mirror of https://github.com/torvalds/linux.git
185 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
4291e9ee61 |
kasan, arm64: print report from tag fault handler
Add error reporting for hardware tag-based KASAN. When CONFIG_KASAN_HW_TAGS is enabled, print KASAN report from the arm64 tag fault handler. SAS bits aren't set in ESR for all faults reported in EL1, so it's impossible to find out the size of the access the caused the fault. Adapt KASAN reporting code to handle this case. Link: https://lkml.kernel.org/r/b559c82b6a969afedf53b4694b475f0234067a1a.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
98c970da8b |
arm64: mte: add in-kernel tag fault handler
Add the implementation of the in-kernel fault handler. When a tag fault happens on a kernel address: * MTE is disabled on the current CPU, * the execution continues. When a tag fault happens on a user address: * the kernel executes do_bad_area() and panics. The tag fault handler for kernel addresses is currently empty and will be filled in by a future commit. Link: https://lkml.kernel.org/r/20201203102628.GB2224@gaia Link: https://lkml.kernel.org/r/ad31529b073e22840b7a2246172c2b67747ed7c4.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> [catalin.marinas@arm.com: ensure CONFIG_ARM64_PAN is enabled with MTE] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
d889797530 |
Merge remote-tracking branch 'arm64/for-next/fixes' into for-next/core
* arm64/for-next/fixes: (26 commits)
arm64: mte: fix prctl(PR_GET_TAGGED_ADDR_CTRL) if TCF0=NONE
arm64: mte: Fix typo in macro definition
arm64: entry: fix EL1 debug transitions
arm64: entry: fix NMI {user, kernel}->kernel transitions
arm64: entry: fix non-NMI kernel<->kernel transitions
arm64: ptrace: prepare for EL1 irq/rcu tracking
arm64: entry: fix non-NMI user<->kernel transitions
arm64: entry: move el1 irq/nmi logic to C
arm64: entry: prepare ret_to_user for function call
arm64: entry: move enter_from_user_mode to entry-common.c
arm64: entry: mark entry code as noinstr
arm64: mark idle code as noinstr
arm64: syscall: exit userspace before unmasking exceptions
arm64: pgtable: Ensure dirty bit is preserved across pte_wrprotect()
arm64: pgtable: Fix pte_accessible()
ACPI/IORT: Fix doc warnings in iort.c
arm64/fpsimd: add <asm/insn.h> to <asm/kprobes.h> to fix fpsimd build
arm64: cpu_errata: Apply Erratum 845719 to KRYO2XX Silver
arm64: proton-pack: Add KRYO2XX silver CPUs to spectre-v2 safe-list
arm64: kpti: Add KRYO2XX gold/silver CPU cores to kpti safelist
...
# Conflicts:
# arch/arm64/include/asm/exception.h
# arch/arm64/kernel/sdei.c
|
|
|
|
e0f7a8d5e8 |
Merge branch 'for-next/uaccess' into for-next/core
* for-next/uaccess:
: uaccess routines clean-up and set_fs() removal
arm64: mark __system_matches_cap as __maybe_unused
arm64: uaccess: remove vestigal UAO support
arm64: uaccess: remove redundant PAN toggling
arm64: uaccess: remove addr_limit_user_check()
arm64: uaccess: remove set_fs()
arm64: uaccess cleanup macro naming
arm64: uaccess: split user/kernel routines
arm64: uaccess: refactor __{get,put}_user
arm64: uaccess: simplify __copy_user_flushcache()
arm64: uaccess: rename privileged uaccess routines
arm64: sdei: explicitly simulate PAN/UAO entry
arm64: sdei: move uaccess logic to arch/arm64/
arm64: head.S: always initialize PSTATE
arm64: head.S: cleanup SCTLR_ELx initialization
arm64: head.S: rename el2_setup -> init_kernel_el
arm64: add C wrappers for SET_PSTATE_*()
arm64: ensure ERET from kthread is illegal
|
|
|
|
3d2403fd10 |
arm64: uaccess: remove set_fs()
Now that the uaccess primitives dont take addr_limit into account, we have no need to manipulate this via set_fs() and get_fs(). Remove support for these, along with some infrastructure this renders redundant. We no longer need to flip UAO to access kernel memory under KERNEL_DS, and head.S unconditionally clears UAO for all kernel configurations via an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO, nor do we need to context-switch it. However, we still need to adjust PAN during SDEI entry. Masking of __user pointers no longer needs to use the dynamic value of addr_limit, and can use a constant derived from the maximum possible userspace task size. A new TASK_SIZE_MAX constant is introduced for this, which is also used by core code. In configurations supporting 52-bit VAs, this may include a region of unusable VA space above a 48-bit TTBR0 limit, but never includes any portion of TTBR1. Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and KERNEL_DS were inclusive limits, and is converted to a mask by subtracting one. As the SDEI entry code repurposes the otherwise unnecessary pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted context, for now we rename that to pt_regs::sdei_ttbr1. In future we can consider factoring that out. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: James Morse <james.morse@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-10-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
2a9b3e6ac6 |
arm64: entry: fix EL1 debug transitions
In debug_exception_enter() and debug_exception_exit() we trace hardirqs on/off while RCU isn't guaranteed to be watching, and we don't save and restore the hardirq state, and so may return with this having changed. Handle this appropriately with new entry/exit helpers which do the bare minimum to ensure this is appropriately maintained, without marking debug exceptions as NMIs. These are placed in entry-common.c with the other entry/exit helpers. In future we'll want to reconsider whether some debug exceptions should be NMIs, but this will require a significant refactoring, and for now this should prevent issues with lockdep and RCU. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marins <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201130115950.22492-12-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
23529049c6 |
