* Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its guest
* Optimization for vSGI injection, opportunistically compressing MPIDR
to vCPU mapping into a table
* Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
* Guest support for memory operation instructions (FEAT_MOPS)
* Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
* Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
* Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing
the overhead of errata mitigations
* Miscellaneous kernel and selftest fixes
LoongArch:
* New architecture. The hardware uses the same model as x86, s390
and RISC-V, where guest/host mode is orthogonal to supervisor/user
mode. The virtualization extensions are very similar to MIPS,
therefore the code also has some similarities but it's been cleaned
up to avoid some of the historical bogosities that are found in
arch/mips. The kernel emulates MMU, timer and CSR accesses, while
interrupt controllers are only emulated in userspace, at least for
now.
RISC-V:
* Support for the Smstateen and Zicond extensions
* Support for virtualizing senvcfg
* Support for virtualized SBI debug console (DBCN)
S390:
* Nested page table management can be monitored through tracepoints
and statistics
x86:
* Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC,
which could result in a dropped timer IRQ
* Avoid WARN on systems with Intel IPI virtualization
* Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
* Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
* Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
* Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
* "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server
2022.
* Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
* Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
* Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
* Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
* Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
* Use the fast path directly from the timer callback when delivering Xen
timer events, instead of waiting for the next iteration of the run loop.
This was not done so far because previously proposed code had races,
but now care is taken to stop the hrtimer at critical points such as
restarting the timer or saving the timer information for userspace.
* Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag.
* Optimize injection of PMU interrupts that are simultaneous with NMIs.
* Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
* Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
* Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
* Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y.
This was done as a workaround for virtual machine BIOSes that did not
bother to clear CR0.CD (because ancient KVM/QEMU did not bother to
set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
* Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
* Clean up the recognition of emulation failures on SEV guests, when KVM would
like to "skip" the instruction but it had already been partially emulated.
This makes it possible to drop a hack that second guessed the (insufficient)
information provided by the emulator, and just do the right thing.
Documentation:
* Various updates and fixes, mostly for x86
* MTRR and PAT fixes and optimizations:
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmVBZc0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP1LQf+NgsmZ1lkGQlKdSdijoQ856w+k0or
l2SV1wUwiEdFPSGK+RTUlHV5Y1ni1dn/CqCVIJZKEI3ZtZ1m9/4HKIRXvbMwFHIH
hx+E4Lnf8YUjsGjKTLd531UKcpphztZavQ6pXLEwazkSkDEra+JIKtooI8uU+9/p
bd/eF1V+13a8CHQf1iNztFJVxqBJbVlnPx4cZDRQQvewskIDGnVDtwbrwCUKGtzD
eNSzhY7si6O2kdQNkuA8xPhg29dYX9XLaCK2K1l8xOUm8WipLdtF86GAKJ5BVuOL
6ek/2QCYjZ7a+coAZNfgSEUi8JmFHEqCo7cnKmWzPJp+2zyXsdudqAhT1g==
=UIxm
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its
guest
- Optimization for vSGI injection, opportunistically compressing
MPIDR to vCPU mapping into a table
- Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
- Guest support for memory operation instructions (FEAT_MOPS)
- Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
- Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
- Load the stage-2 MMU context at vcpu_load() for VHE systems,
reducing the overhead of errata mitigations
- Miscellaneous kernel and selftest fixes
LoongArch:
- New architecture for kvm.
The hardware uses the same model as x86, s390 and RISC-V, where
guest/host mode is orthogonal to supervisor/user mode. The
virtualization extensions are very similar to MIPS, therefore the
code also has some similarities but it's been cleaned up to avoid
some of the historical bogosities that are found in arch/mips. The
kernel emulates MMU, timer and CSR accesses, while interrupt
controllers are only emulated in userspace, at least for now.
RISC-V:
- Support for the Smstateen and Zicond extensions
- Support for virtualizing senvcfg
- Support for virtualized SBI debug console (DBCN)
S390:
- Nested page table management can be monitored through tracepoints
and statistics
x86:
- Fix incorrect handling of VMX posted interrupt descriptor in
KVM_SET_LAPIC, which could result in a dropped timer IRQ
- Avoid WARN on systems with Intel IPI virtualization
- Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs
without forcing more common use cases to eat the extra memory
overhead.
- Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
- Fix a bug where restoring a vCPU snapshot that was taken within 1
second of creating the original vCPU would cause KVM to try to
synchronize the vCPU's TSC and thus clobber the correct TSC being
set by userspace.
- Compute guest wall clock using a single TSC read to avoid
generating an inaccurate time, e.g. if the vCPU is preempted
between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which
complain about a "Firmware Bug" if the bit isn't set for select
F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to
appease Windows Server 2022.
- Don't apply side effects to Hyper-V's synthetic timer on writes
from userspace to fix an issue where the auto-enable behavior can
trigger spurious interrupts, i.e. do auto-enabling only for guest
writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the
dirty log without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as
appropriate.
- Harden the fast page fault path to guard against encountering an
invalid root when walking SPTEs.
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering
Xen timer events, instead of waiting for the next iteration of the
run loop. This was not done so far because previously proposed code
had races, but now care is taken to stop the hrtimer at critical
points such as restarting the timer or saving the timer information
for userspace.
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future
flag.
- Optimize injection of PMU interrupts that are simultaneous with
NMIs.
- Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to
prevent using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y
This was done as a workaround for virtual machine BIOSes that did
not bother to clear CR0.CD (because ancient KVM/QEMU did not bother
to set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts
SHUTDOWN while running an SEV-ES guest.
- Clean up the recognition of emulation failures on SEV guests, when
KVM would like to "skip" the instruction but it had already been
partially emulated. This makes it possible to drop a hack that
second guessed the (insufficient) information provided by the
emulator, and just do the right thing.
Documentation:
- Various updates and fixes, mostly for x86
- MTRR and PAT fixes and optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits)
KVM: selftests: Avoid using forced target for generating arm64 headers
tools headers arm64: Fix references to top srcdir in Makefile
KVM: arm64: Add tracepoint for MMIO accesses where ISV==0
KVM: arm64: selftest: Perform ISB before reading PAR_EL1
KVM: arm64: selftest: Add the missing .guest_prepare()
KVM: arm64: Always invalidate TLB for stage-2 permission faults
KVM: x86: Service NMI requests after PMI requests in VM-Enter path
KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI
KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs
KVM: arm64: Refine _EL2 system register list that require trap reinjection
arm64: Add missing _EL2 encodings
arm64: Add missing _EL12 encodings
KVM: selftests: aarch64: vPMU test for validating user accesses
KVM: selftests: aarch64: vPMU register test for unimplemented counters
KVM: selftests: aarch64: vPMU register test for implemented counters
KVM: selftests: aarch64: Introduce vpmu_counter_access test
tools: Import arm_pmuv3.h
KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest
KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run
KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
...
