------
  [  102.088279][T14893] WARNING: CPU: 0 PID: 14893 at ./include/linux/memcontrol.h:726 folio_lruvec_lock_irqsave+0x10e/0x170
  [  102.090478][T14893] Modules linked in:
  [  102.091244][T14893] CPU: 0 UID: 0 PID: 14893 Comm: hmm-tests Not tainted 6.13.0-09623-g6c216bc522fd #151
  [  102.093089][T14893] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
  [  102.094848][T14893] RIP: 0010:folio_lruvec_lock_irqsave+0x10e/0x170
  [  102.096104][T14893] Code: ...
  [  102.099908][T14893] RSP: 0018:ffffc900236c37b0 EFLAGS: 00010293
  [  102.101152][T14893] RAX: 0000000000000000 RBX: ffffea0004f30000 RCX: ffffffff8183f426
  [  102.102684][T14893] RDX: ffff8881063cb880 RSI: ffffffff81b8117f RDI: ffff8881063cb880
  [  102.104227][T14893] RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000000
  [  102.105757][T14893] R10: 0000000000000001 R11: 0000000000000002 R12: ffffc900236c37d8
  [  102.107296][T14893] R13: ffff888277a2bcb0 R14: 000000000000001f R15: 0000000000000000
  [  102.108830][T14893] FS:  00007ff27dbdd740(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000
  [  102.110643][T14893] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [  102.111924][T14893] CR2: 00007ff27d400000 CR3: 000000010866e000 CR4: 0000000000750ef0
  [  102.113478][T14893] PKRU: 55555554
  [  102.114172][T14893] Call Trace:
  [  102.114805][T14893]  <TASK>
  [  102.115397][T14893]  ? folio_lruvec_lock_irqsave+0x10e/0x170
  [  102.116547][T14893]  ? __warn.cold+0x110/0x210
  [  102.117461][T14893]  ? folio_lruvec_lock_irqsave+0x10e/0x170
  [  102.118667][T14893]  ? report_bug+0x1b9/0x320
  [  102.119571][T14893]  ? handle_bug+0x54/0x90
  [  102.120494][T14893]  ? exc_invalid_op+0x17/0x50
  [  102.121433][T14893]  ? asm_exc_invalid_op+0x1a/0x20
  [  102.122435][T14893]  ? __wake_up_klogd.part.0+0x76/0xd0
  [  102.123506][T14893]  ? dump_page+0x4f/0x60
  [  102.124352][T14893]  ? folio_lruvec_lock_irqsave+0x10e/0x170
  [  102.125500][T14893]  folio_batch_move_lru+0xd4/0x200
  [  102.126577][T14893]  ? __pfx_lru_add+0x10/0x10
  [  102.127505][T14893]  __folio_batch_add_and_move+0x391/0x720
  [  102.128633][T14893]  ? __pfx_lru_add+0x10/0x10
  [  102.129550][T14893]  folio_putback_lru+0x16/0x80
  [  102.130564][T14893]  migrate_device_finalize+0x9b/0x530
  [  102.131640][T14893]  dmirror_migrate_to_device.constprop.0+0x7c5/0xad0
  [  102.133047][T14893]  dmirror_fops_unlocked_ioctl+0x89b/0xc80

Likely, nothing else goes wrong: putting the last folio reference will
remove the folio from the LRU again.  So besides memcg complaining, adding
the folio to be freed to the LRU is just an unnecessary step.

The new flow resembles what we have in migrate_folio_move(): add the dst
to the lru, remove migration ptes, unlock and unref dst.

Link: https://lkml.kernel.org/r/20250210161317.717936-1-david@redhat.com
Fixes: 8763cb45ab ("mm/migrate: new memory migration helper for use with device memory")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:02 -08:00
Ricardo Cañuelo Navarro 2ede647a6f mm,madvise,hugetlb: check for 0-length range after end address adjustment
Add a sanity check to madvise_dontneed_free() to address a corner case in
madvise where a race condition causes the current vma being processed to
be backed by a different page size.