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE will WARN() at boot time that interrupts are enabled when we call context_tracking_user_enter(), despite the DAIF flags indicating that IRQs are masked. The problem is that we're not tracking IRQ flag changes accurately, and so lockdep believes interrupts are enabled when they are not (and vice-versa). We can shuffle things so to make this more accurate. For kernel->user transitions there are a number of constraints we need to consider: 1) When we call __context_tracking_user_enter() HW IRQs must be disabled and lockdep must be up-to-date with this. 2) Userspace should be treated as having IRQs enabled from the PoV of both lockdep and tracing. 3) As context_tracking_user_enter() stops RCU from watching, we cannot use RCU after calling it. 4) IRQ flag tracing and lockdep have state that must be manipulated before RCU is disabled. ... with similar constraints applying for user->kernel transitions, with the ordering reversed. The generic entry code has enter_from_user_mode() and exit_to_user_mode() helpers to handle this. We can't use those directly, so we add arm64 copies for now (without the instrumentation markers which aren't used on arm64). These replace the existing user_exit() and user_exit_irqoff() calls spread throughout handlers, and the exception unmasking is left as-is. Note that: * The accounting for debug exceptions from userspace now happens in el0_dbg() and ret_to_user(), so this is removed from debug_exception_enter() and debug_exception_exit(). As user_exit_irqoff() wakes RCU, the userspace-specific check is removed. * The accounting for syscalls now happens in el0_svc(), el0_svc_compat(), and ret_to_user(), so this is removed from el0_svc_common(). This does not adversely affect the workaround for erratum 1463225, as this does not depend on any of the state tracking. * In ret_to_user() we mask interrupts with local_daif_mask(), and so we need to inform lockdep and tracing. Here a trace_hardirqs_off() is sufficient and safe as we have not yet exited kernel context and RCU is usable. * As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only needs to check for the latter. * EL0 SError handling will be dealt with in a subsequent patch, as this needs to be treated as an NMI. Prior to this patch, booting an appropriately-configured kernel would result in spats as below: | DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled()) | WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0 | Modules linked in: | CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3 | Hardware name: linux,dummy-virt (DT) | pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--) | pc : check_flags.part.54+0x1dc/0x1f0 | lr : check_flags.part.54+0x1dc/0x1f0 | sp : ffff80001003bd80 | x29: ffff80001003bd80 x28: ffff66ce801e0000 | x27: 00000000ffffffff x26: 00000000000003c0 | x25: 0000000000000000 x24: ffffc31842527258 | x23: ffffc31842491368 x22: ffffc3184282d000 | x21: 0000000000000000 x20: 0000000000000001 | x19: ffffc318432ce000 x18: 0080000000000000 | x17: 0000000000000000 x16: ffffc31840f18a78 | x15: 0000000000000001 x14: ffffc3184285c810 | x13: 0000000000000001 x12: 0000000000000000 | x11: ffffc318415857a0 x10: ffffc318406614c0 | x9 : ffffc318415857a0 x8 : ffffc31841f1d000 | x7 : 647261685f706564 x6 : ffffc3183ff7c66c | x5 : ffff66ce801e0000 x4 : 0000000000000000 | x3 : ffffc3183fe00000 x2 : ffffc31841500000 | x1 : e956dc24146b3500 x0 : 0000000000000000 | Call trace: | check_flags.part.54+0x1dc/0x1f0 | lock_is_held_type+0x10c/0x188 | rcu_read_lock_sched_held+0x70/0x98 | __context_tracking_enter+0x310/0x350 | context_tracking_enter.part.3+0x5c/0xc8 | context_tracking_user_enter+0x6c/0x80 | finish_ret_to_user+0x2c/0x13cr Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
dceec3ff78 |
arm64: expose FAR_EL1 tag bits in siginfo
The kernel currently clears the tag bits (i.e. bits 56-63) in the fault address exposed via siginfo.si_addr and sigcontext.fault_address. However, the tag bits may be needed by tools in order to accurately diagnose memory errors, such as HWASan [1] or future tools based on the Memory Tagging Extension (MTE). Expose these bits via the arch_untagged_si_addr mechanism, so that they are only exposed to signal handlers with the SA_EXPOSE_TAGBITS flag set. [1] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://linux-review.googlesource.com/id/Ia8876bad8c798e0a32df7c2ce1256c4771c81446 Link: https://lore.kernel.org/r/0010296597784267472fa13b39f8238d87a72cf8.1605904350.git.pcc@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
96d389ca10 |
arm64: Add workaround for Arm Cortex-A77 erratum 1508412
On Cortex-A77 r0p0 and r1p0, a sequence of a non-cacheable or device load and a store exclusive or PAR_EL1 read can cause a deadlock. The workaround requires a DMB SY before and after a PAR_EL1 register read. In addition, it's possible an interrupt (doing a device read) or KVM guest exit could be taken between the DMB and PAR read, so we also need a DMB before returning from interrupt and before returning to a guest. A deadlock is still possible with the workaround as KVM guests must also have the workaround. IOW, a malicious guest can deadlock an affected systems. This workaround also depends on a firmware counterpart to enable the h/w to insert DMB SY after load and store exclusive instructions. See the errata document SDEN-1152370 v10 [1] for more information. [1] https://static.docs.arm.com/101992/0010/Arm_Cortex_A77_MP074_Software_Developer_Errata_Notice_v10.pdf Signed-off-by: Rob Herring <robh@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Julien Thierry <julien.thierry.kdev@gmail.com> Cc: kvmarm@lists.cs.columbia.edu Link: https://lore.kernel.org/r/20201028182839.166037-2-robh@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
baab853229 |
Merge branch 'for-next/mte' into for-next/core
Add userspace support for the Memory Tagging Extension introduced by
Armv8.5.