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8GHYSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hwkQAIR8l1gWz/caz29biBzmRnDS+aZOXcYM
8V8WBJqJgMKE9egibF4sADAlhInXzg19Xr7bQs6VfuvmdXrCn0UJ/nLorX+H85A2
pph6iNlWO6tyQAjvk/AieaeUyZOqpCFmKOgxfN2Fr/Lrn7u3AdjXC20qPeFJSLXr
YOTCQ704yvjjJp4yVA8JlclAQu38hanKiO5SZdlLzbuhUgWwQk4DVP2ZsYnhX+RO
F6exxORvMnYF/LJe/kR2/DMLf2JWvyUmjRrGWoeRoksOw5BlXMc5HyTPHSJ2jDac
lJaNtmZkTY1bDVWZk7N03ze5aFJa4DaqJdIFLtgujrFW8thog0P48aH6vmKi4UAA
bXme9GFYbmJTkemaGRnrzidFV12uPNvvanS+1PDOw4sn4HpscoMSpZw5PeH2kBwV
6uKNCJCwLtk8oe50yroKD7rJ/ASB7CeoqzbIL9s2TA0HSAskIf65T4eZp01uniyd
Q98yCdrG2mudsg5aU5yMfe0LwZby5BB5kUCqIe4hyRC68GJR8wkAzhaFRgCn4aJE
yaTyjnT2V3PGMEEJOPFdSF3VQGztljzQiXlEvBVj3zvMGQNTo2NhmS3ka4W+wW5G
avRYv8dITlGRs6J2gV1vp8Eb5LzDrwRpRURSmzeP5rR58saKdljTZgNfOzfLeFr1
WhLzonLz52IS
=U0fq
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.7:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8EugSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5xS0P+gPTDO81CUZO70LrO2W4E7toRBf/F9x1
/v5D/76p9hG32Z6+BJs/xxDxJFagw75MtoR5oKivtXiip3TxbfOyDOlaQkIRo85E
/d95il/LRidL3Mv3TXRj1lykXnxSSz9tigAGEZti1Y9Fn9fXEIwurJH7dU5cBI1E
fin5bsDaTNRjG4jjTiEUbnKPRTlD/S7CQJn4CaYvZhMv/eJkYDLyBBVy4VLoLzvD
ctL6VJQLGPVxbxr9mEmulaqMrSuDIQQLkRVQJAViKyerBInTEc5d/GPCHuE8O3zi
0r/QSJbMS9titWLz07NhJ1UH4VJNyaEhRlyJPSFhBW4h6dzUb3EXdUe0Hwa+JH/S
H2cVqsANItTCIhvDtuEGIRDahu0eD+63h90InJ0gEVL1kSJS+UWZHB71PkUEQgAV
2OsuT1D26fuxrv+0b9ioBZURycqKw++zGsrwyVhe77eBgqBJ12tbL4TAD+QNjaQ5
HZTCe6YV83gZoOMeVkoTGSf96s9lGORgxsaAIXmFuLB9RVCVXhVh0ph2HZsnV8Hw
ZXEXpBEFo7GUhb0NIvsk2W73QL87A3fLv15yITWc8KuC7/dXP9z6KpSKjFySS69X
uWD1MVx6shhvbg97UzoJlXc3/z0aVzmdZJudE5d0gcFvAjIItqp6ICPOoKxfj8pT
tqRZu3kVHd61
=sfp8
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.7:
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
virtualization support is disabled in the BIOS on AMD and Hygon
platforms
- A minor cleanup
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmU77KoACgkQEsHwGGHe
VUrophAAtfsB+WhRydin0V6kjQeH+RbiWyx/jOw6eNqvzOzaOPxVXn0cAHRSgAO4
+S8tKIqaWpXNNNKpOIKBVaDkh9qr50/p36/jfVkXi8GOLYrK633F0BMjcG4+/vYQ
A9b5iNiJhZ7xWE6+qRrqdg+o+a6UyPUGz34HNp3KwJVTdaHU2OnXXwuWeiUkgRrJ
uQSfLc4+UIeefIzNy8Tqg083iaENBYMya7U90rzewD64NF0bsA15AEPut/6tnUVq
ej3UU3cqO7nKXyhuZX+zpt856MZFa1rNYVXUAfoAO4xhqdN0Q5LFWO506sqajNx/
hqbT+hKDoC03zuLmbZO21s/uWQdtVFo63FU0h9QBRp1m6Ug5P3rQQCK8ydJc5xwr
Yd7je6UPK9jIKBo9VP1qmsyzGwADNevNf1qGExHI2T6Wml7HgDmPysAHnGiKqRGI
1o9+Yqa+VBt8Wml9M8Ny+dLyr5F/2uq8sMrQedQlXdFMSzVm2JYecukJ5BvUWE/r
Qyll8mTpIdgGXjBt56lMrgH7ibMC5ct/4MvTHOHuA997g/PwuwtWj7QyKXpUq2Rf
o/c3zKKWIFxevjzwU86haCBaz+5xAQlB6dJw61ExxsmUuT/kZzkN15w6aqGZtpns
PsARwnvuwZJ7vfqFLIa0ZkPN4OgnkRX7HlNqrVyKpONDTocZd9E=
=i9On
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Make sure the "svm" feature flag is cleared from /proc/cpuinfo when
virtualization support is disabled in the BIOS on AMD and Hygon
platforms
- A minor cleanup
* tag 'x86_cpu_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Remove redundant 'break' statement
x86/cpu: Clear SVM feature if disabled by BIOS
Convert all module params to octal permissions to improve code readability
and to make checkpatch happy:
WARNING: Symbolic permissions 'S_IRUGO' are not preferred. Consider using
octal permissions '0444'.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Link: https://lore.kernel.org/r/20231013113020.77523-1-flyingpeng@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Commit 916e3e5f26 ("KVM: SVM: Do not use user return MSR support for
virtualized TSC_AUX") introduced a local variable used for the rdmsr()
function for the high 32-bits of the MSR value. This variable is not used
after being set and triggers a warning or error, when treating warnings
as errors, when the unused-but-set-variable flag is set. Mark this
variable as __maybe_unused to fix this.
Fixes: 916e3e5f26 ("KVM: SVM: Do not use user return MSR support for virtualized TSC_AUX")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <0da9874b6e9fcbaaa5edeb345d7e2a7c859fc818.1696271334.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following problem exists since x2avic was enabled in the KVM:
svm_set_x2apic_msr_interception is called to enable the interception of
the x2apic msrs.
In particular it is called at the moment the guest resets its apic.
Assuming that the guest's apic was in x2apic mode, the reset will bring
it back to the xapic mode.
The svm_set_x2apic_msr_interception however has an erroneous check for
'!apic_x2apic_mode()' which prevents it from doing anything in this case.
As a result of this, all x2apic msrs are left unintercepted, and that
exposes the bare metal x2apic (if enabled) to the guest.
Oops.
Remove the erroneous '!apic_x2apic_mode()' check to fix that.
This fixes CVE-2023-5090
Fixes: 4d1d7942e3 ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928173354.217464-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat EMULTYPE_SKIP failures on SEV guests as unhandleable emulation
instead of simply resuming the guest, and drop the hack-a-fix which
effects that behavior for the INT3/INTO injection path. If KVM can't
skip an instruction for which KVM has already done partial emulation,
resuming the guest is undesirable as doing so may corrupt guest state.
Link: https://lore.kernel.org/r/20230825013621.2845700-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor and rename can_emulate_instruction() to allow vendor code to
return more than true/false, e.g. to explicitly differentiate between
"retry", "fault", and "unhandleable". For now, just do the plumbing, a
future patch will expand SVM's implementation to signal outright failure
if KVM attempts EMULTYPE_SKIP on an SEV guest.
No functional change intended (or rather, none that are visible to the
guest or userspace).
Link: https://lore.kernel.org/r/20230825013621.2845700-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently if an SEV-ES VM shuts down userspace sees KVM_RUN struct with
only errno=EINVAL. This is a very limited amount of information to debug
the situation. Instead return KVM_EXIT_SHUTDOWN to alert userspace the VM
is shutting down and is not usable any further.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230907162449.1739785-1-pgonda@google.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When the TSC_AUX MSR is virtualized, the TSC_AUX value is swap type "B"
within the VMSA. This means that the guest value is loaded on VMRUN and
the host value is restored from the host save area on #VMEXIT.
Since the value is restored on #VMEXIT, the KVM user return MSR support
for TSC_AUX can be replaced by populating the host save area with the
current host value of TSC_AUX. And, since TSC_AUX is not changed by Linux
post-boot, the host save area can be set once in svm_hardware_enable().
This eliminates the two WRMSR instructions associated with the user return
MSR support.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <d381de38eb0ab6c9c93dda8503b72b72546053d7.1694811272.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The checks for virtualizing TSC_AUX occur during the vCPU reset processing
path. However, at the time of initial vCPU reset processing, when the vCPU
is first created, not all of the guest CPUID information has been set. In
this case the RDTSCP and RDPID feature support for the guest is not in
place and so TSC_AUX virtualization is not established.
This continues for each vCPU created for the guest. On the first boot of
an AP, vCPU reset processing is executed as a result of an APIC INIT
event, this time with all of the guest CPUID information set, resulting
in TSC_AUX virtualization being enabled, but only for the APs. The BSP
always sees a TSC_AUX value of 0 which probably went unnoticed because,
at least for Linux, the BSP TSC_AUX value is 0.
Move the TSC_AUX virtualization enablement out of the init_vmcb() path and
into the vcpu_after_set_cpuid() path to allow for proper initialization of
the support after the guest CPUID information has been set.
With the TSC_AUX virtualization support now in the vcpu_set_after_cpuid()
path, the intercepts must be either cleared or set based on the guest
CPUID input.
Fixes: 296d5a17e7 ("KVM: SEV-ES: Use V_TSC_AUX if available instead of RDTSC/MSR_TSC_AUX intercepts")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <4137fbcb9008951ab5f0befa74a0399d2cce809a.1694811272.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When SVM is disabled by BIOS, one cannot use KVM but the
SVM feature is still shown in the output of /proc/cpuinfo.