During a madvise(MADV_DONTNEED) call on a memory region registered with a
userfaultfd, there's a period of time where the process mm lock is
temporarily released in order to send a UFFD_EVENT_REMOVE and let
userspace handle the event.  During this time, the vma covering the
current address range may change due to an explicit mmap done concurrently
by another thread.

If, after that change, the memory region, which was originally backed by
4KB pages, is now backed by hugepages, the end address is rounded down to
a hugepage boundary to avoid data loss (see "Fixes" below).  This rounding
may cause the end address to be truncated to the same address as the
start.

Make this corner case follow the same semantics as in other similar cases
where the requested region has zero length (ie.  return 0).

This will make madvise_walk_vmas() continue to the next vma in the range
(this time holding the process mm lock) which, due to the prev pointer
becoming stale because of the vma change, will be the same hugepage-backed
vma that was just checked before.  The next time madvise_dontneed_free()
runs for this vma, if the start address isn't aligned to a hugepage
boundary, it'll return -EINVAL, which is also in line with the madvise
api.

From userspace perspective, madvise() will return EINVAL because the start
address isn't aligned according to the new vma alignment requirements
(hugepage), even though it was correctly page-aligned when the call was
issued.

Link: https://lkml.kernel.org/r/20250203075206.1452208-1-rcn@igalia.com
Fixes: 8ebe0a5eaa ("mm,madvise,hugetlb: fix unexpected data loss with MADV_DONTNEED on hugetlbfs")
Signed-off-by: Ricardo Cañuelo Navarro <rcn@igalia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Florent Revest <revest@google.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:01 -08:00
Hyeonggon Yoo 63895d20d6 mm/zswap: fix inconsistency when zswap_store_page() fails
Commit b7c0ccdfba ("mm: zswap: support large folios in zswap_store()")
skips charging any zswap entries when it failed to zswap the entire folio.

However, when some base pages are zswapped but it failed to zswap the
entire folio, the zswap operation is rolled back.  When freeing zswap
entries for those pages, zswap_entry_free() uncharges the zswap entries
that were not previously charged, causing zswap charging to become
inconsistent.

This inconsistency triggers two warnings with following steps:
  # On a machine with 64GiB of RAM and 36GiB of zswap
  $ stress-ng --bigheap 2 # wait until the OOM-killer kills stress-ng
  $ sudo reboot

  The two warnings are:
    in mm/memcontrol.c:163, function obj_cgroup_release():
      WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));

    in mm/page_counter.c:60, function page_counter_cancel():
      if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
	  new, nr_pages))

zswap_stored_pages also becomes inconsistent in the same way.

As suggested by Kanchana, increment zswap_stored_pages and charge zswap
entries within zswap_store_page() when it succeeds.  This way,
zswap_entry_free() will decrement the counter and uncharge the entries
when it failed to zswap the entire folio.

While this could potentially be optimized by batching objcg charging and
incrementing the counter, let's focus on fixing the bug this time and
leave the optimization for later after some evaluation.

After resolving the inconsistency, the warnings disappear.

[42.hyeyoo@gmail.com: refactor zswap_store_page()]
  Link: https://lkml.kernel.org/r/20250131082037.2426-1-42.hyeyoo@gmail.com
Link: https://lkml.kernel.org/r/20250129100844.2935-1-42.hyeyoo@gmail.com
Fixes: b7c0ccdfba ("mm: zswap: support large folios in zswap_store()")
Co-developed-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-17 22:40:01 -08:00
Andrea Righi 16d79f2a4f mm/numa: Introduce nearest_node_nodemask()
Introduce the new helper nearest_node_nodemask() to find the closest
node in a specified nodemask from a given starting node.

Returns MAX_NUMNODES if no node is found.

Suggested-by: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2025-02-16 06:52:19 -10:00
Kaixiong Yu 97f5420ef1 mm: nommu: move sysctl to mm/nommu.c
The sysctl_nr_trim_pages belongs to nommu.c, move it to mm/nommu.c
from /kernel/sysctl.c. And remove the useless extern variable declaration
from include/linux/mm.h

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:04 +01:00
Kaixiong Yu aacdde7202 mm: mmap: move sysctl to mm/mmap.c
This moves all mmap related sysctls to mm/mmap.c, as part of the
kernel/sysctl.c cleaning, also move the variable declaration from
kernel/sysctl.c into mm/mmap.c.

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:04 +01:00
Kaixiong Yu b1e8d7134e mm: util: move sysctls to mm/util.c
This moves all util related sysctls to mm/util.c, as part of the
kernel/sysctl.c cleaning, also removes redundant external
variable declarations and function declarations.

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:04 +01:00
Kaixiong Yu 538d5baacd mm: vmscan: move vmscan sysctls to mm/vmscan.c
This moves vm_swappiness and zone_reclaim_mode to mm/vmscan.c,
as part of the kernel/sysctl.c cleaning, also moves some external
variable declarations and function declarations from include/linux/swap.h
into mm/internal.h.

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:04 +01:00
Kaixiong Yu 7e05627ee1 mm: swap: move sysctl to mm/swap.c
The page-cluster belongs to mm/swap.c, move it to mm/swap.c .
Removes the redundant external variable declaration and unneeded
include(linux/swap.h).

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:04 +01:00
Kaixiong Yu 73aa354af2 mm: filemap: move sysctl to mm/filemap.c
This moves the filemap related sysctl to mm/filemap.c, and
removes the redundant external variable declaration.

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:03 +01:00
Kaixiong Yu b8974b8960 mm: vmstat: move sysctls to mm/vmstat.c
This moves all vmstat related sysctls to its own file, removes useless
extern variable declarations, and do some related clean-ups. To avoid
compiler warnings when CONFIG_PROC_FS is not defined, add the macro
definition CONFIG_PROC_FS ahead CONFIG_NUMA in vmstat.c.

Signed-off-by: Kaixiong Yu <yukaixiong@huawei.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-02-07 16:53:03 +01:00
Vlastimil Babka c9f8f1242a slab: don't batch kvfree_rcu() with SLUB_TINY
kvfree_rcu() is batched for better performance except on TINY_RCU, which
is a simple implementation for small UP systems. Similarly SLUB_TINY is
an option intended for small systems, whether or not used together with
TINY_RCU. In case SLUB_TINY is used with !TINY_RCU, it makes arguably
sense to not do the batching and limit the memory footprint. It's also
suboptimal to have RCU-specific #ifdefs in slab code.

With that, add CONFIG_KVFREE_RCU_BATCHED to determine whether batching
kvfree_rcu() implementation is used. It is not set by a user prompt, but
enabled by default and disabled in case TINY_RCU or SLUB_TINY are
enabled.

Use the new config for #ifdef's in slab code and extend their scope to
cover all code used by the batched kvfree_rcu(). For example there's no
need to perform kvfree_rcu_init() if the batching is disabled.

Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-02-05 10:45:35 +01:00
Vlastimil Babka 49d5377b38 rcu, slab: use a regular callback function for kvfree_rcu
RCU has been special-casing callback function pointers that are integers
lower than 4096 as offsets of rcu_head for kvfree() instead. The tree
RCU implementation no longer does that as the batched kvfree_rcu() is
not a simple call_rcu(). The tiny RCU still does, and the plan is also
to make tree RCU use call_rcu() for SLUB_TINY configurations.

Instead of teaching tree RCU again to special case the offsets, let's
remove the special casing completely. Since there's no SLOB anymore, it
is possible to create a callback function that can take a pointer to a
middle of slab object with unknown offset and determine the object's
pointer before freeing it, so implement that as kvfree_rcu_cb().

Large kmalloc and vmalloc allocations are handled simply by aligning
down to page size. For that we retain the requirement that the offset is
smaller than 4096. But we can remove __is_kvfree_rcu_offset() completely
and instead just opencode the condition in the BUILD_BUG_ON() check.

Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-02-05 10:45:29 +01:00
Vlastimil Babka b14ff274e8 slab, rcu: move TINY_RCU variant of kvfree_rcu() to SLAB
Following the move of TREE_RCU implementation, let's move also the
TINY_RCU one for consistency and subsequent refactoring.

For simplicity, remove the separate inline __kvfree_call_rcu() as
TINY_RCU is not meant for high-performance hardware anyway.

Declare kvfree_call_rcu() in rcupdate.h to avoid header dependency
issues.

Also move the kvfree_rcu_barrier() declaration to slab.h

Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-02-05 10:45:12 +01:00
Mike Rapoport (Microsoft) 05e555b817 execmem: add API for temporal remapping as RW and restoring ROX afterwards
Using a writable copy for ROX memory is cumbersome and error prone.

Add API that allow temporarily remapping of ranges in the ROX cache as
writable  and then restoring their read-only-execute permissions.

This API will be later used in modules code and will allow removing nasty
games with writable copy in alternatives patching on x86.

The restoring of the ROX permissions relies on the ability of architecture
to reconstruct large pages in its set_memory_rox() method.

Signed-off-by: "Mike Rapoport (Microsoft)" <rppt@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250126074733.1384926-6-rppt@kernel.org
2025-02-03 11:46:02 +01:00
Mike Rapoport (Microsoft) 925f426451 execmem: don't remove ROX cache from the direct map
The memory allocated for the ROX cache was removed from the direct map to
reduce amount of direct map updates, however this cannot be tolerated by
/proc/kcore that accesses module memory using vread_iter() and the latter
does vmalloc_to_page() and copy_page_to_iter_nofault().

Instead of removing ROX cache memory from the direct map and mapping it as
ROX in vmalloc space, simply call set_memory_rox() that will take care of
proper permissions on both vmalloc and in the direct map.

Signed-off-by: "Mike Rapoport (Microsoft)" <rppt@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250126074733.1384926-5-rppt@kernel.org
2025-02-03 11:46:01 +01:00
Kirill A. Shutemov 41d88484c7 x86/mm/pat: restore large ROX pages after fragmentation
Change of attributes of the pages may lead to fragmentation of direct
mapping over time and performance degradation when these pages contain
executable code.

With current code it's one way road: kernel tries to avoid splitting
large pages, but it doesn't restore them back even if page attributes
got compatible again.

Any change to the mapping may potentially allow to restore large page.

Add a hook to cpa_flush() path that will check if the pages in the range
that were just touched can be mapped at PMD level. If the collapse at the
PMD level succeeded, also attempt to collapse PUD level.

The collapse logic runs only when a set_memory_ method explicitly sets
CPA_COLLAPSE flag, for now this is only enabled in set_memory_rox().

CPUs don't like[1] to have to have TLB entries of different size for the
same memory, but looks like it's okay as long as these entries have
matching attributes[2]. Therefore it's critical to flush TLB before any
following changes to the mapping.

Note that we already allow for multiple TLB entries of different sizes
for the same memory now in split_large_page() path. It's not a new
situation.

set_memory_4k() provides a way to use 4k pages on purpose. Kernel must
not remap such pages as large. Re-use one of software PTE bits to
indicate such pages.

[1] See Erratum 383 of AMD Family 10h Processors
[2] https://lore.kernel.org/linux-mm/1da1b025-cabc-6f04-bde5-e50830d1ecf0@amd.com/

[rppt@kernel.org:
 * s/restore/collapse/
 * update formatting per peterz
 * use 'struct ptdesc' instead of 'struct page' for list of page tables to
   be freed
 * try to collapse PMD first and if it succeeds move on to PUD as peterz
   suggested
 * flush TLB twice: for changes done in the original CPA call and after
   collapsing of large pages
 * update commit message
]

Signed-off-by: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Co-developed-by: "Mike Rapoport (Microsoft)" <rppt@kernel.org>
Signed-off-by: "Mike Rapoport (Microsoft)" <rppt@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250126074733.1384926-4-rppt@kernel.org
2025-02-03 11:46:01 +01:00