(Catalin Marinas and others)
* for-next/mte: (30 commits)
arm64: mte: Fix typo in memory tagging ABI documentation
arm64: mte: Add Memory Tagging Extension documentation
arm64: mte: Kconfig entry
arm64: mte: Save tags when hibernating
arm64: mte: Enable swap of tagged pages
mm: Add arch hooks for saving/restoring tags
fs: Handle intra-page faults in copy_mount_options()
arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset
arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS support
arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasks
arm64: mte: Restore the GCR_EL1 register after a suspend
arm64: mte: Allow user control of the generated random tags via prctl()
arm64: mte: Allow user control of the tag check mode via prctl()
mm: Allow arm64 mmap(PROT_MTE) on RAM-based files
arm64: mte: Validate the PROT_MTE request via arch_validate_flags()
mm: Introduce arch_validate_flags()
arm64: mte: Add PROT_MTE support to mmap() and mprotect()
mm: Introduce arch_calc_vm_flag_bits()
arm64: mte: Tags-aware aware memcmp_pages() implementation
arm64: Avoid unnecessary clear_user_page() indirection
...
|
|
|
|
6a1bdb173f |
arm64: mm: Make flush_tlb_fix_spurious_fault() a no-op
Our use of broadcast TLB maintenance means that spurious page-faults that have been handled already by another CPU do not require additional TLB maintenance. Make flush_tlb_fix_spurious_fault() a no-op and rely on the existing TLB invalidation instead. Add an explicit flush_tlb_page() when making a page dirty, as the TLB is permitted to cache the old read-only entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20200728092220.GA21800@willie-the-truck Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
637ec831ea |
arm64: mte: Handle synchronous and asynchronous tag check faults
The Memory Tagging Extension has two modes of notifying a tag check fault at EL0, configurable through the SCTLR_EL1.TCF0 field: 1. Synchronous raising of a Data Abort exception with DFSC 17. 2. Asynchronous setting of a cumulative bit in TFSRE0_EL1. Add the exception handler for the synchronous exception and handling of the asynchronous TFSRE0_EL1.TF0 bit setting via a new TIF flag in do_notify_resume(). On a tag check failure in user-space, whether synchronous or asynchronous, a SIGSEGV will be raised on the faulting thread. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> |
|
|
|
6a1bb025d2 |
mm/arm64: use general page fault accounting
Use the general page fault accounting by passing regs into handle_mm_fault(). It naturally solve the issue of multiple page fault accounting when page fault retry happened. To do this, we pass pt_regs pointer into __do_page_fault(). Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Link: http://lkml.kernel.org/r/20200707225021.200906-6-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
bce617edec |
mm: do page fault accounting in handle_mm_fault
Patch series "mm: Page fault accounting cleanups", v5.
This is v5 of the pf accounting cleanup series. It originates from Gerald
Schaefer's report on an issue a week ago regarding to incorrect page fault
accountings for retried page fault after commit
|
|
|
|
d8ed45c5dc |
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
e31cf2f4ca |
mm: don't include asm/pgtable.h if linux/mm.h is already included
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
e9f6376858 |
arm64: add support for folded p4d page tables
Implement primitives necessary for the 4th level folding, add walks of p4d level where appropriate, replace 5level-fixup.h with pgtable-nop4d.h and remove __ARCH_USE_5LEVEL_HACK. [arnd@arndb.de: fix gcc-10 shift warning] Link: http://lkml.kernel.org/r/20200429185657.4085975-1-arnd@arndb.de Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: James Morse <james.morse@arm.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Julien Thierry <julien.thierry.kdev@gmail.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200414153455.21744-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
8fcc4ae6fa |
arm64: acpi: Make apei_claim_sea() synchronise with APEI's irq work
APEI is unable to do all of its error handling work in nmi-context, so it defers non-fatal work onto the irq_work queue. arch_irq_work_raise() sends an IPI to the calling cpu, but this is not guaranteed to be taken before returning to user-space. Unless the exception interrupted a context with irqs-masked, irq_work_run() can run immediately. Otherwise return -EINPROGRESS to indicate ghes_notify_sea() found some work to do, but it hasn't finished yet. With this apei_claim_sea() returning '0' means this external-abort was also notification of a firmware-first RAS error, and that APEI has processed the CPER records. Signed-off-by: James Morse <james.morse@arm.com> Tested-by: Tyler Baicar <baicar@os.amperecomputing.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
|
|
|
6cb4d9a287 |
mm/vma: introduce VM_ACCESS_FLAGS
There are many places where all basic VMA access flags (read, write, exec) are initialized or checked against as a group. One such example is during page fault. Existing vma_is_accessible() wrapper already creates the notion of VMA accessibility as a group access permissions. Hence lets just create VM_ACCESS_FLAGS (VM_READ|VM_WRITE|VM_EXEC) which will not only reduce code duplication but also extend the VMA accessibility concept in general. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Salter <msalter@redhat.com> Cc: Nick Hu <nickhu@andestech.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Rob Springer <rspringer@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Link: http://lkml.kernel.org/r/1583391014-8170-3-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
4064b98270 |
mm: allow VM_FAULT_RETRY for multiple times
The idea comes from a discussion between Linus and Andrea [1].
Before this patch we only allow a page fault to retry once. We achieved
this by clearing the FAULT_FLAG_ALLOW_RETRY flag when doing
handle_mm_fault() the second time. This was majorly used to avoid
unexpected starvation of the system by looping over forever to handle the
page fault on a single page. However that should hardly happen, and after
all for each code path to return a VM_FAULT_RETRY we'll first wait for a
condition (during which time we should possibly yield the cpu) to happen
before VM_FAULT_RETRY is really returned.