On Intel machines, VMX is cleared by init_ia32_feat_ctl(),
so do the same on AMD and Hygon processors.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230921114940.957141-1-pbonzini@redhat.com
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTueMwSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hp4P/i/UmIJEJupryUrD/ZXcSjqmupCtv4JS
Z2o1KIAPbM5GUX4iyF1cnZrI4Ac5zMtULN8Tp3ATOp3AqKy72AqB1Z82e+v6SKis
KfSXlDFCPFisrwv3Ys7JEu9vIS8oqITHmSBk8OAmElwujdQ5jYLZjwGbCXbM9qas
yCFGLqD4fjX8XqkZLmXggjT99MPSgiTPoKL592Wq4JR8mY4hyQqJzBepDjb94sT7
wrsAv1B+BchGDguk0+nOdmHM4emGrZU7fVqi3OFPofSlwAAdkqZObleb422KB058
5bcpNow+9VH5pzgq8XSAU7DLNgH9aXH0PcVU8ASU6P0D9fceKoOFuL47nnFbwz0t
vKafcXNWFs8xHE4iyzvAAsZK/X8GR0ngNByPnamATMsjt2tTmsa5BOyAPkIN+GpT
DzZCIk27SbdGC3lGYlSV+5ob/+sOr6m384DkvSZnU6JiiFLlZiTxURj1/9Zvfka8
2co2wnf8cJxnKFUThFfuxs9XpKgvhkOE8LauwCSo4MAQM95Pen+NAK960RBWj0xl
wof5kIGmKbwmMXyg2Sr+EKqe5KRPba22Yi3x24tURAXafKK/AW7T8dgEEXOll7dp
pKmTPAevwUk9wYIGultjhEBXKYgMOeD2BVoTa5je5h1Da28onrSJ7aLQUixHHs0J
gLdtzs8M9K9t
=yGM1
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.6:
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
- Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug
registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTue8YSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5aqUP/jF7DyMXyQGYMKoQhFxWyGRhfqV8Ov8i
7sUpEKSx5WTxOsFHBgdGeNU+m9eBJHWVmrJM9imI4OCUvJmxasRRsnyhvEUvBIUE
amQT45aVm2xqjRNRUkOCUUHiDKtUdwpSRlOSyhnDTKmlMbNoH+fO3SLJ1oB/fsae
wnmyiF98j2vT/5mD6F/F87hlNMq4CqG/OZWJ9Kk8GfvfJpUcC8r/H0NsMgSMF2/L
Q+Hn+r/XDfMSrBiyEzevWyPbJi7nL+WF9EQDJASf+aAkmFMHK6AU4XNITwVw3XcZ
FGtSP/NzvnePhd5gqtbiW9hRQkWcKjqnydtyI3ZDVVBpEbJ6OJn3+UFoLZ8NoSE+
D3EDs1PA7Qjty6kYx9/NZpXz5BAMd9mikkTL7PTrlrAZAEimToqoHx7mBjmLp4E+
diKrpG2w1OTtO/Pafi0z0zZN6Yc9MJOyZVK78DpIiLey3rNip9SawWGh+wV14WNC
nbn7Wpf8EGE1E8n00mwrGMRCuRm7LQhLbcVXITiGKrbpxUzam6sqDIgt73Q7xma2
NWcPizeFNy47uurNOA2V9xHkbEAYjWaM12uyzmGzILvvmvNnpU0NuZ78cgV5ZWMk
4US53CAQbG4+qUCJWhIDoriluaLXjL9tLiZgJW0T6cus3nL5NWYqvlq6TWYyK00J
zjiK7vky77Pq
=WC5V
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM: x86: SVM changes for 6.6:
- Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug
registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
Disallow SEV (and beyond) if nrips is disabled via module param, as KVM
can't read guest memory to partially emulate and skip an instruction. All
CPUs that support SEV support NRIPS, i.e. this is purely stopping the user
from shooting themselves in the foot.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230825013621.2845700-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't inject a #UD if KVM attempts to "emulate" to skip an instruction
for an SEV guest, and instead resume the guest and hope that it can make
forward progress. When commit 04c40f344d ("KVM: SVM: Inject #UD on
attempted emulation for SEV guest w/o insn buffer") added the completely
arbitrary #UD behavior, there were no known scenarios where a well-behaved
guest would induce a VM-Exit that triggered emulation, i.e. it was thought
that injecting #UD would be helpful.
However, now that KVM (correctly) attempts to re-inject INT3/INTO, e.g. if
a #NPF is encountered when attempting to deliver the INT3/INTO, an SEV
guest can trigger emulation without a buffer, through no fault of its own.
Resuming the guest and retrying the INT3/INTO is architecturally wrong,
e.g. the vCPU will incorrectly re-hit code #DBs, but for SEV guests there
is literally no other option that has a chance of making forward progress.
Drop the #UD injection for all "skip" emulation, not just those related to
INT3/INTO, even though that means that the guest will likely end up in an
infinite loop instead of getting a #UD (the vCPU may also crash, e.g. if
KVM emulated everything about an instruction except for advancing RIP).
There's no evidence that suggests that an unexpected #UD is actually
better than hanging the vCPU, e.g. a soft-hung vCPU can still respond to
IRQs and NMIs to generate a backtrace.
Reported-by: Wu Zongyo <wuzongyo@mail.ustc.edu.cn>
Closes: https://lore.kernel.org/all/8eb933fd-2cf3-d7a9-32fe-2a1d82eac42a@mail.ustc.edu.cn
Fixes: 6ef88d6e36 ("KVM: SVM: Re-inject INT3/INTO instead of retrying the instruction")
Cc: stable@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230825013621.2845700-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "virtual NMI exposed to L1" via a governed feature flag instead of
using a dedicated bit/flag in vcpu_svm.
Note, checking KVM's capabilities instead of the "vnmi" param means that
the code isn't strictly equivalent, as vnmi_enabled could have been set
if nested=false where as that the governed feature cannot. But that's a
glorified nop as the feature/flag is consumed only by paths that are
gated by nSVM being enabled.
Link: https://lore.kernel.org/r/20230815203653.519297-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "virtual GIF exposed to L1" via a governed feature flag instead of
using a dedicated bit/flag in vcpu_svm.
Note, checking KVM's capabilities instead of the "vgif" param means that
the code isn't strictly equivalent, as vgif_enabled could have been set
if nested=false where as that the governed feature cannot. But that's a
glorified nop as the feature/flag is consumed only by paths that are
Link: https://lore.kernel.org/r/20230815203653.519297-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "Pause Filtering is exposed to L1" via governed feature flags
instead of using dedicated bits/flags in vcpu_svm.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "LBR virtualization exposed to L1" via a governed feature flag
instead of using a dedicated bit/flag in vcpu_svm.
Note, checking KVM's capabilities instead of the "lbrv" param means that
the code isn't strictly equivalent, as lbrv_enabled could have been set
if nested=false where as that the governed feature cannot. But that's a
glorified nop as the feature/flag is consumed only by paths that are
gated by nSVM being enabled.
Link: https://lore.kernel.org/r/20230815203653.519297-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "virtual VMSAVE/VMLOAD exposed to L1" via a governed feature flag
instead of using a dedicated bit/flag in vcpu_svm.
Opportunistically add a comment explaining why KVM disallows virtual
VMLOAD/VMSAVE when the vCPU model is Intel.
No functional change intended.
Link: https://lore.kernel.org/r/20230815203653.519297-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "TSC scaling exposed to L1" via a governed feature flag instead of
using a dedicated bit/flag in vcpu_svm.
Note, this fixes a benign bug where KVM would mark TSC scaling as exposed
to L1 even if overall nested SVM supported is disabled, i.e. KVM would let
L1 write MSR_AMD64_TSC_RATIO even when KVM didn't advertise TSCRATEMSR
support to userspace.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "NRIPS exposed to L1" via a governed feature flag instead of using
a dedicated bit/flag in vcpu_svm.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the governed feature framework to track if XSAVES is "enabled", i.e.
if XSAVES can be used by the guest. Add a comment in the SVM code to
explain the very unintuitive logic of deliberately NOT checking if XSAVES
is enumerated in the guest CPUID model.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.
Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.
Do the same before VMRUN too, to protect host data from leaking into the
guest too.
Fixes: 77245f1c3c ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
vulnerability on AMD processors. In short, this is yet another issue
where userspace poisons a microarchitectural structure which can then be
used to leak privileged information through a side channel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTQs1gACgkQEsHwGGHe
VUo1UA/8C34PwJveZDcerdkaxSF+WKx7AjOI/L2ws1qn9YVFA3ItFMgVuFTrlY6c
1eYKYB3FS9fVN3KzGOXGyhho6seHqfY0+8cyYupR+PVLn9rSy7GqHaIMr37FdQ2z
yb9xu26v+gsvuPEApazS6MxijYS98u71rHhmg97qsHCnUiMJ01+TaGucntukNJv8
FfwjZJvgeUiBPQ/6IeA/O0413tPPJ9weawPyW+sV1w7NlXjaUVkNXwiq/Xxbt9uI
sWwMBjFHpSnhBRaDK8W5Blee/ZfsS6qhJ4jyEKUlGtsElMnZLPHbnrbpxxqA9gyE
K+3ZhoHf/W1hhvcZcALNoUHLx0CvVekn0o41urAhPfUutLIiwLQWVbApmuW80fgC
DhPedEFu7Wp6Okj5+Bqi/XOsOOWN2WRDSzdAq10o1C+e+fzmkr6y4E6gskfz1zXU
ssD9S4+uAJ5bccS5lck4zLffsaA03nAYTlvl1KRP4pOz5G9ln6eyO20ar1WwfGAV
o5ZsTJVGQMyVA49QFkksj+kOI3chkmDswPYyGn2y8OfqYXU4Ip4eN+VkjorIAo10
zIec3Z0bCGZ9UUMylUmdtH3KAm8q0wVNoFrUkMEmO8j6nn7ew2BhwLMn4uu+nOnw
lX2AG6PNhRLVDVaNgDsWMwejaDsitQPoWRuCIAZ0kQhbeYuwfpM=
=73JY
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/srso fixes from Borislav Petkov:
"Add a mitigation for the speculative RAS (Return Address Stack)
overflow vulnerability on AMD processors.
In short, this is yet another issue where userspace poisons a
microarchitectural structure which can then be used to leak privileged
information through a side channel"
* tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/srso: Tie SBPB bit setting to microcode patch detection
x86/srso: Add a forgotten NOENDBR annotation
x86/srso: Fix return thunks in generated code
x86/srso: Add IBPB on VMEXIT
x86/srso: Add IBPB
x86/srso: Add SRSO_NO support
x86/srso: Add IBPB_BRTYPE support
x86/srso: Add a Speculative RAS Overflow mitigation
x86/bugs: Increase the x86 bugs vector size to two u32s
Skip writes to MSR_AMD64_TSC_RATIO that are done in the context of a vCPU
if guest state isn't loaded, i.e. if KVM will update MSR_AMD64_TSC_RATIO
during svm_prepare_switch_to_guest() before entering the guest. Checking
guest_state_loaded may or may not be a net positive for performance as
the current_tsc_ratio cache will optimize away duplicate WRMSRs in the
vast majority of scenarios. However, the cost of the check is negligible,
and the real motivation is to document that KVM needs to load the vCPU's
value only when running the vCPU.
