mirror of https://github.com/torvalds/linux.git
94 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
eb0ece1602 |
- The 6 patch series "Enable strict percpu address space checks" from
Uros Bizjak uses x86 named address space qualifiers to provide compile-time checking of percpu area accesses. This has caused a small amount of fallout - two or three issues were reported. In all cases the calling code was founf to be incorrect. - The 4 patch series "Some cleanup for memcg" from Chen Ridong implements some relatively monir cleanups for the memcontrol code. - The 17 patch series "mm: fixes for device-exclusive entries (hmm)" from David Hildenbrand fixes a boatload of issues which David found then using device-exclusive PTE entries when THP is enabled. More work is needed, but this makes thins better - our own HMM selftests now succeed. - The 2 patch series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed remove the z3fold and zbud implementations. They have been deprecated for half a year and nobody has complained. - The 5 patch series "mm: further simplify VMA merge operation" from Lorenzo Stoakes implements numerous simplifications in this area. No runtime effects are anticipated. - The 4 patch series "mm/madvise: remove redundant mmap_lock operations from process_madvise()" from SeongJae Park rationalizes the locking in the madvise() implementation. Performance gains of 20-25% were observed in one MADV_DONTNEED microbenchmark. - The 12 patch series "Tiny cleanup and improvements about SWAP code" from Baoquan He contains a number of touchups to issues which Baoquan noticed when working on the swap code. - The 2 patch series "mm: kmemleak: Usability improvements" from Catalin Marinas implements a couple of improvements to the kmemleak user-visible output. - The 2 patch series "mm/damon/paddr: fix large folios access and schemes handling" from Usama Arif provides a couple of fixes for DAMON's handling of large folios. - The 3 patch series "mm/damon/core: fix wrong and/or useless damos_walk() behaviors" from SeongJae Park fixes a few issues with the accuracy of kdamond's walking of DAMON regions. - The 3 patch series "expose mapping wrprotect, fix fb_defio use" from Lorenzo Stoakes changes the interaction between framebuffer deferred-io and core MM. No functional changes are anticipated - this is preparatory work for the future removal of page structure fields. - The 4 patch series "mm/damon: add support for hugepage_size DAMOS filter" from Usama Arif adds a DAMOS filter which permits the filtering by huge page sizes. - The 4 patch series "mm: permit guard regions for file-backed/shmem mappings" from Lorenzo Stoakes extends the guard region feature from its present "anon mappings only" state. The feature now covers shmem and file-backed mappings. - The 4 patch series "mm: batched unmap lazyfree large folios during reclamation" from Barry Song cleans up and speeds up the unmapping for pte-mapped large folios. - The 18 patch series "reimplement per-vma lock as a refcount" from Suren Baghdasaryan puts the vm_lock back into the vma. Our reasons for pulling it out were largely bogus and that change made the code more messy. This patchset provides small (0-10%) improvements on one microbenchmark. - The 5 patch series "Docs/mm/damon: misc DAMOS filters documentation fixes and improves" from SeongJae Park does some maintenance work on the DAMON docs. - The 27 patch series "hugetlb/CMA improvements for large systems" from Frank van der Linden addresses a pile of issues which have been observed when using CMA on large machines. - The 2 patch series "mm/damon: introduce DAMOS filter type for unmapped pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the page's mapped/unmapped status. - The 19 patch series "zsmalloc/zram: there be preemption" from Sergey Senozhatsky teaches zram to run its compression and decompression operations preemptibly. - The 12 patch series "selftests/mm: Some cleanups from trying to run them" from Brendan Jackman fixes a pile of unrelated issues which Brendan encountered while runnimg our selftests. - The 2 patch series "fs/proc/task_mmu: add guard region bit to pagemap" from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to determine whether a particular page is a guard page. - The 7 patch series "mm, swap: remove swap slot cache" from Kairui Song removes the swap slot cache from the allocation path - it simply wasn't being effective. - The 5 patch series "mm: cleanups for device-exclusive entries (hmm)" from David Hildenbrand implements a number of unrelated cleanups in this code. - The 5 patch series "mm: Rework generic PTDUMP configs" from Anshuman Khandual implements a number of preparatoty cleanups to the GENERIC_PTDUMP Kconfig logic. - The 8 patch series "mm/damon: auto-tune aggregation interval" from SeongJae Park implements a feedback-driven automatic tuning feature for DAMON's aggregation interval tuning. - The 5 patch series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in powerpc, sparc and x86 lazy MMU implementations. Ryan did this in preparation for implementing lazy mmu mode for arm64 to optimize vmalloc. - The 2 patch series "mm/page_alloc: Some clarifications for migratetype fallback" from Brendan Jackman reworks some commentary to make the code easier to follow. - The 3 patch series "page_counter cleanup and size reduction" from Shakeel Butt cleans up the page_counter code and fixes a size increase which we accidentally added late last year. - The 3 patch series "Add a command line option that enables control of how many threads should be used to allocate huge pages" from Thomas Prescher does that. It allows the careful operator to significantly reduce boot time by tuning the parallalization of huge page initialization. - The 3 patch series "Fix calculations in trace_balance_dirty_pages() for cgwb" from Tang Yizhou fixes the tracing output from the dirty page balancing code. - The 9 patch series "mm/damon: make allow filters after reject filters useful and intuitive" from SeongJae Park improves the handling of allow and reject filters. Behaviour is made more consistent and the documention is updated accordingly. - The 5 patch series "Switch zswap to object read/write APIs" from Yosry Ahmed updates zswap to the new object read/write APIs and thus permits the removal of some legacy code from zpool and zsmalloc. - The 6 patch series "Some trivial cleanups for shmem" from Baolin Wang does as it claims. - The 20 patch series "fs/dax: Fix ZONE_DEVICE page reference counts" from Alistair Popple regularizes the weird ZONE_DEVICE page refcount handling in DAX, permittig the removal of a number of special-case checks. - The 4 patch series "refactor mremap and fix bug" from Lorenzo Stoakes is a preparatoty refactoring and cleanup of the mremap() code. - The 20 patch series "mm: MM owner tracking for large folios (!hugetlb) + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in which we determine whether a large folio is known to be mapped exclusively into a single MM. - The 8 patch series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers" from SeongJae Park adds a couple of new sysfs directories to ease the management of DAMON/DAMOS filters. - The 13 patch series "arch, mm: reduce code duplication in mem_init()" from Mike Rapoport consolidates many per-arch implementations of mem_init() into code generic code, where that is practical. - The 13 patch series "mm/damon/sysfs: commit parameters online via damon_call()" from SeongJae Park continues the cleaning up of sysfs access to DAMON internal data. - The 3 patch series "mm: page_ext: Introduce new iteration API" from Luiz Capitulino reworks the page_ext initialization to fix a boot-time crash which was observed with an unusual combination of compile and cmdline options. - The 8 patch series "Buddy allocator like (or non-uniform) folio split" from Zi Yan reworks the code to split a folio into smaller folios. The main benefit is lessened memory consumption: fewer post-split folios are generated. - The 2 patch series "Minimize xa_node allocation during xarry split" from Zi Yan reduces the number of xarray xa_nodes which are generated during an xarray split. - The 2 patch series "drivers/base/memory: Two cleanups" from Gavin Shan performs some maintenance work on the drivers/base/memory code. - The 3 patch series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages" from Martin Liu adds some more tracepoints to the page allocator code. - The 4 patch series "mm/madvise: cleanup requests validations and classifications" from SeongJae Park cleans up some warts which SeongJae observed during his earlier madvise work. - The 3 patch series "mm/hwpoison: Fix regressions in memory failure handling" from Shuai Xue addresses two quite serious regressions which Shuai has observed in the memory-failure implementation. - The 5 patch series "mm: reliable huge page allocator" from Johannes Weiner makes huge page allocations cheaper and more reliable by reducing fragmentation. - The 5 patch series "Minor memcg cleanups & prep for memdescs" from Matthew Wilcox is preparatory work for the future implementation of memdescs. - The 4 patch series "track memory used by balloon drivers" from Nico Pache introduces a way to track memory used by our various balloon drivers. - The 2 patch series "mm/damon: introduce DAMOS filter type for active pages" from Nhat Pham permits users to filter for active/inactive pages, separately for file and anon pages. - The 2 patch series "Adding Proactive Memory Reclaim Statistics" from Hao Jia separates the proactive reclaim statistics from the direct reclaim statistics. - The 2 patch series "mm/vmscan: don't try to reclaim hwpoison folio" from Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim code. -----BEGIN PGP SIGNATURE----- iHQEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ+nZaAAKCRDdBJ7gKXxA jsOWAPiP4r7CJHMZRK4eyJOkvS1a1r+TsIarrFZtjwvf/GIfAQCEG+JDxVfUaUSF Ee93qSSLR1BkNdDw+931Pu0mXfbnBw== =Pn2K -----END PGP SIGNATURE----- Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "Enable strict percpu address space checks" from Uros Bizjak uses x86 named address space qualifiers to provide compile-time checking of percpu area accesses. This has caused a small amount of fallout - two or three issues were reported. In all cases the calling code was found to be incorrect. - The series "Some cleanup for memcg" from Chen Ridong implements some relatively monir cleanups for the memcontrol code. - The series "mm: fixes for device-exclusive entries (hmm)" from David Hildenbrand fixes a boatload of issues which David found then using device-exclusive PTE entries when THP is enabled. More work is needed, but this makes thins better - our own HMM selftests now succeed. - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed remove the z3fold and zbud implementations. They have been deprecated for half a year and nobody has complained. - The series "mm: further simplify VMA merge operation" from Lorenzo Stoakes implements numerous simplifications in this area. No runtime effects are anticipated. - The series "mm/madvise: remove redundant mmap_lock operations from process_madvise()" from SeongJae Park rationalizes the locking in the madvise() implementation. Performance gains of 20-25% were observed in one MADV_DONTNEED microbenchmark. - The series "Tiny cleanup and improvements about SWAP code" from Baoquan He contains a number of touchups to