This patch removes the restriction by keeping the FAULT_FLAG_ALLOW_RETRY
flag when we receive VM_FAULT_RETRY. It means that the page fault handler
now can retry the page fault for multiple times if necessary without the
need to generate another page fault event. Meanwhile we still keep the
FAULT_FLAG_TRIED flag so page fault handler can still identify whether a
page fault is the first attempt or not.
Then we'll have these combinations of fault flags (only considering
ALLOW_RETRY flag and TRIED flag):
- ALLOW_RETRY and !TRIED: this means the page fault allows to
retry, and this is the first try
- ALLOW_RETRY and TRIED: this means the page fault allows to
retry, and this is not the first try
- !ALLOW_RETRY and !TRIED: this means the page fault does not allow
to retry at all
- !ALLOW_RETRY and TRIED: this is forbidden and should never be used
In existing code we have multiple places that has taken special care of
the first condition above by checking against (fault_flags &
FAULT_FLAG_ALLOW_RETRY). This patch introduces a simple helper to detect
the first retry of a page fault by checking against both (fault_flags &
FAULT_FLAG_ALLOW_RETRY) and !(fault_flag & FAULT_FLAG_TRIED) because now
even the 2nd try will have the ALLOW_RETRY set, then use that helper in
all existing special paths. One example is in __lock_page_or_retry(), now
we'll drop the mmap_sem only in the first attempt of page fault and we'll
keep it in follow up retries, so old locking behavior will be retained.
This will be a nice enhancement for current code [2] at the same time a
supporting material for the future userfaultfd-writeprotect work, since in
that work there will always be an explicit userfault writeprotect retry
for protected pages, and if that cannot resolve the page fault (e.g., when
userfaultfd-writeprotect is used in conjunction with swapped pages) then
we'll possibly need a 3rd retry of the page fault. It might also benefit
other potential users who will have similar requirement like userfault
write-protection.
GUP code is not touched yet and will be covered in follow up patch.
Please read the thread below for more information.
[1] https://lore.kernel.org/lkml/20171102193644.GB22686@redhat.com/
[2] https://lore.kernel.org/lkml/20181230154648.GB9832@redhat.com/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220160246.9790-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
dde1607248 |
mm: introduce FAULT_FLAG_DEFAULT
Although there're tons of arch-specific page fault handlers, most of them are still sharing the same initial value of the page fault flags. Say, merely all of the page fault handlers would allow the fault to be retried, and they also allow the fault to respond to SIGKILL. Let's define a default value for the fault flags to replace those initial page fault flags that were copied over. With this, it'll be far easier to introduce new fault flag that can be used by all the architectures instead of touching all the archs. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160238.9694-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
b502f038f2 |
arm64/mm: use helper fault_signal_pending()
Let the arm64 fault handling to use the new fault_signal_pending() helper, by moving the signal handling out of the retry logic. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155927.9264-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
24cecc3774 |
arm64: Revert support for execute-only user mappings
The ARMv8 64-bit architecture supports execute-only user permissions by clearing the PTE_USER and PTE_UXN bits, practically making it a mostly privileged mapping but from which user running at EL0 can still execute. The downside, however, is that the kernel at EL1 inadvertently reading such mapping would not trip over the PAN (privileged access never) protection. Revert the relevant bits from commit |
|
|
|
6be22809e5 |
Merge branches 'for-next/elf-hwcap-docs', 'for-next/smccc-conduit-cleanup', 'for-next/zone-dma', 'for-next/relax-icc_pmr_el1-sync', 'for-next/double-page-fault', 'for-next/misc', 'for-next/kselftest-arm64-signal' and 'for-next/kaslr-diagnostics' into for-next/core
* for-next/elf-hwcap-docs:
: Update the arm64 ELF HWCAP documentation
docs/arm64: cpu-feature-registers: Rewrite bitfields that don't follow [e, s]
docs/arm64: cpu-feature-registers: Documents missing visible fields
docs/arm64: elf_hwcaps: Document HWCAP_SB
docs/arm64: elf_hwcaps: sort the HWCAP{, 2} documentation by ascending value
* for-next/smccc-conduit-cleanup:
: SMC calling convention conduit clean-up
firmware: arm_sdei: use common SMCCC_CONDUIT_*
firmware/psci: use common SMCCC_CONDUIT_*
arm: spectre-v2: use arm_smccc_1_1_get_conduit()
arm64: errata: use arm_smccc_1_1_get_conduit()
arm/arm64: smccc/psci: add arm_smccc_1_1_get_conduit()
* for-next/zone-dma:
: Reintroduction of ZONE_DMA for Raspberry Pi 4 support
arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
dma/direct: turn ARCH_ZONE_DMA_BITS into a variable
arm64: Make arm64_dma32_phys_limit static
arm64: mm: Fix unused variable warning in zone_sizes_init
mm: refresh ZONE_DMA and ZONE_DMA32 comments in 'enum zone_type'
arm64: use both ZONE_DMA and ZONE_DMA32
arm64: rename variables used to calculate ZONE_DMA32's size
arm64: mm: use arm64_dma_phys_limit instead of calling max_zone_dma_phys()
* for-next/relax-icc_pmr_el1-sync:
: Relax ICC_PMR_EL1 (GICv3) accesses when ICC_CTLR_EL1.PMHE is clear
arm64: Document ICC_CTLR_EL3.PMHE setting requirements
arm64: Relax ICC_PMR_EL1 accesses when ICC_CTLR_EL1.PMHE is clear
* for-next/double-page-fault:
: Avoid a double page fault in __copy_from_user_inatomic() if hw does not support auto Access Flag