Link: https://lore.kernel.org/r/20230729011608.1065019-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the @offset and @multiplier params from the kvm_x86_ops hooks for
propagating TSC offsets/multipliers into hardware, and instead have the
vendor implementations pull the information directly from the vCPU
structure. The respective vCPU fields _must_ be written at the same
time in order to maintain consistent state, i.e. it's not random luck
that the value passed in by all callers is grabbed from the vCPU.
Explicitly grabbing the value from the vCPU field in SVM's implementation
in particular will allow for additional cleanup without introducing even
more subtle dependencies. Specifically, SVM can skip the WRMSR if guest
state isn't loaded, i.e. svm_prepare_switch_to_guest() will load the
correct value for the vCPU prior to entering the guest.
This also reconciles KVM's handling of related values that are stored in
the vCPU, as svm_write_tsc_offset() already assumes/requires the caller
to have updated l1_tsc_offset.
Link: https://lore.kernel.org/r/20230729011608.1065019-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly disable preemption when writing MSR_AMD64_TSC_RATIO only in the
"outer" helper, as all direct callers of the "inner" helper now run with
preemption already disabled. And that isn't a coincidence, as the outer
helper requires a vCPU and is intended to be used when modifying guest
state and/or emulating guest instructions, which are typically done with
preemption enabled.
Direct use of the inner helper should be extremely limited, as the only
time KVM should modify MSR_AMD64_TSC_RATIO without a vCPU is when
sanitizing the MSR for a specific pCPU (currently done when {en,dis}abling
disabling SVM). The other direct caller is svm_prepare_switch_to_guest(),
which does have a vCPU, but is a one-off special case: KVM is about to
enter the guest on a specific pCPU and thus must have preemption disabled.
Link: https://lore.kernel.org/r/20230729011608.1065019-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When emulating nested SVM transitions, use the outer helper for writing
the TSC multiplier for L2. Using the inner helper only for one-off cases,
i.e. for paths where KVM is NOT emulating or modifying vCPU state, will
allow for multiple cleanups:
- Explicitly disabling preemption only in the outer helper
- Getting the multiplier from the vCPU field in the outer helper
- Skipping the WRMSR in the outer helper if guest state isn't loaded
Opportunistically delete an extra newline.
No functional change intended.
Link: https://lore.kernel.org/r/20230729011608.1065019-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that kvm_rebooting is guaranteed to be true prior to disabling SVM
in an emergency, use the existing stgi() helper instead of open coding
STGI. In effect, eat faults on STGI if and only if kvm_rebooting==true.
Link: https://lore.kernel.org/r/20230721201859.2307736-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Set kvm_rebooting when virtualization is disabled in an emergency so that
KVM eats faults on virtualization instructions even if kvm_reboot() isn't
reached.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move cpu_svm_disable() into KVM proper now that all hardware
virtualization management is routed through KVM. Remove the now-empty
virtext.h.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Check "this" CPU instead of the boot CPU when querying SVM support so that
the per-CPU checks done during hardware enabling actually function as
intended, i.e. will detect issues where SVM isn't support on all CPUs.
Disable migration for the use from svm_init() mostly so that the standard
accessors for the per-CPU data can be used without getting yelled at by
CONFIG_DEBUG_PREEMPT=y sanity checks. Preventing the "disabled by BIOS"
error message from reporting the wrong CPU is largely a bonus, as ensuring
a stable CPU during module load is a non-goal for KVM.
Link: https://lore.kernel.org/all/ZAdxNgv0M6P63odE@google.com
Cc: Kai Huang <kai.huang@intel.com>
Cc: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fold the guts of cpu_has_svm() into kvm_is_svm_supported(), its sole
remaining user.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the virt callback to disable SVM (and set GIF=1) during an emergency
instead of blindly attempting to disable SVM. Like the VMX case, if a
hypervisor, i.e. KVM, isn't loaded/active, SVM can't be in use.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the recently introduced svm_get_lbr_vmcb() instead an open coded
equivalent to retrieve the target VMCB when emulating writes to
MSR_IA32_DEBUGCTLMSR.
No functional change intended.
Link: https://lore.kernel.org/r/20230607203519.1570167-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Clean up the enable_lbrv computation in svm_update_lbrv() to consolidate
the logic for computing enable_lbrv into a single statement, and to remove
the coding style violations (lack of curly braces on nested if).
No functional change intended.
Link: https://lore.kernel.org/r/20230607203519.1570167-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor KVM's handling of LBR MSRs on SVM to avoid a second layer of
case statements, and thus eliminate a dead KVM_BUG() call, which (a) will
never be hit in the current code base and (b) if a future commit breaks
things, will never fire as KVM passes "false" instead "true" or '1' for
the KVM_BUG() condition.
Reported-by: Michal Luczaj <mhal@rbox.co>
Cc: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230607203519.1570167-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject KVM_SET_SREGS{2} with -EINVAL if the incoming CR0 is invalid,
e.g. due to setting bits 63:32, illegal combinations, or to a value that
isn't allowed in VMX (non-)root mode. The VMX checks in particular are
"fun" as failure to disallow Real Mode for an L2 that is configured with
unrestricted guest disabled, when KVM itself has unrestricted guest
enabled, will result in KVM forcing VM86 mode to virtual Real Mode for
L2, but then fail to unwind the related metadata when synthesizing a
nested VM-Exit back to L1 (which has unrestricted guest enabled).
Opportunistically fix a benign typo in the prototype for is_valid_cr4().
Cc: stable@vger.kernel.org
Reported-by: syzbot+5feef0b9ee9c8e9e5689@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000f316b705fdf6e2b4@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230613203037.1968489-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that handle_fastpath_set_msr_irqoff() acquires kvm->srcu, i.e. allows
dereferencing memslots during WRMSR emulation, drop the requirement that
"next RIP" is valid. In hindsight, acquiring kvm->srcu would have been a
better fix than avoiding the pastpath, but at the time it was thought that
accessing SRCU-protected data in the fastpath was a one-off edge case.
This reverts commit 5c30e8101e.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230721224337.2335137-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bail early from svm_enable_nmi_window() for SEV-ES guests without trying
to enable single-step of the guest, as single-stepping an SEV-ES guest is
impossible and the guest is responsible for *telling* KVM when it is ready
for an new NMI to be injected.
Functionally, setting TF and RF in svm->vmcb->save.rflags is benign as the
field is ignored by hardware, but it's all kinds of confusing.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-10-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Immediately mark NMIs as unmasked in response to #VMGEXIT(NMI complete)
instead of setting awaiting_iret_completion and waiting until the *next*
VM-Exit to unmask NMIs. The whole point of "NMI complete" is that the
guest is responsible for telling the hypervisor when it's safe to inject
an NMI, i.e. there's no need to wait. And because there's no IRET to
single-step, the next VM-Exit could be a long time coming, i.e. KVM could
incorrectly hold an NMI pending for far longer than what is required and
expected.
Opportunistically fix a stale reference to HF_IRET_MASK.
Fixes: 916b54a768 ("KVM: x86: Move HF_NMI_MASK and HF_IRET_MASK into "struct vcpu_svm"")
Fixes: 4444dfe405 ("KVM: SVM: Add NMI support for an SEV-ES guest")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-9-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently SVM setup is done sequentially in
init_vmcb() -> sev_init_vmcb() -> sev_es_init_vmcb()
and tries keeping SVM/SEV/SEV-ES bits separated. One of the exceptions
is DR intercepts which is for SEV-ES before sev_es_init_vmcb() runs.
Move the SEV-ES intercept setup to sev_es_init_vmcb(). From now on
set_dr_intercepts()/clr_dr_intercepts() handle SVM/SEV only.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Santosh Shukla <santosh.shukla@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-6-aik@amd.com
[sean: drop comment about intercepting DR7]
Signed-off-by: Sean Christopherson <seanjc@google.com>
SVM/SEV enable debug registers intercepts to skip swapping DRs
on entering/exiting the guest. When the guest is in control of
debug registers (vcpu->guest_debug == 0), there is an optimisation to
reduce the number of context switches: intercepts are cleared and
the KVM_DEBUGREG_WONT_EXIT flag is set to tell KVM to do swapping
on guest enter/exit.
The same code also executes for SEV-ES, however it has no effect as
- it always takes (vcpu->guest_debug == 0) branch;
- KVM_DEBUGREG_WONT_EXIT is set but DR7 intercept is not cleared;
- vcpu_enter_guest() writes DRs but VMRUN for SEV-ES swaps them
with the values from _encrypted_ VMSA.
Be explicit about SEV-ES not supporting debug:
- return right away from dr_interception() and skip unnecessary processing;
- return an error right away from the KVM_SEV_LAUNCH_UPDATE_VMSA handler
if debugging was already enabled.
KVM_SET_GUEST_DEBUG are failing already after KVM_SEV_LAUNCH_UPDATE_VMSA
is finished due to vcpu->arch.guest_state_protected set to true.