issues which Baoquan noticed when working on the swap code. - The series "mm: kmemleak: Usability improvements" from Catalin Marinas implements a couple of improvements to the kmemleak user-visible output. - The series "mm/damon/paddr: fix large folios access and schemes handling" from Usama Arif provides a couple of fixes for DAMON's handling of large folios. - The series "mm/damon/core: fix wrong and/or useless damos_walk() behaviors" from SeongJae Park fixes a few issues with the accuracy of kdamond's walking of DAMON regions. - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo Stoakes changes the interaction between framebuffer deferred-io and core MM. No functional changes are anticipated - this is preparatory work for the future removal of page structure fields. - The series "mm/damon: add support for hugepage_size DAMOS filter" from Usama Arif adds a DAMOS filter which permits the filtering by huge page sizes. - The series "mm: permit guard regions for file-backed/shmem mappings" from Lorenzo Stoakes extends the guard region feature from its present "anon mappings only" state. The feature now covers shmem and file-backed mappings. - The series "mm: batched unmap lazyfree large folios during reclamation" from Barry Song cleans up and speeds up the unmapping for pte-mapped large folios. - The series "reimplement per-vma lock as a refcount" from Suren Baghdasaryan puts the vm_lock back into the vma. Our reasons for pulling it out were largely bogus and that change made the code more messy. This patchset provides small (0-10%) improvements on one microbenchmark. - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and improves" from SeongJae Park does some maintenance work on the DAMON docs. - The series "hugetlb/CMA improvements for large systems" from Frank van der Linden addresses a pile of issues which have been observed when using CMA on large machines. - The series "mm/damon: introduce DAMOS filter type for unmapped pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the page's mapped/unmapped status. - The series "zsmalloc/zram: there be preemption" from Sergey Senozhatsky teaches zram to run its compression and decompression operations preemptibly. - The series "selftests/mm: Some cleanups from trying to run them" from Brendan Jackman fixes a pile of unrelated issues which Brendan encountered while runnimg our selftests. - The series "fs/proc/task_mmu: add guard region bit to pagemap" from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to determine whether a particular page is a guard page. - The series "mm, swap: remove swap slot cache" from Kairui Song removes the swap slot cache from the allocation path - it simply wasn't being effective. - The series "mm: cleanups for device-exclusive entries (hmm)" from David Hildenbrand implements a number of unrelated cleanups in this code. - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual implements a number of preparatoty cleanups to the GENERIC_PTDUMP Kconfig logic. - The series "mm/damon: auto-tune aggregation interval" from SeongJae Park implements a feedback-driven automatic tuning feature for DAMON's aggregation interval tuning. - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in powerpc, sparc and x86 lazy MMU implementations. Ryan did this in preparation for implementing lazy mmu mode for arm64 to optimize vmalloc. - The series "mm/page_alloc: Some clarifications for migratetype fallback" from Brendan Jackman reworks some commentary to make the code easier to follow. - The series "page_counter cleanup and size reduction" from Shakeel Butt cleans up the page_counter code and fixes a size increase which we accidentally added late last year. - The series "Add a command line option that enables control of how many threads should be used to allocate huge pages" from Thomas Prescher does that. It allows the careful operator to significantly reduce boot time by tuning the parallalization of huge page initialization. - The series "Fix calculations in trace_balance_dirty_pages() for cgwb" from Tang Yizhou fixes the tracing output from the dirty page balancing code. - The series "mm/damon: make allow filters after reject filters useful and intuitive" from SeongJae Park improves the handling of allow and reject filters. Behaviour is made more consistent and the documention is updated accordingly. - The series "Switch zswap to object read/write APIs" from Yosry Ahmed updates zswap to the new object read/write APIs and thus permits the removal of some legacy code from zpool and zsmalloc. - The series "Some trivial cleanups for shmem" from Baolin Wang does as it claims. - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from Alistair Popple regularizes the weird ZONE_DEVICE page refcount handling in DAX, permittig the removal of a number of special-case checks. - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a preparatoty refactoring and cleanup of the mremap() code. - The series "mm: MM owner tracking for large folios (!hugetlb) + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in which we determine whether a large folio is known to be mapped exclusively into a single MM. - The series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers" from SeongJae Park adds a couple of new sysfs directories to ease the management of DAMON/DAMOS filters. - The series "arch, mm: reduce code duplication in mem_init()" from Mike Rapoport consolidates many per-arch implementations of mem_init() into code generic code, where that is practical. - The series "mm/damon/sysfs: commit parameters online via damon_call()" from SeongJae Park continues the cleaning up of sysfs access to DAMON internal data. - The series "mm: page_ext: Introduce new iteration API" from Luiz Capitulino reworks the page_ext initialization to fix a boot-time crash which was observed with an unusual combination of compile and cmdline options. - The series "Buddy allocator like (or non-uniform) folio split" from Zi Yan reworks the code to split a folio into smaller folios. The main benefit is lessened memory consumption: fewer post-split folios are generated. - The series "Minimize xa_node allocation during xarry split" from Zi Yan reduces the number of xarray xa_nodes which are generated during an xarray split. - The series "drivers/base/memory: Two cleanups" from Gavin Shan performs some maintenance work on the drivers/base/memory code. - The series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages" from Martin Liu adds some more tracepoints to the page allocator code. - The series "mm/madvise: cleanup requests validations and classifications" from SeongJae Park cleans up some warts which SeongJae observed during his earlier madvise work. - The series "mm/hwpoison: Fix regressions in memory failure handling" from Shuai Xue addresses two quite serious regressions which Shuai has observed in the memory-failure implementation. - The series "mm: reliable huge page allocator" from Johannes Weiner makes huge page allocations cheaper and more reliable by reducing fragmentation. - The series "Minor memcg cleanups & prep for memdescs" from Matthew Wilcox is preparatory work for the future implementation of memdescs. - The series "track memory used by balloon drivers" from Nico Pache introduces a way to track memory used by our various balloon drivers. - The series "mm/damon: introduce DAMOS filter type for active pages" from Nhat Pham permits users to filter for active/inactive pages, separately for file and anon pages. - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia separates the proactive reclaim statistics from the direct reclaim statistics. - The series "mm/vmscan: don't try to reclaim hwpoison folio" from Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim code. * tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits) mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex() x86/mm: restore early initialization of high_memory for 32-bits mm/vmscan: don't try to reclaim hwpoison folio mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper cgroup: docs: add pswpin and pswpout items in cgroup v2 doc mm: vmscan: split proactive reclaim statistics from direct reclaim statistics selftests/mm: speed up split_huge_page_test selftests/mm: uffd-unit-tests support for hugepages > 2M docs/mm/damon/design: document active DAMOS filter type mm/damon: implement a new DAMOS filter type for active pages fs/dax: don't disassociate zero page entries MM documentation: add "Unaccepted" meminfo entry selftests/mm: add commentary about 9pfs bugs fork: use __vmalloc_node() for stack allocation docs/mm: Physical Memory: Populate the "Zones" section xen: balloon: update the NR_BALLOON_PAGES state hv_balloon: update the NR_BALLOON_PAGES state balloon_compaction: update the NR_BALLOON_PAGES state meminfo: add a per node counter for balloon drivers mm: remove references to folio in __memcg_kmem_uncharge_page() ... |
|
|
|
2d09a9449e |
arm64 updates for 6.15:
Perf and PMUs:
- Support for the "Rainier" CPU PMU from Arm
- Preparatory driver changes and cleanups that pave the way for BRBE
support
- Support for partial virtualisation of the Apple-M1 PMU
- Support for the second event filter in Arm CSPMU designs
- Minor fixes and cleanups (CMN and DWC PMUs)
- Enable EL2 requirements for FEAT_PMUv3p9
Power, CPU topology:
- Support for AMUv1-based average CPU frequency
- Run-time SMT control wired up for arm64 (CONFIG_HOTPLUG_SMT). It adds
a generic topology_is_primary_thread() function overridden by x86 and
powerpc
New(ish) features:
- MOPS (memcpy/memset) support for the uaccess routines
Security/confidential compute:
- Fix the DMA address for devices used in Realms with Arm CCA. The
CCA architecture uses the address bit to differentiate between shared
and private addresses
- Spectre-BHB: assume CPUs Linux doesn't know about vulnerable by
default
Memory management clean-ups:
- Drop the P*D_TABLE_BIT definition in preparation for 128-bit PTEs
- Some minor page table accessor clean-ups
- PIE/POE (permission indirection/overlay) helpers clean-up
Kselftests:
- MTE: skip hugetlb tests if MTE is not supported on such mappings and
user correct naming for sync/async tag checking modes
Miscellaneous:
- Add a PKEY_UNRESTRICTED definition as 0 to uapi (toolchain people
request)
- Sysreg updates for new register fields
- CPU type info for some Qualcomm Kryo cores
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmfjB2QACgkQa9axLQDI
XvGrfg//W3Bx9+jw1G/XHHEQqGEVFmvltvxZUkvgV0Qki0rPSMnappJhZRL9n0Nm
V6PvGd2KoKHZuL3g5ViZb3cs2R9BiD2JB6PncwBKuxumHGh3vz3kk1JMkDVfWdHv
qAceOckFJD9rXjPZn+PDsfYiEi2i3RRWIP5VglZ14ue8j3prHQ6DJXLUQF2GYvzE
/bgLSq44wp5N59ddy23+qH9rxrHzz3bgpbVv/F56W/LErvE873mRmyFwiuGJm+M0
Pn8ra572rI6a4sgSwrMTeNPBU+F9o5AbqwauVhkz428RdMvgfEuW6qHUBnGWJDmt
HotXmu+4Eb2KJks/iQkDo4OTJ38yUqvvZZJtP171ms3E4yqESSJngWP6O2A6LF+y
xhe0sESF/Ew6jLhM6/hvOmBcE2AyB14JE3ymqLkXbWub4NXddBn2AF1WXFjF4CBw
F8KSUhNLekrCYKv1k9M3nhvkcpoS9FkTF/TI+zEg546alI/GLPih6uDRkgMAODh1
RDJYixHsf2NDDRQbfwvt9Xua/KKpDF6qNkHLA4OiqqVUwh1hkas24Lrnp8vmce4o
wIpWCLqYWey8Rl3XWuWgWz2Xu58fHH4Dl2k72Z8I0pwp3abCDa9xEj79G0Svk7Si
Q+FCYrNlpKee1RXBC+1MUD/Gl5r/28dEUFkAzPD80F7AgafXPd0=
=Kc9c
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Nothing major this time around.
Apart from the usual perf/PMU updates, some page table cleanups, the
notable features are average CPU frequency based on the AMUv1
counters, CONFIG_HOTPLUG_SMT and MOPS instructions (memcpy/memset) in
the uaccess routines.
Perf and PMUs:
- Support for the 'Rainier' CPU PMU from Arm
- Preparatory driver changes and cleanups that pave the way for BRBE
support
- Support for partial virtualisation of the Apple-M1 PMU
- Support for the second event filter in Arm CSPMU designs
- Minor fixes and cleanups (CMN and DWC PMUs)
- Enable EL2 requirements for FEAT_PMUv3p9
Power, CPU topology:
- Support for AMUv1-based average CPU frequency
- Run-time SMT control wired up for arm64 (CONFIG_HOTPLUG_SMT). It
adds a generic topology_is_primary_thread() function overridden by
x86 and powerpc
New(ish) features:
- MOPS (memcpy/memset) support for the uaccess routines
Security/confidential compute:
- Fix the DMA address for devices used in Realms with Arm CCA. The
CCA architecture uses the address bit to differentiate between
shared and private addresses
- Spectre-BHB: assume CPUs Linux doesn't know about vulnerable by
default
Memory management clean-ups:
- Drop the P*D_TABLE_BIT definition in preparation for 128-bit PTEs
- Some minor page table accessor clean-ups
- PIE/POE (permission indirection/overlay) helpers clean-up
Kselftests:
- MTE: skip hugetlb tests if MTE is not supported on such mappings
and user correct naming for sync/async tag checking modes
Miscellaneous:
- Add a PKEY_UNRESTRICTED definition as 0 to uapi (toolchain people
request)
- Sysreg updates for new register fields
- CPU type info for some Qualcomm Kryo cores"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
arm64: mm: Don't use %pK through printk
perf/arm_cspmu: Fix missing io.h include
arm64: errata: Add newer ARM cores to the spectre_bhb_loop_affected() lists
arm64: cputype: Add MIDR_CORTEX_A76AE
arm64: errata: Add KRYO 2XX/3XX/4XX silver cores to Spectre BHB safe list
arm64: errata: Assume that unknown CPUs _are_ vulnerable to Spectre BHB
arm64: errata: Add QCOM_KRYO_4XX_GOLD to the spectre_bhb_k24_list
arm64/sysreg: Enforce whole word match for open/close tokens
arm64/sysreg: Fix unbalanced closing block
arm64: Kconfig: Enable HOTPLUG_SMT
arm64: topology: Support SMT control on ACPI based system
arch_topology: Support SMT control for OF based system
cpu/SMT: Provide a default topology_is_primary_thread()
arm64/mm: Define PTDESC_ORDER
perf/arm_cspmu: Add PMEVFILT2R support
perf/arm_cspmu: Generalise event filtering
perf/arm_cspmu: Move register definitons to header
arm64/kernel: Always use level 2 or higher for early mappings
arm64/mm: Drop PXD_TABLE_BIT
arm64/mm: Check pmd_table() in pmd_trans_huge()
...
|
|
|
|
0f40464674 |
Updates for interrupt chip drivers:
- Support for hard indices on RISC-V. The hart index identifies a hart
(core) within a specific interrupt domain in RISC-V's Priviledged
Architecture.
- Rework of the RISC-V MSI driver.
This moves the driver over to the generic MSI library and solves the
affinity problem of unmaskable PCI/MSI controllers. Unmaskable PCI/MSI
controllers are prone to lose interrupts when the MSI message is
updated to change the affinity because the message write consists of
three 32-bit subsequent writes, which update address and data. As these
writes are non-atomic versus the device raising an interrupt, the
device can observe a half written update and issue an interrupt on the
wrong vector. This is mitiated by a carefully orchestrated step by step
update and the observation of an eventually pending interrupt on the
CPU which issues the update. The algorithm follows the well established
method of the X86 MSI driver.
- A new driver for the RISC-V Sophgo SG2042 MSI controller
- Overhaul of the Renesas RZQ2L driver.
Simplification of the probe function by using devm_*() mechanisms,
which avoid the endless list of error prone gotos in the failure paths.
- Expand the Renesas RZV2H driver to support RZ/G3E SoCs
- A workaround for Rockchip 3568002 erratum in the GIC-V3 driver to
ensure that the addressing is limited to the lower 32-bit of the
physical address space.
- Add support for the Allwinner AS23 NMI controller
- Expand the IMX irqsteer driver to handle up to 960 input interrupts
- The usual small updates, cleanups and device tree changes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmff454THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZqoD/4kdHzbxfLpf7vC3NnG8NWwTq5FpbSx
6grQC9hWNMAs4n2IFjJRFLrjeX3AcdAQXL/BWuM0LfW9tQDQaVmqlSIlB/bn69KB
7HyAR6ozbOgnHKGAqFUXSLf+4pq+6q3mOgGKIF289dy14HFu4ta0DqKgkPZeQnVs
R/J8i7REUnn+YuxzSt5eOqyDPyt2EHJosSUABSWQZBlrM9jy1W7f6NqDFwawiVsa
+tv4U/bz91vjzVxwTIgt7nJK+b2HVYdxoZYuKJwPaTsj26ANPp6ltjRTeOmZhb5h
uKgw+OyzDnk6q+tjGcRqrqwl291VKxCvnRiqHFfu3CERdmI9qvpN9IRcEJqIbkcN
cakekhAyt7OO7sEPcql5vBL97e9hpb7EcH78gYxwHf8Dy0rFZUvSC5v+L6VRFnJS
XcKA1L+f9B6u5qxnBtLan9IW08HYNdvmPq6AuVjk+ndKioPUFqB2q6AtXpuA3Rmu
Y3XH/wh/q5wk0pgeByxQW6swsfpMN3OYK3mpLx475wFh2NKzcdGlwGhDFhiw8DKX
m1AESy3UZatj1a0qGaFS/M+mm9KGrDYIMrje832Wf4Yf1LGmTsDkd3/V99oazSsq
Jm4qhDASXChJXd0imQICX9hPw0aHTlLYNs54obUXVULH4HivQKIgWhUXrjG0dBDL
+tttjuv5FJxr3A==
=jPHa
-----END PGP SIGNATURE-----
Merge tag 'irq-drivers-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq driver updates from Thomas Gleixner:
- Support for hard indices on RISC-V. The hart index identifies a hart
(core) within a specific interrupt domain in RISC-V's Priviledged
Architecture.
- Rework of the RISC-V MSI driver
This moves the driver over to the generic MSI library and solves the
affinity problem of unmaskable PCI/MSI controllers. Unmaskable
PCI/MSI controllers are prone to lose interrupts when the MSI message
is updated to change the affinity because the message write consists
of three 32-bit subsequent writes, which update address and data. As
these writes are non-atomic versus the device raising an interrupt,
the device can observe a half written update and issue an interrupt
on the wrong vector. This is mitiated by a carefully orchestrated
step by step update and the observation of an eventually pending
interrupt on the CPU which issues the update. The algorithm follows
the well established method of the X86 MSI driver.
- A new driver for the RISC-V Sophgo SG2042 MSI controller
- Overhaul of the Renesas RZQ2L driver
Simplification of the probe function by using devm_*() mechanisms,
which avoid the endless list of error prone gotos in the failure
paths.
- Expand the Renesas RZV2H driver to support RZ/G3E SoCs
- A workaround for Rockchip 3568002 erratum in the GIC-V3 driver to
ensure that the addressing is limited to the lower 32-bit of the
physical address space.
- Add support for the Allwinner AS23 NMI controller
- Expand the IMX irqsteer driver to handle up to 960 input interrupts
- The usual small updates, cleanups and device tree changes
* tag 'irq-drivers-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
irqchip/imx-irqsteer: Support up to 960 input interrupts
irqchip/sunxi-nmi: Support Allwinner A523 NMI controller
dt-bindings: irq: sun7i-nmi: Document the Allwinner A523 NMI controller
irqchip/davinci-cp-intc: Remove public header
irqchip/renesas-rzv2h: Add RZ/G3E support
irqchip/renesas-rzv2h: Update macros ICU_TSSR_TSSEL_{MASK,PREP}
irqchip/renesas-rzv2h: Update TSSR_TIEN macro
irqchip/renesas-rzv2h: Add field_width to struct rzv2h_hw_info
irqchip/renesas-rzv2h: Add max_tssel to struct rzv2h_hw_info
irqchip/renesas-rzv2h: Add struct rzv2h_hw_info with t_offs variable
irqchip/renesas-rzv2h: Use devm_pm_runtime_enable()
irqchip/renesas-rzv2h: Use devm_reset_control_get_exclusive_deasserted()
irqchip/renesas-rzv2h: Simplify rzv2h_icu_init()
irqchip/renesas-rzv2h: Drop irqchip from struct rzv2h_icu_priv
irqchip/renesas-rzv2h: Fix wrong variable usage in rzv2h_tint_set_type()
dt-bindings: interrupt-controller: renesas,rzv2h-icu: Document RZ/G3E SoC
riscv: sophgo: dts: Add msi controller for SG2042
irqchip: Add the Sophgo SG2042 MSI interrupt controller
dt-bindings: interrupt-controller: Add Sophgo SG2042 MSI
arm64: dts: rockchip: rk356x: Move PCIe MSI to use GIC ITS instead of MBI
...
|
|
|
|
f81c2b8150 |
It has been a reasonably busy cycle for docs...
- Significant changes throughout the tree to bring Python code up to
current standards and raise the minimum Python required to 3.9. Much of
this is preparatory to replacing the ancient Perl scripts/kernel-doc
horror with a slightly less horrifying Python implementation, expected
for 6.16.
- Update the minimum Sphinx required to 3.4.3, allowing us to remove a
bunch of older compatibility code.
- Rework and improve the generation of the ABI documentation.
(All of the above done by Mauro)
- Lots of translation updates. Alex Shi and Yanteng Si are taking on
responsibility for the Chinese translations going forward; that work will
still get to you via docs-next
- Try to standardize the format for indicating a developer's affiliation in
commit tags.
- Clarify the TAB's role in CoC enforcement actions.
- Try to spell out the rules for when a commit tag can name another
developer without their explicit permission.
Plus lots of other typo fixes and updates.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmfccxwPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YoYcH/jL/nS8YAiJ3awF5PH5tR3m5ddt9l+fKXWJx
PB3KcHtDORbWltTA+Tvo2aP1jxGY9wqsIIvl+nvjJyUcfd72g4HNfTDUDXwP3OFU
wTkaEAQp3n/hqnLXtJ2AzV3Ir5cIfEL2d7F6QsN1Gnof8iu2OuMk5iMeb0iexUX6
FYjJq+jknh30VdAp2hxHy8q17R7h7PySh5OsjeAYJJroLv60n3DwQgnzHjXC/FT2
Qq1UuEzlSpRoso2o2NwVTND6OVW081umo6YrioqD7ZC2G2fhRgLFJJtJGXDNcyUl
gQv9xLSaTD97V4zaWPm28ObNBpY/GnAd4hMjB17wAH5xUfVS5Aw=
=Gvdp
-----END PGP SIGNATURE-----
Merge tag 'docs-6.15' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"It has been a reasonably busy cycle for docs...
- Significant changes throughout the tree to bring Python code up to
current standards and raise the minimum Python required to 3.9
Much of this is preparatory to replacing the ancient Perl
scripts/kernel-doc horror with a slightly less horrifying Python
implementation, expected for 6.16
- Update the minimum Sphinx required to 3.4.3, allowing us to remove
a bunch of older compatibility code
- Rework and improve the generation of the ABI documentation
(All of the above done by Mauro)
- Lots of translation updates. Alex Shi and Yanteng Si are taking on
responsibility for the Chinese translations going forward; that
work will still get to you via docs-next
- Try to standardize the format for indicating a developer's
affiliation in commit tags
- Clarify the TAB's role in CoC enforcement actions
- Try to spell out the rules for when a commit tag can name another
developer without their explicit permission
Plus lots of other typo fixes and updates"
* tag 'docs-6.15' of git://git.lwn.net/linux: (98 commits)
docs/zh_CN: fix spelling mistake
docs/Chinese: change the disclaimer words
docs/zh_CN: Add snp-tdx-threat-model index Chinese translation
docs: driver-api: firmware: clarify userspace requirements
docs: clarify rules wrt tagging other people
docs: Remove outdated highuid.rst documentation
Documentation: dma-buf: heaps: Add heap name definitions
docs/.../submit-checklist: Use Documentation/admin-guide/abi.rst for cross-ref of README
docs: Correct installation instruction
Documentation: kcsan: fix "Plain Accesses and Data Races" URL in kcsan.rst
Documentation/CoC: Spell out the TAB role in enforcement decisions
Documentation: ocxl.rst: Update consortium site
scripts: get_feat.pl: substitute s390x with s390
scripts/kernel-doc: drop dead code for Wcontents_before_sections
scripts/kernel-doc: don't add not needed new lines
docs: driver-api/infiniband.rst: fix Kerneldoc markup
drivers: firewire: firewire-cdev.h: fix identation on a kernel-doc markup
drivers: media: intel-ipu3.h: fix identation on a kernel-doc markup
include/asm-generic/io.h: fix kerneldoc markup
Docs/arch/arm64: Fix spelling in amu.rst
...
|
|
|
|
a5c96dfd47 |
docs: arm64: drop PTDUMP config options from ptdump.rst
Both GENERIC_PTDUMP and PTDUMP_CORE are not user selectable config options. Just drop these from documentation. Link: https://lkml.kernel.org/r/20250226122404.1927473-4-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Suggested-by: Steven Price <steven.price@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
|
|
|
858c7bfcb3 |
arm64/boot: Enable EL2 requirements for FEAT_PMUv3p9
FEAT_PMUv3p9 registers such as PMICNTR_EL0, PMICFILTR_EL0, and PMUACR_EL1 access from EL1 requires appropriate EL2 fine grained trap configuration via FEAT_FGT2 based trap control registers HDFGRTR2_EL2 and HDFGWTR2_EL2. Otherwise such register accesses will result in traps into EL2. Add a new helper __init_el2_fgt2() which initializes FEAT_FGT2 based fine grained trap control registers HDFGRTR2_EL2 and HDFGWTR2_EL2 (setting the bits nPMICNTR_EL0, nPMICFILTR_EL0 and nPMUACR_EL1) to enable access into PMICNTR_EL0, PMICFILTR_EL0, and PMUACR_EL1 registers. Also update booting.rst with SCR_EL3.FGTEn2 requirement for all FEAT_FGT2 based registers to be accessible in EL2. Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Rob Herring <robh@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marc Zyngier <maz@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: kvmarm@lists.linux.dev Fixes: |
|
|
|
696d107c68 |
Docs/arch/arm64: Fix spelling in amu.rst
Change though to through. Signed-off-by: Gabriel <gshahrouzi@gmail.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> Link: https://lore.kernel.org/r/67bd05b5.c80a0220.205997.19df@mx.google.com |
|
|
|
2d81e1bb62 |
irqchip/gic-v3: Add Rockchip 3568002 erratum workaround
Rockchip RK3566/RK3568 GIC600 integration has DDR addressing limited to the first 32bit of physical address space. Rockchip assigned Erratum ID #3568002 for this issue. Add driver quirk for this Rockchip GIC Erratum. Note, that the 0x0201743b GIC600 ID is not Rockchip-specific and is common for many ARM GICv3 implementations. Hence, there is an extra of_machine_is_compatible() check. Signed-off-by: Dmitry Osipenko <dmitry.osipenko@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/all/20250216221634.364158-2-dmitry.osipenko@collabora.com |
|
|
|
71dfab8493 |
docs: arm: asymmetric-32bit: Allow creating cross-references for ABI
Now that Documentation/ABI is processed by automarkup, let it generate cross-references for the corresponding ABI file. Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net> Link: https://lore.kernel.org/r/0a989eea90e5d03a36a07760f8b505e074e85c03.1739254867.git.mchehab+huawei@kernel.org |
|
|
|
f64f9dddd1 |
arm64/gcs: Fix documentation for HWCAP
In one of the renumberings of the GCS hwcap a stray reference to HWCAP2 was
left, fix it.
Reported-by: David Spickett <David.Spickett@arm.com>
Fixes:
|
|
|
|
f1c243fc78 |
IOMMU Updates for Linux v6.14
Including:
- Core changes:
- PASID support for the blocked_domain.
- ARM-SMMU Updates:
- SMMUv2:
* Implement per-client prefetcher configuration on Qualcomm SoCs.
* Support for the Adreno SMMU on Qualcomm's SDM670 SOC.
- SMMUv3:
* Pretty-printing of event records.
* Drop the ->domain_alloc_paging implementation in favour of
->domain_alloc_paging_flags(flags==0).
- IO-PGTable:
* Generalisation of the page-table walker to enable external walkers
(e.g. for debugging unexpected page-faults from the GPU).
* Minor fix for handling concatenated PGDs at stage-2 with 16KiB pages.
- Misc:
* Clean-up device probing and replace the crufty probe-deferral hack
with a more robust implementation of arm_smmu_get_by_fwnode().
* Device-tree binding updates for a bunch of Qualcomm platforms.
- Intel VT-d Updates:
- Remove domain_alloc_paging().
- Remove capability audit code.
- Draining PRQ in sva unbind path when FPD bit set.
- Link cache tags of same iommu unit together.
- AMD-Vi Updates:
- Use CMPXCHG128 to update DTE.
- Cleanups of the domain_alloc_paging() path.
- RiscV IOMMU:
- Platform MSI support.
- Shutdown support.
- Rockchip IOMMU:
- Add DT bindings for Rockchip RK3576.
- More smaller fixes and cleanups.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmeQsnQACgkQK/BELZcB
GuOHug/8DDIuKlUHU2+3U2kKxMb8o1kDxGPkfKgXBaxxpprvY9DARRv7N4mnF6Vu
Db8P7QihXfQKnZHXEiqHE7TlA5B+IVQd3Kz96P4sY3OlVWGZYqyKv2GEHyG5CjN/
bay7bfgeo2EVEiAio6VToFFWTm+oxFZzhoYFIlAyZAuIQUp17gHXf7YyhUwk4rOz
8g0XMH6uldidID6BVpArxHh/bN9MOTdHzkyhwPF3FL8E94ziX6rWILH9ADYxBn2o
wqHR1STxv398k62toPpWb78c2RdANI8treDXsYpCyDF87dygdP+SA0qkK3G6kAVA
/IiPothAj6oNm+Gvwd04tEkuqVVrVqrmWE3VXSps33Tk+apYtcmLCtdpwY/F93D1
EZwTVqveBKk2hSWYVDlEyj9XKmZ9dYWDGvg2Fx844gltQHoHtEgYL+azCMU/ry7k
3+KlkUqFZZxUDbVBbbDdMF+NpxyZTtfKsaLB8f5laOP1R8Os3+dC69Gw6bhoxaMc
xfL3v245V5kWSRy+w02TyZGmZSzRx0FKUbFLKpLOvZD6pfx8t8oqJTG9FwN1KzpL
lvcBpPB5AUeNJQpKcVSjs/ne8WiOqdABt7ge4E9J5TwrDI8sXk0mwJaPrlDgK1V/
0xkkLmxWnqsu04CyDay+Uv3Bls/rRBpikR/iGt9P3BbZs7Cyryw=
=Xei0
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/iommu/linux
Pull iommu updates from Joerg Roedel:
"Core changes:
- PASID support for the blocked_domain
ARM-SMMU Updates:
- SMMUv2:
- Implement per-client prefetcher configuration on Qualcomm SoCs
- Support for the Adreno SMMU on Qualcomm's SDM670 SOC
- SMMUv3:
- Pretty-printing of event records
- Drop the ->domain_alloc_paging implementation in favour of
domain_alloc_paging_flags(flags==0)
- IO-PGTable:
- Generalisation of the page-table walker to enable external
walkers (e.g. for debugging unexpected page-faults from the GPU)
- Minor fix for handling concatenated PGDs at stage-2 with 16KiB
pages
- Misc:
- Clean-up device probing and replace the crufty probe-deferral
hack with a more robust implementation of
arm_smmu_get_by_fwnode()
- Device-tree binding updates for a bunch of Qualcomm platforms
Intel VT-d Updates:
- Remove domain_alloc_paging()
- Remove capability audit code
- Draining PRQ in sva unbind path when FPD bit set
- Link cache tags of same iommu unit together
AMD-Vi Updates:
- Use CMPXCHG128 to update DTE
- Cleanups of the domain_alloc_paging() path
RiscV IOMMU:
- Platform MSI support
- Shutdown support
Rockchip IOMMU:
- Add DT bindings for Rockchip RK3576
More smaller fixes and cleanups"
* tag 'iommu-updates-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/iommu/linux: (66 commits)
iommu: Use str_enable_disable-like helpers
iommu/amd: Fully decode all combinations of alloc_paging_flags
iommu/amd: Move the nid to pdom_setup_pgtable()
iommu/amd: Change amd_iommu_pgtable to use enum protection_domain_mode
iommu/amd: Remove type argument from do_iommu_domain_alloc() and related
iommu/amd: Remove dev == NULL checks
iommu/amd: Remove domain_alloc()
iommu/amd: Remove unused amd_iommu_domain_update()
iommu/riscv: Fixup compile warning
iommu/arm-smmu-v3: Add missing #include of linux/string_choices.h
iommu/arm-smmu-v3: Use str_read_write helper w/ logs
iommu/io-pgtable-arm: Add way to debug pgtable walk
iommu/io-pgtable-arm: Re-use the pgtable walk for iova_to_phys
iommu/io-pgtable-arm: Make pgtable walker more generic
iommu/arm-smmu: Add ACTLR data and support for qcom_smmu_500
iommu/arm-smmu: Introduce ACTLR custom prefetcher settings
iommu/arm-smmu: Add support for PRR bit setup
iommu/arm-smmu: Refactor qcom_smmu structure to include single pointer
iommu/arm-smmu: Re-enable context caching in smmu reset operation
iommu/vt-d: Link cache tags of same iommu unit together
...
|
|
|
|
1d6d399223 |
Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never execute
relevant code on any other CPU. This is currently handled by smpboot
code which takes care of CPU-hotplug operations. Affinity here is
a correctness constraint.
2) Some kthreads _have_ to be affine to a specific set of CPUs and can't
run anywhere else. The affinity is set through kthread_bind_mask()
and the subsystem takes care by itself to handle CPU-hotplug
operations. Affinity here is assumed to be a correctness constraint.
3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This
is not a correctness constraint but merely a preference in terms of
memory locality. kswapd and kcompactd both fall into this category.
The affinity is set manually like for any other task and CPU-hotplug
is supposed to be handled by the relevant subsystem so that the task
is properly reaffined whenever a given CPU from the node comes up.
Also care should be taken so that the node affinity doesn't cross
isolated (nohz_full) cpumask boundaries.
4) Similar to the previous point except kthreads have a _preferred_
affinity different than a node. Both RCU boost kthreads and RCU
exp kworkers fall into this category as they refer to "RCU nodes"
from a distinctly distributed tree.
Currently the preferred affinity patterns (3 and 4) have at least 4
identified users, with more or less success when it comes to handle
CPU-hotplug operations and CPU isolation. Each of which do it in its own
ad-hoc way.
This is an infrastructure proposal to handle this with the following API
changes:
_ kthread_create_on_node() automatically affines the created kthread to
its target node unless it has been set as per-cpu or bound with
kthread_bind[_mask]() before the first wake-up.
- kthread_affine_preferred() is a new function that can be called right
after kthread_create_on_node() to specify a preferred affinity
different than the specified node.
When the preferred affinity can't be applied because the possible
targets are offline or isolated (nohz_full), the kthread is affine
to the housekeeping CPUs (which means to all online CPUs most of the
time or only the non-nohz_full CPUs when nohz_full= is set).
kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been
converted, along with a few old drivers.
Summary of the changes:
* Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu()
* Introduce task_cpu_fallback_mask() that defines the default last
resort affinity of a task to become nohz_full aware
* Add some correctness check to ensure kthread_bind() is always called
before the first kthread wake up.
* Default affine kthread to its preferred node.
* Convert kswapd / kcompactd and remove their halfway working ad-hoc
affinity implementation
* Implement kthreads preferred affinity
* Unify kthread worker and kthread API's style
* Convert RCU kthreads to the new API and remove the ad-hoc affinity
implementation.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmeNf8gACgkQhSRUR1CO
jHedQQ/+IxTjjqQiItzrq41TES2S0desHDq8lNJFb7rsR/DtKFyLx3s67cOYV+cM
Yx54QHg2m/Fz4nXMQ7Po5ygOtJGCKBc5C5QQy7y0lVKeTQK+daDfEtBSa3oG7j3C
u+E3tTY6qxkbCzymUyaKkHN4/ay2vLvjFS50luV7KMyI3x47Aji+t7VdCX4LCPP2
eAwOALWD0+7qLJ/VF6gsmQLKA4Qx7PQAzBa3KSBmUN9UcN8Gk1bQHCTIQKDHP9LQ
v8BXrNZtYX1o2+snNYpX2z6/ECjxkdwriOgqqZY5306hd9RAQ1u46Dx3byrIqjGn
ULG/XQ2istPyhTqb/h+RbrobdOcwEUIeqk8hRRbBXE8bPpqUz9EMuaCMxWDbQjgH
NTuKG4ifKJ/IqstkkuDkdOiByE/ysMmwqrTXgSnu2ITNL9yY3BEgFbvA95hgo42s
f7QCxEfZb1MHcNEMENSMwM3xw5lLMGMpxVZcMQ3gLwyotMBRrhFZm1qZJG7TITYW
IDIeCbH4JOMdQwLs3CcWTXio0N5/85NhRNFV+IDn96OrgxObgnMtV8QwNgjXBAJ5
wGeJWt8s34W1Zo3qS9gEuVzEhW4XaxISQQMkHe8faKkK6iHmIB/VjSQikDwwUNQ/
AspYj82RyWBCDZsqhiYh71kpxjvS6Xp0bj39Ce1sNsOnuksxKkQ=
=g8In
-----END PGP SIGNATURE-----
Merge tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks
Pull kthread updates from Frederic Weisbecker:
"Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never
execute relevant code on any other CPU. This is currently handled
by smpboot code which takes care of CPU-hotplug operations.
Affinity here is a correctness constraint.
2) Some kthreads _have_ to be affine to a specific set of CPUs and
can't run anywhere else. The affinity is set through
kthread_bind_mask() and the subsystem takes care by itself to
handle CPU-hotplug operations. Affinity here is assumed to be a
correctness constraint.
3) Per-node kthreads _prefer_ to be affine to a specific NUMA node.
This is not a correctness constraint but merely a preference in
terms of memory locality. kswapd and kcompactd both fall into this
category. The affinity is set manually like for any other task and
CPU-hotplug is supposed to be handled by the relevant subsystem so
that the task is properly reaffined whenever a given CPU from the
node comes up. Also care should be taken so that the node affinity
doesn't cross isolated (nohz_full) cpumask boundaries.
4) Similar to the previous point except kthreads have a _preferred_
affinity different than a node. Both RCU boost kthreads and RCU
exp kworkers fall into this category as they refer to "RCU nodes"
from a distinctly distributed tree.
Currently the preferred affinity patterns (3 and 4) have at least 4
identified users, with more or less success when it comes to handle
CPU-hotplug operations and CPU isolation. Each of which do it in its
own ad-hoc way.
This is an infrastructure proposal to handle this with the following
API changes:
- kthread_create_on_node() automatically affines the created kthread
to its target node unless it has been set as per-cpu or bound with
kthread_bind[_mask]() before the first wake-up.
- kthread_affine_preferred() is a new function that can be called
right after kthread_create_on_node() to specify a preferred
affinity different than the specified node.
When the preferred affinity can't be applied because the possible
targets are offline or isolated (nohz_full), the kthread is affine to
the housekeeping CPUs (which means to all online CPUs most of the time
or only the non-nohz_full CPUs when nohz_full= is set).
kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been
converted, along with a few old drivers.
Summary of the changes:
- Consolidate a bunch of ad-hoc implementations of
kthread_run_on_cpu()
- Introduce task_cpu_fallback_mask() that defines the default last
resort affinity of a task to become nohz_full aware
- Add some correctness check to ensure kthread_bind() is always
called before the first kthread wake up.
- Default affine kthread to its preferred node.
- Convert kswapd / kcompactd and remove their halfway working ad-hoc
affinity implementation
- Implement kthreads preferred affinity
- Unify kthread worker and kthread API's style
- Convert RCU kthreads to the new API and remove the ad-hoc affinity
implementation"
* tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks:
kthread: modify kernel-doc function name to match code
rcu: Use kthread preferred affinity for RCU exp kworkers
treewide: Introduce kthread_run_worker[_on_cpu]()
kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format
rcu: Use kthread preferred affinity for RCU boost
kthread: Implement preferred affinity
mm: Create/affine kswapd to its preferred node
mm: Create/affine kcompactd to its preferred node
kthread: Default affine kthread to its preferred NUMA node
kthread: Make sure kthread hasn't started while binding it
sched,arm64: Handle CPU isolation on last resort fallback rq selection
arm64: Exclude nohz_full CPUs from 32bits el0 support
lib: test_objpool: Use kthread_run_on_cpu()
kallsyms: Use kthread_run_on_cpu()
soc/qman: test: Use kthread_run_on_cpu()
arm/bL_switcher: Use kthread_run_on_cpu()
|
|
|
|
e190227be4 |
Merge branch 'for-next/docs' into for-next/core
* for-next/docs: Documentation: arm64: Remove stale and redundant virtual memory diagrams docs: arm64: Document EL3 requirements for FEAT_PMUv3 docs: arm64: Document EL3 requirements for cpu debug architecture |
|
|
|
fd10f08cb5 |
Documentation: arm64: Remove stale and redundant virtual memory diagrams
The arm64 'memory.rst' file tries to document the virtual memory map and the translation procedure for a couple of kernel configurations. Unfortunately, the virtual memory map changes relatively frequently and we support considerably more configurations than we did when the docs were introduced (e.g. we now have support for 16KiB pages and 52-bit addressing). Furthermore, the Arm ARM is the definitive resource for the translation procedure and so there's little point in duplicating part of that information in the kernel documentation. Rather than continue trying (and failing) to maintain these diagrams, let's rip them out. The kernel page-table can be dumped using CONFIG_PTDUMP_DEBUGFS if necesssary. Link: https://lore.kernel.org/r/20250102065554.1533781-1-sangmoon.kim@samsung.com Reported-by: Sangmoon Kim <sangmoon.kim@samsung.com> Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
4a1567b466 |
arm64: Exclude nohz_full CPUs from 32bits el0 support
Nohz full CPUs are not a desirable fallback target to run 32bits el0 applications. If present, prefer a set of housekeeping CPUs that can do the job instead. Otherwise just don't support el0 32 bits. Should the need arise, appropriate support can be introduced in the future. Suggested-by: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
|
|
|
819935464c |
arm64/hwcap: Describe 2024 dpISA extensions to userspace
The 2024 dpISA introduces a number of architecture features all of which only add new instructions so only require the addition of hwcaps and ID register visibility. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-3-7578da51fc3d@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
064737920b |
arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented
The hwcaps code that exposes SVE features to userspace only
considers ID_AA64ZFR0_EL1, while this is only valid when
ID_AA64PFR0_EL1.SVE advertises that SVE is actually supported.
The expectations are that when ID_AA64PFR0_EL1.SVE is 0, the
ID_AA64ZFR0_EL1 register is also 0. So far, so good.
Things become a bit more interesting if the HW implements SME.
In this case, a few ID_AA64ZFR0_EL1 fields indicate *SME*
features. And these fields overlap with their SVE interpretations.
But the architecture says that the SME and SVE feature sets must
match, so we're still hunky-dory.
This goes wrong if the HW implements SME, but not SVE. In this
case, we end-up advertising some SVE features to userspace, even
if the HW has none. That's because we never consider whether SVE
is actually implemented. Oh well.
Fix it by restricting all SVE capabilities to ID_AA64PFR0_EL1.SVE
being non-zero. The HWCAPS documentation is amended to reflect the
actually checks performed by the kernel.
Fixes:
|
|
|
|
ef4144b1b4 |
iommu/arm-smmu: Re-enable context caching in smmu reset operation
Default MMU-500 reset operation disables context caching in prefetch buffer. It is however expected for context banks using the ACTLR register to retain their prefetch value during reset and runtime suspend. Add config 'ARM_SMMU_MMU_500_CPRE_ERRATA' to gate this errata workaround in default MMU-500 reset operation which defaults to 'Y' and provide option to disable workaround for context caching in prefetch buffer as and when needed. Suggested-by: Will Deacon <will@kernel.org> Signed-off-by: Bibek Kumar Patro <quic_bibekkum@quicinc.com> Link: https://lore.kernel.org/r/20241212151402.159102-2-quic_bibekkum@quicinc.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
1e4a5e3679 |
docs: arm64: Document EL3 requirements for FEAT_PMUv3
This documents EL3 requirements for FEAT_PMUv3. The register field MDCR_EL3 .TPM needs to be cleared for accesses into PMU registers without any trap being generated into EL3. PMUv3 registers like PMCCFILTR_EL0, PMCCNTR_EL0 PMCNTENCLR_EL0, PMCNTENSET_EL0, PMCR_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0 etc are already being accessed for perf HW PMU implementation. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20241211065425.1106683-3-anshuman.khandual@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
3e5be4e11a |
docs: arm64: Document EL3 requirements for cpu debug architecture
This documents EL3 requirements for debug architecture. The register field MDCR_EL3.TDA needs to be cleared for accesses into debug registers without any trap being generated into EL3. CPU debug registers like DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1 and MDSCR_EL1 are already being accessed for HW breakpoint, watchpoint and debug monitor implementations on the platform. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20241211065425.1106683-2-anshuman.khandual@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
c2b46ae022 |
ACPI/IORT: Add PMCG platform information for HiSilicon HIP09A
HiSilicon HIP09A platforms using the same SMMU PMCG with HIP09 and thus suffers the same erratum. List them in the PMCG platform information list without introducing a new SMMU PMCG Model. Update the silicon-errata.rst as well. Reviewed-by: Yicong Yang <yangyicong@hisilicon.com> Acked-by: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Qinxin Xia <xiaqinxin@huawei.com> Link: https://lore.kernel.org/r/20241205013331.1484017-1-xiaqinxin@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
f82e62d470 |
irqchip/gicv3-its: Add workaround for hip09 ITS erratum 162100801
When enabling GICv4.1 in hip09, VMAPP fails to clear some caches during the unmap operation, which can causes vSGIs to be lost. To fix the issue, invalidate the related vPE cache through GICR_INVALLR after VMOVP. Suggested-by: Marc Zyngier <maz@kernel.org> Co-developed-by: Nianyao Tang <tangnianyao@huawei.com> Signed-off-by: Nianyao Tang <tangnianyao@huawei.com> Signed-off-by: Zhou Wang <wangzhou1@hisilicon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Marc Zyngier <maz@kernel.org> |
|
|
|
9f16d5e6f2 |
The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages. The reason to
do so was that KVM needs to map both non-refcounted pages (for example
BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain
refcounted pages. However, the result was security issues in the past,
and more recently the inability to map VM_IO and VM_PFNMAP memory
that _is_ backed by struct page but is not refcounted. In particular
this broke virtio-gpu blob resources (which directly map host graphics
buffers into the guest as "vram" for the virtio-gpu device) with the
amdgpu driver, because amdgpu allocates non-compound higher order pages
and the tail pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the per-architecture
code, to always work on the pfn whenever possible. The large series that
did this, from David Stevens and Sean Christopherson, also cleaned up
substantially the set of functions that provided arch code with the
pfn for a host virtual addresses. The previous maze of twisty little
passages, all different, is replaced by five functions (__gfn_to_page,
__kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages)
saving almost 200 lines of code.
ARM:
* Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
* Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call
was introduced in PSCIv1.3 as a mechanism to request hibernation,
similar to the S4 state in ACPI
* Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
* PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
* Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
* Avoid emulated MMIO completion if userspace has requested synchronous
external abort injection
* Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
* Add iocsr and mmio bus simulation in kernel.
* Add in-kernel interrupt controller emulation.
* Add support for virtualization extensions to the eiointc irqchip.
PPC:
* Drop lingering and utterly obsolete references to PPC970 KVM, which was
removed 10 years ago.
* Fix incorrect documentation references to non-existing ioctls
RISC-V:
* Accelerate KVM RISC-V when running as a guest
* Perf support to collect KVM guest statistics from host side
s390:
* New selftests: more ucontrol selftests and CPU model sanity checks
* Support for the gen17 CPU model
* List registers supported by KVM_GET/SET_ONE_REG in the documentation
x86:
* Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
documentation, harden against unexpected changes. Even if the hardware
A/D tracking is disabled, it is possible to use the hardware-defined A/D
bits to track if a PFN is Accessed and/or Dirty, and that removes a lot
of special cases.
* Elide TLB flushes when aging secondary PTEs, as has been done in x86's
primary MMU for over 10 years.
* Recover huge pages in-place in the TDP MMU when dirty page logging is
toggled off, instead of zapping them and waiting until the page is
re-accessed to create a huge mapping. This reduces vCPU jitter.
* Batch TLB flushes when dirty page logging is toggled off. This reduces
the time it takes to disable dirty logging by ~3x.
* Remove the shrinker that was (poorly) attempting to reclaim shadow page
tables in low-memory situations.
* Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
* Advertise CPUIDs for new instructions in Clearwater Forest
* Quirk KVM's misguided behavior of initialized certain feature MSRs to
their maximum supported feature set, which can result in KVM creating
invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero
value results in the vCPU having invalid state if userspace hides PDCM
from the guest, which in turn can lead to save/restore failures.
* Fix KVM's handling of non-canonical checks for vCPUs that support LA57
to better follow the "architecture", in quotes because the actual
behavior is poorly documented. E.g. most MSR writes and descriptor
table loads ignore CR4.LA57 and operate purely on whether the CPU
supports LA57.
* Bypass the register cache when querying CPL from kvm_sched_out(), as
filling the cache from IRQ context is generally unsafe; harden the
cache accessors to try to prevent similar issues from occuring in the
future. The issue that triggered this change was already fixed in 6.12,
but was still kinda latent.
* Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
* Minor cleanups
* Switch hugepage recovery thread to use vhost_task. These kthreads can
consume significant amounts of CPU time on behalf of a VM or in response
to how the VM behaves (for example how it accesses its memory); therefore
KVM tried to place the thread in the VM's cgroups and charge the CPU
time consumed by that work to the VM's container. However the kthreads
did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM
instances inside could not complete freezing. Fix this by replacing the
kthread with a PF_USER_WORKER thread, via the vhost_task abstraction.
Another 100+ lines removed, with generally better behavior too like
having these threads properly parented in the process tree.
* Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't
really work; there was really nothing to work around anyway: the broken
patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL
MSR is virtualized and therefore unaffected by the erratum.
* Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'.
x86 selftests:
* x86 selftests can now use AVX.
Documentation:
* Use rST internal links
* Reorganize the introduction to the API document
Generic:
* Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
of RCU, so that running a vCPU on a different task doesn't encounter long
due to having to wait for all CPUs become quiescent. In general both reads
and writes are rare, but userspace that supports confidential computing is
introducing the use of "helper" vCPUs that may jump from one host processor
to another. Those will be very happy to trigger a synchronize_rcu(), and
the effect on performance is quite the disaster.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4
dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS
letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI
1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+
t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW
ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig==
=lWpE
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
|
|
|
|
437330d90c |
Merge branch 'for-next/mops' into for-next/core
* for-next/mops: : More FEAT_MOPS (memcpy instructions) uses - in-kernel routines arm64: mops: Document requirements for hypervisors arm64: lib: Use MOPS for copy_page() and clear_page() arm64: lib: Use MOPS for memcpy() routines arm64: mops: Document booting requirement for HCR_EL2.MCE2 arm64: mops: Handle MOPS exceptions from EL1 arm64: probes: Disable kprobes/uprobes on MOPS instructions # Conflicts: # arch/arm64/kernel/entry-common.c |
|
|
|
5a4332062e |
Merge branches 'for-next/gcs', 'for-next/probes', 'for-next/asm-offsets', 'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
perf: Switch back to struct platform_driver::remove()
perf: arm_pmuv3: Add support for Samsung Mongoose PMU
dt-bindings: arm: pmu: Add Samsung Mongoose core compatible
perf/dwc_pcie: Fix typos in event names
perf/dwc_pcie: Add support for Ampere SoCs
ARM: pmuv3: Add missing write_pmuacr()
perf/marvell: Marvell PEM performance monitor support
perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control
perf/dwc_pcie: Convert the events with mixed case to lowercase
perf/cxlpmu: Support missing events in 3.1 spec
perf: imx_perf: add support for i.MX91 platform
dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible
drivers perf: remove unused field pmu_node
* for-next/gcs: (42 commits)
: arm64 Guarded Control Stack user-space support
kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
arm64/gcs: Fix outdated ptrace documentation
kselftest/arm64: Ensure stable names for GCS stress test results
kselftest/arm64: Validate that GCS push and write permissions work
kselftest/arm64: Enable GCS for the FP stress tests
kselftest/arm64: Add a GCS stress test
kselftest/arm64: Add GCS signal tests
kselftest/arm64: Add test coverage for GCS mode locking
kselftest/arm64: Add a GCS test program built with the system libc
kselftest/arm64: Add very basic GCS test program
kselftest/arm64: Always run signals tests with GCS enabled
kselftest/arm64: Allow signals tests to specify an expected si_code
kselftest/arm64: Add framework support for GCS to signal handling tests
kselftest/arm64: Add GCS as a detected feature in the signal tests
kselftest/arm64: Verify the GCS hwcap
arm64: Add Kconfig for Guarded Control Stack (GCS)
arm64/ptrace: Expose GCS via ptrace and core files
arm64/signal: Expose GCS state in signal frames
arm64/signal: Set up and restore the GCS context for signal handlers
arm64/mm: Implement map_shadow_stack()
...
* for-next/probes:
: Various arm64 uprobes/kprobes cleanups
arm64: insn: Simulate nop instruction for better uprobe performance
arm64: probes: Remove probe_opcode_t
arm64: probes: Cleanup kprobes endianness conversions
arm64: probes: Move kprobes-specific fields
arm64: probes: Fix uprobes for big-endian kernels
arm64: probes: Fix simulate_ldr*_literal()
arm64: probes: Remove broken LDR (literal) uprobe support
* for-next/asm-offsets:
: arm64 asm-offsets.c cleanup (remove unused offsets)
arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET
arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE
arm64: asm-offsets: remove VM_EXEC and PAGE_SZ
arm64: asm-offsets: remove MM_CONTEXT_ID
arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET
arm64: asm-offsets: remove VMA_VM_*
arm64: asm-offsets: remove TSK_ACTIVE_MM
* for-next/tlb:
: TLB flushing optimisations
arm64: optimize flush tlb kernel range
arm64: tlbflush: add __flush_tlb_range_limit_excess()
* for-next/misc:
: Miscellaneous patches
arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
arm64/ptrace: Clarify documentation of VL configuration via ptrace
acpi/arm64: remove unnecessary cast
arm64/mm: Change protval as 'pteval_t' in map_range()
arm64: uprobes: Optimize cache flushes for xol slot
acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block()
arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG
arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings
arm64/mm: Sanity check PTE address before runtime P4D/PUD folding
arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont()
ACPI: GTDT: Tighten the check for the array of platform timer structures
arm64/fpsimd: Fix a typo
arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers
arm64: Return early when break handler is found on linked-list
arm64/mm: Re-organize arch_make_huge_pte()
arm64/mm: Drop _PROT_SECT_DEFAULT
arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV
arm64: head: Drop SWAPPER_TABLE_SHIFT
arm64: cpufeature: add POE to cpucap_is_possible()
arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t
* for-next/mte:
: Various MTE improvements
selftests: arm64: add hugetlb mte tests
hugetlb: arm64: add mte support
* for-next/sysreg:
: arm64 sysreg updates
arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09
* for-next/stacktrace:
: arm64 stacktrace improvements
arm64: preserve pt_regs::stackframe during exec*()
arm64: stacktrace: unwind exception boundaries
arm64: stacktrace: split unwind_consume_stack()
arm64: stacktrace: report recovered PCs
arm64: stacktrace: report source of unwind data
arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk()
arm64: use a common struct frame_record
arm64: pt_regs: swap 'unused' and 'pmr' fields
arm64: pt_regs: rename "pmr_save" -> "pmr"
arm64: pt_regs: remove stale big-endian layout
arm64: pt_regs: assert pt_regs is a multiple of 16 bytes
* for-next/hwcap3:
: Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4)
arm64: Support AT_HWCAP3
binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4
* for-next/kselftest: (30 commits)
: arm64 kselftest fixes/cleanups
kselftest/arm64: Try harder to generate different keys during PAC tests
kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
kselftest/arm64: Add FPMR coverage to fp-ptrace
kselftest/arm64: Expand the set of ZA writes fp-ptrace does
kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
kselftest/arm64: Enable build of PAC tests with LLVM=1
kselftest/arm64: Check that SVCR is 0 in signal handlers
kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
kselftest/arm64: Fix build with stricter assemblers
kselftest/arm64: Test signal handler state modification in fp-stress
kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test
kselftest/arm64: Implement irritators for ZA and ZT
kselftest/arm64: Remove unused ADRs from irritator handlers
kselftest/arm64: Correct misleading comments on fp-stress irritators
kselftest/arm64: Poll less often while waiting for fp-stress children
kselftest/arm64: Increase frequency of signal delivery in fp-stress
kselftest/arm64: Fix encoding for SVE B16B16 test
...
* for-next/crc32:
: Optimise CRC32 using PMULL instructions
arm64/crc32: Implement 4-way interleave using PMULL
arm64/crc32: Reorganize bit/byte ordering macros
arm64/lib: Handle CRC-32 alternative in C code
* for-next/guest-cca:
: Support for running Linux as a guest in Arm CCA
arm64: Document Arm Confidential Compute
virt: arm-cca-guest: TSM_REPORT support for realms
arm64: Enable memory encrypt for Realms
arm64: mm: Avoid TLBI when marking pages as valid
arm64: Enforce bounce buffers for realm DMA
efi: arm64: Map Device with Prot Shared
arm64: rsi: Map unprotected MMIO as decrypted
arm64: rsi: Add support for checking whether an MMIO is protected
arm64: realm: Query IPA size from the RMM
arm64: Detect if in a realm and set RIPAS RAM
arm64: rsi: Add RSI definitions
* for-next/haft:
: Support for arm64 FEAT_HAFT
arm64: pgtable: Warn unexpected pmdp_test_and_clear_young()
arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG
arm64: Add support for FEAT_HAFT
arm64: setup: name 'tcr2' register
arm64/sysreg: Update ID_AA64MMFR1_EL1 register
* for-next/scs:
: Dynamic shadow call stack fixes
arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
arm64/scs: Deal with 64-bit relative offsets in FDE frames
arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames
|
|
|
|
c0139f6cbb |
arm64/ptrace: Clarify documentation of VL configuration via ptrace
When we configure SVE, SSVE or ZA via ptrace we allow the user to configure the vector length and specify any of the flags that are accepted when configuring via prctl(). This includes the S[VM]E_SET_VL_ONEXEC flag which defers the configuration of the VL until an exec(). We don't do anything to limit the provision of register data as part of configuring the _ONEXEC VL but as a function of the VL enumeration support we do this will be interpreted using the vector length currently configured for the process. This is all a bit surprising, and probably we should just not have allowed register data to be specified with _ONEXEC, but it's our ABI so let's add some explicit documentation in both the ABI documents and the source calling out what happens. The comments are also missing the fact that since SME does not have a mandatory 128 bit VL it is possible for VL enumeration to result in the configuration of a higher VL than was requested, cover that too. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241106-arm64-sve-ptrace-vl-set-v1-1-3b164e8b559c@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
1caeda5ef2 |
arm64/gcs: Fix outdated ptrace documentation
The ptrace documentation for GCS was written prior to the implementation of
clone3() when we still blocked enabling of GCS via ptrace. This restriction
was relaxed as part of implementing clone3() support since we implemented
support for the GCS not being managed by the kernel but the documentation
still mentions the restriction. Update the documentation to reflect what
was merged.
We have not yet merged clone3() itself but all the support other than in
clone() itself is there.
Fixes:
|
|
|
|
2cfdb799dc |
arm64: mops: Document requirements for hypervisors
Add a mops.rst document to clarify in more detail what hypervisors need to do to run a Linux guest on a system with FEAT_MOPS. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20241028185721.52852-1-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
09e6b306f3 |
arm64: cpufeature: discover CPU support for MPAM
ARMv8.4 adds support for 'Memory Partitioning And Monitoring' (MPAM) which describes an interface to cache and bandwidth controls wherever they appear in the system. Add support to detect MPAM. Like SVE, MPAM has an extra id register that describes some more properties, including the virtualisation support, which is optional. Detect this separately so we can detect mismatched/insane systems, but still use MPAM on the host even if the virtualisation support is missing. MPAM needs enabling at the highest implemented exception level, otherwise the register accesses trap. The 'enabled' flag is accessible to lower exception levels, but its in a register that traps when MPAM isn't enabled. The cpufeature 'matches' hook is extended to test this on one of the CPUs, so that firmware can emulate MPAM as disabled if it is reserved for use by secure world. Secondary CPUs that appear late could trip cpufeature's 'lower safe' behaviour after the MPAM properties have been advertised to user-space. Add a verify call to ensure late secondaries match the existing CPUs. (If you have a boot failure that bisects here its likely your CPUs advertise MPAM in the id registers, but firmware failed to either enable or MPAM, or emulate the trap as if it were disabled) Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241030160317.2528209-4-joey.gouly@arm.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
|
|
|
972d755f01 |
arm64: Document Arm Confidential Compute
Add some documentation on Arm CCA and the requirements for running Linux as a Realm guest. Also update booting.rst to describe the requirement for RIPAS RAM. Reviewed-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-12-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
ddadbcdaae |
arm64: Support AT_HWCAP3
We have filled all 64 bits of AT_HWCAP2 so in order to support discovery of further features provide the framework to use the already defined AT_HWCAP3 for further CPU features. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20241004-arm64-elf-hwcap3-v2-2-799d1daad8b0@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
b616058c66 |
arm64: mops: Document booting requirement for HCR_EL2.MCE2
Document that hypervisors must set HCR_EL2.MCE2 and handle MOPS exceptions when they migrate a vCPU to another type of CPU, as Linux may not be able to handle the exception at all times. As one example, when running under nested virtualization, KVM does not handle MOPS exceptions from the nVHE/hVHE EL2 hyp as the hyp is never migrated, so the host hypervisor needs to handle them. There may be other situations (now or in the future) where the kernel can't handle an unexpected MOPS exception, so require that the hypervisor handles them. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20240930161051.3777828-4-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
3eddb108ab |
arm64: Subscribe Microsoft Azure Cobalt 100 to erratum 3194386
Add the Microsoft Azure Cobalt 100 CPU to the list of CPUs suffering
from erratum 3194386 added in commit
|
|
|
|
eefc98711f |
arm64/hwcap: Add hwcap for GCS
Provide a hwcap to enable userspace to detect support for GCS. Signed-off-by: Mark Brown <broonie@kernel.org> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-18-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
7058bf87cd |
arm64/gcs: Document the ABI for Guarded Control Stacks
Add some documentation of the userspace ABI for Guarded Control Stacks. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-7-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
830ae8a396 |
arm64: Document boot requirements for Guarded Control Stacks
FEAT_GCS introduces a number of new system registers, we require that access to these registers is not trapped when we identify that the feature is present. There is also a HCRX_EL2 control to make GCS operations functional. Since if GCS is enabled any function call instruction will cause a fault we also require that the feature be specifically disabled, existing kernels implicitly have this requirement and especially given that the MMU must be disabled it is difficult to see a situation where leaving GCS enabled would be reasonable. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-6-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
081eb7932c |
arm64: errata: Expand speculative SSBS workaround once more
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS special-purpose register does not affect subsequent speculative instructions, permitting speculative store bypassing for a window of time. We worked around this for a number of CPUs in commits: * |
|
|
|
d58db3f3a0 |
Another relatively mundane cycle for docs:
- The beginning of an EEVDF scheduler document - More Chinese translations - A rethrashing of our bisection documentation ...plus the usual array of smaller fixes, and more than the usual number of typo fixes. -----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmboMnkACgkQF0NaE2wM flha/Qf/e8zRinIYQJ7BmombNm39w3wUiNuXr8SWq7afqhsAJJzmOZ3oyyfssL+B a1pSjhxb15UrKf1kMKhdBxhDndXvto5UekJRBY5gsTvcBMBmtIovN+ZK5Z5jObsw gzHD9of08Ti7N4C2dSBdLPHtvIBX0rVeEK4oAH7AUaQviu1cfTaLQQA0dRYsaJeX iXsts2NkGl6ZUF7mk4nlzj8+Y1zot+mCd6B53iSimNKxwsPODrCZUobJAvxg1qVU pRCQcnpx2fTBnh4ugrcLZbautyhL9bJ8VQzFeoQgYpODDgDnZyTjN6kxv65LpxAz dXi+hx5Vk7lP3BbTp9EeGn305/qQPA== =JuBw -----END PGP SIGNATURE----- Merge tag 'docs-6.12' of git://git.lwn.net/linux Pull documentation update from Jonathan Corbet: "Another relatively mundane cycle for docs: - The beginning of an EEVDF scheduler document - More Chinese translations - A rethrashing of our bisection documentation ...plus the usual array of smaller fixes, and more than the usual number of typo fixes" * tag 'docs-6.12' of git://git.lwn.net/linux: (48 commits) Remove duplicate "and" in 'Linux NVMe docs. docs:filesystems: fix spelling and grammar mistakes docs:filesystem: fix mispelled words on autofs page docs:mm: fixed spelling and grammar mistakes on vmalloc kernel stack page Documentation: PCI: fix typo in pci.rst docs/zh_CN: add the translation of kbuild/gcc-plugins.rst docs/process: fix typos docs:mm: fix spelling mistakes in heterogeneous memory management page accel/qaic: Fix a typo docs/zh_CN: update the translation of security-bugs docs: block: Fix grammar and spelling mistakes in bfq-iosched.rst Documentation: Fix spelling mistakes Documentation/gpu: Fix typo in Documentation/gpu/komeda-kms.rst scripts: sphinx-pre-install: remove unnecessary double check for $cur_version Loongarch: KVM: Add KVM hypercalls documentation for LoongArch Documentation: Document the kernel flag bdev_allow_write_mounted docs: scheduler: completion: Update member of struct completion docs: kerneldoc-preamble.sty: Suppress extra spaces in CJK literal blocks docs: submitting-patches: Advertise b4 docs: update dev-tools/kcsan.rst url about KTSAN ... |
|
|
|
982a847c71 |
Merge branch 'for-next/poe' into for-next/core
* for-next/poe: (31 commits) arm64: pkeys: remove redundant WARN kselftest/arm64: Add test case for POR_EL0 signal frame records kselftest/arm64: parse POE_MAGIC in a signal frame kselftest/arm64: add HWCAP test for FEAT_S1POE selftests: mm: make protection_keys test work on arm64 selftests: mm: move fpregs printing kselftest/arm64: move get_header() arm64: add Permission Overlay Extension Kconfig arm64: enable PKEY support for CPUs with S1POE arm64: enable POE and PIE to coexist arm64/ptrace: add support for FEAT_POE arm64: add POE signal support arm64: implement PKEYS support arm64: add pte_access_permitted_no_overlay() arm64: handle PKEY/POE faults arm64: mask out POIndex when modifying a PTE arm64: convert protection key into vm_flags and pgprot values arm64: add POIndex defines arm64: re-order MTE VM_ flags arm64: enable the Permission Overlay Extension for EL0 ... |
|
|
|
dd22f44485 |
Merge branch 'for-next/errata' into for-next/core
* for-next/errata: arm64: errata: Enable the AC03_CPU_38 workaround for ampere1a |
|
|
|
4538480b27 |
Documentation: Fix spelling mistakes
Correct spelling mistakes in the documentation to improve readability. Signed-off-by: Amit Vadhavana <av2082000@gmail.com> Reviewed-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> Link: https://lore.kernel.org/r/20240817072724.6861-1-av2082000@gmail.com |
|
|
|
bf83dae90f |
arm64: enable the Permission Overlay Extension for EL0
Expose a HWCAP and ID_AA64MMFR3_EL1_S1POE to userspace, so they can be used to check if the CPU supports the feature. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-12-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
db0d8a8434 |
arm64: errata: Enable the AC03_CPU_38 workaround for ampere1a
The ampere1a cpu is affected by erratum AC04_CPU_10 which is the same bug as AC03_CPU_38. Add ampere1a to the AC03_CPU_38 workaround midr list. Cc: <stable@vger.kernel.org> Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com> Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240827211701.2216719-1-scott@os.amperecomputing.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
f3b78b470f |
ACPI/IORT: Add PMCG platform information for HiSilicon HIP10/11
HiSilicon HIP10/11 platforms using the same SMMU PMCG with HIP09 and thus suffers the same erratum. List them in the PMCG platform information list without introducing a new SMMU PMCG Model. Update the silicon-errata.rst as well. Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20240731092658.11012-1-yangyicong@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
adeec61a47 |
arm64: errata: Expand speculative SSBS workaround (again)
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS special-purpose register does not affect subsequent speculative instructions, permitting speculative store bypassing for a window of time. We worked around this for a number of CPUs in commits: * |
|
|
|
4f3a6c4de7 |
Merge branch 'for-next/vcpu-hotplug' into for-next/core
* for-next/vcpu-hotplug: (21 commits) : arm64 support for virtual CPU hotplug (ACPI) irqchip/gic-v3: Fix 'broken_rdists' unused warning when !SMP and !ACPI arm64: Kconfig: Fix dependencies to enable ACPI_HOTPLUG_CPU cpumask: Add enabled cpumask for present CPUs that can be brought online arm64: document virtual CPU hotplug's expectations arm64: Kconfig: Enable hotplug CPU on arm64 if ACPI_PROCESSOR is enabled. arm64: arch_register_cpu() variant to check if an ACPI handle is now available. arm64: psci: Ignore DENIED CPUs irqchip/gic-v3: Add support for ACPI's disabled but 'online capable' CPUs irqchip/gic-v3: Don't return errors from gic_acpi_match_gicc() arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entry arm64: acpi: Move get_cpu_for_acpi_id() to a header ACPI: Add post_eject to struct acpi_scan_handler for cpu hotplug ACPI: scan: switch to flags for acpi_scan_check_and_detach() ACPI: processor: Register deferred CPUs from acpi_processor_get_info() ACPI: processor: Add acpi_get_processor_handle() helper ACPI: processor: Move checks and availability of acpi_processor earlier ACPI: processor: Fix memory leaks in error paths of processor_add() ACPI: processor: Return an error if acpi_processor_get_info() fails in processor_add() ACPI: processor: Drop duplicated check on _STA (enabled + present) cpu: Do not warn on arch_register_cpu() returning -EPROBE_DEFER ... |
|
|
|
3346c56685 |
Merge branches 'for-next/cpufeature', 'for-next/misc', 'for-next/kselftest', 'for-next/mte', 'for-next/errata', 'for-next/acpi', 'for-next/gic-v3-pmr' and 'for-next/doc', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: add missing MODULE_DESCRIPTION() macros perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.h perf: arm_v6/7_pmu: Drop non-DT probe support perf/arm: Move 32-bit PMU drivers to drivers/perf/ perf: arm_pmuv3: Drop unnecessary IS_ENABLED(CONFIG_ARM64) check perf: arm_pmuv3: Avoid assigning fixed cycle counter with threshold perf: imx_perf: add support for i.MX95 platform perf: imx_perf: fix counter start and config sequence perf: imx_perf: refactor driver for imx93 perf: imx_perf: let the driver manage the counter usage rather the user perf: imx_perf: add macro definitions for parsing config attr dt-bindings: perf: fsl-imx-ddr: Add i.MX95 compatible perf: pmuv3: Add new Cortex and Neoverse PMUs dt-bindings: arm: pmu: Add new Cortex and Neoverse cores perf/arm-cmn: Enable support for tertiary match group perf/arm-cmn: Decouple wp_config registers from filter group number * for-next/cpufeature: : Various cpufeature infrastructure patches arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1 KVM: arm64: Replace custom macros with fields from ID_AA64PFR0_EL1 arm64/cpufeatures/kvm: Add ARMv8.9 FEAT_ECBHB bits in ID_AA64MMFR1 register * for-next/misc: : Miscellaneous patches arm64: smp: Fix missing IPI statistics arm64: Cleanup __cpu_set_tcr_t0sz() arm64/mm: Stop using ESR_ELx_FSC_TYPE during fault arm64: Kconfig: fix typo in __builtin_return_adddress ARM64: reloc_test: add missing MODULE_DESCRIPTION() macro arm64: implement raw_smp_processor_id() using thread_info arm64/arch_timer: include <linux/percpu.h> * for-next/kselftest: : arm64 kselftest updates selftests: arm64: tags: remove the result script selftests: arm64: tags_test: conform test to TAP output kselftest/arm64: Fix a couple of spelling mistakes kselftest/arm64: Fix redundancy of a testcase kselftest/arm64: Include kernel mode NEON in fp-stress * for-next/mte: : MTE updates arm64: mte: Make mte_check_tfsr_*() conditional on KASAN instead of MTE * for-next/errata: : Arm CPU errata workarounds arm64: errata: Expand speculative SSBS workaround arm64: errata: Unify speculative SSBS errata logic arm64: cputype: Add Cortex-X925 definitions arm64: cputype: Add Cortex-A720 definitions arm64: cputype: Add Cortex-X3 definitions * for-next/acpi: : arm64 ACPI patches ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64 ACPI / amba: Drop unnecessary check for registered amba_dummy_clk arm64: FFH: Move ACPI specific code into drivers/acpi/arm64/ arm64: cpuidle: Move ACPI specific code into drivers/acpi/arm64/ ACPI: arm64: Sort entries alphabetically * for-next/gic-v3-pmr: : arm64: irqchip/gic-v3: Use compiletime constant PMR values arm64: irqchip/gic-v3: Select priorities at boot time irqchip/gic-v3: Detect GICD_CTRL.DS and SCR_EL3.FIQ earlier irqchip/gic-v3: Make distributor priorities variables irqchip/gic-common: Remove sync_access callback wordpart.h: Add REPEAT_BYTE_U32() * for-next/doc: : arm64 documentation updates Documentation: arm64: Update memory.rst for TBI |
|
|
|
5e30c16b58 |
Documentation: arm64: Update memory.rst for TBI
Most of memory.rst was written very early, at a time where TBI (Top Byte Ignore) was not enabled. Nowadays TBI0 is always enabled, and TBI1 may be enabled, depending on the kernel configuration. This means that VA bits 63:56 cannot generally be assumed to have any particular value. Regardless of TBI, TTBRx selection is done based on bit 55; update memory.rst accordingly. Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240702091349.356008-1-kevin.brodsky@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
828ce929d1 |
arm64: document virtual CPU hotplug's expectations
Add a description of physical and virtual CPU hotplug, explain the differences and elaborate on what is required in ACPI for a working virtual hotplug system. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Tested-by: Miguel Luis <miguel.luis@oracle.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20240529133446.28446-19-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
75b3c43eab |
arm64: errata: Expand speculative SSBS workaround
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time.
We worked around this for Cortex-X4 and Neoverse-V3, in commit:
|