mm: fix double page fault on arm64 if PTE_AF is cleared
x86/mm: implement arch_faults_on_old_pte() stub on x86
arm64: mm: implement arch_faults_on_old_pte() on arm64
arm64: cpufeature: introduce helper cpu_has_hw_af()
* for-next/misc:
: Various fixes and clean-ups
arm64: kpti: Add NVIDIA's Carmel core to the KPTI whitelist
arm64: mm: Remove MAX_USER_VA_BITS definition
arm64: mm: simplify the page end calculation in __create_pgd_mapping()
arm64: print additional fault message when executing non-exec memory
arm64: psci: Reduce the waiting time for cpu_psci_cpu_kill()
arm64: pgtable: Correct typo in comment
arm64: docs: cpu-feature-registers: Document ID_AA64PFR1_EL1
arm64: cpufeature: Fix typos in comment
arm64/mm: Poison initmem while freeing with free_reserved_area()
arm64: use generic free_initrd_mem()
arm64: simplify syscall wrapper ifdeffery
* for-next/kselftest-arm64-signal:
: arm64-specific kselftest support with signal-related test-cases
kselftest: arm64: fake_sigreturn_misaligned_sp
kselftest: arm64: fake_sigreturn_bad_size
kselftest: arm64: fake_sigreturn_duplicated_fpsimd
kselftest: arm64: fake_sigreturn_missing_fpsimd
kselftest: arm64: fake_sigreturn_bad_size_for_magic0
kselftest: arm64: fake_sigreturn_bad_magic
kselftest: arm64: add helper get_current_context
kselftest: arm64: extend test_init functionalities
kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
kselftest: arm64: mangle_pstate_invalid_daif_bits
kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
kselftest: arm64: extend toplevel skeleton Makefile
* for-next/kaslr-diagnostics:
: Provide diagnostics on boot for KASLR
arm64: kaslr: Check command line before looking for a seed
arm64: kaslr: Announce KASLR status on boot
|
|
|
|
e44ec4a35d |
arm64: print additional fault message when executing non-exec memory
When attempting to executing non-executable memory, the fault message shows: Unable to handle kernel read from unreadable memory at virtual address ffff802dac469000 This may confuse someone, so add a new fault message for instruction abort. Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Xiang Zheng <zhengxiang9@huawei.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
8301ae822d |
Merge branch 'for-next/entry-s-to-c' into for-next/core
Move the synchronous exception paths from entry.S into a C file to improve the code readability. * for-next/entry-s-to-c: arm64: entry-common: don't touch daif before bp-hardening arm64: Remove asmlinkage from updated functions arm64: entry: convert el0_sync to C arm64: entry: convert el1_sync to C arm64: add local_daif_inherit() arm64: Add prototypes for functions called by entry.S arm64: remove __exception annotations |
|
|
|
bfe298745a |
arm64: entry-common: don't touch daif before bp-hardening
The previous patches mechanically transformed the assembly version of entry.S to entry-common.c for synchronous exceptions. The C version of local_daif_restore() doesn't quite do the same thing as the assembly versions if pseudo-NMI is in use. In particular, | local_daif_restore(DAIF_PROCCTX_NOIRQ) will still allow pNMI to be delivered. This is not the behaviour do_el0_ia_bp_hardening() and do_sp_pc_abort() want as it should not be possible for the PMU handler to run as an NMI until the bp-hardening sequence has run. The bp-hardening calls were placed where they are because this was the first C code to run after the relevant exceptions. As we've now moved that point earlier, move the checks and calls earlier too. This makes it clearer that this stuff runs before any kind of exception, and saves modifying PSTATE twice. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Cc: Julien Thierry <julien.thierry.kdev@gmail.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
afa7c0e5b9 |
arm64: Remove asmlinkage from updated functions
Now that the callers of these functions have moved into C, they no longer need the asmlinkage annotation. Remove it. Signed-off-by: James Morse <james.morse@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
b6e43c0e31 |
arm64: remove __exception annotations
Since commit
|
|
|
|
3813733595 |
arm64: mm: fix inverted PAR_EL1.F check
When detecting a spurious EL1 translation fault, we have the CPU retry
the translation using an AT S1E1R instruction, and inspect PAR_EL1 to
determine if the fault was spurious.
When PAR_EL1.F == 0, the AT instruction successfully translated the
address without a fault, which implies the original fault was spurious.
However, in this case we return false and treat the original fault as if
it was not spurious.
Invert the return value so that we treat such a case as spurious.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes:
|
|
|
|
308c515617 |
arm64: mm: fix spurious fault detection
When detecting a spurious EL1 translation fault, we attempt to compare
ESR_EL1.DFSC with PAR_EL1.FST. We erroneously use FIELD_PREP() to
extract PAR_EL1.FST, when we should be using FIELD_GET().
In the wise words of Robin Murphy:
| FIELD_GET() is a UBFX, FIELD_PREP() is a BFI
Using FIELD_PREP() means that that dfsc & ESR_ELx_FSC_TYPE is always
zero, and hence not equal to ESR_ELx_FSC_FAULT. Thus we detect any
unhandled translation fault as spurious.
... so let's use FIELD_GET() to ensure we don't decide all translation
faults are spurious. ESR_EL1.DFSC occupies bits [5:0], and requires no
shifting.
Fixes:
|
|
|
|
e4365f968f |
arm64: mm: avoid virt_to_phys(init_mm.pgd)
If we take an unhandled fault in the kernel, we call show_pte() to dump
the {PGDP,PGD,PUD,PMD,PTE} values for the corresponding page table walk,
where the PGDP value is virt_to_phys(mm->pgd).