Add WARN_ON to kvm_x86::sync_dirty_debug_regs() (saves guest DRs on
guest exit) to signify that SEV-ES won't hit that path.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-5-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently SVM setup is done sequentially in
init_vmcb() -> sev_init_vmcb() -> sev_es_init_vmcb() and tries
keeping SVM/SEV/SEV-ES bits separated. One of the exceptions
is #GP intercept which init_vmcb() skips setting for SEV guests and
then sev_es_init_vmcb() needlessly clears it.
Remove the SEV check from init_vmcb(). Clear the #GP intercept in
sev_init_vmcb(). SEV-ES will use the SEV setting.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-3-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Static functions set_dr_intercepts() and clr_dr_intercepts() are only
called from SVM so move them to .c.
No functional change intended.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20230615063757.3039121-2-aik@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
- Drop manual TR/TSS load after VM-Exit now that KVM uses VMLOAD for host state
- Fix a not-yet-problematic missing call to trace_kvm_exit() for VM-Exits that
are handled in the fastpath
- Print more descriptive information about the status of SEV and SEV-ES during
module load
- Assert that misc_cg_set_capacity() doesn't fail to avoid should-be-impossible
memory leaks
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaK5ESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5ApAQAJSlzFh6Cg6OzlKqsrXDTTrNuP7Yu5Pe
tCQm9uppab++TyBz00GCoaUjqXJY1j1riStbl0j1yGJ69Ocjrqj58IGGeoj4NKgt
Dsiwgs0IWCshe7noVcYQeC4FInrNiFOog7Zog7uDyJmtHprZHorcJ9rmsBXMmedw
OSrzoxyhVwbtbPmgMfEP+xw4wccXVioci4EOySqI0GI9QrQ+cfdafs8irxxeLG7v
IY1qG3fwNmGp2uHdb3lG48TUbggWzKG5o1RC+fwwN132Y2fepxjcAeZ25gNms3lz
Q1fm7vPNkGRqelqg7x+z9B10D6uJc0hngZPe6Hs8C7y1+hvTjXwmx81WXsQxM7RM
rhhbp1o1C0xKSLzFciaZyW4lQW4cw5wxGRNoIenpHUe48bK9wjTYxez2MiQwfbNJ
Dt9RAaBVF/UdNBZu2wtA3czgHwOHKSqUOwO2N2iBW62KgRzITQe9r9VtVikslbQD
/nAq7PJOGz8JuJXkDWI0nLYEW6pInzsiXB21CPQrYR8XOQnnWglzmMTL/KxPeVYg
pBHJUf6U7AdhjHMkPp2Yc1eQTNspDzRfZBGFZz1YS103JpmUIs97W0phHru/ONKh
1cBv2N9ZrOJhuL1LAxaLp9OSvR+UQP/mMdCAEjvUTpEbmqbtEAqWMkTTwIEdIi74
PcaJfv7GsYJV
=rcFn
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.5:
- Drop manual TR/TSS load after VM-Exit now that KVM uses VMLOAD for host state
- Fix a not-yet-problematic missing call to trace_kvm_exit() for VM-Exits that
are handled in the fastpath
- Print more descriptive information about the status of SEV and SEV-ES during
module load
- Assert that misc_cg_set_capacity() doesn't fail to avoid should-be-impossible
memory leaks
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaHFgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5twMP/15ZJFqZVigVQoATJeeR9tWUuyJe95xM
lyfnTel91Sg8XOamdwBGi7jLpaDgj34Jm0cfM7/4LbJk2/taeaCLYmJd5w9FXvaw
EkytQGO85hVNe2XuY+h+XxSIxpflKxgFuUnOwcDk2QbKgASzNSG/mJ9ZBx8PNVXD
FnyOqpbbYDFspWWvUOAI/RkHnr/dALjXJsSUMvuh3nz5e1NTyubjCAZg+/bse2nR
s8FrcSh4B0Lg0h4r2fdJ4sAiM/qWhcCIhq5svyTAcUG0T4rMS40LrosJOw3wkBRM
dyZYXy6GEENeCFJPhenF1mTE1embFyZp89PV/FCNRZXODbnM4kheJFT9gucAjlKi
ZafRcutrkYIVf4lZCMofDfQGLX/GCEJnwUPKyGygIsPoDRrdR7OLrFycON5bxocr
9NBNG+2teQFbnt5irB/bBGojtIZtu3OEylkuRjQUQ3lJYQ5r6LddarI9acIu1SHt
4rRfh8QN5qmMvVblaQzggOr6BPtmPr8QqMEMFncaUMCsV/82hRAEfvj2rifGFJNo
Axz1ajMfirxyM45WzredUkzzsbphiiegPBELCLRZfHmaEhJ8P7t7wvri0bXt9YdI
vjSfX+6ulOgDC+xAazE0gEJO4Uh5+g3Y+1e0fr43ltWzUOWdCQskzD3LE9DkqIXj
KAaCuHYbYpIZ
=MwqV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu changes for 6.5:
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Fix a longstanding bug in the reporting of the number of entries returned by
KVM_GET_CPUID2
- Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaGMMSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5iDIP/0PwY3J5odTEUTnAyuDFPimd5PBt9k/O
B414wdpSKVgzq+0An4qM9mKRnklVIh2p8QqQTvDhcBUg3xb6CX9xZ4ery7hp/T5O
tr5bAXs2AYX6jpxvsopt+w+E9j6fvkJhcJCRU9im3QbrqwUE+ecyU5OHvmv2n/GO
syVZJbPOYuoLPKDjlSMrScE6fWEl9UOvHc5BK/vafTeyisMG3vv1BSmJj6GuiNNk
TS1RRIg//cOZghQyDfdXt0azTmakNZyNn35xnoX9x8SRmdRykyUjQeHmeqWxPDso
kiGO+CGancfS57S6ZtCkJjqEWZ1o/zKdOxr8MMf/3nJhv4kY7/5XtlVoACv5soW9
bZEmNiXIaSbvKNMwAlLJxHFbLa1sMdSCb345CIuMdt5QiWJ53ZiTyIAJX6+eL+Zf
8nkeekgPf5VUs6Zt0RdRPyvo+W7Vp9BtI87yDXm1nQKpbys2pt6CD3YB/oF4QViG
a5cyGoFuqRQbS3nmbshIlR7EanTuxbhLZKrNrFnolZ5e624h3Cnk2hVsfTznVGiX
vNHWM80phk1CWB9McErrZVkGfjlyVyBL13CBB2XF7Dl6PfF6/N22a9bOuTJD3tvk
PlNx4hvZm3esvvyGpjfbSajTKYE8O7rxiE1KrF0BpZ5IUl5WSiTr6XCy/yI/mIeM
hay2IWhPOF2z
=D0BH
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.5:
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new
performance monitoring features for AMD processors.
Bit 0 of EAX indicates support for Performance Monitoring Version 2
(PerfMonV2) features. If found to be set during PMU initialization,
the EBX bits of the same CPUID function can be used to determine
the number of available PMCs for different PMU types.
Expose the relevant bits via KVM_GET_SUPPORTED_CPUID so that
guests can make use of the PerfMonV2 features.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Enable and advertise PERFCTR_CORE if and only if the minimum number of
required counters are available, i.e. if perf says there are less than six
general purpose counters.
Opportunistically, use kvm_cpu_cap_check_and_set() instead of open coding
the check for host support.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage shortlog and changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As test_bit() returns bool, explicitly converting result to bool is
unnecessary. Get rid of '!!'.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230605200158.118109-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move SVM's call to trace_kvm_exit() from the "slow" VM-Exit handler to
svm_vcpu_run() so that KVM traces fastpath VM-Exits that re-enter the
guest without bouncing through the slow path. This bug is benign in the
current code base as KVM doesn't currently support any such exits on SVM.
Fixes: a9ab13ff6e ("KVM: X86: Improve latency for single target IPI fastpath")
Link: https://lore.kernel.org/r/20230602011920.787844-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
While testing Hyper-V enabled Windows Server 2019 guests on Zen4 hardware
I noticed that with vCPU count large enough (> 16) they sometimes froze at
boot.
With vCPU count of 64 they never booted successfully - suggesting some kind
of a race condition.
Since adding "vnmi=0" module parameter made these guests boot successfully
it was clear that the problem is most likely (v)NMI-related.
Running kvm-unit-tests quickly showed failing NMI-related tests cases, like
"multiple nmi" and "pending nmi" from apic-split, x2apic and xapic tests
and the NMI parts of eventinj test.
The issue was that once one NMI was being serviced no other NMI was allowed
to be set pending (NMI limit = 0), which was traced to
svm_is_vnmi_pending() wrongly testing for the "NMI blocked" flag rather
than for the "NMI pending" flag.
Fix this by testing for the right flag in svm_is_vnmi_pending().
Once this is done, the NMI-related kvm-unit-tests pass successfully and
the Windows guest no longer freezes at boot.
Fixes: fa4c027a79 ("KVM: x86: Add support for SVM's Virtual NMI")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/be4ca192eb0c1e69a210db3009ca984e6a54ae69.1684495380.git.maciej.szmigiero@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common check-and-set handling of PAT MSR writes out of vendor
code and into kvm_set_msr_common(). This aligns writes with reads, which
are already handled in common code, i.e. makes the handling of reads and
writes symmetrical in common code.
Alternatively, the common handling in kvm_get_msr_common() could be moved
to vendor code, but duplicating code is generally undesirable (even though
the duplicatated code is trivial in this case), and guest writes to PAT
should be rare, i.e. the overhead of the extra function call is a
non-issue in practice.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_pat_valid() directly instead of bouncing through kvm_mtrr_valid().
The PAT is not an MTRR, and kvm_mtrr_valid() just redirects to
kvm_pat_valid(), i.e. is exempt from KVM's "zap SPTEs" logic that's
needed to honor guest MTRRs when the VM has a passthrough device with
non-coherent DMA (KVM does NOT set "ignore guest PAT" in this case, and so
enables hardware virtualization of the guest's PAT, i.e. doesn't need to
manually emulate the PAT memtype).
Signed-off-by: Ke Guo <guoke@uniontech.com>
[sean: massage changelog]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some
major architectures it's not even consistently available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
PA5+V7HcQRk=
=Wp7f
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGuLISHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5NOMQAKy1Od54yzQsIKyAZZJVfOEm7N5VLQgz
+jLilXgHd8dm/g0g/KVCDPFoZ/ut2Tf5Dn4WwyoPWOpgGsOyTwdDIJabf9rustkA
goZFcfUXz+P1nangTidrj6CFYgGmVS13Uu//H19X4bSzT+YifVevJ4QkRVElj9Mh
VBUeXppC/gMGBZ9tKEzl+AU3FwJ58cB88q4boovBFYiDdciv/fF86t02Lc+dCIX1
6hTcOAnjAcp3eJY0wPQJUAEScufDKcMf6tSrsB/yWXv9KB9ANXFNXry8/+lW/Ux/
oOUmUVdRXrrsRUqtYk9+KuMoIN7CL1SBV0RCm5ApqwqwnTVdHS+odHU3c2s7E/uU
QXIW4vwSne3W9Y4YApDgFjwDwmzY85dvblWlWBnR2LW2I3Or48xK+S8LpWG+lj6l
EDf7RzeqAipJ1qUq6qDYJlyg/YsyYlcoErtra423skg38HBWxQXdqkVIz3SYdKjA
0OcBQIRI28KzJDn1gU6P3Q0Wr/cKsx9EGy6+jWBhf4Yf3eHP7+3WUTrg/Up0q8ny
0j/+cbe5kBb6k2T9y2X6jm6TVbPV5FyMBOF/UxmqEbRLmxXjBe8tMnFwV+qN871I
gk5HTSIkX39GU9kNA3h5HoWjdNeRfhazKR9ZVrELVc1zjHnGLthXBPZbIAUsPPMx
vgM6jf8NwLXZ
=9xNX
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.4:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGtd4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z9kP/i3WZ40hevvQvB/5cEpxxmxYDwCYnnjM
hiQgK5jT4SrMTmVjLgkNdI2PogQoS4CX+GC7lcA9bvse84hjuPvgOflb2B+p2UQi
Ytbr9g/tfKNIpnKIk9mcPcSObN9vm2Kgt7n28rtPrHWj89eQzgc66eijqdpKBLxA
c3crVR8krwYAQK0tmzHq1+H6hB369YbHAHyTTRRI/bNWnqKblnvUbt0NL2aBusa9
rNMaOdRtinLpy2dmuX/b3japRB8QTnlf7zpPIF4cBEhbYXy5woClZpf1D2fCA6Er
XFbEoYawMVd9UeJYbW4z5yErLT83eYoGp4U0eFXWp6fvh8nZlgCGvBKE9g4mmqwj
aSLaTR5eVN2qlw6jXVeg3unCo8Eyl36AwYwve2L6sFmBvZvNV5iz2eQ7rrOe4oE3
dnTUaLQ8I2SVg04MbYmCq5W+frTL/I7kqNpbccL1Z3R5WO4y5gz63mug6NfLIvhR
t45TAIaifxBfcXQsBZM3v2KUK/xQrD3AbJmFKh54L2CKqiGaNWsMLX+6NZ7LZWgf
8rEqsVkkQDgF7z8eXai4TR26nYfSX6g9gDqtOH73L87aJ7PJk5cRoDWQ1sWs1e/l
4HA/L0Bo/3pnKAa0ZWxJOixmzqY49gNQf3dj8gt3jk3y2ijbAivshiSpPBmIxn0u
QLeOf/LGvipl
=m18F
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGr2sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5b80P/2ayACpc7iV2DysXkrxOdn1JmMu9BeHd
3oMb7bydf79LMNAO+NKPqVjo74yZ/Lh8UyufJGgF3HnSCdumx5Iklyx6/2PUHu/I
8xT1H7VlIGQMcNy0G4hMus34ZcafJl4y+BXgMEqEErLcy3n598UvFGJ+C0/4lnux
2Gk7dLASHq/mVVKReBM/kD4RhCVy5Venz6zkk9KbwDLHAmfejVK5bSqDYAnO1WtV
IBWetxlVyMZCnfPV2drhzgNVwiHvYvCaMBW+cUk5cH8Z2r0VZVDERmc1D4/rd04t
xs9lMk6CdNU7REQfblA0xMgeO/dNAXq5Fs4FfcM8OTBZU32KKafPhgW1uj2Sv+9l
nbb1XxZ7C0EcBhKVbUD6zRl05vjHwxlRgoi0yWUqERthFKNXHV42JJgaNn4fxDYS
tOBKBNkM9z6tCGN2aZv6GwhsEyY2y7oLdbZUGK9/FM3mF1VBASms1BTwokJXTxCD
pkOpAGeN5hxOlC4/wl6iHJTrz9oaJUj5E5kMD1oK6oQJgnnfqH0kVTG/ui/OUtJg
8N3amYO/d7InFvuE0f9R6TqZVhTN2QefHmNJaEldsmYp1NMI8Ep8JIhQKRA2LZVE
CGRxyrPj5CESerAItAI6tshEre5W8aScEzhpmd6HgHmahhQJsCEj+3q/J8FPWLG/
iQ3GnggrklfU
=qj7D
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.4:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
Add macros to track the range of VMX feature MSRs that are emulated by
KVM to reduce the maintenance cost of extending the set of emulated MSRs.
Note, KVM doesn't necessarily emulate all known/consumed VMX MSRs, e.g.
PROCBASED_CTLS3 is consumed by KVM to enable IPI virtualization, but is
not emulated as KVM doesn't emulate/virtualize IPI virtualization for
nested guests.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename "r" to "ret" and actually return it from svm_set_msr() to reduce
the probability of repeating the mistake of commit 723d5fb0ff ("kvm:
svm: Add IA32_FLUSH_CMD guest support"), which set "r" thinking that it
would be propagated to the caller.
Alternatively, the declaration of "r" could be moved into the handling of
MSR_TSC_AUX, but that risks variable shadowing in the future. A wrapper
for kvm_set_user_return_msr() would allow eliding a local variable, but
that feels like delaying the inevitable.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Virtualize FLUSH_L1D so that the guest can use the performant L1D flush
if one of the many mitigations might require a flush in the guest, e.g.
Linux provides an option to flush the L1D when switching mms.
Passthrough MSR_IA32_FLUSH_CMD for write when it's supported in hardware
and exposed to the guest, i.e. always let the guest write it directly if
FLUSH_L1D is fully supported.
Forward writes to hardware in host context on the off chance that KVM
ends up emulating a WRMSR, or in the really unlikely scenario where
userspace wants to force a flush. Restrict these forwarded WRMSRs to
the known command out of an abundance of caution. Passing through the
MSR means the guest can throw any and all values at hardware, but doing
so in host context is arguably a bit more dangerous.
Link: https://lkml.kernel.org/r/CALMp9eTt3xzAEoQ038bJQ9LN0ZOXrSWsN7xnNUD%2B0SS%3DWwF7Pg%40mail.gmail.com
Link: https://lore.kernel.org/all/20230201132905.549148-2-eesposit@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dedup the handling of MSR_IA32_PRED_CMD across VMX and SVM by moving the
logic to kvm_set_msr_common(). Now that the MSR interception toggling is
handled as part of setting guest CPUID, the VMX and SVM paths are
identical.
Opportunistically massage the code to make it a wee bit denser.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230322011440.2195485-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passthrough MSR_IA32_PRED_CMD based purely on whether or not the MSR is
supported and enabled, i.e. don't wait until the first write. There's no
benefit to deferred passthrough, and the extra logic only adds complexity.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert the recently added virtualizing of MSR_IA32_FLUSH_CMD, as both
the VMX and SVM are fatally buggy to guests that use MSR_IA32_FLUSH_CMD or
MSR_IA32_PRED_CMD, and because the entire foundation of the logic is
flawed.
The most immediate problem is an inverted check on @cmd that results in
rejecting legal values. SVM doubles down on bugs and drops the error,
i.e. silently breaks all guest mitigations based on the command MSRs.
The next issue is that neither VMX nor SVM was updated to mark
MSR_IA32_FLUSH_CMD as being a possible passthrough MSR,
which isn't hugely problematic, but does break MSR filtering and triggers
a WARN on VMX designed to catch this exact bug.
The foundational issues stem from the MSR_IA32_FLUSH_CMD code reusing
logic from MSR_IA32_PRED_CMD, which in turn was likely copied from KVM's
support for MSR_IA32_SPEC_CTRL. The copy+paste from MSR_IA32_SPEC_CTRL
was misguided as MSR_IA32_PRED_CMD (and MSR_IA32_FLUSH_CMD) is a
write-only MSR, i.e. doesn't need the same "deferred passthrough"
shenanigans as MSR_IA32_SPEC_CTRL.
Revert all MSR_IA32_FLUSH_CMD enabling in one fell swoop so that there is
no point where KVM advertises, but does not support, L1D_FLUSH.
This reverts commits 45cf86f261,
723d5fb0ff, and
a807b78ad0.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/20230317190432.GA863767%40dev-arch.thelio-3990X
Cc: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Message-Id: <20230322011440.2195485-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Hyper-V "EnlightenedNptTlb" enlightenment is always enabled when KVM
is running on top of Hyper-V and Hyper-V exposes support for it (which
is always). On AMD CPUs this enlightenment results in ASID invalidations
not flushing TLB entries derived from the NPT. To force the underlying
(L0) hypervisor to rebuild its shadow page tables, an explicit hypercall
is needed.
The original KVM implementation of Hyper-V's "EnlightenedNptTlb" on SVM
only added remote TLB flush hooks. This worked out fine for a while, as
sufficient remote TLB flushes where being issued in KVM to mask the
problem. Since v5.17, changes in the TDP code reduced the number of
flushes and the out-of-sync TLB prevents guests from booting
successfully.
Split svm_flush_tlb_current() into separate callbacks for the 3 cases
(guest/all/current), and issue the required Hyper-V hypercall when a
Hyper-V TLB flush is needed. The most important case where the TLB flush
was missing is when loading a new PGD, which is followed by what is now
svm_flush_tlb_current().
Cc: stable@vger.kernel.org # v5.17+
Fixes: 1e0c7d4075 ("KVM: SVM: hyper-v: Remote TLB flush for SVM")
Link: https://lore.kernel.org/lkml/43980946-7bbf-dcef-7e40-af904c456250@linux.microsoft.com/
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20230324145233.4585-1-jpiotrowski@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To be able to trace invocations of smp_send_reschedule(), rename the
arch-specific definitions of it to arch_smp_send_reschedule() and wrap it
into an smp_send_reschedule() that contains a tracepoint.
Changes to include the declaration of the tracepoint were driven by the
following coccinelle script:
@func_use@
@@
smp_send_reschedule(...);
@include@
@@
#include <trace/events/ipi.h>
@no_include depends on func_use && !include@
@@
#include <...>
+
+ #include <trace/events/ipi.h>
[csky bits]
[riscv bits]
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
Allow L1 to use vNMI to accelerate its injection of NMI to L2 by
propagating vNMI int_ctl bits from/to vmcb12 to/from vmcb02.
To handle both the case where vNMI is enabled for L1 and L2, and where
vNMI is enabled for L1 but _not_ L2, move pending L1 vNMIs to nmi_pending
on nested VM-Entry and raise KVM_REQ_EVENT, i.e. rely on existing code to
route the NMI to the correct domain.
On nested VM-Exit, reverse the process and set/clear V_NMI_PENDING for L1
based one whether nmi_pending is zero or non-zero. There is no need to
consider vmcb02 in this case, as V_NMI_PENDING can be set in vmcb02 if
vNMI is disabled for L2, and if vNMI is enabled for L2, then L1 and L2
have different NMI contexts.
Co-developed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-12-santosh.shukla@amd.com
[sean: massage changelog to match the code]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support for SVM's Virtual NMIs implementation, which adds proper
tracking of virtual NMI blocking, and an intr_ctrl flag that software can
set to mark a virtual NMI as pending. Pending virtual NMIs are serviced
by hardware if/when virtual NMIs become unblocked, i.e. act more or less
like real NMIs.
Introduce two new kvm_x86_ops callbacks so to support SVM's vNMI, as KVM
needs to treat a pending vNMI as partially injected. Specifically, if
two NMIs (for L1) arrive concurrently in KVM's software model, KVM's ABI
is to inject one and pend the other. Without vNMI, KVM manually tracks
the pending NMI and uses NMI windows to detect when the NMI should be
injected.
With vNMI, the pending NMI is simply stuffed into the VMCB and handed
off to hardware. This means that KVM needs to be able to set a vNMI
pending on-demand, and also query if a vNMI is pending, e.g. to honor the
"at most one NMI pending" rule and to preserve all NMIs across save and
restore.
Warn if KVM attempts to open an NMI window when vNMI is fully enabled,
as the above logic should prevent KVM from ever getting to
kvm_check_and_inject_events() with two NMIs pending _in software_, and
the "at most one NMI pending" logic should prevent having an NMI pending
in hardware and an NMI pending in software if NMIs are also blocked, i.e.
if KVM can't immediately inject the second NMI.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Co-developed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230227084016.3368-11-santosh.shukla@amd.com
[sean: rewrite shortlog and changelog, massage code comments]
Signed-off-by: Sean Christopherson <seanjc@google.com>
SEV-ES guests don't use IRET interception for the detection of
an end of a NMI.
Therefore it makes sense to create a wrapper to avoid repeating
the check for the SEV-ES.
No functional change is intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
[Renamed iret intercept API of style svm_{clr,set}_iret_intercept()]
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-5-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable intercept of virtual interrupts (used to detect interrupt windows)
if the saved host (L1) RFLAGS.IF is '0', as the effective RFLAGS.IF for L1
interrupts will never be set while L2 is running (L2's RFLAGS.IF doesn't
affect L1 IRQs when virtual interrupts are enabled).
Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lkml.kernel.org/r/Y9hybI65So5X2LFg%40google.com
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-3-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_is_cr4_bit_set() to query SMAP and SMEP when determining whether
or not AMD's SMAP+SEV errata prevents KVM from emulating an instruction.
This eliminates an implicit cast from ulong to bool and makes the code
slightly more readable.
Note, any overhead from making multiple calls to kvm_read_cr4_bits() is
negligible, not to mention the code is question is encountered only in
rare situations, i.e. is not a remotely hot path.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-4-binbin.wu@linux.intel.com
[sean: keep local smap/smep variables, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Convert is_{pae,pse,paging}() to use kvm_is_cr{0,4}_bit_set() and return
bools. Returning an "int" requires not one, but two implicit casts, first
from "unsigned long" to "int", and then again to a "bool". Both casts are
more than a bit dangerous; the ulong=>int casts would drop a bit on 64-bit
kernels _if_ the bits in question weren't in the lower 32 bits, and the
int=>bool cast can result in false negatives/positives, e.g. see commit
0c928ff26b ("KVM: SVM: Fix benign "bool vs. int" comparison in
svm_set_cr0()").
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-3-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly convert the return from is_paging() to a bool when comparing
against old_paging, which is also a boolean. is_paging() sneakily uses
kvm_read_cr0_bits() and returns an int, i.e. returns X86_CR0_PG or 0, not
1 or 0.
Luckily, the bug is benign as it only results in a false positive, not a
false negative, i.e. only causes a spurious refresh of CR4 when paging is
enabled in both the old and new.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: c53bbe2145 ("KVM: x86: SVM: don't passthrough SMAP/SMEP/PKE bits in !NPT && !gCR0.PG case")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Expose IA32_FLUSH_CMD to the guest if the guest CPUID enumerates
support for this MSR. As with IA32_PRED_CMD, permission for
unintercepted writes to this MSR will be granted to the guest after
the first non-zero write.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201132905.549148-3-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move the SVM-specific "host flags" into vcpu_svm (extracted from the
vNMI enabling series)
- A handful for fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmPsH7kSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5/dQQAJSVCYA7F7LcfJf+c1ULG0XCd8rHnXdR
EGTygTnWrzwTCRaunOBPE4AJRxKdkwTKy+yfnnQVRdYYfRe1SZKpUQ2XNEDGn0+v
zVfOmSFFcCWXmJeY8y5n1GlDH4ENO3G7nD1ncDQ0I9PazmOsmxChoVZ9afFJ5bpo
73hjcYVfUDYxGkeRLWSSSFtWIGguE8BkpRH3wZ8MGZi+ueoFUJPPBKHeDtxCV2/T
KcJLne8tQVTiWCdMO3EFwxgIvsjQDoT0gZYLYNHJ6KqD9Szc3jA9v2ryTm5IYlpb
akYUqePaD0SGrrfDBrwz3bLu3fehDu7eduXESRlzzb8S4xP7/qXeo9KeVN+b4MBb
nmBBFncvMWbC8Po5wB5OVAfAa7ACmGiXeBV8pfgGI6FTq1fpc4VNm2PevKkDvlqN
O2eZ1KuNkwBnbIPj3JVPPnsJcUjYXFjZyzfpMV1T+ExmL/IYceatX4S7zfgL5nUg
3qFi5mX2Cufk2EBvBu+Dkpt/H4lze+ysZRciMC+v7Q4LWAYZ8HW1a44pnBVUJMPM
bWiJ1/O8RIWM1tWIrlO38+ZZalbu3spIVMBXKzqEGXvpUwJ4UgZM1tFiWvISTVFe
2X6N3d7aT/DQ1PzZU6BsyVZWAFaodHBauMcr9FUkWqqGu3HOhqC4rSJZ9eRR7V5O
WSp1gTVY1JXy
=AVpx
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.3' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.3:
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move the SVM-specific "host flags" into vcpu_svm (extracted from the
vNMI enabling series)
- A handful for fixes and cleanups
Move HF_NMI_MASK and HF_IRET_MASK (a.k.a. "waiting for IRET") out of the
common "hflags" and into dedicated flags in "struct vcpu_svm". The flags
are used only for the SVM and thus should not be in hflags.
Tracking NMI masking in software isn't SVM specific, e.g. VMX has a
similar flag (soft_vnmi_blocked), but that's much more of a hack as VMX
can't intercept IRET, is useful only for ancient CPUs, i.e. will
hopefully be removed at some point, and again the exact behavior is
vendor specific and shouldn't ever be referenced in common code.
converting VMX
No functional change is intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20221129193717.513824-5-mlevitsk@redhat.com
[sean: split from HF_GIF_MASK patch]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to print unimplemented MSR accesses and condition all such
prints on report_ignored_msrs, i.e. honor userspace's request to not
print unimplemented MSRs. Even though vcpu_unimpl() is ratelimited,
printing can still be problematic, e.g. if a print gets stalled when host
userspace is writing MSRs during live migration, an effective stall can
result in very noticeable disruption in the guest.
E.g. the profile below was taken while calling KVM_SET_MSRS on the PMU
counters while the PMU was disabled in KVM.
- 99.75% 0.00% [.] __ioctl
- __ioctl
- 99.74% entry_SYSCALL_64_after_hwframe
do_syscall_64
sys_ioctl
- do_vfs_ioctl
- 92.48% kvm_vcpu_ioctl
- kvm_arch_vcpu_ioctl
- 85.12% kvm_set_msr_ignored_check
svm_set_msr
kvm_set_msr_common
printk
vprintk_func
vprintk_default
vprintk_emit
console_unlock
call_console_drivers
univ8250_console_write
serial8250_console_write
uart_console_write
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add the AMD Automatic IBRS feature bit to those being propagated to the guest,
and enable the guest EFER bit.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-9-kim.phillips@amd.com
Even in commit 4bdec12aa8 ("KVM: SVM: Detect X2APIC virtualization
(x2AVIC) support"), where avic_hardware_setup() was first introduced,
its only pass-in parameter "struct kvm_x86_ops *ops" is not used at all.
Clean it up a bit to avoid compiler ranting from LLVM toolchain.
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221109115952.92816-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Return value from svm_nmi_blocked() directly instead of taking
this in another redundant variable.
Signed-off-by: zhang songyi <zhang.songyi@zte.com.cn>
Link: https://lore.kernel.org/r/202211282003389362484@zte.com.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.
The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the per-vendor required APICv inhibits with a variable instead of
calling into vendor code every time KVM wants to query the set of
required inhibits. The required inhibits are a property of the vendor's
virtualization architecture, i.e. are 100% static.
Using a variable allows the compiler to inline the check, e.g. generate
a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking
inhibits for performance reasons.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the "avic_mode" enum with a single bool to track whether or not
x2AVIC is enabled. KVM already has "apicv_enabled" that tracks if any
flavor of AVIC is enabled, i.e. AVIC_MODE_NONE and AVIC_MODE_X1 are
redundant and unnecessary noise.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's
AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with
x2APIC enabled. On AMD, if its "hybrid" mode is enabled (AVIC is enabled
when x2APIC is enabled even without x2AVIC support), keeping the APIC
access page memslot results in the guest being able to access the virtual
APIC page as x2APIC is fully emulated by KVM. I.e. hardware isn't aware
that the guest is operating in x2APIC mode.
Exempt nested SVM's update of APICv state from the new logic as x2APIC
can't be toggled on VM-Exit. In practice, invoking the x2APIC logic
should be harmless precisely because it should be a glorified nop, but
play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU
lock.
Intel doesn't suffer from the same issue as APICv has fully independent
VMCS controls for xAPIC vs. x2APIC virtualization. Technically, KVM
should provide bus error semantics and not memory semantics for the APIC
page when x2APIC is enabled, but KVM already provides memory semantics in
other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware
disabled (via APIC_BASE MSR).
Note, checking apic_access_memslot_enabled without taking locks relies
it being set during vCPU creation (before kvm_vcpu_reset()). vCPUs can
race to set the inhibit and delete the memslot, i.e. can get false
positives, but can't get false negatives as apic_access_memslot_enabled
can't be toggled "on" once any vCPU reaches KVM_RUN.
Opportunistically drop the "can" while updating avic_activate_vmcb()'s
comment, i.e. to state that KVM _does_ support the hybrid mode. Move
the "Note:" down a line to conform to preferred kernel/KVM multi-line
comment style.
Opportunistically update the apicv_update_lock comment, as it isn't
actually used to protect apic_access_memslot_enabled (which is protected
by slots_lock).
Fixes: 0e311d33bf ("KVM: SVM: Introduce hybrid-AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the VMCB updates from avic_refresh_apicv_exec_ctrl() into
avic_set_virtual_apic_mode() and invert the dependency being said
functions to avoid calling avic_vcpu_{load,put}() and
avic_set_pi_irte_mode() when "only" setting the virtual APIC mode.
avic_set_virtual_apic_mode() is invoked from common x86 with preemption
enabled, which makes avic_vcpu_{load,put}() unhappy. Luckily, calling
those and updating IRTE stuff is unnecessary as the only reason
avic_set_virtual_apic_mode() is called is to handle transitions between
xAPIC and x2APIC that don't also toggle APICv activation. And if
activation doesn't change, there's no need to fiddle with the physical
APIC ID table or update IRTE.
The "full" refresh is guaranteed to be called if activation changes in
this case as the only call to the "set" path is:
kvm_vcpu_update_apicv(vcpu);
static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
and kvm_vcpu_update_apicv() invokes the refresh if activation changes:
if (apic->apicv_active == activate)
goto out;
apic->apicv_active = activate;
kvm_apic_update_apicv(vcpu);
static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
Rename the helper to reflect that it is also called during "refresh".
WARNING: CPU: 183 PID: 49186 at arch/x86/kvm/svm/avic.c:1081 avic_vcpu_put+0xde/0xf0 [kvm_amd]
CPU: 183 PID: 49186 Comm: stable Tainted: G O 6.0.0-smp--fcddbca45f0a-sink #34
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
RIP: 0010:avic_vcpu_put+0xde/0xf0 [kvm_amd]
avic_refresh_apicv_exec_ctrl+0x142/0x1c0 [kvm_amd]
avic_set_virtual_apic_mode+0x5a/0x70 [kvm_amd]
kvm_lapic_set_base+0x149/0x1a0 [kvm]
kvm_set_apic_base+0x8f/0xd0 [kvm]
kvm_set_msr_common+0xa3a/0xdc0 [kvm]
svm_set_msr+0x364/0x6b0 [kvm_amd]
__kvm_set_msr+0xb8/0x1c0 [kvm]
kvm_emulate_wrmsr+0x58/0x1d0 [kvm]
msr_interception+0x1c/0x30 [kvm_amd]
svm_invoke_exit_handler+0x31/0x100 [kvm_amd]
svm_handle_exit+0xfc/0x160 [kvm_amd]
vcpu_enter_guest+0x21bb/0x23e0 [kvm]
vcpu_run+0x92/0x450 [kvm]
kvm_arch_vcpu_ioctl_run+0x43e/0x6e0 [kvm]
kvm_vcpu_ioctl+0x559/0x620 [kvm]
Fixes: 05c4fe8c1b ("KVM: SVM: Refresh AVIC configuration when changing APIC mode")
Cc: stable@vger.kernel.org
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do compatibility checks when enabling hardware to effectively add
compatibility checks when onlining a CPU. Abort enabling, i.e. the
online process, if the (hotplugged) CPU is incompatible with the known
good setup.
At init time, KVM does compatibility checks to ensure that all online
CPUs support hardware virtualization and a common set of features. But
KVM uses hotplugged CPUs without such compatibility checks. On Intel
CPUs, this leads to #GP if the hotplugged CPU doesn't support VMX, or
VM-Entry failure if the hotplugged CPU doesn't support all features
enabled by KVM.
Note, this is little more than a NOP on SVM, as SVM already checks for
full SVM support during hardware enabling.
Opportunistically add a pr_err() if setup_vmcs_config() fails, and
tweak all error messages to output which CPU failed.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the .check_processor_compatibility() callback from kvm_x86_init_ops
to kvm_x86_ops to allow a future patch to do compatibility checks during
CPU hotplug.
Do kvm_ops_update() before compat checks so that static_call() can be
used during compat checks.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check that SVM is supported and enabled in the processor compatibility
checks. SVM already checks for support during hardware enabling,
i.e. this doesn't really add new functionality. The net effect is that
KVM will refuse to load if a CPU doesn't have SVM fully enabled, as
opposed to failing KVM_CREATE_VM.
Opportunistically move svm_check_processor_compat() up in svm.c so that
it can be invoked during hardware enabling in a future patch.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do basic VMX/SVM support checks directly in vendor code instead of
implementing them via kvm_x86_ops hooks. Beyond the superficial benefit
of providing common messages, which isn't even clearly a net positive
since vendor code can provide more precise/detailed messages, there's
zero advantage to bouncing through common x86 code.
Consolidating the checks will also simplify performing the checks
across all CPUs (in a future patch).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KBUILD_MODNAME to specify the vendor module name instead of manually
writing out the name to make it a bit more obvious that the name isn't
completely arbitrary. A future patch will also use KBUILD_MODNAME to
define pr_fmt, at which point using KBUILD_MODNAME for kvm_x86_ops.name
further reinforces the intended usage of kvm_x86_ops.name.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_check_processor_compat() and its support code now that all
architecture implementations are nops.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Acked-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>