The boot-time and runtime kernel page tables, init_pg_dir and
swapper_pg_dir respectively, are kernel symbols. Thus, it is not valid
to call virt_to_phys() on either of these, though we'll do so if we take
a fault on a TTBR1 address.
When CONFIG_DEBUG_VIRTUAL is not selected, virt_to_phys() will silently
fix this up. However, when CONFIG_DEBUG_VIRTUAL is selected, this
results in splats as below. Depending on when these occur, they can
happen to suppress information needed to debug the original unhandled
fault, such as the backtrace:
| Unable to handle kernel paging request at virtual address ffff7fffec73cf0f
| Mem abort info:
| ESR = 0x96000004
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| Data abort info:
| ISV = 0, ISS = 0x00000004
| CM = 0, WnR = 0
| ------------[ cut here ]------------
| virt_to_phys used for non-linear address: 00000000102c9dbe (swapper_pg_dir+0x0/0x1000)
| WARNING: CPU: 1 PID: 7558 at arch/arm64/mm/physaddr.c:15 __virt_to_phys+0xe0/0x170 arch/arm64/mm/physaddr.c:12
| Kernel panic - not syncing: panic_on_warn set ...
| SMP: stopping secondary CPUs
| Dumping ftrace buffer:
| (ftrace buffer empty)
| Kernel Offset: disabled
| CPU features: 0x0002,23000438
| Memory Limit: none
| Rebooting in 1 seconds..
We can avoid this by ensuring that we call __pa_symbol() for
init_mm.pgd, as this will always be a kernel symbol. As the dumped
{PGD,PUD,PMD,PTE} values are the raw values from the relevant entries we
don't need to handle these specially.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
|
|
ac12cf85d6 |
Merge branches 'for-next/52-bit-kva', 'for-next/cpu-topology', 'for-next/error-injection', 'for-next/perf', 'for-next/psci-cpuidle', 'for-next/rng', 'for-next/smpboot', 'for-next/tbi' and 'for-next/tlbi' into for-next/core
* for-next/52-bit-kva: (25 commits) Support for 52-bit virtual addressing in kernel space * for-next/cpu-topology: (9 commits) Move CPU topology parsing into core code and add support for ACPI 6.3 * for-next/error-injection: (2 commits) Support for function error injection via kprobes * for-next/perf: (8 commits) Support for i.MX8 DDR PMU and proper SMMUv3 group validation * for-next/psci-cpuidle: (7 commits) Move PSCI idle code into a new CPUidle driver * for-next/rng: (4 commits) Support for 'rng-seed' property being passed in the devicetree * for-next/smpboot: (3 commits) Reduce fragility of secondary CPU bringup in debug configurations * for-next/tbi: (10 commits) Introduce new syscall ABI with relaxed requirements for pointer tags * for-next/tlbi: (6 commits) Handle spurious page faults arising from kernel space |
|
|
|
42f91093b0 |
arm64: mm: Ignore spurious translation faults taken from the kernel
Thanks to address translation being performed out of order with respect to loads and stores, it is possible for a CPU to take a translation fault when accessing a page that was mapped by a different CPU. For example, in the case that one CPU maps a page and then sets a flag to tell another CPU: CPU 0 ----- MOV X0, <valid pte> STR X0, [Xptep] // Store new PTE to page table DSB ISHST ISB MOV X1, #1 STR X1, [Xflag] // Set the flag CPU 1 ----- loop: LDAR X0, [Xflag] // Poll flag with Acquire semantics CBZ X0, loop LDR X1, [X2] // Translates using the new PTE then the final load on CPU 1 can raise a translation fault because the translation can be performed speculatively before the read of the flag and marked as "faulting" by the CPU. This isn't quite as bad as it sounds since, in reality, code such as: CPU 0 CPU 1 ----- ----- spin_lock(&lock); spin_lock(&lock); *ptr = vmalloc(size); if (*ptr) spin_unlock(&lock); foo = **ptr; spin_unlock(&lock); will not trigger the fault because there is an address dependency on CPU 1 which prevents the speculative translation. However, more exotic code where the virtual address is known ahead of time, such as: CPU 0 CPU 1 ----- ----- spin_lock(&lock); spin_lock(&lock); set_fixmap(0, paddr, prot); if (mapped) mapped = true; foo = *fix_to_virt(0); spin_unlock(&lock); spin_unlock(&lock); could fault. This can be avoided by any of: * Introducing broadcast TLB maintenance on the map path * Adding a DSB;ISB sequence after checking a flag which indicates that a virtual address is now mapped * Handling the spurious fault Given that we have never observed a problem due to this under Linux and future revisions of the architecture are being tightened so that translation table walks are effectively ordered in the same way as explicit memory accesses, we no longer treat spurious kernel faults as fatal if an AT instruction indicates that the access does not trigger a translation fault. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
233947ef16 |
arm64: memory: fix flipped VA space fallout
VA_START used to be the start of the TTBR1 address space, but now it's a
point midway though. In a couple of places we still use VA_START to get
the start of the TTBR1 address space, so let's fix these up to use
PAGE_OFFSET instead.
Fixes:
|
|
|
|
2c624fe687 |
arm64: mm: Remove vabits_user
Previous patches have enabled 52-bit kernel + user VAs and there is no longer any scenario where user VA != kernel VA size. This patch removes the, now redundant, vabits_user variable and replaces usage with vabits_actual where appropriate. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
5383cc6efe |
arm64: mm: Introduce vabits_actual
In order to support 52-bit kernel addresses detectable at boot time, one needs to know the actual VA_BITS detected. A new variable vabits_actual is introduced in this commit and employed for the KVM hypervisor layout, KASAN, fault handling and phys-to/from-virt translation where there would normally be compile time constants. In order to maintain performance in phys_to_virt, another variable physvirt_offset is introduced. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
2951d5efaf |
arm64: mm: print hexadecimal EC value in mem_abort_decode()
This change prints the hexadecimal EC value in mem_abort_decode(),
which makes it easier to lookup the corresponding EC in
the ARM Architecture Reference Manual.
The commit
|
|
|
|
d8bb6718c4 |
arm64: Make debug exception handlers visible from RCU
Make debug exceptions visible from RCU so that synchronize_rcu() correctly track the debug exception handler. This also introduces sanity checks for user-mode exceptions as same as x86's ist_enter()/ist_exit(). The debug exception can interrupt in idle task. For example, it warns if we put a kprobe on a function called from idle task as below. The warning message showed that the rcu_read_lock() caused this problem. But actually, this means the RCU is lost the context which is already in NMI/IRQ. /sys/kernel/debug/tracing # echo p default_idle_call >> kprobe_events /sys/kernel/debug/tracing # echo 1 > events/kprobes/enable /sys/kernel/debug/tracing # [ 135.122237] [ 135.125035] ============================= [ 135.125310] WARNING: suspicious RCU usage [ 135.125581] 5.2.0-08445-g9187c508bdc7 #20 Not tainted [ 135.125904] ----------------------------- [ 135.126205] include/linux/rcupdate.h:594 rcu_read_lock() used illegally while idle! [ 135.126839] [ 135.126839] other info that might help us debug this: [ 135.126839] [ 135.127410] [ 135.127410] RCU used illegally from idle CPU! [ 135.127410] rcu_scheduler_active = 2, debug_locks = 1 [ 135.128114] RCU used illegally from extended quiescent state! [ 135.128555] 1 lock held by swapper/0/0: [ 135.128944] #0: (____ptrval____) (rcu_read_lock){....}, at: call_break_hook+0x0/0x178 [ 135.130499] [ 135.130499] stack backtrace: [ 135.131192] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.2.0-08445-g9187c508bdc7 #20 [ 135.131841] Hardware name: linux,dummy-virt (DT) [ 135.132224] Call trace: [ 135.132491] dump_backtrace+0x0/0x140 [ 135.132806] show_stack+0x24/0x30 [ 135.133133] dump_stack+0xc4/0x10c [ 135.133726] lockdep_rcu_suspicious+0xf8/0x108 [ 135.134171] call_break_hook+0x170/0x178 [ 135.134486] brk_handler+0x28/0x68 [ 135.134792] do_debug_exception+0x90/0x150 [ 135.135051] el1_dbg+0x18/0x8c [ 135.135260] default_idle_call+0x0/0x44 [ 135.135516] cpu_startup_entry+0x2c/0x30 [ 135.135815] rest_init+0x1b0/0x280 [ 135.136044] arch_call_rest_init+0x14/0x1c [ 135.136305] start_kernel+0x4d4/0x500 [ 135.136597] So make debug exception visible to RCU can fix this warning. Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Will Deacon <will@kernel.org> |
|
|
|
b98cca444d |
mm, kprobes: generalize and rename notify_page_fault() as kprobe_page_fault()
Architectures which support kprobes have very similar boilerplate around
calling kprobe_fault_handler(). Use a helper function in kprobes.h to
unify them, based on the x86 code.
This changes the behaviour for other architectures when preemption is
enabled. Previously, they would have disabled preemption while calling
the kprobe handler. However, preemption would be disabled if this fault
was due to a kprobe, so we know the fault was not due to a kprobe
handler and can simply return failure.
This behaviour was introduced in commit
|
|
|
|
dfd437a257 |
arm64 updates for 5.3:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG
and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags'
introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl0eHqcACgkQa9axLQDI
XvFyNA/+L+bnkz8m3ncydlqqfXomQn4eJJVQ8Uksb0knJz+1+3CUxxbO4ry4jXZN
fMkbggYrDPRKpDbsUl0lsRipj7jW9bqan+N37c3SWqCkgb6HqDaHViwxdx6Ec/Uk
gHudozDSPh/8c7hxGcSyt/CFyuW6b+8eYIQU5rtIgz8aVY2BypBvS/7YtYCbIkx0
w4CFleRTK1zXD5mJQhrc6jyDx659sVkrAvdhf6YIymOY8nBTv40vwdNo3beJMYp8
Po/+0Ixu+VkHUNtmYYZQgP/AGH96xiTcRnUqd172JdtRPpCLqnLqwFokXeVIlUKT
KZFMDPzK+756Ayn4z4huEePPAOGlHbJje8JVNnFyreKhVVcCotW7YPY/oJR10bnc
eo7yD+DxABTn+93G2yP436bNVa8qO1UqjOBfInWBtnNFJfANIkZweij/MQ6MjaTA
o7KtviHnZFClefMPoiI7HDzwL8XSmsBDbeQ04s2Wxku1Y2xUHLx4iLmadwLQ1ZPb
lZMTZP3N/T1554MoURVA1afCjAwiqU3bt1xDUGjbBVjLfSPBAn/25IacsG9Li9AF
7Rp1M9VhrfLftjFFkB2HwpbhRASOxaOSx+EI3kzEfCtM2O9I1WHgP3rvCdc3l0HU
tbK0/IggQicNgz7GSZ8xDlWPwwSadXYGLys+xlMZEYd3pDIOiFc=
=0TDT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new
XAFLAG and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the
'arm_boot_flags' introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
perf: arm_spe: Enable ACPI/Platform automatic module loading
arm_pmu: acpi: spe: Add initial MADT/SPE probing
ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens
ACPI/PPTT: Modify node flag detection to find last IDENTICAL
x86/entry: Simplify _TIF_SYSCALL_EMU handling
arm64: rename dump_instr as dump_kernel_instr
arm64/mm: Drop [PTE|PMD]_TYPE_FAULT
arm64: Implement panic_smp_self_stop()
arm64: Improve parking of stopped CPUs
arm64: Expose FRINT capabilities to userspace
arm64: Expose ARMv8.5 CondM capability to userspace
arm64: defconfig: enable CONFIG_RANDOMIZE_BASE
arm64: ARM64_MODULES_PLTS must depend on MODULES
arm64: bpf: do not allocate executable memory
arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages
arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP
arm64: module: create module allocations without exec permissions
arm64: Allow user selection of ARM64_MODULE_PLTS
acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
arm64: Allow selecting Pseudo-NMI again
...
|
|
|
|
caab277b1d |
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 503 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Enrico Weigelt <info@metux.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
|
|
|
4745224b45 |
arm64/mm: Refactor __do_page_fault()
__do_page_fault() is over complicated with multiple goto statements. This cleans up the code flow and while there drops local variable vm_fault_t. Reviewed-by: Mark Rutland <Mark.rutland@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
c49bd02f4c |
arm64/mm: Document write abort detection from ESR
This patch adds an is_write_abort() wrapper and documents the detection of the abort type on cache maintenance operations. Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Andrey Konovalov <andreyknvl@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> [catalin.marinas@arm.com: only keep the is_write_abort() wrapper] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
6168103600 |
arm64/mm: Drop task_struct argument from __do_page_fault()
The task_struct argument is not getting used in __do_page_fault(). Hence just drop it and use current or cuurent->mm instead where ever required. This does not change any functionality. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
a0509313d5 |
arm64/mm: Drop mmap_sem before calling __do_kernel_fault()
There is an inconsistency between down_read_trylock() success and failure paths while dealing with kernel access for non exception table areas where it calls __do_kernel_fault(). In case of failure it just bails out without holding mmap_sem but when it succeeds it does so while holding mmap_sem. Fix this inconsistency by just dropping mmap_sem in success path as well. __do_kernel_fault() calls die_kernel_fault() which then calls show_pte(). show_pte() in this path might become bit more unreliable without holding mmap_sem. But there are already instances [1] in do_page_fault() where die_kernel_fault() gets called without holding mmap_sem. show_pte() can be made more robust independently but in a later patch. [1] Conditional block for (is_ttbr0_addr && is_el1_permission_fault) Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
01de1776f6 |
arm64/mm: Identify user instruction aborts
We don't currently set the FAULT_FLAG_INSTRUCTION mm flag for EL0 instruction aborts. This has no functional impact, as we don't override arch_vma_access_permitted(), and the default implementation always returns true. However, it would be helpful to provide the flag so that it can be consumed by tracepoints such as dax_pmd_fault. This patch sets the FAULT_FLAG_INSTRUCTION flag for EL0 instruction aborts. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
|
|
|
0a72ef8990 |
Second round of arm64 fixes for -rc2
- Fix incorrect LDADD instruction encoding in our disassembly macros
- Disable the broken ARM64_PSEUDO_NMI support for now
- Add workaround for Cortex-A76 CPU erratum #1463225
- Handle Cortex-A76/Neoverse-N1 erratum #1418040 w/ existing workaround
- Fix IORT build failure if IOMMU_SUPPORT=n
- Fix place-relative module relocation range checking and its
interaction with KASLR
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAlzoC8MACgkQt6xw3ITB
YzQfiAf+MXFzrAd3o7v40CnZu6ELw+ldedPh34oBjD7h6we3hroxi5Fss2nbwH0o
BmAm4Nv1/Njk5+hA7Mlp3/mRn0vcd3NDP+FyH3inLjUU7owc41thp0SKlCOfFdZk
K8sVCOeCWt7GEEPcnFsPO0nU+7f3ZKDDNBo0L+qJPxrMOTDcbQ3cIjW/ua7vQRHv
pIDGF+iJAhHeNoc1Wjq08F8Q+Dq7dYvhtokeyDivSn4NulmRvdL+z581gMmj7ExT
ARB6WtHGoOo+8UdjBJIDnXRKhJLfGexQaoAojk+IogaV0ACDtz6CuqsSIh1e5SFC
oPqRSP5ITTbXEDS5uaUW1pYlwmGTaw==
=ynUz
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 fixes from Will Deacon:
- Fix incorrect LDADD instruction encoding in our disassembly macros
- Disable the broken ARM64_PSEUDO_NMI support for now
- Add workaround for Cortex-A76 CPU erratum #1463225
- Handle Cortex-A76/Neoverse-N1 erratum #1418040 w/ existing workaround
- Fix IORT build failure if IOMMU_SUPPORT=n
- Fix place-relative module relocation range checking and its
interaction with KASLR
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: insn: Add BUILD_BUG_ON() for invalid masks
arm64: insn: Fix ldadd instruction encoding
arm64: Kconfig: Make ARM64_PSEUDO_NMI depend on BROKEN for now
arm64: Handle erratum
|
|
|
|
969f5ea627 |
arm64: errata: Add workaround for Cortex-A76 erratum #1463225
Revisions of the Cortex-A76 CPU prior to r4p0 are affected by an erratum that can prevent interrupts from being taken when single-stepping. This patch implements a software workaround to prevent userspace from effectively being able to disable interrupts. Cc: <stable@vger.kernel.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
|
|
|
48caebf7e1 |
arm64: Print physical address of page table base in show_pte()
When dumping the page table in response to an unexpected kernel page fault, we print the virtual (hashed) address of the page table base, but display physical addresses for everything else. Make the page table dumping code in show_pte() consistent, by printing the page table base pointer as a physical address. Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |