mirror of https://github.com/torvalds/linux.git
1353 Commits
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
e6e0dc2d54 |
sched/fair: Remove SIS_AVG_CPU
SIS_AVG_CPU was introduced as a means of avoiding a search when the average search cost indicated that the search would likely fail. It was a blunt instrument and disabled by commit |
|
|
|
0ae78eec8a |
sched/eas: Don't update misfit status if the task is pinned
If the task is pinned to a cpu, setting the misfit status means that
we'll unnecessarily continuously attempt to migrate the task but fail.
This continuous failure will cause the balance_interval to increase to
a high value, and eventually cause unnecessary significant delays in
balancing the system when real imbalance happens.
Caught while testing uclamp where rt-app calibration loop was pinned to
cpu 0, shortly after which we spawn another task with high util_clamp
value. The task was failing to migrate after over 40ms of runtime due to
balance_interval unnecessary expanded to a very high value from the
calibration loop.
Not done here, but it could be useful to extend the check for pinning to
verify that the affinity of the task has a cpu that fits. We could end
up in a similar situation otherwise.
Fixes:
|
|
|
|
65bcf072e2 |
sched: Use task_current() instead of 'rq->curr == p'
Use the task_current() function where appropriate. No functional change. Signed-off-by: Hui Su <sh_def@163.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20201030173223.GA52339@rlk |
|
|
|
e9b9734b74 |
sched/fair: Reduce cases for active balance
Active balance is triggered for a number of voluntary cases like misfit or pinned tasks cases but also after that a number of load balance attempts failed to migrate a task. There is no need to use active load balance when the group is overloaded because an overloaded state means that there is at least one waiting task. Nevertheless, the waiting task is not selected and detached until the threshold becomes higher than its load. This threshold increases with the number of failed lb (see the condition if ((load >> env->sd->nr_balance_failed) > env->imbalance) in detach_tasks()) and the waiting task will end up to be selected after a number of attempts. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20210107103325.30851-4-vincent.guittot@linaro.org |
|
|
|
8a41dfcda7 |
sched/fair: Don't set LBF_ALL_PINNED unnecessarily
Setting LBF_ALL_PINNED during active load balance is only valid when there is only 1 running task on the rq otherwise this ends up increasing the balance interval whereas other tasks could migrate after the next interval once they become cache-cold as an example. LBF_ALL_PINNED flag is now always set it by default. It is then cleared when we find one task that can be pulled when calling detach_tasks() or during active migration. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20210107103325.30851-3-vincent.guittot@linaro.org |
|
|
|
fc488ffd42 |
sched/fair: Skip idle cfs_rq
Don't waste time checking whether an idle cfs_rq could be the busiest queue. Furthermore, this can end up selecting a cfs_rq with a high load but being idle in case of migrate_load. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20210107103325.30851-2-vincent.guittot@linaro.org |
|
|
|
8c1f560c1e |
sched/fair: Avoid stale CPU util_est value for schedutil in task dequeue
CPU (root cfs_rq) estimated utilization (util_est) is currently used in
dequeue_task_fair() to drive frequency selection before it is updated.
with:
CPU_util : rq->cfs.avg.util_avg
CPU_util_est : rq->cfs.avg.util_est
CPU_utilization : max(CPU_util, CPU_util_est)
task_util : p->se.avg.util_avg
task_util_est : p->se.avg.util_est
dequeue_task_fair():
/* (1) CPU_util and task_util update + inform schedutil about
CPU_utilization changes */
for_each_sched_entity() /* 2 loops */
(dequeue_entity() ->) update_load_avg() -> cfs_rq_util_change()
-> cpufreq_update_util() ->...-> sugov_update_[shared\|single]
-> sugov_get_util() -> cpu_util_cfs()
/* (2) CPU_util_est and task_util_est update */
util_est_dequeue()
cpu_util_cfs() uses CPU_utilization which could lead to a false (too
high) utilization value for schedutil in task ramp-down or ramp-up
scenarios during task dequeue.
To mitigate the issue split the util_est update (2) into:
(A) CPU_util_est update in util_est_dequeue()
(B) task_util_est update in util_est_update()
Place (A) before (1) and keep (B) where (2) is. The latter is necessary
since (B) relies on task_util update in (1).
Fixes:
|
|
|
|
e0b257c3b7 |
sched: Prevent raising SCHED_SOFTIRQ when CPU is !active
SCHED_SOFTIRQ is raised to trigger periodic load balancing. When CPU is not active, CPU should not participate in load balancing. The scheduler uses nohz.idle_cpus_mask to keep track of the CPUs which can do idle load balancing. When bringing a CPU up the CPU is added to the mask when it reaches the active state, but on teardown the CPU stays in the mask until it goes offline and invokes sched_cpu_dying(). When SCHED_SOFTIRQ is raised on a !active CPU, there might be a pending softirq when stopping the tick which triggers a warning in NOHZ code. The SCHED_SOFTIRQ can also be raised by the scheduler tick which has the same issue. Therefore remove the CPU from nohz.idle_cpus_mask when it is marked inactive and also prevent the scheduler_tick() from raising SCHED_SOFTIRQ after this point. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20201215104400.9435-1-anna-maria@linutronix.de |
|
|
|
a5418be9df |
sched/core: Rename schedutil_cpu_util() and allow rest of the kernel to use it
There is nothing schedutil specific in schedutil_cpu_util(), rename it to effective_cpu_util(). Also create and expose another wrapper sched_cpu_util() which can be used by other parts of the kernel, like thermal core (that will be done in a later commit). Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org |
|
|
|
5b78f2dc31 |
sched/fair: Trivial correction of the newidle_balance() comment
idle_balance() has been renamed to newidle_balance(). To differentiate with nohz_idle_balance, it seems refining the comment will be helpful for the readers of the code. Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20201202220641.22752-1-song.bao.hua@hisilicon.com |
|
|
|
13d5a5e9f9 |
sched/fair: Clear SMT siblings after determining the core is not idle
The clearing of SMT siblings from the SIS mask before checking for an idle core is a small but unnecessary cost. Defer the clearing of the siblings until the scan moves to the next potential target. The cost of this was not measured as it is borderline noise but it should be self-evident. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20201130144020.GS3371@techsingularity.net |
|
|
|
59a74b1544 |
sched: Fix kernel-doc markup
Kernel-doc requires that a kernel-doc markup to be immediately
below the function prototype, as otherwise it will rename it.
So, move sys_sched_yield() markup to the right place.
Also fix the cpu_util() markup: Kernel-doc markups
should use this format:
identifier - description
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/50cd6f460aeb872ebe518a8e9cfffda2df8bdb0a.1606823973.git.mchehab+huawei@kernel.org
|
|
|
|
a787bdaff8 |
Merge branch 'linus' into sched/core, to resolve semantic conflict
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
23e6082a52 |
sched: Limit the amount of NUMA imbalance that can exist at fork time
At fork time currently, a local node can be allowed to fill completely
and allow the periodic load balancer to fix the problem. This can be
problematic in cases where a task creates lots of threads that idle until
woken as part of a worker poll causing a memory bandwidth problem.
However, a "real" workload suffers badly from this behaviour. The workload
in question is mostly NUMA aware but spawns large numbers of threads
that act as a worker pool that can be called from anywhere. These need
to spread early to get reasonable behaviour.
This patch limits how much a local node can fill before spilling over
to another node and it will not be a universal win. Specifically,
very short-lived workloads that fit within a NUMA node would prefer
the memory bandwidth.
As I cannot describe the "real" workload, the best proxy measure I found
for illustration was a page fault microbenchmark. It's not representative
of the workload but demonstrates the hazard of the current behaviour.
pft timings
5.10.0-rc2 5.10.0-rc2
imbalancefloat-v2 forkspread-v2
Amean elapsed-1 46.37 ( 0.00%) 46.05 * 0.69%*
Amean elapsed-4 12.43 ( 0.00%) 12.49 * -0.47%*
Amean elapsed-7 7.61 ( 0.00%) 7.55 * 0.81%*
Amean elapsed-12 4.79 ( 0.00%) 4.80 ( -0.17%)
Amean elapsed-21 3.13 ( 0.00%) 2.89 * 7.74%*
Amean elapsed-30 3.65 ( 0.00%) 2.27 * 37.62%*
Amean elapsed-48 3.08 ( 0.00%) 2.13 * 30.69%*
Amean elapsed-79 2.00 ( 0.00%) 1.90 * 4.95%*
Amean elapsed-80 2.00 ( 0.00%) 1.90 * 4.70%*
This is showing the time to fault regions belonging to threads. The target
machine has 80 logical CPUs and two nodes. Note the ~30% gain when the
machine is approximately the point where one node becomes fully utilised.
The slower results are borderline noise.
Kernel building shows similar benefits around the same balance point.
Generally performance was either neutral or better in the tests conducted.
The main consideration with this patch is the point where fork stops
spreading a task so some workloads may benefit from different balance
points but it would be a risky tuning parameter.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-5-mgorman@techsingularity.net
|
|
|
|
7d2b5dd0bc |
sched/numa: Allow a floating imbalance between NUMA nodes
Currently, an imbalance is only allowed when a destination node is almost completely idle. This solved one basic class of problems and was the cautious approach. This patch revisits the possibility that NUMA nodes can be imbalanced until 25% of the CPUs are occupied. The reasoning behind 25% is somewhat superficial -- it's half the cores when HT is enabled. At higher utilisations, balancing should continue as normal and keep things even until scheduler domains are fully busy or over utilised. Note that this is not expected to be a universal win. Any benchmark that prefers spreading as wide as possible with limited communication will favour the old behaviour as there is more memory bandwidth. Workloads that communicate heavily in pairs such as netperf or tbench benefit. For the tests I ran, the vast majority of workloads saw a benefit so it seems to be a worthwhile trade-off. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20201120090630.3286-4-mgorman@techsingularity.net |
|
|
|
5c339005f8 |
sched: Avoid unnecessary calculation of load imbalance at clone time
In find_idlest_group(), the load imbalance is only relevant when the group is either overloaded or fully busy but it is calculated unconditionally. This patch moves the imbalance calculation to the context it is required. Technically, it is a micro-optimisation but really the benefit is avoiding confusing one type of imbalance with another depending on the group_type in the next patch. No functional change. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20201120090630.3286-3-mgorman@techsingularity.net |
|
|
|
abeae76a47 |
sched/numa: Rename nr_running and break out the magic number
This is simply a preparation patch to make the following patches easier to read. No functional change. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20201120090630.3286-2-mgorman@techsingularity.net |
|
|
|
f4b936f5d6 |
A couple of scheduler fixes:
- Make the conditional update of the overutilized state work correctly by
caching the relevant flags state before overwriting them and checking
them afterwards.
- Fix a data race in the wakeup path which caused loadavg on ARM64
platforms to become a random number generator.
- Fix the ordering of the iowaiter accounting operations so it can't be
decremented before it is incremented.
- Fix a bug in the deadline scheduler vs. priority inheritance when a
non-deadline task A has inherited the parameters of a deadline task B
and then blocks on a non-deadline task C.
The second inheritance step used the static deadline parameters of task
A, which are usually 0, instead of further propagating task B's
parameters. The zero initialized parameters trigger a bug in the
deadline scheduler.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+6edsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaJCEAC7VGr9IlWRzCI/173tKAXkLRrGXHVb
yOYc/YjLMCTcERNxqpf8uIURd/ATSHU/RMwfFcB558NedKZ/QKZDoKmLqeCXnVeM
e20tXv/fmpqRS7lgtmbBfhQ8mSDhst960oD1mHifdEwEBCCm7mLEaipTuTWjnZ0x
rOz70Hir1mSjsP0E7ZorsxCr1yExbrt+jZfKCe9D2kUSvlWHf1ipzAYNlqb/DsfG
n81G7q9LYV8NUhX3lt8oSZDq0K44aO6G6fEaP4EkfwsIAOh37yPHwuEuqDZCBmXw
rQ17XUU3jQ2MtubPvVEKG/6Z+hAUyOsAKynpq/RhzueXQm/9Ns6+qHX/xY8yh39y
S5qPd5DLRlac8f7cFwz2zPxP5E+xTJLONgRkuN1XlitMJZBxru9AzDNa0/6on8TM
OtvbvVR+bPUfHiHULk4fTz7fLcbgYgxbCgfGoFsVlfskOxnzgEG8WfuI2Up2rRJ0
nr1MCER+5fprciqPPs+18rVEFiC4mQSrV01cnwrNbpW8pqibZSomMilQ0oQvcTGL
VDEHkaDTa5YbR92Szq4rYbr7Sf0ihFU0EZUNVQnu7SujdVFxTdHb1yr8UYcYp09b
LqGFhr1FHBNYKbw3rEPx2R/FGuCii21oQkhz94ujDo1Np8EGVZYwFGh+iwbsa2Xn
K1u0HzqLTfTkMw==
=HiGq
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"A couple of scheduler fixes:
- Make the conditional update of the overutilized state work
correctly by caching the relevant flags state before overwriting
them and checking them afterwards.
- Fix a data race in the wakeup path which caused loadavg on ARM64
platforms to become a random number generator.
- Fix the ordering of the iowaiter accounting operations so it can't
be decremented before it is incremented.
- Fix a bug in the deadline scheduler vs. priority inheritance when a
non-deadline task A has inherited the parameters of a deadline task
B and then blocks on a non-deadline task C.
The second inheritance step used the static deadline parameters of
task A, which are usually 0, instead of further propagating task
B's parameters. The zero initialized parameters trigger a bug in
the deadline scheduler"
* tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Fix priority inheritance with multiple scheduling classes
sched: Fix rq->nr_iowait ordering
sched: Fix data-race in wakeup
sched/fair: Fix overutilized update in enqueue_task_fair()
|
|
|
|
8e1ac4299a |
sched/fair: Fix overutilized update in enqueue_task_fair()
enqueue_task_fair() attempts to skip the overutilized update for new
tasks as their util_avg is not accurate yet. However, the flag we check
to do so is overwritten earlier on in the function, which makes the
condition pretty much a nop.
Fix this by saving the flag early on.
Fixes:
|
|
|
|
d0a37fd57f |
A set of scheduler fixes:
- Address a load balancer regression by making the load balancer use the
same logic as the wakeup path to spread tasks in the LLC domain.
- Prefer the CPU on which a task run last over the local CPU in the fast
wakeup path for asymmetric CPU capacity systems to align with the
symmetric case. This ensures more locality and prevents massive
migration overhead on those asymetric systems
- Fix a memory corruption bug in the scheduler debug code caused by
handing a modified buffer pointer to kfree().
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xJIoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofyGD/9rUnLlC1h7jEufVa4yPG94DcEqiXT7
8B/zNRKnOmqQePCYUm+DS8njSFqpF9VjR+5zpos3bgYqwn7DyfV+hpxbbgS9NDh/
qRg5gxhTrR4uMyZN62Fex5JS4bP8mKO7oc0usgV2Ytsg3e4H+9DqYhuaA5GrJAxC
J3d1Hv/YBW2Uo+RZpB20aaJr0srN7bswTtPMxeeqo8q3Qh4pFcI+rmA4WphVAgHF
jQWaNP4YVTgNjqxy7nBp7zFHlSdRbLohldZFtueYmRo1mjmkyQ34Cg7etfBvN1Uf
iVYZLaInr0YPr0qR4FrQ3yI8ln/HESxshs0ARzMReYVT71mV//o5wftE18uCULQB
rRu9vYz+LBVhkdgx118jJdNJqyqk6Ca6h9ZLqyBKuckj9a39289bwWiS6D/6W51p
gurq58YTb2lRzyCnOVEULXehYRJkDI8EToiWppRVm9gy43OFPNox7n6TvNLW6BLS
I8msTVdqDYXXj4U1o4Mf9K5LBKlda+ARuBu87r7kH1BJLxXHnOHcEkmeN8O9k7eu
jdWfeDzDDjBjt/TU+X4f4RNjudUZrSPQrrESE5+XhfM4CwqcPXa2M/dGtPekW/ED
9IqxPvwkau+0Ym6gkuanfnmda+JVR/nLvZV0uFuUGd+2xMcRemZbZE6hTUiYvYPY
CAHpOhmeakbr6w==
=wFcU
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"A set of scheduler fixes:
- Address a load balancer regression by making the load balancer use
the same logic as the wakeup path to spread tasks in the LLC domain
- Prefer the CPU on which a task run last over the local CPU in the
fast wakeup path for asymmetric CPU capacity systems to align with
the symmetric case. This ensures more locality and prevents massive
migration overhead on those asymetric systems
- Fix a memory corruption bug in the scheduler debug code caused by
handing a modified buffer pointer to kfree()"
* tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/debug: Fix memory corruption caused by multiple small reads of flags
sched/fair: Prefer prev cpu in asymmetric wakeup path
sched/fair: Ensure tasks spreading in LLC during LB
|
|
|
|
dc824eb898 |
sched/fair: Dissociate wakeup decisions from SD flag value
The CFS wakeup code will only ever go through EAS / its fast path on "regular" wakeups (i.e. not on forks or execs). These are currently gated by a check against 'sd_flag', which would be SD_BALANCE_WAKE at wakeup. However, we now have a flag that explicitly tells us whether a wakeup is a "regular" one, so hinge those conditions on that flag instead. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201102184514.2733-4-valentin.schneider@arm.com |
|
|
|
3aef1551e9 |
sched: Remove select_task_rq()'s sd_flag parameter
Only select_task_rq_fair() uses that parameter to do an actual domain search, other classes only care about what kind of wakeup is happening (fork, exec, or "regular") and thus just translate the flag into a wakeup type. WF_TTWU and WF_EXEC have just been added, use these along with WF_FORK to encode the wakeup types we care about. For select_task_rq_fair(), we can simply use the shiny new WF_flag : SD_flag mapping. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20201102184514.2733-3-valentin.schneider@arm.com |
|
|
|
cdb310474d |
sched/fair: Remove superfluous lock section in do_sched_cfs_slack_timer()
Since
|
|
|
|
b4c9c9f156 |
sched/fair: Prefer prev cpu in asymmetric wakeup path
During fast wakeup path, scheduler always check whether local or prev cpus are good candidates for the task before looking for other cpus in the domain. With commit |
|
|
|
16b0a7a1a0 |
sched/fair: Ensure tasks spreading in LLC during LB
schbench shows latency increase for 95 percentile above since: commit |
|
|
|
b6d37a764a |
sched/fair: Reorder throttle_cfs_rq() path
As commit:
|
|
|
|
d8fcb81f1a |
sched/fair: Check for idle core in wake_affine
In the case of a thread wakeup, wake_affine determines whether a core will be chosen for the thread on the socket where the thread ran previously or on the socket of the waker. This is done primarily by comparing the load of the core where th thread ran previously (prev) and the load of the waker (this). commit |
|
|
|
43c31ac0e6 |
sched: Remove relyance on STRUCT_ALIGNMENT
Florian reported that all of kernel/sched/ is rebuild when
CONFIG_BLK_DEV_INITRD is changed, which, while not a bug is
unexpected. This is due to us including vmlinux.lds.h.
Jakub explained that the problem is that we put the alignment
requirement on the type instead of on a variable. Type alignment is a
minimum, the compiler is free to pick any larger alignment for a
specific instance of the type (eg. the variable).
So force the type alignment on all individual variable definitions and
remove the undesired dependency on vmlinux.lds.h.
Fixes:
|
|
|
|
45da7a2b0a |
sched/fair: Exclude the current CPU from find_new_ilb()
It is possible for find_new_ilb() to select the current CPU, however, this only happens from newidle balancing, in which case need_resched() will be true, and consequently nohz_csd_func() will not trigger the softirq. Exclude the current CPU from becoming an ILB target. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> |
|
|
|
b9c88f7522 |
sched/fair: Improve the accuracy of sched_stat_wait statistics
When the sched_schedstat changes from 0 to 1, some sched se maybe already in the runqueue, the se->statistics.wait_start will be 0. So it will let the (rq_of(cfs_rq)) - se->statistics.wait_start) wrong. We need to avoid this scenario. Signed-off-by: jun qian <qianjun.kernel@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lkml.kernel.org/r/20201015064846.19809-1-qianjun.kernel@gmail.com |
|
|
|
33def8498f |
treewide: Convert macro and uses of __section(foo) to __section("foo")
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
91989c7078 |
task_work: cleanup notification modes
A previous commit changed the notification mode from true/false to an
int, allowing notify-no, notify-yes, or signal-notify. This was
backwards compatible in the sense that any existing true/false user
would translate to either 0 (on notification sent) or 1, the latter
which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2.
Clean this up properly, and define a proper enum for the notification
mode. Now we have:
- TWA_NONE. This is 0, same as before the original change, meaning no
notification requested.
- TWA_RESUME. This is 1, same as before the original change, meaning
that we use TIF_NOTIFY_RESUME.
- TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the
notification.
Clean up all the callers, switching their 0/1/false/true to using the
appropriate TWA_* mode for notifications.
Fixes:
|
|
|
|
51cf18c90c |
sched/debug: Add new tracepoint to track cpu_capacity
rq->cpu_capacity is a key element in several scheduler parts, such as EAS task placement and load balancing. Tracking this value enables testing and/or debugging by a toolkit. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1598605249-72651-1-git-send-email-vincent.donnefort@arm.com |
|
|
|
9abb897345 |
sched/fair: Tweak pick_next_entity()
Currently, pick_next_entity(...) has the following structure
(simplified):
[...]
if (last_buddy_ok())
result = last_buddy;
if (next_buddy_ok())
result = next_buddy;
[...]
The intended behavior is to prefer next buddy over last buddy;
the current code somewhat obfuscates this, and also wastes
cycles checking the last buddy when eventually the next buddy is
picked up.
So this patch refactors two 'ifs' above into
[...]
if (next_buddy_ok())
result = next_buddy;
else if (last_buddy_ok())
result = last_buddy;
[...]
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guitttot@linaro.org>
Link: https://lkml.kernel.org/r/20200930173532.1069092-1-posk@google.com
|
|
|
|
233e7aca4c |
sched/fair: Use dst group while checking imbalance for NUMA balancer
Barry Song noted the following
Something is wrong. In find_busiest_group(), we are checking if
src has higher load, however, in task_numa_find_cpu(), we are
checking if dst will have higher load after balancing. It seems
it is not sensible to check src.
It maybe cause wrong imbalance value, for example,
if dst_running = env->dst_stats.nr_running + 1 results in 3 or
above, and src_running = env->src_stats.nr_running - 1 results
in 1;
The current code is thinking imbalance as 0 since src_running is
smaller than 2. This is inconsistent with load balancer.
Basically, in find_busiest_group(), the NUMA imbalance is ignored if moving
a task "from an almost idle domain" to a "domain with spare capacity". This
patch forbids movement "from a misplaced domain" to "an almost idle domain"
as that is closer to what the CPU load balancer expects.
This patch is not a universal win. The old behaviour was intended to allow
a task from an almost idle NUMA node to migrate to its preferred node if
the destination had capacity but there are corner cases. For example,
a NAS compute load could be parallelised to use 1/3rd of available CPUs
but not all those potential tasks are active at all times allowing this
logic to trigger. An obvious example is specjbb 2005 running various
numbers of warehouses on a 2 socket box with 80 cpus.
specjbb
5.9.0-rc4 5.9.0-rc4
vanilla dstbalance-v1r1
Hmean tput-1 46425.00 ( 0.00%) 43394.00 * -6.53%*
Hmean tput-2 98416.00 ( 0.00%) 96031.00 * -2.42%*
Hmean tput-3 150184.00 ( 0.00%) 148783.00 * -0.93%*
Hmean tput-4 200683.00 ( 0.00%) 197906.00 * -1.38%*
Hmean tput-5 236305.00 ( 0.00%) 245549.00 * 3.91%*
Hmean tput-6 281559.00 ( 0.00%) 285692.00 * 1.47%*
Hmean tput-7 338558.00 ( 0.00%) 334467.00 * -1.21%*
Hmean tput-8 340745.00 ( 0.00%) 372501.00 * 9.32%*
Hmean tput-9 424343.00 ( 0.00%) 413006.00 * -2.67%*
Hmean tput-10 421854.00 ( 0.00%) 434261.00 * 2.94%*
Hmean tput-11 493256.00 ( 0.00%) 485330.00 * -1.61%*
Hmean tput-12 549573.00 ( 0.00%) 529959.00 * -3.57%*
Hmean tput-13 593183.00 ( 0.00%) 555010.00 * -6.44%*
Hmean tput-14 588252.00 ( 0.00%) 599166.00 * 1.86%*
Hmean tput-15 623065.00 ( 0.00%) 642713.00 * 3.15%*
Hmean tput-16 703924.00 ( 0.00%) 660758.00 * -6.13%*
Hmean tput-17 666023.00 ( 0.00%) 697675.00 * 4.75%*
Hmean tput-18 761502.00 ( 0.00%) 758360.00 * -0.41%*
Hmean tput-19 796088.00 ( 0.00%) 798368.00 * 0.29%*
Hmean tput-20 733564.00 ( 0.00%) 823086.00 * 12.20%*
Hmean tput-21 840980.00 ( 0.00%) 856711.00 * 1.87%*
Hmean tput-22 804285.00 ( 0.00%) 872238.00 * 8.45%*
Hmean tput-23 795208.00 ( 0.00%) 889374.00 * 11.84%*
Hmean tput-24 848619.00 ( 0.00%) 966783.00 * 13.92%*
Hmean tput-25 750848.00 ( 0.00%) 903790.00 * 20.37%*
Hmean tput-26 780523.00 ( 0.00%) 962254.00 * 23.28%*
Hmean tput-27 1042245.00 ( 0.00%) 991544.00 * -4.86%*
Hmean tput-28 1090580.00 ( 0.00%) 1035926.00 * -5.01%*
Hmean tput-29 999483.00 ( 0.00%) 1082948.00 * 8.35%*
Hmean tput-30 1098663.00 ( 0.00%) 1113427.00 * 1.34%*
Hmean tput-31 1125671.00 ( 0.00%) 1134175.00 * 0.76%*
Hmean tput-32 968167.00 ( 0.00%) 1250286.00 * 29.14%*
Hmean tput-33 1077676.00 ( 0.00%) 1060893.00 * -1.56%*
Hmean tput-34 1090538.00 ( 0.00%) 1090933.00 * 0.04%*
Hmean tput-35 967058.00 ( 0.00%) 1107421.00 * 14.51%*
Hmean tput-36 1051745.00 ( 0.00%) 1210663.00 * 15.11%*
Hmean tput-37 1019465.00 ( 0.00%) 1351446.00 * 32.56%*
Hmean tput-38 1083102.00 ( 0.00%) 1064541.00 * -1.71%*
Hmean tput-39 1232990.00 ( 0.00%) 1303623.00 * 5.73%*
Hmean tput-40 1175542.00 ( 0.00%) 1340943.00 * 14.07%*
Hmean tput-41 1127826.00 ( 0.00%) 1339492.00 * 18.77%*
Hmean tput-42 1198313.00 ( 0.00%) 1411023.00 * 17.75%*
Hmean tput-43 1163733.00 ( 0.00%) 1228253.00 * 5.54%*
Hmean tput-44 1305562.00 ( 0.00%) 1357886.00 * 4.01%*
Hmean tput-45 1326752.00 ( 0.00%) 1406061.00 * 5.98%*
Hmean tput-46 1339424.00 ( 0.00%) 1418451.00 * 5.90%*
Hmean tput-47 1415057.00 ( 0.00%) 1381570.00 * -2.37%*
Hmean tput-48 1392003.00 ( 0.00%) 1421167.00 * 2.10%*
Hmean tput-49 1408374.00 ( 0.00%) 1418659.00 * 0.73%*
Hmean tput-50 1359822.00 ( 0.00%) 1391070.00 * 2.30%*
Hmean tput-51 1414246.00 ( 0.00%) 1392679.00 * -1.52%*
Hmean tput-52 1432352.00 ( 0.00%) 1354020.00 * -5.47%*
Hmean tput-53 1387563.00 ( 0.00%) 1409563.00 * 1.59%*
Hmean tput-54 1406420.00 ( 0.00%) 1388711.00 * -1.26%*
Hmean tput-55 1438804.00 ( 0.00%) 1387472.00 * -3.57%*
Hmean tput-56 1399465.00 ( 0.00%) 1400296.00 * 0.06%*
Hmean tput-57 1428132.00 ( 0.00%) 1396399.00 * -2.22%*
Hmean tput-58 1432385.00 ( 0.00%) 1386253.00 * -3.22%*
Hmean tput-59 1421612.00 ( 0.00%) 1371416.00 * -3.53%*
Hmean tput-60 1429423.00 ( 0.00%) 1389412.00 * -2.80%*
Hmean tput-61 1396230.00 ( 0.00%) 1351122.00 * -3.23%*
Hmean tput-62 1418396.00 ( 0.00%) 1383098.00 * -2.49%*
Hmean tput-63 1409918.00 ( 0.00%) 1374662.00 * -2.50%*
Hmean tput-64 1410236.00 ( 0.00%) 1376216.00 * -2.41%*
Hmean tput-65 1396405.00 ( 0.00%) 1364418.00 * -2.29%*
Hmean tput-66 1395975.00 ( 0.00%) 1357326.00 * -2.77%*
Hmean tput-67 1392986.00 ( 0.00%) 1349642.00 * -3.11%*
Hmean tput-68 1386541.00 ( 0.00%) 1343261.00 * -3.12%*
Hmean tput-69 1374407.00 ( 0.00%) 1342588.00 * -2.32%*
Hmean tput-70 1377513.00 ( 0.00%) 1334654.00 * -3.11%*
Hmean tput-71 1369319.00 ( 0.00%) 1334952.00 * -2.51%*
Hmean tput-72 1354635.00 ( 0.00%) 1329005.00 * -1.89%*
Hmean tput-73 1350933.00 ( 0.00%) 1318942.00 * -2.37%*
Hmean tput-74 1351714.00 ( 0.00%) 1316347.00 * -2.62%*
Hmean tput-75 1352198.00 ( 0.00%) 1309974.00 * -3.12%*
Hmean tput-76 1349490.00 ( 0.00%) 1286064.00 * -4.70%*
Hmean tput-77 1336131.00 ( 0.00%) 1303684.00 * -2.43%*
Hmean tput-78 1308896.00 ( 0.00%) 1271024.00 * -2.89%*
Hmean tput-79 1326703.00 ( 0.00%) 1290862.00 * -2.70%*
Hmean tput-80 1336199.00 ( 0.00%) 1291629.00 * -3.34%*
The performance at the mid-point is better but not universally better. The
patch is a mixed bag depending on the workload, machine and overall
levels of utilisation. Sometimes it's better (sometimes much better),
other times it is worse (sometimes much worse). Given that there isn't a
universally good decision in this section and more people seem to prefer
the patch then it may be best to keep the LB decisions consistent and
revisit imbalance handling when the load balancer code changes settle down.
Jirka Hladky added the following observation.
Our results are mostly in line with what you see. We observe
big gains (20-50%) when the system is loaded to 1/3 of the
maximum capacity and mixed results at the full load - some
workloads benefit from the patch at the full load, others not,
but performance changes at the full load are mostly within the
noise of results (+/-5%). Overall, we think this patch is helpful.
[mgorman@techsingularity.net: Rewrote changelog]
Fixes:
|
|
|
|
e4d32e4d54 |
sched/fair: Minimize concurrent LBs between domain level
sched domains tend to trigger simultaneously the load balance loop but the larger domains often need more time to collect statistics. This slowness makes the larger domain trying to detach tasks from a rq whereas tasks already migrated somewhere else at a sub-domain level. This is not a real problem for idle LB because the period of smaller domains will increase with its CPUs being busy and this will let time for higher ones to pulled tasks. But this becomes a problem when all CPUs are already busy because all domains stay synced when they trigger their LB. A simple way to minimize simultaneous LB of all domains is to decrement the the busy interval by 1 jiffies. Because of the busy_factor, the interval of larger domain will not be a multiple of smaller ones anymore. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/20200921072424.14813-4-vincent.guittot@linaro.org |
|
|
|
5a7f555904 |
sched/fair: Relax constraint on task's load during load balance
Some UCs like 9 always running tasks on 8 CPUs can't be balanced and the load balancer currently migrates the waiting task between the CPUs in an almost random manner. The success of a rq pulling a task depends of the value of nr_balance_failed of its domains and its ability to be faster than others to detach it. This behavior results in an unfair distribution of the running time between tasks because some CPUs will run most of the time, if not always, the same task whereas others will share their time between several tasks. Instead of using nr_balance_failed as a boolean to relax the condition for detaching task, the LB will use nr_balanced_failed to relax the threshold between the tasks'load and the imbalance. This mecanism prevents the same rq or domain to always win the load balance fight. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/20200921072424.14813-2-vincent.guittot@linaro.org |
|
|
|
fe7491580d |
sched/fair: Remove the force parameter of update_tg_load_avg()
In the file fair.c, sometims update_tg_load_avg(cfs_rq, 0) is used, sometimes update_tg_load_avg(cfs_rq, false) is used. update_tg_load_avg() has the parameter force, but in current code, it never set 1 or true to it, so remove the force parameter. Signed-off-by: Xianting Tian <tian.xianting@h3c.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200924014755.36253-1-tian.xianting@h3c.com |
|
|
|
df3cb4ea1f |
sched/fair: Fix wrong cpu selecting from isolated domain
We've met problems that occasionally tasks with full cpumask
(e.g. by putting it into a cpuset or setting to full affinity)
were migrated to our isolated cpus in production environment.
After some analysis, we found that it is due to the current
select_idle_smt() not considering the sched_domain mask.
Steps to reproduce on my 31-CPU hyperthreads machine:
1. with boot parameter: "isolcpus=domain,2-31"
(thread lists: 0,16 and 1,17)
2. cgcreate -g cpu:test; cgexec -g cpu:test "test_threads"
3. some threads will be migrated to the isolated cpu16~17.
Fix it by checking the valid domain mask in select_idle_smt().
Fixes:
|
|
|
|
8e0e0eda6a |
sched/numa: Use runnable_avg to classify node
Use runnable_avg to classify numa node state similarly to what is done for normal load balancer. This helps to ensure that numa and normal balancers use the same view of the state of the system. Large arm64system: 2 nodes / 224 CPUs: hackbench -l (256000/#grp) -g #grp grp tip/sched/core +patchset improvement 1 14,008(+/- 4,99 %) 13,800(+/- 3.88 %) 1,48 % 4 4,340(+/- 5.35 %) 4.283(+/- 4.85 %) 1,33 % 16 3,357(+/- 0.55 %) 3.359(+/- 0.54 %) -0,06 % 32 3,050(+/- 0.94 %) 3.039(+/- 1,06 %) 0,38 % 64 2.968(+/- 1,85 %) 3.006(+/- 2.92 %) -1.27 % 128 3,290(+/-12.61 %) 3,108(+/- 5.97 %) 5.51 % 256 3.235(+/- 3.95 %) 3,188(+/- 2.83 %) 1.45 % Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Mel Gorman <mgorman@suse.de> Link: https://lkml.kernel.org/r/20200921072959.16317-1-vincent.guittot@linaro.org |
|
|
|
1724b95b92 |
sched/fair: Simplify the work when reweighting entity
The code in reweight_entity() can be simplified. For a sched entity on the rq, the entity accounting can be replaced by cfs_rq instantaneous load updates currently called from within the entity accounting. Even though an entity on the rq can't represent a task in reweight_entity() (a task is always dequeued before calling this function) and so the numa task accounting and the rq->cfs_tasks list management of the entity accounting are never called, the redundant cfs_rq->nr_running decrement/increment will be avoided. Signed-off-by: Jiang Biao <benbjiang@tencent.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20200811113209.34057-1-benbjiang@tencent.com |
|
|
|
da0777d35f |
sched/fair: Fix wrong negative conversion in find_energy_efficient_cpu()
In find_energy_efficient_cpu() 'cpu_cap' could be less that 'util'.
It might be because of RT, DL (so higher sched class than CFS), irq or
thermal pressure signal, which reduce the capacity value.
In such situation the result of 'cpu_cap - util' might be negative but
stored in the unsigned long. Then it might be compared with other unsigned
long when uclamp_rq_util_with() reduced the 'util' such that is passes the
fits_capacity() check.
Prevent this situation and make the arithmetic more safe.
Fixes:
|
|
|
|
ec73240b16 |
sched/fair: Ignore cache hotness for SMT migration
SMT siblings share caches, so cache hotness should be irrelevant for cross-sibling migration. Signed-off-by: Josh Don <joshdon@google.com> Proposed-by: Venkatesh Pallipadi <venki@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200804193413.510651-1-joshdon@google.com |
|
|
|
0408497800 |
Power management updates for 5.9-rc1
- Make the Energy Model cover non-CPU devices (Lukasz Luba).
- Add Ice Lake server idle states table to the intel_idle driver
and eliminate a redundant static variable from it (Chen Yu,
Rafael Wysocki).
- Eliminate all W=1 build warnings from cpufreq (Lee Jones).
- Add support for Sapphire Rapids and for Power Limit 4 to the
Intel RAPL power capping driver (Sumeet Pawnikar, Zhang Rui).
- Fix function name in kerneldoc comments in the idle_inject power
capping driver (Yangtao Li).
- Fix locking issues with cpufreq governors and drop a redundant
"weak" function definition from cpufreq (Viresh Kumar).
- Rearrange cpufreq to register non-modular governors at the
core_initcall level and allow the default cpufreq governor to
be specified in the kernel command line (Quentin Perret).
- Extend, fix and clean up the intel_pstate driver (Srinivas
Pandruvada, Rafael Wysocki):
* Add a new sysfs attribute for disabling/enabling CPU
energy-efficiency optimizations in the processor.
* Make the driver avoid enabling HWP if EPP is not supported.
* Allow the driver to handle numeric EPP values in the sysfs
interface and fix the setting of EPP via sysfs in the active
mode.
* Eliminate a static checker warning and clean up a kerneldoc
comment.
- Clean up some variable declarations in the powernv cpufreq
driver (Wei Yongjun).
- Fix up the ->enter_s2idle callback definition to cover the case
when it points to the same function as ->idle correctly (Neal
Liu).
- Rearrange and clean up the PSCI cpuidle driver (Ulf Hansson).
- Make the PM core emit "changed" uevent when adding/removing the
"wakeup" sysfs attribute of devices (Abhishek Pandit-Subedi).
- Add a helper macro for declaring PM callbacks and use it in the
MMC jz4740 driver (Paul Cercueil).
- Fix white space in some places in the hibernate code and make the
system-wide PM code use "const char *" where appropriate (Xiang
Chen, Alexey Dobriyan).
- Add one more "unsafe" helper macro to the freezer to cover the NFS
use case (He Zhe).
- Change the language in the generic PM domains framework to use
parent/child terminology and clean up a typo and some comment
fromatting in that code (Kees Cook, Geert Uytterhoeven).
- Update the operating performance points OPP framework (Lukasz
Luba, Andrew-sh.Cheng, Valdis Kletnieks):
* Refactor dev_pm_opp_of_register_em() and update related drivers.
* Add a missing function export.
* Allow disabled OPPs in dev_pm_opp_get_freq().
- Update devfreq core and drivers (Chanwoo Choi, Lukasz Luba, Enric
Balletbo i Serra, Dmitry Osipenko, Kieran Bingham, Marc Zyngier):
* Add support for delayed timers to the devfreq core and make the
Samsung exynos5422-dmc driver use it.
* Unify sysfs interface to use "df-" as a prefix in instance names
consistently.
* Fix devfreq_summary debugfs node indentation.
* Add the rockchip,pmu phandle to the rk3399_dmc driver DT
bindings.
* List Dmitry Osipenko as the Tegra devfreq driver maintainer.
* Fix typos in the core devfreq code.
- Update the pm-graph utility to version 5.7 including a number of
fixes related to suspend-to-idle (Todd Brandt).
- Fix coccicheck errors and warnings in the cpupower utility (Shuah
Khan).
- Replace HTTP links with HTTPs ones in multiple places (Alexander
A. Klimov).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl8oO24SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx7ZQP/0lQ0yABnASnwomdOH6+K/m7rvc+e9FE
zx5pTDQswhU5tM7SQAIKqe0uSI+okF2UrBrT5onA16F+JUbnrbexJLazBPfVTTGF
AKpKEQ7Wh69Wz+Y6cQZjm1dTuRL+dlBJuBrzR2tLSnONPMMHuFcO3xd7lgE9UAxC
oGEf393taA6OqcUNRQIa2gqbq+k1qhKjeDucGkbOaoJ6CL0ZyWI+Tfw1WWaBBGv0
/2wBd6V513OH8WtQCW6H3YpHmhYW6OwL8w19KyGcjPRGJaeaIP4W/Ng7mkvgL5ZB
vZqg3XiufFV9uTe8W1NQaVv/NjlN256OteuK809aosTVjD0dhFkhBYg5TLu6HbQq
C/NciZ+78oLedWLT73EUfw3NyS+V0jk6X2EIlBUwNi0Qw1B1pCifGOCKzWFFe5cr
ci4xr4FG7dBkxScOxwFAU2s5TdPHLOkGkQtg4jZr0OYDrzkyLEdsnZEUjLPORo+0
6EBXGfTOSy2CBHcYswRtzJr/1pUTzj7oejhTAMCCuYW2r3VyQtnYcVjlehtp20if
6BfmGisk8nmtxlSm+/Y2FqKa4bNnSTMmr0UJQ+Rjp0tHs47QeucI0ORfZ5nPaBac
+ptvIjWmn3xejT/+oAehpH9066Iuy66vzHdnj7x5+WAsmYS8n8OFtlBFkYELmLJB
3xI5hIl7WtGo
=8cUO
-----END PGP SIGNATURE-----
Merge tag 'pm-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The most significant change here is the extension of the Energy Model
to cover non-CPU devices (as well as CPUs) from Lukasz Luba.
There is also some new hardware support (Ice Lake server idle states
table for intel_idle, Sapphire Rapids and Power Limit 4 support in the
RAPL driver), some new functionality in the existing drivers (eg. a
new switch to disable/enable CPU energy-efficiency optimizations in
intel_pstate, delayed timers in devfreq), some assorted fixes (cpufreq
core, intel_pstate, intel_idle) and cleanups (eg. cpuidle-psci,
devfreq), including the elimination of W=1 build warnings from cpufreq
done by Lee Jones.
Specifics:
- Make the Energy Model cover non-CPU devices (Lukasz Luba).
- Add Ice Lake server idle states table to the intel_idle driver and
eliminate a redundant static variable from it (Chen Yu, Rafael
Wysocki).
- Eliminate all W=1 build warnings from cpufreq (Lee Jones).
- Add support for Sapphire Rapids and for Power Limit 4 to the Intel
RAPL power capping driver (Sumeet Pawnikar, Zhang Rui).
- Fix function name in kerneldoc comments in the idle_inject power
capping driver (Yangtao Li).
- Fix locking issues with cpufreq governors and drop a redundant
"weak" function definition from cpufreq (Viresh Kumar).
- Rearrange cpufreq to register non-modular governors at the
core_initcall level and allow the default cpufreq governor to be
specified in the kernel command line (Quentin Perret).
- Extend, fix and clean up the intel_pstate driver (Srinivas
Pandruvada, Rafael Wysocki):
* Add a new sysfs attribute for disabling/enabling CPU
energy-efficiency optimizations in the processor.
* Make the driver avoid enabling HWP if EPP is not supported.
* Allow the driver to handle numeric EPP values in the sysfs
interface and fix the setting of EPP via sysfs in the active
mode.
* Eliminate a static checker warning and clean up a kerneldoc
comment.
- Clean up some variable declarations in the powernv cpufreq driver
(Wei Yongjun).
- Fix up the ->enter_s2idle callback definition to cover the case
when it points to the same function as ->idle correctly (Neal Liu).
- Rearrange and clean up the PSCI cpuidle driver (Ulf Hansson).
- Make the PM core emit "changed" uevent when adding/removing the
"wakeup" sysfs attribute of devices (Abhishek Pandit-Subedi).
- Add a helper macro for declaring PM callbacks and use it in the MMC
jz4740 driver (Paul Cercueil).
- Fix white space in some places in the hibernate code and make the
system-wide PM code use "const char *" where appropriate (Xiang
Chen, Alexey Dobriyan).
- Add one more "unsafe" helper macro to the freezer to cover the NFS
use case (He Zhe).
- Change the language in the generic PM domains framework to use
parent/child terminology and clean up a typo and some comment
fromatting in that code (Kees Cook, Geert Uytterhoeven).
- Update the operating performance points OPP framework (Lukasz Luba,
Andrew-sh.Cheng, Valdis Kletnieks):
* Refactor dev_pm_opp_of_register_em() and update related drivers.
* Add a missing function export.
* Allow disabled OPPs in dev_pm_opp_get_freq().
- Update devfreq core and drivers (Chanwoo Choi, Lukasz Luba, Enric
Balletbo i Serra, Dmitry Osipenko, Kieran Bingham, Marc Zyngier):
* Add support for delayed timers to the devfreq core and make the
Samsung exynos5422-dmc driver use it.
* Unify sysfs interface to use "df-" as a prefix in instance
names consistently.
* Fix devfreq_summary debugfs node indentation.
* Add the rockchip,pmu phandle to the rk3399_dmc driver DT
bindings.
* List Dmitry Osipenko as the Tegra devfreq driver maintainer.
* Fix typos in the core devfreq code.
- Update the pm-graph utility to version 5.7 including a number of
fixes related to suspend-to-idle (Todd Brandt).
- Fix coccicheck errors and warnings in the cpupower utility (Shuah
Khan).
- Replace HTTP links with HTTPs ones in multiple places (Alexander A.
Klimov)"
* tag 'pm-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (71 commits)
cpuidle: ACPI: fix 'return' with no value build warning
cpufreq: intel_pstate: Fix EPP setting via sysfs in active mode
cpufreq: intel_pstate: Rearrange the storing of new EPP values
intel_idle: Customize IceLake server support
PM / devfreq: Fix the wrong end with semicolon
PM / devfreq: Fix indentaion of devfreq_summary debugfs node
PM / devfreq: Clean up the devfreq instance name in sysfs attr
memory: samsung: exynos5422-dmc: Add module param to control IRQ mode
memory: samsung: exynos5422-dmc: Adjust polling interval and uptreshold
memory: samsung: exynos5422-dmc: Use delayed timer as default
PM / devfreq: Add support delayed timer for polling mode
dt-bindings: devfreq: rk3399_dmc: Add rockchip,pmu phandle
PM / devfreq: tegra: Add Dmitry as a maintainer
PM / devfreq: event: Fix trivial spelling
PM / devfreq: rk3399_dmc: Fix kernel oops when rockchip,pmu is absent
cpuidle: change enter_s2idle() prototype
cpuidle: psci: Prevent domain idlestates until consumers are ready
cpuidle: psci: Convert PM domain to platform driver
cpuidle: psci: Fix error path via converting to a platform driver
cpuidle: psci: Fail cpuidle registration if set OSI mode failed
...
|
|
|
|
5b5642075c |
Merge branches 'pm-em' and 'pm-core'
* pm-em: OPP: refactor dev_pm_opp_of_register_em() and update related drivers Documentation: power: update Energy Model description PM / EM: change name of em_pd_energy to em_cpu_energy PM / EM: remove em_register_perf_domain PM / EM: add support for other devices than CPUs in Energy Model PM / EM: update callback structure and add device pointer PM / EM: introduce em_dev_register_perf_domain function PM / EM: change naming convention from 'capacity' to 'performance' * pm-core: mmc: jz4740: Use pm_ptr() macro PM: Make *_DEV_PM_OPS macros use __maybe_unused PM: core: introduce pm_ptr() macro |
|
|
|
3edecfef02 |
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
In slow path, when selecting idlest group, if both groups have type
group_has_spare, only idle_cpus count gets compared.
As a result, if multiple tasks are created in a tight loop,
and go back to sleep immediately
(while waiting for all tasks to be created),
they may be scheduled on the same core, because CPU is back to idle
when the new fork happen.
For example:
sudo perf record -e sched:sched_wakeup_new -- \
sysbench threads --threads=4 run
...
total number of events: 61582
...
sudo perf script
sysbench 129378 [006] 74586.633466: sched:sched_wakeup_new:
sysbench:129380 [120] success=1 CPU:007
sysbench 129378 [006] 74586.634718: sched:sched_wakeup_new:
sysbench:129381 [120] success=1 CPU:007
sysbench 129378 [006] 74586.635957: sched:sched_wakeup_new:
sysbench:129382 [120] success=1 CPU:007
sysbench 129378 [006] 74586.637183: sched:sched_wakeup_new:
sysbench:129383 [120] success=1 CPU:007
This may have negative impact on performance for workloads with frequent
creation of multiple threads.
In this patch we are using group_util to select idlest group if both groups
have equal number of idle_cpus. Comparing the number of idle cpu is
not enough in this case, because the newly forked thread sleeps
immediately and before we select the cpu for the next one.
This is shown in the trace where the same CPU7 is selected for
all wakeup_new events.
That's why, looking at utilization when there is the same number of
CPU is a good way to see where the previous task was placed. Using
nr_running doesn't solve the problem because the newly forked task is not
running and the cpu would not have been idle in this case and an idle
CPU would have been selected instead.
With this patch newly created tasks would be better distributed.
With this patch:
sudo perf record -e sched:sched_wakeup_new -- \
sysbench threads --threads=4 run
...
total number of events: 74401
...
sudo perf script
sysbench 129455 [006] 75232.853257: sched:sched_wakeup_new:
sysbench:129457 [120] success=1 CPU:008
sysbench 129455 [006] 75232.854489: sched:sched_wakeup_new:
sysbench:129458 [120] success=1 CPU:009
sysbench 129455 [006] 75232.855732: sched:sched_wakeup_new:
sysbench:129459 [120] success=1 CPU:010
sysbench 129455 [006] 75232.856980: sched:sched_wakeup_new:
sysbench:129460 [120] success=1 CPU:011
We tested this patch with following benchmarks:
master: 'commit
|
|
|
|
015dc08918 | Merge branch 'sched/urgent' | |
|
|
01cfcde9c2 |
sched/fair: handle case of task_h_load() returning 0
task_h_load() can return 0 in some situations like running stress-ng mmapfork, which forks thousands of threads, in a sched group on a 224 cores system. The load balance doesn't handle this correctly because env->imbalance never decreases and it will stop pulling tasks only after reaching loop_max, which can be equal to the number of running tasks of the cfs. Make sure that imbalance will be decreased by at least 1. misfit task is the other feature that doesn't handle correctly such situation although it's probably more difficult to face the problem because of the smaller number of CPUs and running tasks on heterogenous system. We can't simply ensure that task_h_load() returns at least one because it would imply to handle underflow in other places. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: <stable@vger.kernel.org> # v4.4+ Link: https://lkml.kernel.org/r/20200710152426.16981-1-vincent.guittot@linaro.org |
|
|
|
9d246053a6 |
sched: Add a tracepoint to track rq->nr_running
Add a bare tracepoint trace_sched_update_nr_running_tp which tracks ->nr_running CPU's rq. This is used to accurately trace this data and provide a visualization of scheduler imbalances in, for example, the form of a heat map. The tracepoint is accessed by loading an external kernel module. An example module (forked from Qais' module and including the pelt related tracepoints) can be found at: https://github.com/auldp/tracepoints-helpers.git A script to turn the trace-cmd report output into a heatmap plot can be found at: https://github.com/jirvoz/plot-nr-running The tracepoints are added to add_nr_running() and sub_nr_running() which are in kernel/sched/sched.h. In order to avoid CREATE_TRACE_POINTS in the header a wrapper call is used and the trace/events/sched.h include is moved before sched.h in kernel/sched/core. Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200629192303.GC120228@lorien.usersys.redhat.com |
|
|
|
faa2fd7cba | Merge branch 'sched/urgent' | |
|
|
e21cf43406 |
sched/cfs: change initial value of runnable_avg
Some performance regression on reaim benchmark have been raised with commit |
|
|
|
423d02e146 |
sched/fair: Optimize dequeue_task_fair()
While looking at enqueue_task_fair and dequeue_task_fair, it occurred
to me that dequeue_task_fair can also be optimized as Vincent described
in commit
|
|
|
|
a87e749e8f |
sched: Remove struct sched_class::next field
Now that the sched_class descriptors are defined in order via the linker script vmlinux.lds.h, there's no reason to have a "next" pointer to the previous priroity structure. The order of the sturctures can be aligned as an array, and used to index and find the next sched_class descriptor. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191219214558.845353593@goodmis.org |
|
|
|
590d697963 |
sched: Force the address order of each sched class descriptor
In order to make a micro optimization in pick_next_task(), the order of the sched class descriptor address must be in the same order as their priority to each other. That is: &idle_sched_class < &fair_sched_class < &rt_sched_class < &dl_sched_class < &stop_sched_class In order to guarantee this order of the sched class descriptors, add each one into their own data section and force the order in the linker script. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/157675913272.349305.8936736338884044103.stgit@localhost.localdomain |
|
|
|
f0b5694791 |
PM / EM: change name of em_pd_energy to em_cpu_energy
Energy Model framework now supports other devices than CPUs. Refactor some of the functions in order to prevent wrong usage. The old function em_pd_energy has to generic name. It must not be used without proper cpumask pointer, which is possible only for CPU devices. Thus, rename it and add proper description to warn of potential wrong usage for other devices. Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Quentin Perret <qperret@google.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
|
|
|
87e867b426 |
sched/pelt: Cleanup PELT divider
Factorize in a single place the calculation of the divider to be used to to compute *_avg from *_sum value Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200612154703.23555-1-vincent.guittot@linaro.org |
|
|
|
3ea2f097b1 |
sched/fair: Fix NOHZ next idle balance
With commit:
'b7031a02ec75 ("sched/fair: Add NOHZ_STATS_KICK")'
rebalance_domains of the local cfs_rq happens before others idle cpus have
updated nohz.next_balance and its value is overwritten.
Move the update of nohz.next_balance for other idles cpus before balancing
and updating the next_balance of local cfs_rq.
Also, the nohz.next_balance is now updated only if all idle cpus got a
chance to rebalance their domains and the idle balance has not been aborted
because of new activities on the CPU. In case of need_resched, the idle
load balance will be kick the next jiffie in order to address remaining
ilb.
Fixes:
|
|
|
|
4581bea8b4 |
sched/debug: Add new tracepoints to track util_est
The util_est signals are key elements for EAS task placement and frequency selection. Having tracepoints to track these signals enables load-tracking and schedutil testing and/or debugging by a toolkit. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/1590597554-370150-1-git-send-email-vincent.donnefort@arm.com |
|
|
|
1ca2034ed7 |
sched/fair: Remove unused 'sd' parameter from scale_rt_capacity()
Since commit
|
|
|
|
0900acf2d8 |
sched/core: Remove redundant 'preempt' param from sched_class->yield_to_task()
Commit
|
|
|
|
d8ed45c5dc |
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
cb8e59cc87 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
|
|
|
|
1806c13dc2 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
xdp_umem.c had overlapping changes between the 64-bit math fix for the calculation of npgs and the removal of the zerocopy memory type which got rid of the chunk_size_nohdr member. The mlx5 Kconfig conflict is a case where we just take the net-next copy of the Kconfig entry dependency as it takes on the ESWITCH dependency by one level of indirection which is what the 'net' conflicting change is trying to ensure. Signed-off-by: David S. Miller <davem@davemloft.net> |
|
|
|
126c2092e5 |
sched: Add rq::ttwu_pending
In preparation of removing rq->wake_list, replace the !list_empty(rq->wake_list) with rq->ttwu_pending. This is not fully equivalent as this new variable is racy. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20200526161908.070399698@infradead.org |
|
|
|
19a1f5ec69 |
sched: Fix smp_call_function_single_async() usage for ILB
The recent commit: |
|
|
|
498bdcdb94 |
Merge branch 'sched/urgent' into sched/core, to pick up fix
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
18f855e574 |
sched/fair: Don't NUMA balance for kthreads
Stefano reported a crash with using SQPOLL with io_uring: BUG: kernel NULL pointer dereference, address: 00000000000003b0 CPU: 2 PID: 1307 Comm: io_uring-sq Not tainted 5.7.0-rc7 #11 RIP: 0010:task_numa_work+0x4f/0x2c0 Call Trace: task_work_run+0x68/0xa0 io_sq_thread+0x252/0x3d0 kthread+0xf9/0x130 ret_from_fork+0x35/0x40 which is task_numa_work() oopsing on current->mm being NULL. The task work is queued by task_tick_numa(), which checks if current->mm is NULL at the time of the call. But this state isn't necessarily persistent, if the kthread is using use_mm() to temporarily adopt the mm of a task. Change the task_tick_numa() check to exclude kernel threads in general, as it doesn't make sense to attempt ot balance for kthreads anyway. Reported-by: Stefano Garzarella <sgarzare@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/865de121-8190-5d30-ece5-3b097dc74431@kernel.dk |
|
|
|
13209a8f73 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
The MSCC bug fix in 'net' had to be slightly adjusted because the register accesses are done slightly differently in net-next. Signed-off-by: David S. Miller <davem@davemloft.net> |
|
|
|
04f5c362ec |
sched/fair: Replace zero-length array with flexible-array
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
|
|
|
95d685935a |
sched/pelt: Sync util/runnable_sum with PELT window when propagating
update_tg_cfs_*() propagate the impact of the attach/detach of an entity down into the cfs_rq hierarchy and must keep the sync with the current pelt window. Even if we can't sync child cfs_rq and its group se, we can sync the group se and its parent cfs_rq with current position in the PELT window. In fact, we must keep them sync in order to stay also synced with others entities and group entities that are already attached to the cfs_rq. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200506155301.14288-1-vincent.guittot@linaro.org |
|
|
|
7d148be69e |
sched/fair: Optimize enqueue_task_fair()
enqueue_task_fair jumps to enqueue_throttle label when cfs_rq_of(se) is throttled which means that se can't be NULL in such case and we can move the label after the if (!se) statement. Futhermore, the latter can be removed because se is always NULL when reaching this point. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/20200513135502.4672-1-vincent.guittot@linaro.org |
|
|
|
9013196a46 | Merge branch 'sched/urgent' | |
|
|
39f23ce07b |
sched/fair: Fix unthrottle_cfs_rq() for leaf_cfs_rq list
Although not exactly identical, unthrottle_cfs_rq() and enqueue_task_fair()
are quite close and follow the same sequence for enqueuing an entity in the
cfs hierarchy. Modify unthrottle_cfs_rq() to use the same pattern as
enqueue_task_fair(). This fixes a problem already faced with the latter and
add an optimization in the last for_each_sched_entity loop.
Fixes:
|
|
|
|
b34cb07dde |
sched/fair: Fix enqueue_task_fair() warning some more
sched/fair: Fix enqueue_task_fair warning some more The recent patch, |
|
|
|
90b5363acd |
sched: Clean up scheduler_ipi()
The scheduler IPI has grown weird and wonderful over the years, time for spring cleaning. Move all the non-trivial stuff out of it and into a regular smp function call IPI. This then reduces the schedule_ipi() to most of it's former NOP glory and ensures to keep the interrupt vector lean and mean. Aside of that avoiding the full irq_enter() in the x86 IPI implementation is incorrect as scheduler_ipi() can be instrumented. To work around that scheduler_ipi() had an irq_enter/exit() hack when heavy work was pending. This is gone now. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Link: https://lkml.kernel.org/r/20200505134058.361859938@linutronix.de |
|
|
|
17c891ab34 |
sched/fair: Use __this_cpu_read() in wake_wide()
The code is executed with preemption(and interrupts) disabled, so it's safe to use __this_cpu_write(). Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200421144123.33580-1-songmuchun@bytedance.com |
|
|
|
f38f12d1e0 |
sched/fair: Mark sched_init_granularity __init
Function sched_init_granularity() is only called from __init functions, so mark it __init as well. Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20200406074750.56533-1-songmuchun@bytedance.com |
|
|
|
5a6d6a6ccb |
sched/fair: Refill bandwidth before scaling
In order to prevent possible hardlockup of sched_cfs_period_timer()
loop, loop count is introduced to denote whether to scale quota and
period or not. However, scale is done between forwarding period timer
and refilling cfs bandwidth runtime, which means that period timer is
forwarded with old "period" while runtime is refilled with scaled
"quota".
Move do_sched_cfs_period_timer() before scaling to solve this.
Fixes:
|
|
|
|
d91cecc156 |
sched: Make newidle_balance() static again
After Commit
|
|
|
|
e669ac8ab9 |
sched: Remove checks against SD_LOAD_BALANCE
The SD_LOAD_BALANCE flag is set unconditionally for all domains in sd_init(). By making the sched_domain->flags syctl interface read-only, we have removed the last piece of code that could clear that flag - as such, it will now be always present. Rather than to keep carrying it along, we can work towards getting rid of it entirely. cpusets don't need it because they can make CPUs be attached to the NULL domain (e.g. cpuset with sched_load_balance=0), or to a partitioned root_domain, i.e. a sched_domain hierarchy that doesn't span the entire system (e.g. root cpuset with sched_load_balance=0 and sibling cpusets with sched_load_balance=1). isolcpus apply the same "trick": isolated CPUs are explicitly taken out of the sched_domain rebuild (using housekeeping_cpumask()), so they get the NULL domain treatment as well. Remove the checks against SD_LOAD_BALANCE. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200415210512.805-4-valentin.schneider@arm.com |
|
|
|
45da27732b |
sched/fair: find_idlest_group(): Remove unused sd_flag parameter
The last use of that parameter was removed by commit
|
|
|
|
64297f2b03 |
sched/fair: Simplify the code of should_we_balance()
We only consider group_balance_cpu() after there is no idle cpu. So, just do comparison before return at these two cases. Signed-off-by: Peng Wang <rocking@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/245c792f0e580b3ca342ad61257f4c066ee0f84f.1586594833.git.rocking@linux.alibaba.com |
|
|
|
ab93a4bc95 |
sched/fair: Remove distribute_running from CFS bandwidth
This is mostly a revert of commit:
|
|
|
|
e98fa02c4f |
sched/fair: Eliminate bandwidth race between throttling and distribution
There is a race window in which an entity begins throttling before quota
is added to the pool, but does not finish throttling until after we have
finished with distribute_cfs_runtime(). This entity is not observed by
distribute_cfs_runtime() because it was not on the throttled list at the
time that distribution was running. This race manifests as rare
period-length statlls for such entities.
Rather than heavy-weight the synchronization with the progress of
distribution, we can fix this by aborting throttling if bandwidth has
become available. Otherwise, we immediately add the entity to the
throttled list so that it can be observed by a subsequent distribution.
Additionally, we can remove the case of adding the throttled entity to
the head of the throttled list, and simply always add to the tail.
Thanks to
|
|
|
|
32927393dc |
sysctl: pass kernel pointers to ->proc_handler
Instead of having all the sysctl handlers deal with user pointers, which is rather hairy in terms of the BPF interaction, copy the input to and from userspace in common code. This also means that the strings are always NUL-terminated by the common code, making the API a little bit safer. As most handler just pass through the data to one of the common handlers a lot of the changes are mechnical. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
|
|
|
111688ca1c |
sched/fair: Fix negative imbalance in imbalance calculation
A negative imbalance value was observed after imbalance calculation, this happens when the local sched group type is group_fully_busy, and the average load of local group is greater than the selected busiest group. Fix this problem by comparing the average load of the local and busiest group before imbalance calculation formula. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Phil Auld <pauld@redhat.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/1585201349-70192-1-git-send-email-aubrey.li@intel.com |
|
|
|
26a8b12747 |
sched/fair: Fix race between runtime distribution and assignment
Currently, there is a potential race between distribute_cfs_runtime()
and assign_cfs_rq_runtime(). Race happens when cfs_b->runtime is read,
distributes without holding lock and finds out there is not enough
runtime to charge against after distribution. Because
assign_cfs_rq_runtime() might be called during distribution, and use
cfs_b->runtime at the same time.
Fibtest is the tool to test this race. Assume all gcfs_rq is throttled
and cfs period timer runs, slow threads might run and sleep, returning
unused cfs_rq runtime and keeping min_cfs_rq_runtime in their local
pool. If all this happens sufficiently quickly, cfs_b->runtime will drop
a lot. If runtime distributed is large too, over-use of runtime happens.
A runtime over-using by about 70 percent of quota is seen when we
test fibtest on a 96-core machine. We run fibtest with 1 fast thread and
95 slow threads in test group, configure 10ms quota for this group and
see the CPU usage of fibtest is 17.0%, which is far more than the
expected 10%.
On a smaller machine with 32 cores, we also run fibtest with 96
threads. CPU usage is more than 12%, which is also more than expected
10%. This shows that on similar workloads, this race do affect CPU
bandwidth control.
Solve this by holding lock inside distribute_cfs_runtime().
Fixes:
|
|
|
|
d76343c6b2 |
sched/fair: Align rq->avg_idle and rq->avg_scan_cost
sched/core.c uses update_avg() for rq->avg_idle and sched/fair.c uses an
open-coded version (with the exact same decay factor) for
rq->avg_scan_cost. On top of that, select_idle_cpu() expects to be able to
compare these two fields.
The only difference between the two is that rq->avg_scan_cost is computed
using a pure division rather than a shift. Turns out it actually matters,
first of all because the shifted value can be negative, and the standard
has this to say about it:
"""
The result of E1 >> E2 is E1 right-shifted E2 bit positions. [...] If E1
has a signed type and a negative value, the resulting value is
implementation-defined.
"""
Not only this, but (arithmetic) right shifting a negative value (using 2's
complement) is *not* equivalent to dividing it by the corresponding power
of 2. Let's look at a few examples:
-4 -> 0xF..FC
-4 >> 3 -> 0xF..FF == -1 != -4 / 8
-8 -> 0xF..F8
-8 >> 3 -> 0xF..FF == -1 == -8 / 8
-9 -> 0xF..F7
-9 >> 3 -> 0xF..FE == -2 != -9 / 8
Make update_avg() use a division, and export it to the private scheduler
header to reuse it where relevant. Note that this still lets compilers use
a shift here, but should prevent any unwanted surprise. The disassembly of
select_idle_cpu() remains unchanged on arm64, and ttwu_do_wakeup() gains 2
instructions; the diff sort of looks like this:
- sub x1, x1, x0
+ subs x1, x1, x0 // set condition codes
+ add x0, x1, #0x7
+ csel x0, x0, x1, mi // x0 = x1 < 0 ? x0 : x1
add x0, x3, x0, asr #3
which does the right thing (i.e. gives us the expected result while still
using an arithmetic shift)
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200330090127.16294-1-valentin.schneider@arm.com
|
|
|
|
3122e80efc |
mm/vma: make vma_is_accessible() available for general use
Lets move vma_is_accessible() helper to include/linux/mm.h which makes it available for general use. While here, this replaces all remaining open encodings for VMA access check with vma_is_accessible(). Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Guo Ren <guoren@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paulburton@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Will Deacon <will@kernel.org> Link: http://lkml.kernel.org/r/1582520593-30704-3-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
6c8116c914 |
sched/fair: Fix condition of avg_load calculation
In update_sg_wakeup_stats(), the comment says:
Computing avg_load makes sense only when group is fully
busy or overloaded.
But, the code below this comment does not check like this.
From reading the code about avg_load in other functions, I
confirm that avg_load should be calculated in fully busy or
overloaded case. The comment is correct and the checking
condition is wrong. So, change that condition.
Fixes:
|
|
|
|
c32b430829 |
sched/fair: Improve spreading of utilization
During load_balancing, a group with spare capacity will try to pull some
utilizations from an overloaded group. In such case, the load balance
looks for the runqueue with the highest utilization. Nevertheless, it
should also ensure that there are some pending tasks to pull otherwise
the load balance will fail to pull a task and the spread of the load will
be delayed.
This situation is quite transient but it's possible to highlight the
effect with a short run of sysbench test so the time to spread task impacts
the global result significantly.
Below are the average results for 15 iterations on an arm64 octo core:
sysbench --test=cpu --num-threads=8 --max-requests=1000 run
tip/sched/core +patchset
total time: 172ms 158ms
per-request statistics:
avg: 1.337ms 1.244ms
max: 21.191ms 10.753ms
The average max doesn't fully reflect the wide spread of the value which
ranges from 1.350ms to more than 41ms for the tip/sched/core and from
1.350ms to 21ms with the patch.
Other factors like waiting for an idle load balance or cache hotness
can delay the spreading of the tasks which explains why we can still
have up to 21ms with the patch.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200312165429.990-1-vincent.guittot@linaro.org
|
|
|
|
fe61468b2c |
sched/fair: Fix enqueue_task_fair warning
When a cfs rq is throttled, the latter and its child are removed from the leaf list but their nr_running is not changed which includes staying higher than 1. When a task is enqueued in this throttled branch, the cfs rqs must be added back in order to ensure correct ordering in the list but this can only happens if nr_running == 1. When cfs bandwidth is used, we call unconditionnaly list_add_leaf_cfs_rq() when enqueuing an entity to make sure that the complete branch will be added. Similarly unthrottle_cfs_rq() can stop adding cfs in the list when a parent is throttled. Iterate the remaining entity to ensure that the complete branch will be added in the list. Reported-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: stable@vger.kernel.org Cc: stable@vger.kernel.org #v5.1+ Link: https://lkml.kernel.org/r/20200306135257.25044-1-vincent.guittot@linaro.org |
|
|
|
5ab297bab9 |
sched/fair: Fix reordering of enqueue/dequeue_task_fair()
Even when a cgroup is throttled, the group se of a child cgroup can still
be enqueued and its gse->on_rq stays true. When a task is enqueued on such
child, we still have to update the load_avg and increase
h_nr_running of the throttled cfs. Nevertheless, the 1st
for_each_sched_entity() loop is skipped because of gse->on_rq == true and the
2nd loop because the cfs is throttled whereas we have to update both
load_avg with the old h_nr_running and increase h_nr_running in such case.
The same sequence can happen during dequeue when se moves to parent before
breaking in the 1st loop.
Note that the update of load_avg will effectively happen only once in order
to sync up to the throttled time. Next call for updating load_avg will stop
early because the clock stays unchanged.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes:
|
|
|
|
6212437f0f |
sched/fair: Fix runnable_avg for throttled cfs
When a cfs_rq is throttled, its group entity is dequeued and its running
tasks are removed. We must update runnable_avg with the old h_nr_running
and update group_se->runnable_weight with the new h_nr_running at each
level of the hierarchy.
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes:
|
|
|
|
0621df3154 |
sched/numa: Acquire RCU lock for checking idle cores during NUMA balancing
Qian Cai reported the following bug: The linux-next commit |
|
|
|
76c389ab2b |
sched/fair: Fix kernel build warning in test_idle_cores() for !SMT NUMA
Building against the tip/sched/core as |
|
|
|
05289b90c2 |
sched/fair: Enable tuning of decay period
Thermal pressure follows pelt signals which means the decay period for thermal pressure is the default pelt decay period. Depending on SoC characteristics and thermal activity, it might be beneficial to decay thermal pressure slower, but still in-tune with the pelt signals. One way to achieve this is to provide a command line parameter to set a decay shift parameter to an integer between 0 and 10. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-10-thara.gopinath@linaro.org |
|
|
|
467b7d01c4 |
sched/fair: Update cpu_capacity to reflect thermal pressure
cpu_capacity initially reflects the maximum possible capacity of a CPU. Thermal pressure on a CPU means this maximum possible capacity is unavailable due to thermal events. This patch subtracts the average thermal pressure for a CPU from its maximum possible capacity so that cpu_capacity reflects the remaining maximum capacity. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-8-thara.gopinath@linaro.org |
|
|
|
b4eccf5f8e |
sched/fair: Enable periodic update of average thermal pressure
Introduce support in scheduler periodic tick and other CFS bookkeeping APIs to trigger the process of computing average thermal pressure for a CPU. Also consider avg_thermal.load_avg in others_have_blocked which allows for decay of pelt signals. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-7-thara.gopinath@linaro.org |
|
|
|
1b10d388d0 |
Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
289de35984 |
sched/fair: Fix statistics for find_idlest_group()
sgs->group_weight is not set while gathering statistics in
update_sg_wakeup_stats(). This means that a group can be classified as
fully busy with 0 running tasks if utilization is high enough.
This path is mainly used for fork and exec.
Fixes:
|
|
|
|
a0f03b617c |
sched/numa: Stop an exhastive search if a reasonable swap candidate or idle CPU is found
When domains are imbalanced or overloaded a search of all CPUs on the target domain is searched and compared with task_numa_compare. In some circumstances, a candidate is found that is an obvious win. o A task can move to an idle CPU and an idle CPU is found o A swap candidate is found that would move to its preferred domain This patch terminates the search when either condition is met. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-14-mgorman@techsingularity.net |
|
|
|
88cca72c96 |
sched/numa: Bias swapping tasks based on their preferred node
When swapping tasks for NUMA balancing, it is preferred that tasks move to or remain on their preferred node. When considering an imbalance, encourage tasks to move to their preferred node and discourage tasks from moving away from their preferred node. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-13-mgorman@techsingularity.net |
|
|
|
5fb52dd93a |
sched/numa: Find an alternative idle CPU if the CPU is part of an active NUMA balance
Multiple tasks can attempt to select and idle CPU but fail because numa_migrate_on is already set and the migration fails. Instead of failing, scan for an alternative idle CPU. select_idle_sibling is not used because it requires IRQs to be disabled and it ignores numa_migrate_on allowing multiple tasks to stack. This scan may still fail if there are idle candidate CPUs due to races but if this occurs, it's best that a task stay on an available CPU that move to a contended one. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-12-mgorman@techsingularity.net |
|
|
|
ff7db0bf24 |
sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks
task_numa_find_cpu() can scan a node multiple times. Minimally it scans to gather statistics and later to find a suitable target. In some cases, the second scan will simply pick an idle CPU if the load is not imbalanced. This patch caches information on an idle core while gathering statistics and uses it immediately if load is not imbalanced to avoid a second scan of the node runqueues. Preference is given to an idle core rather than an idle SMT sibling to avoid packing HT siblings due to linearly scanning the node cpumask. As a side-effect, even when the second scan is necessary, the importance of using select_idle_sibling is much reduced because information on idle CPUs is cached and can be reused. Note that this patch actually makes is harder to move to an idle CPU as multiple tasks can race for the same idle CPU due to a race checking numa_migrate_on. This is addressed in the next patch. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-11-mgorman@techsingularity.net |
|
|
|
070f5e860e |
sched/fair: Take into account runnable_avg to classify group
Take into account the new runnable_avg signal to classify a group and to mitigate the volatility of util_avg in face of intensive migration or new task with random utilization. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-10-mgorman@techsingularity.net |
|
|
|
9f68395333 |
sched/pelt: Add a new runnable average signal
Now that runnable_load_avg has been removed, we can replace it by a new signal that will highlight the runnable pressure on a cfs_rq. This signal track the waiting time of tasks on rq and can help to better define the state of rqs. At now, only util_avg is used to define the state of a rq: A rq with more that around 80% of utilization and more than 1 tasks is considered as overloaded. But the util_avg signal of a rq can become temporaly low after that a task migrated onto another rq which can bias the classification of the rq. When tasks compete for the same rq, their runnable average signal will be higher than util_avg as it will include the waiting time and we can use this signal to better classify cfs_rqs. The new runnable_avg will track the runnable time of a task which simply adds the waiting time to the running time. The runnable _avg of cfs_rq will be the /Sum of se's runnable_avg and the runnable_avg of group entity will follow the one of the rq similarly to util_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net |
|
|
|
0dacee1bfa |
sched/pelt: Remove unused runnable load average
Now that runnable_load_avg is no more used, we can remove it to make space for a new signal. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-8-mgorman@techsingularity.net |
|
|
|
fb86f5b211 |
sched/numa: Use similar logic to the load balancer for moving between domains with spare capacity
The standard load balancer generally tries to keep the number of running tasks or idle CPUs balanced between NUMA domains. The NUMA balancer allows tasks to move if there is spare capacity but this causes a conflict and utilisation between NUMA nodes gets badly skewed. This patch uses similar logic between the NUMA balancer and load balancer when deciding if a task migrating to its preferred node can use an idle CPU. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-7-mgorman@techsingularity.net |
|
|
|
6499b1b2dd |
sched/numa: Replace runnable_load_avg by load_avg
Similarly to what has been done for the normal load balancer, we can replace runnable_load_avg by load_avg in numa load balancing and track the other statistics like the utilization and the number of running tasks to get to better view of the current state of a node. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-6-mgorman@techsingularity.net |
|
|
|
6d4d22468d |
sched/fair: Reorder enqueue/dequeue_task_fair path
The walk through the cgroup hierarchy during the enqueue/dequeue of a task is split in 2 distinct parts for throttled cfs_rq without any added value but making code less readable. Change the code ordering such that everything related to a cfs_rq (throttled or not) will be done in the same loop. In addition, the same steps ordering is used when updating a cfs_rq: - update_load_avg - update_cfs_group - update *h_nr_running This reordering enables the use of h_nr_running in PELT algorithm. No functional and performance changes are expected and have been noticed during tests. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>" Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-5-mgorman@techsingularity.net |
|
|
|
b2b2042b20 |
sched/numa: Distinguish between the different task_numa_migrate() failure cases
sched:sched_stick_numa is meant to fire when a task is unable to migrate to the preferred node but from the trace, it's possibile to tell the difference between "no CPU found", "migration to idle CPU failed" and "tasks could not be swapped". Extend the tracepoint accordingly. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> [ Minor edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-4-mgorman@techsingularity.net |
|
|
|
f22aef4afb |
sched/numa: Trace when no candidate CPU was found on the preferred node
sched:sched_stick_numa is meant to fire when a task is unable to migrate to the preferred node. The case where no candidate CPU could be found is not traced which is an important gap. The tracepoint is not fired when the task is not allowed to run on any CPU on the preferred node or the task is already running on the target CPU but neither are interesting corner cases. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: https://lore.kernel.org/r/20200224095223.13361-3-mgorman@techsingularity.net |
|
|
|
546121b65f |
Linux 5.6-rc3
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl5TFjYeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGikYIAIhI4C8R87wyj/0m b2NWk6TZ5AFmiZLYSbsPYxdSC9OLdUmlGFKgL2SyLTwZCiHChm+cNBrngp3hJ6gz x1YH99HdjzkiaLa0hCc2+a/aOt8azGU2RiWEP8rbo0gFSk28wE6FjtzSxR95jyPz FRKo/sM+dHBMFXrthJbr+xHZ1De28MITzS2ddstr/10ojoRgm43I3qo1JKhjoDN5 9GGb6v0Md5eo+XZjjB50CvgF5GhpiqW7+HBB7npMsgTk37GdsR5RlosJ/TScLVC9 dNeanuqk8bqMGM0u2DFYdDqjcqAlYbt8aobuWWCB5xgPBXr5G2nox+IgF/f9G6UH EShA/xs= =OFPc -----END PGP SIGNATURE----- Merge tag 'v5.6-rc3' into sched/core, to pick up fixes and dependent patches Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
000619680c |
sched/fair: Remove wake_cap()
Capacity-awareness in the wake-up path previously involved disabling wake_affine in certain scenarios. We have just made select_idle_sibling() capacity-aware, so this isn't needed anymore. Remove wake_cap() entirely. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> [Changelog tweaks] Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [Changelog tweaks] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200206191957.12325-5-valentin.schneider@arm.com |
|
|
|
b7a331615d |
sched/fair: Add asymmetric CPU capacity wakeup scan
Issue
=====
On asymmetric CPU capacity topologies, we currently rely on wake_cap() to
drive select_task_rq_fair() towards either:
- its slow-path (find_idlest_cpu()) if either the previous or
current (waking) CPU has too little capacity for the waking task
- its fast-path (select_idle_sibling()) otherwise
Commit:
|
|
|
|
e9f5490c35 |
sched/fair: Fix kernel-doc warning in attach_entity_load_avg()
Fix kernel-doc warning in kernel/sched/fair.c, caused by a recent
function parameter removal:
../kernel/sched/fair.c:3526: warning: Excess function parameter 'flags' description in 'attach_entity_load_avg'
Fixes:
|
|
|
|
52262ee567 |
sched/fair: Allow a per-CPU kthread waking a task to stack on the same CPU, to fix XFS performance regression
The following XFS commit:
|
|
|
|
bec2860a2b |
sched/fair: Optimize select_idle_core()
Currently we loop through all threads of a core to evaluate if the core is
idle or not. This is unnecessary. If a thread of a core is not idle, skip
evaluating other threads of a core. Also while clearing the cpumask, bits
of all CPUs of a core can be cleared in one-shot.
Collecting ticks on a Power 9 SMT 8 system around select_idle_core
while running schbench shows us
(units are in ticks, hence lesser is better)
Without patch
N Min Max Median Avg Stddev
x 130 151 1083 284 322.72308 144.41494
With patch
N Min Max Median Avg Stddev Improvement
x 164 88 610 201 225.79268 106.78943 30.03%
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20191206172422.6578-1-srikar@linux.vnet.ibm.com
|
|
|
|
b396f52326 |
sched/fair: Allow a small load imbalance between low utilisation SD_NUMA domains
The CPU load balancer balances between different domains to spread load and strives to have equal balance everywhere. Communicating tasks can migrate so they are topologically close to each other but these decisions are independent. On a lightly loaded NUMA machine, two communicating tasks pulled together at wakeup time can be pushed apart by the load balancer. In isolation, the load balancer decision is fine but it ignores the tasks data locality and the wakeup/LB paths continually conflict. NUMA balancing is also a factor but it also simply conflicts with the load balancer. This patch allows a fixed degree of imbalance of two tasks to exist between NUMA domains regardless of utilisation levels. In many cases, this prevents communicating tasks being pulled apart. It was evaluated whether the imbalance should be scaled to the domain size. However, no additional benefit was measured across a range of workloads and machines and scaling adds the risk that lower domains have to be rebalanced. While this could change again in the future, such a change should specify the use case and benefit. The most obvious impact is on netperf TCP_STREAM -- two simple communicating tasks with some softirq offload depending on the transmission rate. 2-socket Haswell machine 48 core, HT enabled netperf-tcp -- mmtests config config-network-netperf-unbound baseline lbnuma-v3 Hmean 64 568.73 ( 0.00%) 577.56 * 1.55%* Hmean 128 1089.98 ( 0.00%) 1128.06 * 3.49%* Hmean 256 2061.72 ( 0.00%) 2104.39 * 2.07%* Hmean 1024 7254.27 ( 0.00%) 7557.52 * 4.18%* Hmean 2048 11729.20 ( 0.00%) 13350.67 * 13.82%* Hmean 3312 15309.08 ( 0.00%) 18058.95 * 17.96%* Hmean 4096 17338.75 ( 0.00%) 20483.66 * 18.14%* Hmean 8192 25047.12 ( 0.00%) 27806.84 * 11.02%* Hmean 16384 27359.55 ( 0.00%) 33071.88 * 20.88%* Stddev 64 2.16 ( 0.00%) 2.02 ( 6.53%) Stddev 128 2.31 ( 0.00%) 2.19 ( 5.05%) Stddev 256 11.88 ( 0.00%) 3.22 ( 72.88%) Stddev 1024 23.68 ( 0.00%) 7.24 ( 69.43%) Stddev 2048 79.46 ( 0.00%) 71.49 ( 10.03%) Stddev 3312 26.71 ( 0.00%) 57.80 (-116.41%) Stddev 4096 185.57 ( 0.00%) 96.15 ( 48.19%) Stddev 8192 245.80 ( 0.00%) 100.73 ( 59.02%) Stddev 16384 207.31 ( 0.00%) 141.65 ( 31.67%) In this case, there was a sizable improvement to performance and a general reduction in variance. However, this is not univeral. For most machines, the impact was roughly a 3% performance gain. Ops NUMA base-page range updates 19796.00 292.00 Ops NUMA PTE updates 19796.00 292.00 Ops NUMA PMD updates 0.00 0.00 Ops NUMA hint faults 16113.00 143.00 Ops NUMA hint local faults % 8407.00 142.00 Ops NUMA hint local percent 52.18 99.30 Ops NUMA pages migrated 4244.00 1.00 Without the patch, only 52.18% of sampled accesses are local. In an earlier changelog, 100% of sampled accesses are local and indeed on most machines, this was still the case. In this specific case, the local sampled rates was 99.3% but note the "base-page range updates" and "PTE updates". The activity with the patch is negligible as were the number of faults. The small number of pages migrated were related to shared libraries. A 2-socket Broadwell showed better results on average but are not presented for brevity as the performance was similar except it showed 100% of the sampled NUMA hints were local. The patch holds up for a 4-socket Haswell, an AMD EPYC and AMD Epyc 2 machine. For dbench, the impact depends on the filesystem used and the number of clients. On XFS, there is little difference as the clients typically communicate with workqueues which have a separate class of scheduler problem at the moment. For ext4, performance is generally better, particularly for small numbers of clients as NUMA balancing activity is negligible with the patch applied. A more interesting example is the Facebook schbench which uses a number of messaging threads to communicate with worker threads. In this configuration, one messaging thread is used per NUMA node and the number of worker threads is varied. The 50, 75, 90, 95, 99, 99.5 and 99.9 percentiles for response latency is then reported. Lat 50.00th-qrtle-1 44.00 ( 0.00%) 37.00 ( 15.91%) Lat 75.00th-qrtle-1 53.00 ( 0.00%) 41.00 ( 22.64%) Lat 90.00th-qrtle-1 57.00 ( 0.00%) 42.00 ( 26.32%) Lat 95.00th-qrtle-1 63.00 ( 0.00%) 43.00 ( 31.75%) Lat 99.00th-qrtle-1 76.00 ( 0.00%) 51.00 ( 32.89%) Lat 99.50th-qrtle-1 89.00 ( 0.00%) 52.00 ( 41.57%) Lat 99.90th-qrtle-1 98.00 ( 0.00%) 55.00 ( 43.88%) Lat 50.00th-qrtle-2 42.00 ( 0.00%) 42.00 ( 0.00%) Lat 75.00th-qrtle-2 48.00 ( 0.00%) 47.00 ( 2.08%) Lat 90.00th-qrtle-2 53.00 ( 0.00%) 52.00 ( 1.89%) Lat 95.00th-qrtle-2 55.00 ( 0.00%) 53.00 ( 3.64%) Lat 99.00th-qrtle-2 62.00 ( 0.00%) 60.00 ( 3.23%) Lat 99.50th-qrtle-2 63.00 ( 0.00%) 63.00 ( 0.00%) Lat 99.90th-qrtle-2 68.00 ( 0.00%) 66.00 ( 2.94% For higher worker threads, the differences become negligible but it's interesting to note the difference in wakeup latency at low utilisation and mpstat confirms that activity was almost all on one node until the number of worker threads increase. Hackbench generally showed neutral results across a range of machines. This is different to earlier versions of the patch which allowed imbalances for higher degrees of utilisation. perf bench pipe showed negligible differences in overall performance as the differences are very close to the noise. An earlier prototype of the patch showed major regressions for NAS C-class when running with only half of the available CPUs -- 20-30% performance hits were measured at the time. With this version of the patch, the impact is negligible with small gains/losses within the noise measured. This is because the number of threads far exceeds the small imbalance the aptch cares about. Similarly, there were report of regressions for the autonuma benchmark against earlier versions but again, normal load balancing now applies for that workload. In general, the patch simply seeks to avoid unnecessary cross-node migrations in the basic case where imbalances are very small. For low utilisation communicating workloads, this patch generally behaves better with less NUMA balancing activity. For high utilisation, there is no change in behaviour. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Phil Auld <pauld@redhat.com> Tested-by: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/20200114101319.GO3466@techsingularity.net |
|
|
|
afa70d941f |
sched/fair: Define sched_idle_cpu() only for SMP configurations
sched_idle_cpu() isn't used for non SMP configuration and with a recent
change, we have started getting following warning:
kernel/sched/fair.c:5221:12: warning: ‘sched_idle_cpu’ defined but not used [-Wunused-function]
Fix that by defining sched_idle_cpu() only for SMP configurations.
Fixes:
|
|
|
|
a4f9a0e51b |
sched/fair: Remove redundant call to cpufreq_update_util()
With commit
|
|
|
|
4c58f57fa6 |
sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
commit |
|
|
|
fe71bbb21e |
sched/fair: calculate delta runnable load only when it's needed
Move the code of calculation for delta_sum/delta_avg to where it is really needed to be done. Signed-off-by: Peng Wang <rocking@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20200103114400.17668-1-rocking@linux.alibaba.com |
|
|
|
323af6deaf |
sched/fair: Load balance aggressively for SCHED_IDLE CPUs
The fair scheduler performs periodic load balance on every CPU to check if it can pull some tasks from other busy CPUs. The duration of this periodic load balance is set to sd->balance_interval for the idle CPUs and is calculated by multiplying the sd->balance_interval with the sd->busy_factor (set to 32 by default) for the busy CPUs. The multiplication is done for busy CPUs to avoid doing load balance too often and rather spend more time executing actual task. While that is the right thing to do for the CPUs busy with SCHED_OTHER or SCHED_BATCH tasks, it may not be the optimal thing for CPUs running only SCHED_IDLE tasks. With the recent enhancements in the fair scheduler around SCHED_IDLE CPUs, we now prefer to enqueue a newly-woken task to a SCHED_IDLE CPU instead of other busy or idle CPUs. The same reasoning should be applied to the load balancer as well to make it migrate tasks more aggressively to a SCHED_IDLE CPU, as that will reduce the scheduling latency of the migrated (SCHED_OTHER) tasks. This patch makes minimal changes to the fair scheduler to do the next load balance soon after the last non SCHED_IDLE task is dequeued from a runqueue, i.e. making the CPU SCHED_IDLE. Also the sd->busy_factor is ignored while calculating the balance_interval for such CPUs. This is done to avoid delaying the periodic load balance by few hundred milliseconds for SCHED_IDLE CPUs. This is tested on ARM64 Hikey620 platform (octa-core) with the help of rt-app and it is verified, using kernel traces, that the newly SCHED_IDLE CPU does load balancing shortly after it becomes SCHED_IDLE and pulls tasks from other busy CPUs. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/e485827eb8fe7db0943d6f3f6e0f5a4a70272781.1578471925.git.viresh.kumar@linaro.org |
|
|
|
5f68eb19b5 |
sched/fair : Improve update_sd_pick_busiest for spare capacity case
Similarly to calculate_imbalance() and find_busiest_group(), using the number of idle CPUs when there is only 1 CPU in the group is not efficient because we can't make a difference between a CPU running 1 task and a CPU running dozens of small tasks competing for the same CPU but not enough to overload it. More generally speaking, we should use the number of running tasks when there is the same number of idle CPUs in a group instead of blindly select the 1st one. When the groups have spare capacity and the same number of idle CPUs, we compare the number of running tasks to select the busiest group. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1576839893-26930-1-git-send-email-vincent.guittot@linaro.org |
|
|
|
1d42509e47 |
sched/fair: Make EAS wakeup placement consider uclamp restrictions
task_fits_capacity() has just been made uclamp-aware, and
find_energy_efficient_cpu() needs to go through the same treatment.
Things are somewhat different here however - using the task max clamp isn't
sufficient. Consider the following setup:
The target runqueue, rq:
rq.cpu_capacity_orig = 512
rq.cfs.avg.util_avg = 200
rq.uclamp.max = 768 // the max p.uclamp.max of all enqueued p's is 768
The waking task, p (not yet enqueued on rq):
p.util_est = 600
p.uclamp.max = 100
Now, consider the following code which doesn't use the rq clamps:
util = uclamp_task_util(p);
// Does the task fit in the spare CPU capacity?
cpu = cpu_of(rq);
fits_capacity(util, cpu_capacity(cpu) - cpu_util(cpu))
This would lead to:
util = 100;
fits_capacity(100, 512 - 200)
fits_capacity() would return true. However, enqueuing p on that CPU *will*
cause it to become overutilized since rq clamp values are max-aggregated,
so we'd remain with
rq.uclamp.max = 768
which comes from the other tasks already enqueued on rq. Thus, we could
select a high enough frequency to reach beyond 0.8 * 512 utilization
(== overutilized) after enqueuing p on rq. What find_energy_efficient_cpu()
needs here is uclamp_rq_util_with() which lets us peek at the future
utilization landscape, including rq-wide uclamp values.
Make find_energy_efficient_cpu() use uclamp_rq_util_with() for its
fits_capacity() check. This is in line with what compute_energy() ends up
using for estimating utilization.
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Suggested-by: Quentin Perret <qperret@google.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-6-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
a7008c07a5 |
sched/fair: Make task_fits_capacity() consider uclamp restrictions
task_fits_capacity() drives CPU selection at wakeup time, and is also used to detect misfit tasks. Right now it does so by comparing task_util_est() with a CPU's capacity, but doesn't take into account uclamp restrictions. There's a few interesting uses that can come out of doing this. For instance, a low uclamp.max value could prevent certain tasks from being flagged as misfit tasks, so they could merrily remain on low-capacity CPUs. Similarly, a high uclamp.min value would steer tasks towards high capacity CPUs at wakeup (and, should that fail, later steered via misfit balancing), so such "boosted" tasks would favor CPUs of higher capacity. Introduce uclamp_task_util() and make task_fits_capacity() use it. Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Quentin Perret <qperret@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211113851.24241-5-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
17346452b2 |
sched/fair: Make sched-idle CPU selection consistent throughout
There are instances where we keep searching for an idle CPU despite already having a sched-idle CPU (in find_idlest_group_cpu(), select_idle_smt() and select_idle_cpu() and then there are places where we don't necessarily do that and return a sched-idle CPU as soon as we find one (in select_idle_sibling()). This looks a bit inconsistent and it may be worth having the same policy everywhere. On the other hand, choosing a sched-idle CPU over a idle one shall be beneficial from performance and power point of view as well, as we don't need to get the CPU online from a deep idle state which wastes quite a lot of time and energy and delays the scheduling of the newly woken up task. This patch tries to simplify code around sched-idle CPU selection and make it consistent throughout. Testing is done with the help of rt-app on hikey board (ARM64 octa-core, 2 clusters, 0-3 and 4-7). The cpufreq governor was set to performance to avoid any side affects from CPU frequency. Following are the tests performed: Test 1: 1-cfs-task: A single SCHED_NORMAL task is pinned to CPU5 which runs for 2333 us out of 7777 us (so gives time for the cluster to go in deep idle state). Test 2: 1-cfs-1-idle-task: A single SCHED_NORMAL task is pinned on CPU5 and single SCHED_IDLE task is pinned on CPU6 (to make sure cluster 1 doesn't go in deep idle state). Test 3: 1-cfs-8-idle-task: A single SCHED_NORMAL task is pinned on CPU5 and eight SCHED_IDLE tasks are created which run forever (not pinned anywhere, so they run on all CPUs). Checked with kernelshark that as soon as NORMAL task sleeps, the SCHED_IDLE task starts running on CPU5. And here are the results on mean latency (in us), using the "st" tool. $ st 1-cfs-task/rt-app-cfs_thread-0.log N min max sum mean stddev 642 90 592 197180 307.134 109.906 $ st 1-cfs-1-idle-task/rt-app-cfs_thread-0.log N min max sum mean stddev 642 67 311 113850 177.336 41.4251 $ st 1-cfs-8-idle-task/rt-app-cfs_thread-0.log N min max sum mean stddev 643 29 173 41364 64.3297 13.2344 The mean latency when we need to: - wakeup from deep idle state is 307 us. - wakeup from shallow idle state is 177 us. - preempt a SCHED_IDLE task is 64 us. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/b90cbcce608cef4e02a7bbfe178335f76d201bab.1573728344.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1e5f8a3085 |
Linux 5.5-rc3
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl4AEiYeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGR3sH/ixrBBYUVyjRPOxS ce4iVoTqphGSoAzq/3FA1YZZOPQ/Ep0NXL4L2fTGxmoiqIiuy8JPp07/NKbHQjj1 Rt6PGm6cw2pMJHaK9gRdlTH/6OyXkp06OkH1uHqKYrhPnpCWDnj+i2SHAX21Hr1y oBQh4/XKvoCMCV96J2zxRsLvw8OkQFE0ouWWfj6LbpXIsmWZ++s0OuaO1cVdP/oG j+j2Voi3B3vZNQtGgJa5W7YoZN5Qk4ZIj9bMPg7bmKRd3wNB228AiJH2w68JWD/I jCA+JcITilxC9ud96uJ6k7SMS2ufjQlnP0z6Lzd0El1yGtHYRcPOZBgfOoPU2Euf 33WGSyI= =iEwx -----END PGP SIGNATURE----- Merge tag 'v5.5-rc3' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
60588bfa22 |
sched/fair: Optimize select_idle_cpu
select_idle_cpu() will scan the LLC domain for idle CPUs, it's always expensive. so the next commit : |
|
|
|
7c2e8bbd87 |
sched: Spare resched IPI when prio changes on a single fair task
The runqueue of a fair task being remotely reniced is going to get a resched IPI in order to reassess which task should be the current running on the CPU. However that evaluation is useless if the fair task is running alone, in which case we can spare that IPI, preventing nohz_full CPUs from being disturbed. Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20191203160106.18806-2-frederic@kernel.org |
|
|
|
6cf82d559e |
sched/cfs: fix spurious active migration
The load balance can fail to find a suitable task during the periodic check because the imbalance is smaller than half of the load of the waiting tasks. This results in the increase of the number of failed load balance, which can end up to start an active migration. This active migration is useless because the current running task is not a better choice than the waiting ones. In fact, the current task was probably not running but waiting for the CPU during one of the previous attempts and it had already not been selected. When load balance fails too many times to migrate a task, we should relax the contraint on the maximum load of the tasks that can be migrated similarly to what is done with cache hotness. Before the rework, load balance used to set the imbalance to the average load_per_task in order to mitigate such situation. This increased the likelihood of migrating a task but also of selecting a larger task than needed while more appropriate ones were in the list. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1575036287-6052-1-git-send-email-vincent.guittot@linaro.org |
|
|
|
7ed735c331 |
sched/fair: Fix find_idlest_group() to handle CPU affinity
Because of CPU affinity, the local group can be skipped which breaks the
assumption that statistics are always collected for local group. With
uninitialized local_sgs, the comparison is meaningless and the behavior
unpredictable. This can even end up to use local pointer which is to
NULL in this case.
If the local group has been skipped because of CPU affinity, we return
the idlest group.
Fixes:
|
|
|
|
bef69dd878 |
sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util()
update_cfs_rq_load_avg() calls cfs_rq_util_change() every time PELT decays,
which might be inefficient when the cpufreq driver has rate limitation.
When a task is attached on a CPU, we have this call path:
update_load_avg()
update_cfs_rq_load_avg()
cfs_rq_util_change -- > trig frequency update
attach_entity_load_avg()
cfs_rq_util_change -- > trig frequency update
The 1st frequency update will not take into account the utilization of the
newly attached task and the 2nd one might be discarded because of rate
limitation of the cpufreq driver.
update_cfs_rq_load_avg() is only called by update_blocked_averages()
and update_load_avg() so we can move the call to
cfs_rq_util_change/cpufreq_update_util() into these two functions.
It's also interesting to note that update_load_avg() already calls
cfs_rq_util_change() directly for the !SMP case.
This change will also ensure that cpufreq_update_util() is called even
when there is no more CFS rq in the leaf_cfs_rq_list to update, but only
IRQ, RT or DL PELT signals.
[ mingo: Minor updates. ]
Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@redhat.com
Cc: linux-pm@vger.kernel.org
Cc: mgorman@suse.de
Cc: rostedt@goodmis.org
Cc: sargun@sargun.me
Cc: srinivas.pandruvada@linux.intel.com
Cc: tj@kernel.org
Cc: xiexiuqi@huawei.com
Cc: xiezhipeng1@huawei.com
Fixes:
|
|
|
|
b21feab0b8 |
Linux 5.4-rc8
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl3RzgkeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGN18H/0JZbfIpy8/4Irol 0va7Aj2fBi1a5oxfqYsMKN0u3GKbN3OV9tQ+7w1eBNGvL72TGadgVTzTY+Im7A9U UjboAc7jDPCG+YhIwXFufMiIAq5jDIj6h0LDas7ALsMfsnI/RhTwgNtLTAkyI3dH YV/6ljFULwueJHCxzmrYbd1x39PScj3kCNL2pOe6On7rXMKOemY/nbbYYISxY30E GMgKApSS+li7VuSqgrKoq5Qaox26LyR2wrXB1ij4pqEJ9xgbnKRLdHuvXZnE+/5p 46EMirt+yeSkltW3d2/9MoCHaA76ESzWMMDijLx7tPgoTc3RB3/3ZLsm3rYVH+cR cRlNNSk= =0+Cg -----END PGP SIGNATURE----- Merge tag 'v5.4-rc8' into sched/core, to pick up fixes and dependencies Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a9723389cc |
sched/fair: Add comments for group_type and balancing at SD_NUMA level
Add comments to describe each state of goup_type and to add some details about the load balance at NUMA level. [ Valentin Schneider: Updates to the comments. ] [ mingo: Other updates to the comments. ] Reported-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1573570243-1903-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3318544b72 |
sched/fair: Fix rework of find_idlest_group()
The task, for which the scheduler looks for the idlest group of CPUs, must
be discounted from all statistics in order to get a fair comparison
between groups. This includes utilization, load, nr_running and idle_cpus.
Such unfairness can be easily highlighted with the unixbench execl 1 task.
This test continuously call execve() and the scheduler looks for the idlest
group/CPU on which it should place the task. Because the task runs on the
local group/CPU, the latter seems already busy even if there is nothing
else running on it. As a result, the scheduler will always select another
group/CPU than the local one.
This recovers most of the performance regression on my system from the
recent load-balancer rewrite.
[ mingo: Minor cleanups. ]
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Fixes:
|
|
|
|
b90f7c9d21 |
sched/pelt: Fix update of blocked PELT ordering
update_cfs_rq_load_avg() can call cpufreq_update_util() to trigger an update of the frequency. Make sure that RT, DL and IRQ PELT signals have been updated before calling cpufreq. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: dsmythies@telus.net Cc: juri.lelli@redhat.com Cc: mgorman@suse.de Cc: rostedt@goodmis.org Fixes: |
|
|
|
a0e813f26e |
sched/core: Further clarify sched_class::set_next_task()
It turns out there really is something special to the first
set_next_task() invocation. In specific the 'change' pattern really
should not cause balance callbacks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Fixes:
|
|
|
|
2eeb01a28c |
sched/fair: Use mul_u32_u32()
While reading the code I encountered another site where we should be using mul_u32_u32() because GCC just won't take a hint. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: juri.lelli@redhat.com Cc: ktkhai@virtuozzo.com Cc: mgorman@suse.de Cc: qais.yousef@arm.com Cc: qperret@google.com Cc: rostedt@goodmis.org Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20191108131909.717931380@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
98c2f700ed |
sched/core: Simplify sched_class::pick_next_task()
Now that the indirect class call never uses the last two arguments of pick_next_task(), remove them. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: juri.lelli@redhat.com Cc: ktkhai@virtuozzo.com Cc: mgorman@suse.de Cc: qais.yousef@arm.com Cc: qperret@google.com Cc: rostedt@goodmis.org Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20191108131909.660595546@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
5d7d605642 |
sched/core: Optimize pick_next_task()
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).
Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.
Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.
Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
7277a34c6b |
sched/fair: Better document newidle_balance()
Whilst chasing the pick_next_task() race, there was some confusion about the newidle_balance() return values. Document them. [ mingo: Minor edits. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: juri.lelli@redhat.com Cc: ktkhai@virtuozzo.com Cc: mgorman@suse.de Cc: qais.yousef@arm.com Cc: qperret@google.com Cc: rostedt@goodmis.org Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20191108131909.488364308@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6d5a763c30 |
Linux 5.4-rc7
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl3IqJQeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGOiUH+gOEDwid5OODaFAd CggXugdFIlBZefKqGVNW5sjgX8pxFWHXuEMC8iNb6QXtQZdFrI6LFf9hhUDmzQtm 6y1LPxxEiTZjObMEsBNylb7tyzgujFHcAlp0Zro3w/HLCqmYTSP3FF46i2u6KZfL XhkpM4X7R7qxlfpdhlfESv/ElRGocZe6SwXfC7pcPo5flFcmkdu9ijqhNd/6CZ/h Nf9rTsD/wEDVUelFbgVN+LJzlaB0tsyc4Zbof07n8OsFZjhdEOop8gfM/kTBLcyY 6bh66SfDScdsNnC/l8csbPjSZRx+i+nQs67DyhGNnsSAFgHBZdC4Tb/2mDCwhCLR dUvuYZc= =1N6F -----END PGP SIGNATURE----- Merge tag 'v5.4-rc7' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6e2df0581f |
sched: Fix pick_next_task() vs 'change' pattern race
Commit |
|
|
|
b8c9636140 |
sched/fair/util_est: Implement faster ramp-up EWMA on utilization increases
The estimated utilization for a task: util_est = max(util_avg, est.enqueue, est.ewma) is defined based on: - util_avg: the PELT defined utilization - est.enqueued: the util_avg at the end of the last activation - est.ewma: a exponential moving average on the est.enqueued samples According to this definition, when a task suddenly changes its bandwidth requirements from small to big, the EWMA will need to collect multiple samples before converging up to track the new big utilization. This slow convergence towards bigger utilization values is not aligned to the default scheduler behavior, which is to optimize for performance. Moreover, the est.ewma component fails to compensate for temporarely utilization drops which spans just few est.enqueued samples. To let util_est do a better job in the scenario depicted above, change its definition by making util_est directly follow upward motion and only decay the est.ewma on downward. Signed-off-by: Patrick Bellasi <patrick.bellasi@matbug.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Douglas Raillard <douglas.raillard@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <qperret@google.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191023205630.14469-1-patrick.bellasi@matbug.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
57abff067a |
sched/fair: Rework find_idlest_group()
The slow wake up path computes per sched_group statisics to select the idlest group, which is quite similar to what load_balance() is doing for selecting busiest group. Rework find_idlest_group() to classify the sched_group and select the idlest one following the same steps as load_balance(). Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-12-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
fc1273f4ce |
sched/fair: Optimize find_idlest_group()
find_idlest_group() now reads CPU's load_avg in two different ways. Consolidate the function to read and use load_avg only once and simplify the algorithm to only look for the group with lowest load_avg. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-11-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
11f10e5420 |
sched/fair: Use load instead of runnable load in wakeup path
Runnable load was originally introduced to take into account the case where blocked load biases the wake up path which may end to select an overloaded CPU with a large number of runnable tasks instead of an underutilized CPU with a huge blocked load. Tha wake up path now starts looking for idle CPUs before comparing runnable load and it's worth aligning the wake up path with the load_balance() logic. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-10-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c63be7be59 |
sched/fair: Use utilization to select misfit task
Utilization is used to detect a misfit task but the load is then used to select the task on the CPU which can lead to select a small task with high weight instead of the task that triggered the misfit migration. Check that task can't fit the CPU's capacity when selecting the misfit task instead of using the load. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Link: https://lkml.kernel.org/r/1571405198-27570-9-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
2ab4092fc8 |
sched/fair: Spread out tasks evenly when not overloaded
When there is only one CPU per group, using the idle CPUs to evenly spread tasks doesn't make sense and nr_running is a better metrics. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-8-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b0fb1eb4f0 |
sched/fair: Use load instead of runnable load in load_balance()
'runnable load' was originally introduced to take into account the case where blocked load biases the load balance decision which was selecting underutilized groups with huge blocked load whereas other groups were overloaded. The load is now only used when groups are overloaded. In this case, it's worth being conservative and taking into account the sleeping tasks that might wake up on the CPU. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-7-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
5e23e47443 |
sched/fair: Use rq->nr_running when balancing load
CFS load_balance() only takes care of CFS tasks whereas CPUs can be used by other scheduling classes. Typically, a CFS task preempted by an RT or deadline task will not get a chance to be pulled by another CPU because load_balance() doesn't take into account tasks from other classes. Add sum of nr_running in the statistics and use it to detect such situations. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-6-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
0b0695f2b3 |
sched/fair: Rework load_balance()
The load_balance() algorithm contains some heuristics which have become meaningless since the rework of the scheduler's metrics like the introduction of PELT. Furthermore, load is an ill-suited metric for solving certain task placement imbalance scenarios. For instance, in the presence of idle CPUs, we should simply try to get at least one task per CPU, whereas the current load-based algorithm can actually leave idle CPUs alone simply because the load is somewhat balanced. The current algorithm ends up creating virtual and meaningless values like the avg_load_per_task or tweaks the state of a group to make it overloaded whereas it's not, in order to try to migrate tasks. load_balance() should better qualify the imbalance of the group and clearly define what has to be moved to fix this imbalance. The type of sched_group has been extended to better reflect the type of imbalance. We now have: group_has_spare group_fully_busy group_misfit_task group_asym_packing group_imbalanced group_overloaded Based on the type of sched_group, load_balance now sets what it wants to move in order to fix the imbalance. It can be some load as before but also some utilization, a number of task or a type of task: migrate_task migrate_util migrate_load migrate_misfit This new load_balance() algorithm fixes several pending wrong tasks placement: - the 1 task per CPU case with asymmetric system - the case of cfs task preempted by other class - the case of tasks not evenly spread on groups with spare capacity Also the load balance decisions have been consolidated in the 3 functions below after removing the few bypasses and hacks of the current code: - update_sd_pick_busiest() select the busiest sched_group. - find_busiest_group() checks if there is an imbalance between local and busiest group. - calculate_imbalance() decides what have to be moved. Finally, the now unused field total_running of struct sd_lb_stats has been removed. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: riel@surriel.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-5-git-send-email-vincent.guittot@linaro.org [ Small readability and spelling updates. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
fcf0553db6 |
sched/fair: Remove meaningless imbalance calculation
Clean up load_balance() and remove meaningless calculation and fields before adding a new algorithm. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-4-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a349834703 |
sched/fair: Rename sg_lb_stats::sum_nr_running to sum_h_nr_running
Rename sum_nr_running to sum_h_nr_running because it effectively tracks cfs->h_nr_running so we can use sum_nr_running to track rq->nr_running when needed. There are no functional changes. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Acked-by: Rik van Riel <riel@surriel.com> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: srikar@linux.vnet.ibm.com Link: https://lkml.kernel.org/r/1571405198-27570-3-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
490ba971d8 |
sched/fair: Clean up asym packing
Clean up asym packing to follow the default load balance behavior: - classify the group by creating a group_asym_packing field. - calculate the imbalance in calculate_imbalance() instead of bypassing it. We don't need to test twice same conditions anymore to detect asym packing and we consolidate the calculation of imbalance in calculate_imbalance(). There is no functional changes. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hdanton@sina.com Cc: parth@linux.ibm.com Cc: pauld@redhat.com Cc: quentin.perret@arm.com Cc: srikar@linux.vnet.ibm.com Cc: valentin.schneider@arm.com Link: https://lkml.kernel.org/r/1571405198-27570-2-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4929a4e6fa |
sched/fair: Scale bandwidth quota and period without losing quota/period ratio precision
The quota/period ratio is used to ensure a child task group won't get
more bandwidth than the parent task group, and is calculated as:
normalized_cfs_quota() = [(quota_us << 20) / period_us]
If the quota/period ratio was changed during this scaling due to
precision loss, it will cause inconsistency between parent and child
task groups.
See below example:
A userspace container manager (kubelet) does three operations:
1) Create a parent cgroup, set quota to 1,000us and period to 10,000us.
2) Create a few children cgroups.
3) Set quota to 1,000us and period to 10,000us on a child cgroup.
These operations are expected to succeed. However, if the scaling of
147/128 happens before step 3, quota and period of the parent cgroup
will be changed:
new_quota: 1148437ns, 1148us
new_period: 11484375ns, 11484us
And when step 3 comes in, the ratio of the child cgroup will be
104857, which will be larger than the parent cgroup ratio (104821),
and will fail.
Scaling them by a factor of 2 will fix the problem.
Tested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Xuewei Zhang <xueweiz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes:
|
|
|
|
4892f51ad5 |
sched/fair: Avoid redundant EAS calculation
The EAS wake-up path computes the system energy for several CPU
candidates: the CPU with maximum spare capacity in each performance
domain, and the prev_cpu. However, if prev_cpu also happens to be the
CPU with maximum spare capacity in its performance domain, the energy
calculation is still done twice, unnecessarily.
Add a condition to filter out this corner case before doing the energy
calculation.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Quentin Perret <qperret@qperret.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Cc: rjw@rjwysocki.net
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Fixes:
|
|
|
|
763a9ec06c |
sched/fair: Fix -Wunused-but-set-variable warnings
Commit: |
|
|
|
154abafc68 |
tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code
Remove work arounds that were written before there was a grace period after tasks left the runqueue in finish_task_switch(). In particular now that there tasks exiting the runqueue exprience a RCU grace period none of the work performed by task_rcu_dereference() excpet the rcu_dereference() is necessary so replace task_rcu_dereference() with rcu_dereference(). Remove the code in rcuwait_wait_event() that checks to ensure the current task has not exited. It is no longer necessary as it is guaranteed that any running task will experience a RCU grace period after it leaves the run queueue. Remove the comment in rcuwait_wake_up() as it is no longer relevant. Ref: |
|
|
|
dac9f027b1 |
sched/fair: Remove unused cfs_rq_clock_task() function
cfs_rq_clock_task() was first introduced and used in: |
|
|
|
7e67a85999 |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
|
|
|
|
563c4f85f9 |
Merge branch 'sched/rt' into sched/core, to pick up -rt changes
Pick up the first couple of patches working towards PREEMPT_RT. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
eb92692b25 |
sched/fair: Speed-up energy-aware wake-ups
EAS computes the energy impact of migrating a waking task when deciding
on which CPU it should run. However, the current approach is known to
have a high algorithmic complexity, which can result in prohibitively
high wake-up latencies on systems with complex energy models, such as
systems with per-CPU DVFS. On such systems, the algorithm complexity is
in O(n^2) (ignoring the cost of searching for performance states in the
EM) with 'n' the number of CPUs.
To address this, re-factor the EAS wake-up path to compute the energy
'delta' (with and without the task) on a per-performance domain basis,
rather than system-wide, which brings the complexity down to O(n).
No functional changes intended.
Test results
~~~~~~~~~~~~
* Setup: Tested on a Google Pixel 3, with a Snapdragon 845 (4+4 CPUs,
A55/A75). Base kernel is 5.3-rc5 + Pixel3 specific patches. Android
userspace, no graphics.
* Test case: Run a periodic rt-app task, with 16ms period, ramping down
from 70% to 10%, in 5% steps of 500 ms each (json avail. at [1]).
Frequencies of all CPUs are pinned to max (using scaling_min_freq
CPUFreq sysfs entries) to reduce variability. The time to run
select_task_rq_fair() is measured using the function profiler
(/sys/kernel/debug/tracing/trace_stat/function*). See the test script
for more details [2].
Test 1:
I hacked the DT to 'fake' per-CPU DVFS. That is, we end up with one
CPUFreq policy per CPU (8 policies in total). Since all frequencies are
pinned to max for the test, this should have no impact on the actual
frequency selection, but it does in the EAS calculation.
+---------------------------+----------------------------------+
| Without patch | With patch |
+-----+-----+----------+----------+-----+-----------------+----------+
| CPU | Hit | Avg (us) | s^2 (us) | Hit | Avg (us) | s^2 (us) |
|-----+-----+----------+----------+-----+-----------------+----------+
| 0 | 274 | 38.303 | 1750.239 | 401 | 14.126 (-63.1%) | 146.625 |
| 1 | 197 | 49.529 | 1695.852 | 314 | 16.135 (-67.4%) | 167.525 |
| 2 | 142 | 34.296 | 1758.665 | 302 | 14.133 (-58.8%) | 130.071 |
| 3 | 172 | 31.734 | 1490.975 | 641 | 14.637 (-53.9%) | 139.189 |
| 4 | 316 | 7.834 | 178.217 | 425 | 5.413 (-30.9%) | 20.803 |
| 5 | 447 | 8.424 | 144.638 | 556 | 5.929 (-29.6%) | 27.301 |
| 6 | 581 | 14.886 | 346.793 | 456 | 5.711 (-61.6%) | 23.124 |
| 7 | 456 | 10.005 | 211.187 | 997 | 4.708 (-52.9%) | 21.144 |
+-----+-----+----------+----------+-----+-----------------+----------+
* Hit, Avg and s^2 are as reported by the function profiler
Test 2:
I also ran the same test with a normal DT, with 2 CPUFreq policies, to
see if this causes regressions in the most common case.
+---------------------------+----------------------------------+
| Without patch | With patch |
+-----+-----+----------+----------+-----+-----------------+----------+
| CPU | Hit | Avg (us) | s^2 (us) | Hit | Avg (us) | s^2 (us) |
|-----+-----+----------+----------+-----+-----------------+----------+
| 0 | 345 | 22.184 | 215.321 | 580 | 18.635 (-16.0%) | 146.892 |
| 1 | 358 | 18.597 | 200.596 | 438 | 12.934 (-30.5%) | 104.604 |
| 2 | 359 | 25.566 | 200.217 | 397 | 10.826 (-57.7%) | 74.021 |
| 3 | 362 | 16.881 | 200.291 | 718 | 11.455 (-32.1%) | 102.280 |
| 4 | 457 | 3.822 | 9.895 | 757 | 4.616 (+20.8%) | 13.369 |
| 5 | 344 | 4.301 | 7.121 | 594 | 5.320 (+23.7%) | 18.798 |
| 6 | 472 | 4.326 | 7.849 | 464 | 5.648 (+30.6%) | 22.022 |
| 7 | 331 | 4.630 | 13.937 | 408 | 5.299 (+14.4%) | 18.273 |
+-----+-----+----------+----------+-----+-----------------+----------+
* Hit, Avg and s^2 are as reported by the function profiler
In addition to these two tests, I also ran 50 iterations of the Lisa
EAS functional test suite [3] with this patch applied on Arm Juno r0,
Arm Juno r2, Arm TC2 and Hikey960, and could not see any regressions
(all EAS functional tests are passing).
[1] https://paste.debian.net/1100055/
[2] https://paste.debian.net/1100057/
[3] https://github.com/ARM-software/lisa/blob/master/lisa/tests/scheduler/eas_behaviour.py
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Cc: qperret@qperret.net
Cc: rjw@rjwysocki.net
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20190912094404.13802-1-qperret@qperret.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
5e2d2cc258 |
sched/fair: Don't assign runtime for throttled cfs_rq
do_sched_cfs_period_timer() will refill cfs_b runtime and call
distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime
will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs
attached to this cfs_b can't get runtime and will be throttled.
We find that one throttled cfs_rq has non-negative
cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64
in snippet:
distribute_cfs_runtime() {
runtime = -cfs_rq->runtime_remaining + 1;
}
The runtime here will change to a large number and consume all
cfs_b->runtime in this cfs_b period.
According to Ben Segall, the throttled cfs_rq can have
account_cfs_rq_runtime called on it because it is throttled before
idle_balance, and the idle_balance calls update_rq_clock to add time
that is accounted to the task.
This commit prevents cfs_rq to be assgined new runtime if it has been
throttled until that distribute_cfs_runtime is called.
Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: shanpeic@linux.alibaba.com
Cc: stable@vger.kernel.org
Cc: xlpang@linux.alibaba.com
Fixes:
|
|
|
|
a46d14eca7 |
sched/fair: Use rq_lock/unlock in online_fair_sched_group
Enabling WARN_DOUBLE_CLOCK in /sys/kernel/debug/sched_features causes warning to fire in update_rq_clock. This seems to be caused by onlining a new fair sched group not using the rq lock wrappers. [] rq->clock_update_flags & RQCF_UPDATED [] WARNING: CPU: 5 PID: 54385 at kernel/sched/core.c:210 update_rq_clock+0xec/0x150 [] Call Trace: [] online_fair_sched_group+0x53/0x100 [] cpu_cgroup_css_online+0x16/0x20 [] online_css+0x1c/0x60 [] cgroup_apply_control_enable+0x231/0x3b0 [] cgroup_mkdir+0x41b/0x530 [] kernfs_iop_mkdir+0x61/0xa0 [] vfs_mkdir+0x108/0x1a0 [] do_mkdirat+0x77/0xe0 [] do_syscall_64+0x55/0x1d0 [] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Using the wrappers in online_fair_sched_group instead of the raw locking removes this warning. [ tglx: Use rq_*lock_irq() ] Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20190801133749.11033-1-pauld@redhat.com |
|
|
|
67692435c4 |
sched: Rework pick_next_task() slow-path
Avoid the RETRY_TASK case in the pick_next_task() slow path. By doing the put_prev_task() early, we get the rt/deadline pull done, and by testing rq->nr_running we know if we need newidle_balance(). This then gives a stable state to pick a task from. Since the fast-path is fair only; it means the other classes will always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Aaron Lu <aaron.lwe@gmail.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: mingo@kernel.org Cc: Phil Auld <pauld@redhat.com> Cc: Julien Desfossez <jdesfossez@digitalocean.com> Cc: Nishanth Aravamudan <naravamudan@digitalocean.com> Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com |
|
|
|
5f2a45fc9e |
sched: Allow put_prev_task() to drop rq->lock
Currently the pick_next_task() loop is convoluted and ugly because of how it can drop the rq->lock and needs to restart the picking. For the RT/Deadline classes, it is put_prev_task() where we do balancing, and we could do this before the picking loop. Make this possible. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Aaron Lu <aaron.lwe@gmail.com> Cc: mingo@kernel.org Cc: Phil Auld <pauld@redhat.com> Cc: Julien Desfossez <jdesfossez@digitalocean.com> Cc: Nishanth Aravamudan <naravamudan@digitalocean.com> Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com |
|
|
|
5ba553eff0 |
sched/fair: Expose newidle_balance()
For pick_next_task_fair() it is the newidle balance that requires dropping the rq->lock; provided we do put_prev_task() early, we can also detect the condition for doing newidle early. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Aaron Lu <aaron.lwe@gmail.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: mingo@kernel.org Cc: Phil Auld <pauld@redhat.com> Cc: Julien Desfossez <jdesfossez@digitalocean.com> Cc: Nishanth Aravamudan <naravamudan@digitalocean.com> Link: https://lkml.kernel.org/r/9e3eb1859b946f03d7e500453a885725b68957ba.1559129225.git.vpillai@digitalocean.com |
|
|
|
03b7fad167 |
sched: Add task_struct pointer to sched_class::set_curr_task
In preparation of further separating pick_next_task() and set_curr_task() we have to pass the actual task into it, while there, rename the thing to better pair with put_prev_task(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Aaron Lu <aaron.lwe@gmail.com> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: mingo@kernel.org Cc: Phil Auld <pauld@redhat.com> Cc: Julien Desfossez <jdesfossez@digitalocean.com> Cc: Nishanth Aravamudan <naravamudan@digitalocean.com> Link: https://lkml.kernel.org/r/a96d1bcdd716db4a4c5da2fece647a1456c0ed78.1559129225.git.vpillai@digitalocean.com |
|
|
|
de53fd7aed |
sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices
It has been observed, that highly-threaded, non-cpu-bound applications running under cpu.cfs_quota_us constraints can hit a high percentage of periods throttled while simultaneously not consuming the allocated amount of quota. This use case is typical of user-interactive non-cpu bound applications, such as those running in kubernetes or mesos when run on multiple cpu cores. This has been root caused to cpu-local run queue being allocated per cpu bandwidth slices, and then not fully using that slice within the period. At which point the slice and quota expires. This expiration of unused slice results in applications not being able to utilize the quota for which they are allocated. The non-expiration of per-cpu slices was recently fixed by 'commit |
|
|
|
c1a280b68d |
sched/preempt: Use CONFIG_PREEMPTION where appropriate
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same functionality which today depends on CONFIG_PREEMPT. Switch the preemption code, scheduler and init task over to use CONFIG_PREEMPTION. That's the first step towards RT in that area. The more complex changes are coming separately. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
60e17f5cef |
sched/fair: Introduce fits_capacity()
The same formula to check utilization against capacity (after considering capacity_margin) is already used at 5 different locations. This patch creates a new macro, fits_capacity(), which can be used from all these locations without exposing the details of it and hence simplify code. All the 5 code locations are updated as well to use it.. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/b477ac75a2b163048bdaeb37f57b4c3f04f75a31.1559631700.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3c29e651e1 |
sched/fair: Fall back to sched-idle CPU if idle CPU isn't found
We try to find an idle CPU to run the next task, but in case we don't find an idle CPU it is better to pick a CPU which will run the task the soonest, for performance reason. A CPU which isn't idle but has only SCHED_IDLE activity queued on it should be a good target based on this criteria as any normal fair task will most likely preempt the currently running SCHED_IDLE task immediately. In fact, choosing a SCHED_IDLE CPU over a fully idle one shall give better results as it should be able to run the task sooner than an idle CPU (which requires to be woken up from an idle state). This patch updates both fast and slow paths with this optimization. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: chris.redpath@arm.com Cc: quentin.perret@linaro.org Cc: songliubraving@fb.com Cc: steven.sistare@oracle.com Cc: subhra.mazumdar@oracle.com Cc: tkjos@google.com Link: https://lkml.kernel.org/r/eeafa25fdeb6f6edd5b2da716bc8f0ba7708cbcf.1561523542.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
43e9f7f231 |
sched/fair: Start tracking SCHED_IDLE tasks count in cfs_rq
Track how many tasks are present with SCHED_IDLE policy in each cfs_rq. This will be used by later commits. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: chris.redpath@arm.com Cc: quentin.perret@linaro.org Cc: songliubraving@fb.com Cc: steven.sistare@oracle.com Cc: subhra.mazumdar@oracle.com Cc: tkjos@google.com Link: https://lkml.kernel.org/r/0d3cdc427fc68808ad5bccc40e86ed0bf9da8bb4.1561523542.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f6cad8df6b |
sched/fair: Fix imbalance due to CPU affinity
The load_balance() has a dedicated mecanism to detect when an imbalance
is due to CPU affinity and must be handled at parent level. In this case,
the imbalance field of the parent's sched_group is set.
The description of sg_imbalanced() gives a typical example of two groups
of 4 CPUs each and 4 tasks each with a cpumask covering 1 CPU of the first
group and 3 CPUs of the second group. Something like:
{ 0 1 2 3 } { 4 5 6 7 }
* * * *
But the load_balance fails to fix this UC on my octo cores system
made of 2 clusters of quad cores.
Whereas the load_balance is able to detect that the imbalanced is due to
CPU affinity, it fails to fix it because the imbalance field is cleared
before letting parent level a chance to run. In fact, when the imbalance is
detected, the load_balance reruns without the CPU with pinned tasks. But
there is no other running tasks in the situation described above and
everything looks balanced this time so the imbalance field is immediately
cleared.
The imbalance field should not be cleared if there is no other task to move
when the imbalance is detected.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1561996022-28829-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
9434f9f5d1 |
sched/fair: Change task_numa_work() storage to static
There are no callers outside of fair.c. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: mgorman@suse.de Cc: riel@surriel.com Link: https://lkml.kernel.org/r/20190715102508.32434-4-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b34920d4ce |
sched/fair: Move task_numa_work() init to init_numa_balancing()
We only need to set the callback_head worker function once, do it during sched_fork(). While at it, move the comment regarding double task_work addition to init_numa_balancing(), since the double add sentinel is first set there. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: mgorman@suse.de Cc: riel@surriel.com Link: https://lkml.kernel.org/r/20190715102508.32434-3-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
d35927a144 |
sched/fair: Move init_numa_balancing() below task_numa_work()
To reference task_numa_work() from within init_numa_balancing(), we need the former to be declared before the latter. Do just that. This is a pure code movement. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: mgorman@suse.de Cc: riel@surriel.com Link: https://lkml.kernel.org/r/20190715102508.32434-2-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
cb361d8cde |
sched/fair: Use RCU accessors consistently for ->numa_group
The old code used RCU annotations and accessors inconsistently for
->numa_group, which can lead to use-after-frees and NULL dereferences.
Let all accesses to ->numa_group use proper RCU helpers to prevent such
issues.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes:
|
|
|
|
16d51a590a |
sched/fair: Don't free p->numa_faults with concurrent readers
When going through execve(), zero out the NUMA fault statistics instead of
freeing them.
During execve, the task is reachable through procfs and the scheduler. A
concurrent /proc/*/sched reader can read data from a freed ->numa_faults
allocation (confirmed by KASAN) and write it back to userspace.
I believe that it would also be possible for a use-after-free read to occur
through a race between a NUMA fault and execve(): task_numa_fault() can
lead to task_numa_compare(), which invokes task_weight() on the currently
running task of a different CPU.
Another way to fix this would be to make ->numa_faults RCU-managed or add
extra locking, but it seems easier to wipe the NUMA fault statistics on
execve.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes:
|
|
|
|
dad1c12ed8 |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - Remove the unused per rq load array and all its infrastructure, by Dietmar Eggemann. - Add utilization clamping support by Patrick Bellasi. This is a refinement of the energy aware scheduling framework with support for boosting of interactive and capping of background workloads: to make sure critical GUI threads get maximum frequency ASAP, and to make sure background processing doesn't unnecessarily move to cpufreq governor to higher frequencies and less energy efficient CPU modes. - Add the bare minimum of tracepoints required for LISA EAS regression testing, by Qais Yousef - which allows automated testing of various power management features, including energy aware scheduling. - Restructure the former tsk_nr_cpus_allowed() facility that the -rt kernel used to modify the scheduler's CPU affinity logic such as migrate_disable() - introduce the task->cpus_ptr value instead of taking the address of &task->cpus_allowed directly - by Sebastian Andrzej Siewior. - Misc optimizations, fixes, cleanups and small enhancements - see the Git log for details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched/uclamp: Add uclamp support to energy_compute() sched/uclamp: Add uclamp_util_with() sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks sched/uclamp: Set default clamps for RT tasks sched/uclamp: Reset uclamp values on RESET_ON_FORK sched/uclamp: Extend sched_setattr() to support utilization clamping sched/core: Allow sched_setattr() to use the current policy sched/uclamp: Add system default clamps sched/uclamp: Enforce last task's UCLAMP_MAX sched/uclamp: Add bucket local max tracking sched/uclamp: Add CPU's clamp buckets refcounting sched/fair: Rename weighted_cpuload() to cpu_runnable_load() sched/debug: Export the newly added tracepoints sched/debug: Add sched_overutilized tracepoint sched/debug: Add new tracepoint to track PELT at se level sched/debug: Add new tracepoints to track PELT at rq level sched/debug: Add a new sched_trace_*() helper functions sched/autogroup: Make autogroup_path() always available sched/wait: Deduplicate code with do-while sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity() ... |
|
|
|
af24bde8df |
sched/uclamp: Add uclamp support to energy_compute()
The Energy Aware Scheduler (EAS) estimates the energy impact of waking up a task on a given CPU. This estimation is based on: a) an (active) power consumption defined for each CPU frequency b) an estimation of which frequency will be used on each CPU c) an estimation of the busy time (utilization) of each CPU Utilization clamping can affect both b) and c). A CPU is expected to run: - on an higher than required frequency, but for a shorter time, in case its estimated utilization will be smaller than the minimum utilization enforced by uclamp - on a smaller than required frequency, but for a longer time, in case its estimated utilization is bigger than the maximum utilization enforced by uclamp While compute_energy() already accounts clamping effects on busy time, the clamping effects on frequency selection are currently ignored. Fix it by considering how CPU clamp values will be affected by a task waking up and being RUNNABLE on that CPU. Do that by refactoring schedutil_freq_util() to take an additional task_struct* which allows EAS to evaluate the impact on clamp values of a task being eventually queued in a CPU. Clamp values are applied to the RT+CFS utilization only when a FREQUENCY_UTIL is required by compute_energy(). Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the computation of the cpu_util signal implies that we are more likely to estimate the highest OPP when a RT task is running in another CPU of the same performance domain. This can have an impact on energy estimation but: - it's not easy to say which approach is better, since it depends on the use case - the original approach could still be obtained by setting a smaller task-specific util_min whenever required Since we are at that: - rename schedutil_freq_util() into schedutil_cpu_util(), since it's not only used for frequency selection. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
982d9cdc22 |
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
Each time a frequency update is required via schedutil, a frequency is selected to (possibly) satisfy the utilization reported by each scheduling class and irqs. However, when utilization clamping is in use, the frequency selection should consider userspace utilization clamping hints. This will allow, for example, to: - boost tasks which are directly affecting the user experience by running them at least at a minimum "requested" frequency - cap low priority tasks not directly affecting the user experience by running them only up to a maximum "allowed" frequency These constraints are meant to support a per-task based tuning of the frequency selection thus supporting a fine grained definition of performance boosting vs energy saving strategies in kernel space. Add support to clamp the utilization of RUNNABLE FAIR and RT tasks within the boundaries defined by their aggregated utilization clamp constraints. Do that by considering the max(min_util, max_util) to give boosted tasks the performance they need even when they happen to be co-scheduled with other capped tasks. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a3df067974 |
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
The term 'weighted' is not needed since there is no 'unweighted' load. Instead use the term 'runnable' to distinguish 'runnable' load (avg.runnable_load_avg) used in load balance from load (avg.load_avg) which is the sum of 'runnable' and 'blocked' load. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/57f27a7f-2775-d832-e965-0f4d51bb1954@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f9f240f96e |
sched/debug: Add sched_overutilized tracepoint
The new tracepoint allows us to track the changes in overutilized status. Overutilized status is associated with EAS. It indicates that the system is in high performance state. EAS is disabled when the system is in this state since there's not much energy savings while high performance tasks are pushing the system to the limit and it's better to default to the spreading behavior of the scheduler. This tracepoint helps understanding and debugging the conditions under which this happens. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-6-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
8de6242cca |
sched/debug: Add new tracepoint to track PELT at se level
The new tracepoint allows tracking PELT signals at sched_entity level. Which is supported in CFS tasks and taskgroups only. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-5-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
ba19f51fcb |
sched/debug: Add new tracepoints to track PELT at rq level
The new tracepoints allow tracking PELT signals at rq level for all scheduling classes + irq. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-4-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3c93a0c04d |
sched/debug: Add a new sched_trace_*() helper functions
The new functions allow modules to access internal data structures of unexported struct cfs_rq and struct rq to extract important information from the tracepoints to be introduced in later patches. While at it fix alphabetical order of struct declarations in sched.h Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
8ec59c0f5f |
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is
unused since commit:
|
|
|
|
8dc2d993cf |
x86/percpu, sched/fair: Avoid local_clock()
Nadav reported that code-gen changed because of the this_cpu_*() constraints, avoid this for select_idle_cpu() because that runs with preemption (and IRQs) disabled anyway. Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
66567fcbae |
sched/fair: Don't push cfs_bandwith slack timers forward
When a cfs_rq sleeps and returns its quota, we delay for 5ms before waking any throttled cfs_rqs to coalesce with other cfs_rqs going to sleep, as this has to be done outside of the rq lock we hold. The current code waits for 5ms without any sleeps, instead of waiting for 5ms from the first sleep, which can delay the unthrottle more than we want. Switch this around so that we can't push this forward forever. This requires an extra flag rather than using hrtimer_active, since we need to start a new timer if the current one is in the process of finishing. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com> Acked-by: Phil Auld <pauld@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b0c7922441 |
sched/fair: Clean up definition of NOHZ blocked load functions
cfs_rq_has_blocked() and others_have_blocked() are only used within update_blocked_averages(). The !CONFIG_FAIR_GROUP_SCHED version of the latter calls them within a #define CONFIG_NO_HZ_COMMON block, whereas the CONFIG_FAIR_GROUP_SCHED one calls them unconditionnally. As reported by Qian, the above leads to this warning in !CONFIG_NO_HZ_COMMON configs: kernel/sched/fair.c: In function 'update_blocked_averages': kernel/sched/fair.c:7750:7: warning: variable 'done' set but not used [-Wunused-but-set-variable] It wouldn't be wrong to keep cfs_rq_has_blocked() and others_have_blocked() as they are, but since their only current use is to figure out when we can stop calling update_blocked_averages() on fully decayed NOHZ idle CPUs, we can give them a new definition for !CONFIG_NO_HZ_COMMON. Change the definition of cfs_rq_has_blocked() and others_have_blocked() for !CONFIG_NO_HZ_COMMON so that the NOHZ-specific blocks of update_blocked_averages() become no-ops and the 'done' variable gets optimised out. While at it, remove the CONFIG_NO_HZ_COMMON block from the !CONFIG_FAIR_GROUP_SCHED definition of update_blocked_averages() by using the newly-introduced update_blocked_load_status() helper. No change in functionality intended. [ Additions by Peter Zijlstra. ] Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190603115424.7951-1-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
af75d1a9a9 |
sched/fair: Remove sgs->sum_weighted_load
Since sg_lb_stats::sum_weighted_load is now identical with sg_lb_stats::group_load remove it and replace its use case (calculating load per task) with the latter. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20190527062116.11512-7-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1c1b8a7b03 |
sched/fair: Replace source_load() & target_load() with weighted_cpuload()
With LB_BIAS disabled, source_load() & target_load() return weighted_cpuload(). Replace both with calls to weighted_cpuload(). The function to obtain the load index (sd->*_idx) for an sd, get_sd_load_idx(), can be removed as well. Finally, get rid of the sched feature LB_BIAS. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-3-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
5e83eafbfd |
sched/fair: Remove the rq->cpu_load[] update code
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx] any more. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f2bedc4705 |
sched/fair: Remove rq->load
The CFS class is the only one maintaining and using the CPU wide load (rq->load(.weight)). The last use case of the CPU wide load in CFS's set_next_entity() can be replaced by using the load of the CFS class (rq->cfs.load(.weight)) instead. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3bd3706251 |
sched/core: Provide a pointer to the valid CPU mask
In commit:
|
|
|
|
176d2323c7 |
Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
9b019acb72 |
sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
The NOHZ idle balancer runs on the lowest idle CPU. This can interfere with isolated CPUs, so confine it to HK_FLAG_MISC housekeeping CPUs. HK_FLAG_SCHED is not used for this because it is not set anywhere at the moment. This could be folded into HK_FLAG_SCHED once that option is fixed. The problem was observed with increased jitter on an application running on CPU0, caused by NOHZ idle load balancing being run on CPU1 (an SMT sibling). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190412042613.28930-1-npiggin@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a860fa7b96 |
sched/numa: Fix a possible divide-by-zero
sched_clock_cpu() may not be consistent between CPUs. If a task migrates to another CPU, then se.exec_start is set to that CPU's rq_clock_task() by update_stats_curr_start(). Specifically, the new value might be before the old value due to clock skew. So then if in numa_get_avg_runtime() the expression: 'now - p->last_task_numa_placement' ends up as -1, then the divider '*period + 1' in task_numa_placement() is 0 and things go bang. Similar to update_curr(), check if time goes backwards to avoid this. [ peterz: Wrote new changelog. ] [ mingo: Tweaked the code comment. ] Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: cj.chengjian@huawei.com Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b1546edcf2 |
sched/core: Make some functions static
Fix these sparse warnings: kernel/sched/core.c:6577:11: warning: symbol 'min_cfs_quota_period' was not declared. Should it be static? kernel/sched/core.c:6657:5: warning: symbol 'tg_set_cfs_quota' was not declared. Should it be static? kernel/sched/core.c:6670:6: warning: symbol 'tg_get_cfs_quota' was not declared. Should it be static? kernel/sched/core.c:6683:5: warning: symbol 'tg_set_cfs_period' was not declared. Should it be static? kernel/sched/core.c:6693:6: warning: symbol 'tg_get_cfs_period' was not declared. Should it be static? kernel/sched/fair.c:2596:6: warning: symbol 'task_tick_numa' was not declared. Should it be static? Signed-off-by: YueHaibing <yuehaibing@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190418144713.34332-1-yuehaibing@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7dd7788411 |
sched/core: Unify p->on_rq updates
Almost all {,de}activate_task() invocations pair with p->on_rq
updates, the exception being the usage in rt/deadline which hold both
rq locks and therefore don't strictly need to set
TASK_ON_RQ_MIGRATING, but it is harmless if we do anyway.
Put the updates in {,de}activate_task() and cut down on repetition.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
2e8e192263 |
sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup
With extremely short cfs_period_us setting on a parent task group with a large number of children the for loop in sched_cfs_period_timer() can run until the watchdog fires. There is no guarantee that the call to hrtimer_forward_now() will ever return 0. The large number of children can make do_sched_cfs_period_timer() take longer than the period. NMI watchdog: Watchdog detected hard LOCKUP on cpu 24 RIP: 0010:tg_nop+0x0/0x10 <IRQ> walk_tg_tree_from+0x29/0xb0 unthrottle_cfs_rq+0xe0/0x1a0 distribute_cfs_runtime+0xd3/0xf0 sched_cfs_period_timer+0xcb/0x160 ? sched_cfs_slack_timer+0xd0/0xd0 __hrtimer_run_queues+0xfb/0x270 hrtimer_interrupt+0x122/0x270 smp_apic_timer_interrupt+0x6a/0x140 apic_timer_interrupt+0xf/0x20 </IRQ> To prevent this we add protection to the loop that detects when the loop has run too many times and scales the period and quota up, proportionally, so that the timer can complete before then next period expires. This preserves the relative runtime quota while preventing the hard lockup. A warning is issued reporting this state and the new values. Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
e2abb39811 |
sched/fair: Remove unneeded prototype of capacity_of()
The prototype of that function was already hoisted up in: commit |
|
|
|
71b47eaf6f |
sched/fair: Make sync_entity_load_avg() and remove_entity_load_avg() static
Fix these sparse warnigs: kernel/sched/fair.c:3570:6: warning: symbol 'sync_entity_load_avg' was not declared. Should it be static? kernel/sched/fair.c:3583:6: warning: symbol 'remove_entity_load_avg' was not declared. Should it be static? Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190320133839.21392-1-yuehaibing@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
0e9f02450d |
sched/fair: Do not re-read ->h_load_next during hierarchical load calculation
A NULL pointer dereference bug was reported on a distribution kernel but
the same issue should be present on mainline kernel. It occured on s390
but should not be arch-specific. A partial oops looks like:
Unable to handle kernel pointer dereference in virtual kernel address space
...
Call Trace:
...
try_to_wake_up+0xfc/0x450
vhost_poll_wakeup+0x3a/0x50 [vhost]
__wake_up_common+0xbc/0x178
__wake_up_common_lock+0x9e/0x160
__wake_up_sync_key+0x4e/0x60
sock_def_readable+0x5e/0x98
The bug hits any time between 1 hour to 3 days. The dereference occurs
in update_cfs_rq_h_load when accumulating h_load. The problem is that
cfq_rq->h_load_next is not protected by any locking and can be updated
by parallel calls to task_h_load. Depending on the compiler, code may be
generated that re-reads cfq_rq->h_load_next after the check for NULL and
then oops when reading se->avg.load_avg. The dissassembly showed that it
was possible to reread h_load_next after the check for NULL.
While this does not appear to be an issue for later compilers, it's still
an accident if the correct code is generated. Full locking in this path
would have high overhead so this patch uses READ_ONCE to read h_load_next
only once and check for NULL before dereferencing. It was confirmed that
there were no further oops after 10 days of testing.
As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any
potential problems with store tearing.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Fixes:
|
|
|
|
231c807a60 |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
"Third more careful attempt for this set of fixes:
- Prevent a 32bit math overflow in the cpufreq code
- Fix a buffer overflow when scanning the cgroup2 cpu.max property
- A set of fixes for the NOHZ scheduler logic to prevent waking up
CPUs even if the capacity of the busy CPUs is sufficient along with
other tweaks optimizing the behaviour for asymmetric systems
(big/little)"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Skip LLC NOHZ logic for asymmetric systems
sched/fair: Tune down misfit NOHZ kicks
sched/fair: Comment some nohz_balancer_kick() kick conditions
sched/core: Fix buffer overflow in cgroup2 property cpu.max
sched/cpufreq: Fix 32-bit math overflow
|
|
|
|
b9a7b88316 |
sched/fair: Skip LLC NOHZ logic for asymmetric systems
The LLC NOHZ condition will become true as soon as >=2 CPUs in a single LLC domain are busy. On big.LITTLE systems, this translates to two or more CPUs of a "cluster" (big or LITTLE) being busy. Issuing a NOHZ kick in these conditions isn't desired for asymmetric systems, as if the busy CPUs can provide enough compute capacity to the running tasks, then we can leave the NOHZ CPUs in peace. Skip the LLC NOHZ condition for asymmetric systems, and rely on nr_running & capacity checks to trigger NOHZ kicks when the system actually needs them. Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dietmar.Eggemann@arm.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20190211175946.4961-4-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a0fe2cf086 |
sched/fair: Tune down misfit NOHZ kicks
In this commit:
|
|
|
|
e25a7a944f |
sched/fair: Comment some nohz_balancer_kick() kick conditions
We now have a comment explaining the first sched_domain based NOHZ kick, so might as well comment them all. While at it, unwrap a line that fits under 80 characters. Co-authored-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dietmar.Eggemann@arm.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: morten.rasmussen@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20190211175946.4961-2-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
8dcd175bc3 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: - a few misc things - ocfs2 updates - most of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits) tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include proc: more robust bulk read test proc: test /proc/*/maps, smaps, smaps_rollup, statm proc: use seq_puts() everywhere proc: read kernel cpu stat pointer once proc: remove unused argument in proc_pid_lookup() fs/proc/thread_self.c: code cleanup for proc_setup_thread_self() fs/proc/self.c: code cleanup for proc_setup_self() proc: return exit code 4 for skipped tests mm,mremap: bail out earlier in mremap_to under map pressure mm/sparse: fix a bad comparison mm/memory.c: do_fault: avoid usage of stale vm_area_struct writeback: fix inode cgroup switching comment mm/huge_memory.c: fix "orig_pud" set but not used mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC mm/memcontrol.c: fix bad line in comment mm/cma.c: cma_declare_contiguous: correct err handling mm/page_ext.c: fix an imbalance with kmemleak mm/compaction: pass pgdat to too_many_isolated() instead of zone mm: remove zone_lru_lock() function, access ->lru_lock directly ... |
|
|
|
98fa15f34c |
mm: replace all open encodings for NUMA_NO_NODE
Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
|
|
|
c89d92eddf |
sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
The cpumasks updated here are not subject to concurrency and using atomic bitops for them is pointless and expensive. Use the non-atomic variants instead. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/2e2a10f84b9049a81eef94ed6d5989447c21e34a.1549963617.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1b5500d734 |
sched/fair: Remove unused 'sd' parameter from select_idle_smt()
The 'sd' parameter isn't getting used in select_idle_smt(), drop it. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/f91c5e118183e79d4a982e9ac4ce5e47948f6c1b.1549536337.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
9f132742d5 |
sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
The comment block for that function lists the heuristics for triggering a nohz kick, but the most recent ones (blocked load updates, misfit) aren't included, and some of them (LLC nohz logic, asym packing) are no longer in sync with the code. The conditions are either simple enough or properly commented, so get rid of that list instead of letting it grow. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: morten.rasmussen@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20190117153411.2390-4-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
892d59c222 |
sched/fair: Explain LLC nohz kick condition
Provide a comment explaining the LLC related nohz kick in nohz_balancer_kick(). Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: morten.rasmussen@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20190117153411.2390-3-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7edab78d74 |
sched/fair: Simplify nohz_balancer_kick()
Calling 'nohz_balance_exit_idle(rq)' will always clear 'rq->cpu' from 'nohz.idle_cpus_mask' if it is set. Since it is called at the top of 'nohz_balancer_kick()', 'rq->cpu' will never be set in 'nohz.idle_cpus_mask' if it is accessed in the rest of the function. Combine the 'sched_domain_span()' with 'nohz.idle_cpus_mask' and drop the '(i == cpu)' check since 'rq->cpu' will never be iterated over. While at it, clean up a condition alignment. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: morten.rasmussen@arm.com Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/20190117153411.2390-2-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
d0fe0b9c45 |
sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
Since commit:
|
|
|
|
039ae8bcf7 |
sched/fair: Fix O(nr_cgroups) in the load balancing path
This re-applies the commit reverted here: commit |
|
|
|
31bc6aeaab |
sched/fair: Optimize update_blocked_averages()
Removing a cfs_rq from rq->leaf_cfs_rq_list can break the parent/child
ordering of the list when it will be added back. In order to remove an
empty and fully decayed cfs_rq, we must remove its children too, so they
will be added back in the right order next time.
With a normal decay of PELT, a parent will be empty and fully decayed
if all children are empty and fully decayed too. In such a case, we just
have to ensure that the whole branch will be added when a new task is
enqueued. This is default behavior since :
commit
|
|
|
|
c9ba7560c5 |
Linux 5.0-rc6
-----BEGIN PGP SIGNATURE----- iQFRBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlxgqNUeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwsoH+OVXu0NQofwTvVru 8lgF3BSDG2mhf7mxbBBlBizGVy9jnjRNGCFMC+Jq8IwiFLwprja/G27kaDTkpuF1 PHC3yfjKvjTeUP5aNdHlmxv6j1sSJfZl0y46DQal4UeTG/Giq8TFTi+Tbz7Wb/WV yCx4Lr8okAwTuNhnL8ojUCVIpd3c8QsyR9v6nEQ14Mj+MvEbokyTkMJV0bzOrM38 JOB+/X1XY4JPZ6o3MoXrBca3bxbAJzMneq+9CWw1U5eiIG3msg4a+Ua3++RQMDNr 8BP0yCZ6wo32S8uu0PI6HrZaBnLYi5g9Wh7Q7yc0mn1Uh1zWFykA6TtqK90agJeR A6Ktjw== =scY4 -----END PGP SIGNATURE----- Merge tag 'v5.0-rc6' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f678331973 |
sched/fair: Fix insertion in rq->leaf_cfs_rq_list
Sargun reported a crash: "I picked up |
|
|
|
5d299eabea |
sched/fair: Add tmp_alone_branch assertion
The magic in list_add_leaf_cfs_rq() requires that at the end of enqueue_task_fair(): rq->tmp_alone_branch == &rq->lead_cfs_rq_list If this is violated, list integrity is compromised for list entries and the tmp_alone_branch pointer might dangle. Also, reflow list_add_leaf_cfs_rq() while there. This looses one indentation level and generates a form that's convenient for the next patch. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
10a35e6812 |
sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
util_est is mainly meant to be a lower-bound for tasks utilization. That's why task_util_est() returns the actual util_avg when it's higher than the estimated utilization. With new invaraince signal and without any special check on samples collection, if a task is limited because of thermal capping for example, we could end up overestimating its utilization and thus perhaps generating an unwanted frequency spike when the capping is relaxed... and (even worst) it will take some more activations for the estimated utilization to converge back to the actual utilization. Since we cannot easily know if there is idle time in a CPU when a task completes an activation with a utilization higher then the CPU capacity, we skip the sampling when utilization is higher than CPU's capacity. Suggested-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: pjt@google.com Cc: pkondeti@codeaurora.org Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Link: https://lkml.kernel.org/r/1548257214-13745-4-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
2312729688 |
sched/fair: Update scale invariance of PELT
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.
The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :
U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)
with U is the max util_avg value = SCHED_CAPACITY_SCALE
At a lower capacity, the range becomes:
U * C * (1-y^r')/(1-y^p) * y^i' < Utilization < U * C * (1-y^r')/(1-y^p)
with C reflecting the compute capacity ratio between current capacity and
max capacity.
so C tries to compensate changes in (1-y^r') but it can't be accurate.
Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.
In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.
In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:
On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.
each test runs 16 times:
./perf bench sched pipe
(higher is better)
kernel tip/sched/core + patch
ops/seconds ops/seconds diff
cgroup
root 59652(+/- 0.18%) 59876(+/- 0.24%) +0.38%
level1 55608(+/- 0.27%) 55923(+/- 0.24%) +0.57%
level2 52115(+/- 0.29%) 52564(+/- 0.22%) +0.86%
hackbench -l 1000
(lower is better)
kernel tip/sched/core + patch
duration(sec) duration(sec) diff
cgroup
root 4.453(+/- 2.37%) 4.383(+/- 2.88%) -1.57%
level1 4.859(+/- 8.50%) 4.830(+/- 7.07%) -0.60%
level2 5.063(+/- 9.83%) 4.928(+/- 9.66%) -2.66%
Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:
Util (%) max capacity half capacity(mainline) half capacity(w/ patch)
972 (95%) 138ms not reachable 276ms
486 (47.5%) 30ms 138ms 60ms
256 (25%) 13ms 32ms 26ms
On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
62478d9911 |
sched/fair: Move the rq_of() helper function
Move rq_of() helper function so it can be used in pelt.c [ mingo: Improve readability while at it. ] Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: patrick.bellasi@arm.com Cc: pjt@google.com Cc: pkondeti@codeaurora.org Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Link: https://lkml.kernel.org/r/1548257214-13745-2-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c45a779524 |
sched/fair: Convert numa_group.refcount to refcount_t
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable numa_group.refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the numa_group.refcount it might make a difference in following places: - get_numa_group(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - put_numa_group(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-4-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b284909aba |
cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
With the following commit: |
|
|
|
46a745d905 |
sched/fair: Fix unnecessary increase of balance interval
In case of active balancing, we increase the balance interval to cover pinned tasks cases not covered by all_pinned logic. Neverthless, the active migration triggered by asym packing should be treated as the normal unbalanced case and reset the interval to default value, otherwise active migration for asym_packing can be easily delayed for hundreds of ms because of this pinned task detection mechanism. The same happens to other conditions tested in need_active_balance() like misfit task and when the capacity of src_cpu is reduced compared to dst_cpu (see comments in need_active_balance() for details). Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: valentin.schneider@arm.com Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4ad4e481bd |
sched/fair: Fix rounding bug for asym packing
When check_asym_packing() is triggered, the imbalance is set to: busiest_stat.avg_load * busiest_stat.group_capacity / SCHED_CAPACITY_SCALE But busiest_stat.avg_load equals: sgs->group_load * SCHED_CAPACITY_SCALE / sgs->group_capacity These divisions can generate a rounding that will make imbalance slightly lower than the weighted load of the cfs_rq. But this is enough to skip the rq in find_busiest_queue() and prevents asym migration from happening. Directly set imbalance to busiest's sgs->group_load to remove the rounding. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: valentin.schneider@arm.com Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a062d16449 |
sched/fair: Trigger asym_packing during idle load balance
Newly idle load balancing is not always triggered when a CPU becomes idle. This prevents the scheduler from getting a chance to migrate the task for asym packing. Enable active migration during idle load balance too. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: valentin.schneider@arm.com Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c0ad4aa4d8 |
sched/fair: Robustify CFS-bandwidth timer locking
Traditionally hrtimer callbacks were run with IRQs disabled, but with the introduction of HRTIMER_MODE_SOFT it is possible they run from SoftIRQ context, which does _NOT_ have IRQs disabled. Allow for the CFS bandwidth timers (period_timer and slack_timer) to be ran from SoftIRQ context; this entails removing the assumption that IRQs are already disabled from the locking. While mainline doesn't strictly need this, -RT forces all timers not explicitly marked with MODE_HARD into MODE_SOFT and trips over this. And marking these timers as MODE_HARD doesn't make sense as they're not required for RT operation and can potentially be quite expensive. Reported-by: Tom Putzeys <tom.putzeys@be.atlascopco.com> Tested-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190107125231.GE14122@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f8a696f25b |
sched/core: Give DCE a fighting chance
All that fancy new Energy-Aware scheduling foo is hidden behind a static_key, which is awesome if you have the stuff enabled in your config. However, when you lack all the prerequisites it doesn't make any sense to pretend we'll ever actually run this, so provide a little more clue to the compiler so it can more agressively delete the code. text data bss dec hex filename 50297 976 96 51369 c8a9 defconfig-build/kernel/sched/fair.o 49227 944 96 50267 c45b defconfig-build/kernel/sched/fair.o Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
e9666d10a5 |
jump_label: move 'asm goto' support test to Kconfig
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Sedat Dilek <sedat.dilek@gmail.com> |
|
|
|
c40f7d74c7 |
sched/fair: Fix infinite loop in update_blocked_averages() by reverting a9e7f6544b
Zhipeng Xie, Xie XiuQi and Sargun Dhillon reported lockups in the scheduler under high loads, starting at around the v4.18 time frame, and Zhipeng Xie tracked it down to bugs in the rq->leaf_cfs_rq_list manipulation. Do a (manual) revert of: |
|
|
|
6d101ba6be |
sched/fair: Fix warning on non-SMP build
Caused by making the variable static:
kernel/sched/fair.c:119:21: warning: 'capacity_margin' defined but not used [-Wunused-variable]
Seems easiest to just move it up under the existing ifdef CONFIG_SMP
that's a few lines above.
Fixes:
|
|
|
|
17bf423a1f |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Introduce "Energy Aware Scheduling" - by Quentin Perret.
This is a coherent topology description of CPUs in cooperation with
the PM subsystem, with the goal to schedule more energy-efficiently
on asymetric SMP platform - such as waking up tasks to the more
energy-efficient CPUs first, as long as the system isn't
oversubscribed.
For details of the design, see:
https://lore.kernel.org/lkml/20180724122521.22109-1-quentin.perret@arm.com/
- Misc cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
sched/fair: Select an energy-efficient CPU on task wake-up
sched/fair: Introduce an energy estimation helper function
sched/fair: Add over-utilization/tipping point indicator
sched/fair: Clean-up update_sg_lb_stats parameters
sched/toplogy: Introduce the 'sched_energy_present' static key
sched/topology: Make Energy Aware Scheduling depend on schedutil
sched/topology: Disable EAS on inappropriate platforms
sched/topology: Add lowest CPU asymmetry sched_domain level pointer
sched/topology: Reference the Energy Model of CPUs when available
PM: Introduce an Energy Model management framework
sched/cpufreq: Prepare schedutil for Energy Aware Scheduling
sched/topology: Relocate arch_scale_cpu_capacity() to the internal header
sched/core: Remove unnecessary unlikely() in push_*_task()
sched/topology: Remove the ::smt_gain field from 'struct sched_domain'
sched: Fix various typos in comments
sched/core: Clean up the #ifdef block in add_nr_running()
sched/fair: Make some variables static
sched/core: Create task_has_idle_policy() helper
sched/fair: Add lsub_positive() and use it consistently
sched/fair: Mask UTIL_AVG_UNCHANGED usages
...
|
|
|
|
732cd75b8c |
sched/fair: Select an energy-efficient CPU on task wake-up
If an Energy Model (EM) is available and if the system isn't overutilized, re-route waking tasks into an energy-aware placement algorithm. The selection of an energy-efficient CPU for a task is achieved by estimating the impact on system-level active energy resulting from the placement of the task on the CPU with the highest spare capacity in each performance domain. This strategy spreads tasks in a performance domain and avoids overly aggressive task packing. The best CPU energy-wise is then selected if it saves a large enough amount of energy with respect to prev_cpu. Although it has already shown significant benefits on some existing targets, this approach cannot scale to platforms with numerous CPUs. This is an attempt to do something useful as writing a fast heuristic that performs reasonably well on a broad spectrum of architectures isn't an easy task. As such, the scope of usability of the energy-aware wake-up path is restricted to systems with the SD_ASYM_CPUCAPACITY flag set, and where the EM isn't too complex. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-15-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
390031e4c3 |
sched/fair: Introduce an energy estimation helper function
In preparation for the definition of an energy-aware wakeup path, introduce a helper function to estimate the consequence on system energy when a specific task wakes-up on a specific CPU. compute_energy() estimates the capacity state to be reached by all performance domains and estimates the consumption of each online CPU according to its Energy Model and its percentage of busy time. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-14-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
2802bf3cd9 |
sched/fair: Add over-utilization/tipping point indicator
Energy-aware scheduling is only meant to be active while the system is
_not_ over-utilized. That is, there are spare cycles available to shift
tasks around based on their actual utilization to get a more
energy-efficient task distribution without depriving any tasks. When
above the tipping point task placement is done the traditional way based
on load_avg, spreading the tasks across as many cpus as possible based
on priority scaled load to preserve smp_nice. Below the tipping point we
want to use util_avg instead. We need to define a criteria for when we
make the switch.
The util_avg for each cpu converges towards 100% regardless of how many
additional tasks we may put on it. If we define over-utilized as:
sum_{cpus}(rq.cfs.avg.util_avg) + margin > sum_{cpus}(rq.capacity)
some individual cpus may be over-utilized running multiple tasks even
when the above condition is false. That should be okay as long as we try
to spread the tasks out to avoid per-cpu over-utilization as much as
possible and if all tasks have the _same_ priority. If the latter isn't
true, we have to consider priority to preserve smp_nice.
For example, we could have n_cpus nice=-10 util_avg=55% tasks and
n_cpus/2 nice=0 util_avg=60% tasks. Balancing based on util_avg we are
likely to end up with nice=-10 tasks sharing cpus and nice=0 tasks
getting their own as we 1.5*n_cpus tasks in total and 55%+55% is less
over-utilized than 55%+60% for those cpus that have to be shared. The
system utilization is only 85% of the system capacity, but we are
breaking smp_nice.
To be sure not to break smp_nice, we have defined over-utilization
conservatively as when any cpu in the system is fully utilized at its
highest frequency instead:
cpu_rq(any).cfs.avg.util_avg + margin > cpu_rq(any).capacity
IOW, as soon as one cpu is (nearly) 100% utilized, we switch to load_avg
to factor in priority to preserve smp_nice.
With this definition, we can skip periodic load-balance as no cpu has an
always-running task when the system is not over-utilized. All tasks will
be periodic and we can balance them at wake-up. This conservative
condition does however mean that some scenarios that could benefit from
energy-aware decisions even if one cpu is fully utilized would not get
those benefits.
For systems where some cpus might have reduced capacity on some cpus
(RT-pressure and/or big.LITTLE), we want periodic load-balance checks as
soon a just a single cpu is fully utilized as it might one of those with
reduced capacity and in that case we want to migrate it.
[ peterz: Added a comment explaining why new tasks are not accounted during
overutilization detection. ]
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-13-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
630246a06a |
sched/fair: Clean-up update_sg_lb_stats parameters
In preparation for the introduction of a new root domain flag which can be set during load balance (the 'overutilized' flag), clean-up the set of parameters passed to update_sg_lb_stats(). More specifically, the 'local_group' and 'local_idx' parameters can be removed since they can easily be reconstructed from within the function. While at it, transform the 'overload' parameter into a flag stored in the 'sg_status' parameter hence facilitating the definition of new flags when needed. Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-12-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
011b27bb5d |
sched/topology: Add lowest CPU asymmetry sched_domain level pointer
Add another member to the family of per-cpu sched_domain shortcut pointers. This one, sd_asym_cpucapacity, points to the lowest level at which the SD_ASYM_CPUCAPACITY flag is set. While at it, rename the sd_asym shortcut to sd_asym_packing to avoid confusions. Generally speaking, the largest opportunity to save energy via scheduling comes from a smarter exploitation of heterogeneous platforms (i.e. big.LITTLE). Consequently, the sd_asym_cpucapacity shortcut will be used at first as the lowest domain where Energy-Aware Scheduling (EAS) should be applied. For example, it is possible to apply EAS within a socket on a multi-socket system, as long as each socket has an asymmetric topology. Energy-aware cross-sockets wake-up balancing will only happen when the system is over-utilized, or this_cpu and prev_cpu are in different sockets. Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-7-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
80eb865768 |
sched/fair: Clean up comment in nohz_idle_balance()
Concerning the comment associated to the atomic_fetch_andnot() in nohz_idle_balance(), Vincent explains [1]: "[...] the comment is useless and can be removed [...] it was referring to a line code above the comment that was present in a previous iteration of the patchset. This line disappeared in final version but the comment has stayed." So remove the comment. Vincent also points out that the full ordering associated to the atomic_fetch_andnot() primitive could be relaxed, but this patch insists on the current more conservative/fully ordered solution: "Performance" isn't a concern, stay away from "correctness"/subtle relaxed (re)ordering if possible..., just make sure not to confuse the next reader with misleading/out-of-date comments. [1] http://lkml.kernel.org/r/CAKfTPtBjA-oCBRkO6__npQwL3+HLjzk7riCcPU1R7YdO-EpuZg@mail.gmail.com Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20181127110110.5533-1-andrea.parri@amarulasolutions.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
dfcb245e28 |
sched: Fix various typos in comments
Go over the scheduler source code and fix common typos in comments - and a typo in an actual variable name. No change in functionality intended. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
ed8885a144 |
sched/fair: Make some variables static
The variables are local to the source and do not need to be in global scope, so make them static. Signed-off-by: Muchun Song <smuchun@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181110075202.61172-1-smuchun@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1da1843f9f |
sched/core: Create task_has_idle_policy() helper
We already have task_has_rt_policy() and task_has_dl_policy() helpers, create task_has_idle_policy() as well and update sched core to start using it. While at it, use task_has_dl_policy() at one more place. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/ce3915d5b490fc81af926a3b6bfb775e7188e005.1541416894.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b5c0ce7bd1 |
sched/fair: Add lsub_positive() and use it consistently
The following pattern:
var -= min_t(typeof(var), var, val);
is used multiple times in fair.c.
The existing sub_positive() already captures that pattern, but it also
adds an explicit load-store to properly support lockless observations.
In other cases the pattern above is used to update local, and/or not
concurrently accessed, variables.
Let's add a simpler version of sub_positive(), targeted at local variables
updates, which gives the same readability benefits at calling sites,
without enforcing {READ,WRITE}_ONCE() barriers.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/lkml/20181031184527.GA3178@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
92a801e5d5 |
sched/fair: Mask UTIL_AVG_UNCHANGED usages
The _task_util_est() is mainly used to add/remove the task contribution to/from the rq's estimated utilization at task enqueue/dequeue time. In both cases we ensure the UTIL_AVG_UNCHANGED flag is set to keep consistency between enqueue and dequeue time while still being transparent to update_load_avg calls which will eventually reset the flag. Let's move the flag forcing within _task_util_est() itself so that we can simplify calling code by hiding that estimated utilization implementation detail into one of its internal functions. This will affect also the "public" API task_util_est() but we know that the flag will (eventually) impact just on the LSB of the estimated utilization, thus it's certainly acceptable. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/20181105145400.935-3-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
59e1678c29 |
Merge branch 'sched/urgent' into sched/core, to pick up dependent fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c469933e77 |
sched/fair: Fix cpu_util_wake() for 'execl' type workloads
A ~10% regression has been reported for UnixBench's execl throughput test by Aaron Lu and Ye Xiaolong: https://lkml.org/lkml/2018/10/30/765 That test is pretty simple, it does a "recursive" execve() syscall on the same binary. Starting from the syscall, this sequence is possible: do_execve() do_execveat_common() __do_execve_file() sched_exec() select_task_rq_fair() <==| Task already enqueued find_idlest_cpu() find_idlest_group() capacity_spare_wake() <==| Functions not called from cpu_util_wake() | the wakeup path which means we can end up calling cpu_util_wake() not only from the "wakeup path", as its name would suggest. Indeed, the task doing an execve() syscall is already enqueued on the CPU we want to get the cpu_util_wake() for. The estimated utilization for a CPU computed in cpu_util_wake() was written under the assumption that function can be called only from the wakeup path. If instead the task is already enqueued, we end up with a utilization which does not remove the current task's contribution from the estimated utilization of the CPU. This will wrongly assume a reduced spare capacity on the current CPU and increase the chances to migrate the task on execve. The regression is tracked down to: commit |
|
|
|
e1ff516a56 |
sched/fair: Fix a comment in task_numa_fault()
Duplicated 'case it'. Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Reviewed-by: Xi Xu <xu.xi8@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1541379013-11352-1-git-send-email-wang.yi59@zte.com.cn Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3f130a37c4 |
sched/fair: Don't increase sd->balance_interval on newidle balance
When load_balance() fails to move some load because of task affinity,
we end up increasing sd->balance_interval to delay the next periodic
balance in the hopes that next time we look, that annoying pinned
task(s) will be gone.
However, idle_balance() pays no attention to sd->balance_interval, yet
it will still lead to an increase in balance_interval in case of
pinned tasks.
If we're going through several newidle balances (e.g. we have a
periodic task), this can lead to a huge increase of the
balance_interval in a very small amount of time.
To prevent that, don't increase the balance interval when going
through a newidle balance.
This is a similar approach to what is done in commit
|
|
|
|
47b7aee14f |
sched/fair: Clean up load_balance() condition
The alignment of the condition is off, clean that up. Also, logical operators have lower precedence than bitwise/relational operators, so remove one layer of parentheses to make the condition a bit simpler to follow. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: patrick.bellasi@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1537974727-30788-1-git-send-email-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
42f52e1c59 |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- Migrate CPU-intense 'misfit' tasks on asymmetric capacity systems,
to better utilize (much) faster 'big core' CPUs. (Morten Rasmussen,
Valentin Schneider)
- Topology handling improvements, in particular when CPU capacity
changes and related load-balancing fixes/improvements (Morten
Rasmussen)
- ... plus misc other improvements, fixes and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/completions/Documentation: Add recommendation for dynamic and ONSTACK completions
sched/completions/Documentation: Clean up the document some more
sched/completions/Documentation: Fix a couple of punctuation nits
cpu/SMT: State SMT is disabled even with nosmt and without "=force"
sched/core: Fix comment regarding nr_iowait_cpu() and get_iowait_load()
sched/fair: Remove setting task's se->runnable_weight during PELT update
sched/fair: Disable LB_BIAS by default
sched/pelt: Fix warning and clean up IRQ PELT config
sched/topology: Make local variables static
sched/debug: Use symbolic names for task state constants
sched/numa: Remove unused numa_stats::nr_running field
sched/numa: Remove unused code from update_numa_stats()
sched/debug: Explicitly cast sched_feat() to bool
sched/core: Disable SD_PREFER_SIBLING on asymmetric CPU capacity domains
sched/fair: Don't move tasks to lower capacity CPUs unless necessary
sched/fair: Set rq->rd->overload when misfit
sched/fair: Wrap rq->rd->overload accesses with READ/WRITE_ONCE()
sched/core: Change root_domain->overload type to int
sched/fair: Change 'prefer_sibling' type to bool
sched/fair: Kick nohz balance if rq->misfit_task_load
...
|
|
|
|
9845c49cc9 |
sched/fair: Fix the min_vruntime update logic in dequeue_entity()
The comment and the code around the update_min_vruntime() call in dequeue_entity() are not in agreement. From commit: |
|
|
|
baa9be4ffb |
sched/fair: Fix throttle_list starvation with low CFS quota
With a very low cpu.cfs_quota_us setting, such as the minimum of 1000, distribute_cfs_runtime may not empty the throttled_list before it runs out of runtime to distribute. In that case, due to the change from |
|
|
|
37355bdc5a |
sched/numa: Migrate pages to local nodes quicker early in the lifetime of a task
Automatic NUMA Balancing uses a multi-stage pass to decide whether a page
should migrate to a local node. This filter avoids excessive ping-ponging
if a page is shared or used by threads that migrate cross-node frequently.
Threads inherit both page tables and the preferred node ID from the
parent. This means that threads can trigger hinting faults earlier than
a new task which delays scanning for a number of seconds. As it can be
load balanced very early in its lifetime there can be an unnecessary delay
before it starts migrating thread-local data. This patch migrates private
pages faster early in the lifetime of a thread using the sequence counter
as an identifier of new tasks.
With this patch applied, STREAM performance is the same as 4.17 even though
processes are not spread cross-node prematurely. Other workloads showed
a mix of minor gains and losses. This is somewhat expected most workloads
are not very sensitive to the starting conditions of a process.
4.19.0-rc5 4.19.0-rc5 4.17.0
numab-v1r1 fastmigrate-v1r1 vanilla
MB/sec copy 43298.52 ( 0.00%) 47335.46 ( 9.32%) 47219.24 ( 9.06%)
MB/sec scale 30115.06 ( 0.00%) 32568.12 ( 8.15%) 32527.56 ( 8.01%)
MB/sec add 32825.12 ( 0.00%) 36078.94 ( 9.91%) 35928.02 ( 9.45%)
MB/sec triad 32549.52 ( 0.00%) 35935.94 ( 10.40%) 35969.88 ( 10.51%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-MM <linux-mm@kvack.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181001100525.29789-3-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
11d4afd4ff |
sched/pelt: Fix warning and clean up IRQ PELT config
Create a config for enabling irq load tracking in the scheduler. irq load tracking is useful only when irq or paravirtual time is accounted but it's only possible with SMP for now. Also use __maybe_unused to remove the compilation warning in update_rq_clock_task() that has been introduced by: |
|
|
|
b429f71bca |
Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6fd98e775f |
sched/numa: Avoid task migration for small NUMA improvement
If NUMA improvement from the task migration is going to be very minimal, then avoid task migration. Specjbb2005 results (8 warehouses) Higher bops are better 2 Socket - 2 Node Haswell - X86 JVMS Prev Current %Change 4 198512 205910 3.72673 1 313559 318491 1.57291 2 Socket - 4 Node Power8 - PowerNV JVMS Prev Current %Change 8 74761.9 74935.9 0.232739 1 214874 226796 5.54837 2 Socket - 2 Node Power9 - PowerNV JVMS Prev Current %Change 4 180536 189780 5.12031 1 210281 205695 -2.18089 4 Socket - 4 Node Power7 - PowerVM JVMS Prev Current %Change 8 56511.4 60370 6.828 1 104899 108100 3.05151 1/7 cases is regressing, if we look at events migrate_pages seem to vary the most especially in the regressing case. Also some amount of variance is expected between different runs of Specjbb2005. Some events stats before and after applying the patch. perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 13,818,546 13,801,554 migrations 1,149,960 1,151,541 faults 385,583 433,246 cache-misses 55,259,546,768 55,168,691,835 sched:sched_move_numa 2,257 2,551 sched:sched_stick_numa 9 24 sched:sched_swap_numa 512 904 migrate:mm_migrate_pages 2,225 1,571 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 72692 113682 numa_hint_faults_local 62270 102163 numa_hit 238762 240181 numa_huge_pte_updates 48 36 numa_interleave 75 64 numa_local 238676 240103 numa_other 86 78 numa_pages_migrated 2225 1564 numa_pte_updates 98557 134080 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 3,173,490 3,079,150 migrations 36,966 31,455 faults 108,776 99,081 cache-misses 12,200,075,320 11,588,126,740 sched:sched_move_numa 1,264 1 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 0 migrate:mm_migrate_pages 899 36 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 21109 430 numa_hint_faults_local 17120 77 numa_hit 72934 71277 numa_huge_pte_updates 42 0 numa_interleave 33 22 numa_local 72866 71218 numa_other 68 59 numa_pages_migrated 915 23 numa_pte_updates 42326 0 perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 8,312,022 8,707,565 migrations 231,705 171,342 faults 310,242 310,820 cache-misses 402,324,573 136,115,400 sched:sched_move_numa 193 215 sched:sched_stick_numa 0 6 sched:sched_swap_numa 3 24 migrate:mm_migrate_pages 93 162 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 11838 8985 numa_hint_faults_local 11216 8154 numa_hit 90689 93819 numa_huge_pte_updates 0 0 numa_interleave 1579 882 numa_local 89634 93496 numa_other 1055 323 numa_pages_migrated 92 169 numa_pte_updates 12109 9217 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 2,170,481 2,152,072 migrations 10,126 10,704 faults 160,962 164,376 cache-misses 10,834,845 3,818,437 sched:sched_move_numa 10 16 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 7 migrate:mm_migrate_pages 2 199 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 403 2248 numa_hint_faults_local 358 1666 numa_hit 25898 25704 numa_huge_pte_updates 0 0 numa_interleave 207 200 numa_local 25860 25679 numa_other 38 25 numa_pages_migrated 2 197 numa_pte_updates 400 2234 perf stats 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 110,339,633 93,330,595 migrations 4,139,812 4,122,061 faults 863,622 865,979 cache-misses 231,838,045,660 225,395,083,479 sched:sched_move_numa 2,196 2,372 sched:sched_stick_numa 33 24 sched:sched_swap_numa 544 769 migrate:mm_migrate_pages 2,469 1,677 vmstat 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 85748 91638 numa_hint_faults_local 66831 78096 numa_hit 242213 242225 numa_huge_pte_updates 0 0 numa_interleave 0 2 numa_local 242211 242219 numa_other 2 6 numa_pages_migrated 2376 1515 numa_pte_updates 86233 92274 perf stats 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 59,331,057 51,487,271 migrations 552,019 537,170 faults 266,586 256,921 cache-misses 73,796,312,990 70,073,831,187 sched:sched_move_numa 981 576 sched:sched_stick_numa 54 24 sched:sched_swap_numa 286 327 migrate:mm_migrate_pages 713 726 vmstat 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 14807 12000 numa_hint_faults_local 5738 5024 numa_hit 36230 36470 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 36228 36465 numa_other 2 5 numa_pages_migrated 703 726 numa_pte_updates 14742 11930 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537552141-27815-7-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
05cbdf4f5c |
sched/numa: Limit the conditions where scan period is reset
migrate_task_rq_fair() resets the scan rate for NUMA balancing on every cross-node migration. In the event of excessive load balancing due to saturation, this may result in the scan rate being pegged at maximum and further overloading the machine. This patch only resets the scan if NUMA balancing is active, a preferred node has been selected and the task is being migrated from the preferred node as these are the most harmful. For example, a migration to the preferred node does not justify a faster scan rate. Similarly, a migration between two nodes that are not preferred is probably bouncing due to over-saturation of the machine. In that case, scanning faster and trapping more NUMA faults will further overload the machine. Specjbb2005 results (8 warehouses) Higher bops are better 2 Socket - 2 Node Haswell - X86 JVMS Prev Current %Change 4 203370 205332 0.964744 1 328431 319785 -2.63252 2 Socket - 4 Node Power8 - PowerNV JVMS Prev Current %Change 1 206070 206585 0.249915 2 Socket - 2 Node Power9 - PowerNV JVMS Prev Current %Change 4 188386 189162 0.41192 1 201566 213760 6.04963 4 Socket - 4 Node Power7 - PowerVM JVMS Prev Current %Change 8 59157.4 58736.8 -0.710985 1 105495 105419 -0.0720413 Some events stats before and after applying the patch. perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 13,825,492 14,285,708 migrations 1,152,509 1,180,621 faults 371,948 339,114 cache-misses 55,654,206,041 55,205,631,894 sched:sched_move_numa 1,856 843 sched:sched_stick_numa 4 6 sched:sched_swap_numa 428 219 migrate:mm_migrate_pages 898 365 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 57146 26907 numa_hint_faults_local 51612 24279 numa_hit 238164 239771 numa_huge_pte_updates 16 0 numa_interleave 63 68 numa_local 238085 239688 numa_other 79 83 numa_pages_migrated 883 363 numa_pte_updates 67540 27415 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 3,288,525 3,202,779 migrations 38,652 37,186 faults 111,678 106,076 cache-misses 12,111,197,376 12,024,873,744 sched:sched_move_numa 900 931 sched:sched_stick_numa 0 0 sched:sched_swap_numa 5 1 migrate:mm_migrate_pages 714 637 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 18572 17409 numa_hint_faults_local 14850 14367 numa_hit 73197 73953 numa_huge_pte_updates 11 20 numa_interleave 25 25 numa_local 73138 73892 numa_other 59 61 numa_pages_migrated 712 668 numa_pte_updates 24021 27276 perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 8,451,543 8,474,013 migrations 202,804 254,934 faults 310,024 320,506 cache-misses 253,522,507 110,580,458 sched:sched_move_numa 213 725 sched:sched_stick_numa 0 0 sched:sched_swap_numa 2 7 migrate:mm_migrate_pages 88 145 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 11830 22797 numa_hint_faults_local 11301 21539 numa_hit 90038 89308 numa_huge_pte_updates 0 0 numa_interleave 855 865 numa_local 89796 88955 numa_other 242 353 numa_pages_migrated 88 149 numa_pte_updates 12039 22930 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 2,049,153 2,195,628 migrations 11,405 11,179 faults 162,309 149,656 cache-misses 7,203,343 8,117,515 sched:sched_move_numa 22 49 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 0 migrate:mm_migrate_pages 1 5 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 1693 3577 numa_hint_faults_local 1669 3476 numa_hit 25177 26142 numa_huge_pte_updates 0 0 numa_interleave 194 358 numa_local 24993 26042 numa_other 184 100 numa_pages_migrated 1 5 numa_pte_updates 1577 3587 perf stats 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 94,515,937 100,602,296 migrations 4,203,554 4,135,630 faults 832,697 789,256 cache-misses 226,248,698,331 226,160,621,058 sched:sched_move_numa 1,730 1,366 sched:sched_stick_numa 14 16 sched:sched_swap_numa 432 374 migrate:mm_migrate_pages 1,398 1,350 vmstat 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 80079 47857 numa_hint_faults_local 68620 39768 numa_hit 241187 240165 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 241186 240165 numa_other 1 0 numa_pages_migrated 1347 1224 numa_pte_updates 80729 48354 perf stats 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 63,704,961 58,515,496 migrations 573,404 564,845 faults 230,878 245,807 cache-misses 76,568,222,781 73,603,757,976 sched:sched_move_numa 509 996 sched:sched_stick_numa 31 10 sched:sched_swap_numa 182 193 migrate:mm_migrate_pages 541 646 vmstat 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 8501 13422 numa_hint_faults_local 2960 5619 numa_hit 35526 36118 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 35526 36116 numa_other 0 2 numa_pages_migrated 539 616 numa_pte_updates 8433 13374 Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537552141-27815-5-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3f9672baaa |
sched/numa: Reset scan rate whenever task moves across nodes
Currently task scan rate is reset when NUMA balancer migrates the task to a different node. If NUMA balancer initiates a swap, reset is only applicable to the task that initiates the swap. Similarly no scan rate reset is done if the task is migrated across nodes by traditional load balancer. Instead move the scan reset to the migrate_task_rq. This ensures the task moved out of its preferred node, either gets back to its preferred node quickly or finds a new preferred node. Doing so, would be fair to all tasks migrating across nodes. Specjbb2005 results (8 warehouses) Higher bops are better 2 Socket - 2 Node Haswell - X86 JVMS Prev Current %Change 4 200668 203370 1.3465 1 321791 328431 2.06345 2 Socket - 4 Node Power8 - PowerNV JVMS Prev Current %Change 1 204848 206070 0.59654 2 Socket - 2 Node Power9 - PowerNV JVMS Prev Current %Change 4 188098 188386 0.153112 1 200351 201566 0.606436 4 Socket - 4 Node Power7 - PowerVM JVMS Prev Current %Change 8 58145.9 59157.4 1.73959 1 103798 105495 1.63491 Some events stats before and after applying the patch. perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 13,912,183 13,825,492 migrations 1,155,931 1,152,509 faults 367,139 371,948 cache-misses 54,240,196,814 55,654,206,041 sched:sched_move_numa 1,571 1,856 sched:sched_stick_numa 9 4 sched:sched_swap_numa 463 428 migrate:mm_migrate_pages 703 898 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 50155 57146 numa_hint_faults_local 45264 51612 numa_hit 239652 238164 numa_huge_pte_updates 36 16 numa_interleave 68 63 numa_local 239576 238085 numa_other 76 79 numa_pages_migrated 680 883 numa_pte_updates 71146 67540 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 3,156,720 3,288,525 migrations 30,354 38,652 faults 97,261 111,678 cache-misses 12,400,026,826 12,111,197,376 sched:sched_move_numa 4 900 sched:sched_stick_numa 0 0 sched:sched_swap_numa 1 5 migrate:mm_migrate_pages 20 714 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 272 18572 numa_hint_faults_local 186 14850 numa_hit 71362 73197 numa_huge_pte_updates 0 11 numa_interleave 23 25 numa_local 71299 73138 numa_other 63 59 numa_pages_migrated 2 712 numa_pte_updates 0 24021 perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 8,606,824 8,451,543 migrations 155,352 202,804 faults 301,409 310,024 cache-misses 157,759,224 253,522,507 sched:sched_move_numa 168 213 sched:sched_stick_numa 0 0 sched:sched_swap_numa 3 2 migrate:mm_migrate_pages 125 88 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 4650 11830 numa_hint_faults_local 3946 11301 numa_hit 90489 90038 numa_huge_pte_updates 0 0 numa_interleave 892 855 numa_local 90034 89796 numa_other 455 242 numa_pages_migrated 124 88 numa_pte_updates 4818 12039 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 2,113,167 2,049,153 migrations 10,533 11,405 faults 142,727 162,309 cache-misses 5,594,192 7,203,343 sched:sched_move_numa 10 22 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 0 migrate:mm_migrate_pages 6 1 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 744 1693 numa_hint_faults_local 584 1669 numa_hit 25551 25177 numa_huge_pte_updates 0 0 numa_interleave 263 194 numa_local 25302 24993 numa_other 249 184 numa_pages_migrated 6 1 numa_pte_updates 744 1577 perf stats 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 101,227,352 94,515,937 migrations 4,151,829 4,203,554 faults 745,233 832,697 cache-misses 224,669,561,766 226,248,698,331 sched:sched_move_numa 617 1,730 sched:sched_stick_numa 2 14 sched:sched_swap_numa 187 432 migrate:mm_migrate_pages 316 1,398 vmstat 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 24195 80079 numa_hint_faults_local 21639 68620 numa_hit 238331 241187 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 238331 241186 numa_other 0 1 numa_pages_migrated 204 1347 numa_pte_updates 24561 80729 perf stats 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 62,738,978 63,704,961 migrations 562,702 573,404 faults 228,465 230,878 cache-misses 75,778,067,952 76,568,222,781 sched:sched_move_numa 648 509 sched:sched_stick_numa 13 31 sched:sched_swap_numa 137 182 migrate:mm_migrate_pages 733 541 vmstat 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 10281 8501 numa_hint_faults_local 3242 2960 numa_hit 36338 35526 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 36338 35526 numa_other 0 0 numa_pages_migrated 706 539 numa_pte_updates 10176 8433 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537552141-27815-4-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1327237a59 |
sched/numa: Pass destination CPU as a parameter to migrate_task_rq
This additional parameter (new_cpu) is used later for identifying if task migration is across nodes. No functional change. Specjbb2005 results (8 warehouses) Higher bops are better 2 Socket - 2 Node Haswell - X86 JVMS Prev Current %Change 4 203353 200668 -1.32036 1 328205 321791 -1.95427 2 Socket - 4 Node Power8 - PowerNV JVMS Prev Current %Change 1 214384 204848 -4.44809 2 Socket - 2 Node Power9 - PowerNV JVMS Prev Current %Change 4 188553 188098 -0.241311 1 196273 200351 2.07772 4 Socket - 4 Node Power7 - PowerVM JVMS Prev Current %Change 8 57581.2 58145.9 0.980702 1 103468 103798 0.318939 Brings out the variance between different specjbb2005 runs. Some events stats before and after applying the patch. perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 13,941,377 13,912,183 migrations 1,157,323 1,155,931 faults 382,175 367,139 cache-misses 54,993,823,500 54,240,196,814 sched:sched_move_numa 2,005 1,571 sched:sched_stick_numa 14 9 sched:sched_swap_numa 529 463 migrate:mm_migrate_pages 1,573 703 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 67099 50155 numa_hint_faults_local 58456 45264 numa_hit 240416 239652 numa_huge_pte_updates 18 36 numa_interleave 65 68 numa_local 240339 239576 numa_other 77 76 numa_pages_migrated 1574 680 numa_pte_updates 77182 71146 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 3,176,453 3,156,720 migrations 30,238 30,354 faults 87,869 97,261 cache-misses 12,544,479,391 12,400,026,826 sched:sched_move_numa 23 4 sched:sched_stick_numa 0 0 sched:sched_swap_numa 6 1 migrate:mm_migrate_pages 10 20 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 236 272 numa_hint_faults_local 201 186 numa_hit 72293 71362 numa_huge_pte_updates 0 0 numa_interleave 26 23 numa_local 72233 71299 numa_other 60 63 numa_pages_migrated 8 2 numa_pte_updates 0 0 perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 8,478,820 8,606,824 migrations 171,323 155,352 faults 307,499 301,409 cache-misses 240,353,599 157,759,224 sched:sched_move_numa 214 168 sched:sched_stick_numa 0 0 sched:sched_swap_numa 4 3 migrate:mm_migrate_pages 89 125 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 5301 4650 numa_hint_faults_local 4745 3946 numa_hit 92943 90489 numa_huge_pte_updates 0 0 numa_interleave 899 892 numa_local 92345 90034 numa_other 598 455 numa_pages_migrated 88 124 numa_pte_updates 5505 4818 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 2,066,172 2,113,167 migrations 11,076 10,533 faults 149,544 142,727 cache-misses 10,398,067 5,594,192 sched:sched_move_numa 43 10 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 0 migrate:mm_migrate_pages 6 6 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 3552 744 numa_hint_faults_local 3347 584 numa_hit 25611 25551 numa_huge_pte_updates 0 0 numa_interleave 213 263 numa_local 25583 25302 numa_other 28 249 numa_pages_migrated 6 6 numa_pte_updates 3535 744 perf stats 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 99,358,136 101,227,352 migrations 4,041,607 4,151,829 faults 749,653 745,233 cache-misses 225,562,543,251 224,669,561,766 sched:sched_move_numa 771 617 sched:sched_stick_numa 14 2 sched:sched_swap_numa 204 187 migrate:mm_migrate_pages 1,180 316 vmstat 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 27409 24195 numa_hint_faults_local 20677 21639 numa_hit 239988 238331 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 239983 238331 numa_other 5 0 numa_pages_migrated 1016 204 numa_pte_updates 27916 24561 perf stats 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 60,899,307 62,738,978 migrations 544,668 562,702 faults 270,834 228,465 cache-misses 74,543,455,635 75,778,067,952 sched:sched_move_numa 735 648 sched:sched_stick_numa 25 13 sched:sched_swap_numa 174 137 migrate:mm_migrate_pages 816 733 vmstat 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 11059 10281 numa_hint_faults_local 4733 3242 numa_hit 41384 36338 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 41383 36338 numa_other 1 0 numa_pages_migrated 815 706 numa_pte_updates 11323 10176 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537552141-27815-3-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a4739eca44 |
sched/numa: Stop multiple tasks from moving to the CPU at the same time
Task migration under NUMA balancing can happen in parallel. More than one task might choose to migrate to the same CPU at the same time. This can result in: - During task swap, choosing a task that was not part of the evaluation. - During task swap, task which just got moved into its preferred node, moving to a completely different node. - During task swap, task failing to move to the preferred node, will have to wait an extra interval for the next migrate opportunity. - During task movement, multiple task movements can cause load imbalance. This problem is more likely if there are more cores per node or more nodes in the system. Use a per run-queue variable to check if NUMA-balance is active on the run-queue. Specjbb2005 results (8 warehouses) Higher bops are better 2 Socket - 2 Node Haswell - X86 JVMS Prev Current %Change 4 200194 203353 1.57797 1 311331 328205 5.41995 2 Socket - 4 Node Power8 - PowerNV JVMS Prev Current %Change 1 197654 214384 8.46429 2 Socket - 2 Node Power9 - PowerNV JVMS Prev Current %Change 4 192605 188553 -2.10379 1 213402 196273 -8.02664 4 Socket - 4 Node Power7 - PowerVM JVMS Prev Current %Change 8 52227.1 57581.2 10.2516 1 102529 103468 0.915838 There is a regression on power 9 box. If we look at the details, that box has a sudden jump in cache-misses with this patch. All other parameters seem to be pointing towards NUMA consolidation. perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 13,345,784 13,941,377 migrations 1,127,820 1,157,323 faults 374,736 382,175 cache-misses 55,132,054,603 54,993,823,500 sched:sched_move_numa 1,923 2,005 sched:sched_stick_numa 52 14 sched:sched_swap_numa 595 529 migrate:mm_migrate_pages 1,932 1,573 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 60605 67099 numa_hint_faults_local 51804 58456 numa_hit 239945 240416 numa_huge_pte_updates 14 18 numa_interleave 60 65 numa_local 239865 240339 numa_other 80 77 numa_pages_migrated 1931 1574 numa_pte_updates 67823 77182 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After cs 3,016,467 3,176,453 migrations 37,326 30,238 faults 115,342 87,869 cache-misses 11,692,155,554 12,544,479,391 sched:sched_move_numa 965 23 sched:sched_stick_numa 8 0 sched:sched_swap_numa 35 6 migrate:mm_migrate_pages 1,168 10 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Haswell - X86 Event Before After numa_hint_faults 16286 236 numa_hint_faults_local 11863 201 numa_hit 112482 72293 numa_huge_pte_updates 33 0 numa_interleave 20 26 numa_local 112419 72233 numa_other 63 60 numa_pages_migrated 1144 8 numa_pte_updates 32859 0 perf stats 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 8,629,724 8,478,820 migrations 221,052 171,323 faults 308,661 307,499 cache-misses 135,574,913 240,353,599 sched:sched_move_numa 147 214 sched:sched_stick_numa 0 0 sched:sched_swap_numa 2 4 migrate:mm_migrate_pages 64 89 vmstat 8th warehouse Multi JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 11481 5301 numa_hint_faults_local 10968 4745 numa_hit 89773 92943 numa_huge_pte_updates 0 0 numa_interleave 1116 899 numa_local 89220 92345 numa_other 553 598 numa_pages_migrated 62 88 numa_pte_updates 11694 5505 perf stats 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After cs 2,272,887 2,066,172 migrations 12,206 11,076 faults 163,704 149,544 cache-misses 4,801,186 10,398,067 sched:sched_move_numa 44 43 sched:sched_stick_numa 0 0 sched:sched_swap_numa 0 0 migrate:mm_migrate_pages 17 6 vmstat 8th warehouse Single JVM 2 Socket - 2 Node Power9 - PowerNV Event Before After numa_hint_faults 2261 3552 numa_hint_faults_local 1993 3347 numa_hit 25726 25611 numa_huge_pte_updates 0 0 numa_interleave 239 213 numa_local 25498 25583 numa_other 228 28 numa_pages_migrated 17 6 numa_pte_updates 2266 3535 perf stats 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 117,980,962 99,358,136 migrations 3,950,220 4,041,607 faults 736,979 749,653 cache-misses 224,976,072,879 225,562,543,251 sched:sched_move_numa 504 771 sched:sched_stick_numa 50 14 sched:sched_swap_numa 239 204 migrate:mm_migrate_pages 1,260 1,180 vmstat 8th warehouse Multi JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 18293 27409 numa_hint_faults_local 11969 20677 numa_hit 240854 239988 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 240851 239983 numa_other 3 5 numa_pages_migrated 1190 1016 numa_pte_updates 18106 27916 perf stats 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After cs 61,053,158 60,899,307 migrations 551,586 544,668 faults 244,174 270,834 cache-misses 74,326,766,973 74,543,455,635 sched:sched_move_numa 344 735 sched:sched_stick_numa 24 25 sched:sched_swap_numa 140 174 migrate:mm_migrate_pages 568 816 vmstat 8th warehouse Single JVM 4 Socket - 4 Node Power7 - PowerVM Event Before After numa_hint_faults 6461 11059 numa_hint_faults_local 2283 4733 numa_hit 35661 41384 numa_huge_pte_updates 0 0 numa_interleave 0 0 numa_local 35661 41383 numa_other 0 1 numa_pages_migrated 568 815 numa_pte_updates 6518 11323 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1537552141-27815-2-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7477a3504e |
sched/numa: Remove unused numa_stats::nr_running field
nr_running in struct numa_stats is not used anywhere in the code. Remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1535548752-4434-3-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
d90707ebeb |
sched/numa: Remove unused code from update_numa_stats()
With:
commit
|
|
|
|
4ad3831a9d |
sched/fair: Don't move tasks to lower capacity CPUs unless necessary
When lower capacity CPUs are load balancing and considering to pull something from a higher capacity group, we should not pull tasks from a CPU with only one task running as this is guaranteed to impede progress for that task. If there is more than one task running, load balance in the higher capacity group would have already made any possible moves to resolve imbalance and we should make better use of system compute capacity by moving a task if we still have more than one running. Signed-off-by: Chris Redpath <chris.redpath@arm.com> Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-11-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
757ffdd705 |
sched/fair: Set rq->rd->overload when misfit
Idle balance is a great opportunity to pull a misfit task. However,
there are scenarios where misfit tasks are present but idle balance is
prevented by the overload flag.
A good example of this is a workload of n identical tasks. Let's suppose
we have a 2+2 Arm big.LITTLE system. We then spawn 4 fairly
CPU-intensive tasks - for the sake of simplicity let's say they are just
CPU hogs, even when running on big CPUs.
They are identical tasks, so on an SMP system they should all end at
(roughly) the same time. However, in our case the LITTLE CPUs are less
performing than the big CPUs, so tasks running on the LITTLEs will have
a longer completion time.
This means that the big CPUs will complete their work earlier, at which
point they should pull the tasks from the LITTLEs. What we want to
happen is summarized as follows:
a,b,c,d are our CPU-hogging tasks _ signifies idling
LITTLE_0 | a a a a _ _
LITTLE_1 | b b b b _ _
---------|-------------
big_0 | c c c c a a
big_1 | d d d d b b
^
^
Tasks end on the big CPUs, idle balance happens
and the misfit tasks are pulled straight away
This however won't happen, because currently the overload flag is only
set when there is any CPU that has more than one runnable task - which
may very well not be the case here if our CPU-hogging workload is all
there is to run.
As such, this commit sets the overload flag in update_sg_lb_stats when
a group is flagged as having a misfit task.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-10-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
e90c8fe15a |
sched/fair: Wrap rq->rd->overload accesses with READ/WRITE_ONCE()
This variable can be read and set locklessly within update_sd_lb_stats(). As such, READ/WRITE_ONCE() are added to make sure nothing terribly wrong can happen because of the compiler. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-9-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
dbbad71944 |
sched/fair: Change 'prefer_sibling' type to bool
This variable is entirely local to update_sd_lb_stats, so we can safely change its type and slightly clean up its initialisation. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-7-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
5fbdfae522 |
sched/fair: Kick nohz balance if rq->misfit_task_load
There already are a few conditions in nohz_kick_needed() to ensure a nohz kick is triggered, but they are not enough for some misfit task scenarios. Excluding asym packing, those are: - rq->nr_running >=2: Not relevant here because we are running a misfit task, it needs to be migrated regardless and potentially through active balance. - sds->nr_busy_cpus > 1: If there is only the misfit task being run on a group of low capacity CPUs, this will be evaluated to False. - rq->cfs.h_nr_running >=1 && check_cpu_capacity(): Not relevant here, misfit task needs to be migrated regardless of rt/IRQ pressure As such, this commit adds an rq->misfit_task_load condition to trigger a nohz kick. The idea to kick a nohz balance for misfit tasks originally came from Leo Yan <leo.yan@linaro.org>, and a similar patch was submitted for the Android Common Kernel - see: https://lists.linaro.org/pipermail/eas-dev/2016-September/000551.html Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-6-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
cad68e552e |
sched/fair: Consider misfit tasks when load-balancing
On asymmetric CPU capacity systems load intensive tasks can end up on CPUs that don't suit their compute demand. In this scenarios 'misfit' tasks should be migrated to CPUs with higher compute capacity to ensure better throughput. group_misfit_task indicates this scenario, but tweaks to the load-balance code are needed to make the migrations happen. Misfit balancing only makes sense between a source group of lower per-CPU capacity and destination group of higher compute capacity. Otherwise, misfit balancing is ignored. group_misfit_task has lowest priority so any imbalance due to overload is dealt with first. The modifications are: 1. Only pick a group containing misfit tasks as the busiest group if the destination group has higher capacity and has spare capacity. 2. When the busiest group is a 'misfit' group, skip the usual average load and group capacity checks. 3. Set the imbalance for 'misfit' balancing sufficiently high for a task to be pulled ignoring average load. 4. Pick the CPU with the highest misfit load as the source CPU. 5. If the misfit task is alone on the source CPU, go for active balancing. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-5-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
e3d6d0cb66 |
sched/fair: Add sched_group per-CPU max capacity
The current sg->min_capacity tracks the lowest per-CPU compute capacity available in the sched_group when rt/irq pressure is taken into account. Minimum capacity isn't the ideal metric for tracking if a sched_group needs offloading to another sched_group for some scenarios, e.g. a sched_group with multiple CPUs if only one is under heavy pressure. Tracking maximum capacity isn't perfect either but a better choice for some situations as it indicates that the sched_group definitely compute capacity constrained either due to rt/irq pressure on all CPUs or asymmetric CPU capacities (e.g. big.LITTLE). Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-4-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3b1baa6496 |
sched/fair: Add 'group_misfit_task' load-balance type
To maximize throughput in systems with asymmetric CPU capacities (e.g.
ARM big.LITTLE) load-balancing has to consider task and CPU utilization
as well as per-CPU compute capacity when load-balancing in addition to
the current average load based load-balancing policy. Tasks with high
utilization that are scheduled on a lower capacity CPU need to be
identified and migrated to a higher capacity CPU if possible to maximize
throughput.
To implement this additional policy an additional group_type
(load-balance scenario) is added: 'group_misfit_task'. This represents
scenarios where a sched_group has one or more tasks that are not
suitable for its per-CPU capacity. 'group_misfit_task' is only considered
if the system is not overloaded or imbalanced ('group_imbalanced' or
'group_overloaded').
Identifying misfit tasks requires the rq lock to be held. To avoid
taking remote rq locks to examine source sched_groups for misfit tasks,
each CPU is responsible for tracking misfit tasks themselves and update
the rq->misfit_task flag. This means checking task utilization when
tasks are scheduled and on sched_tick.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
df054e8445 |
sched/topology: Add static_key for asymmetric CPU capacity optimizations
The existing asymmetric CPU capacity code should cause minimal overhead for others. Putting it behind a static_key, it has been done for SMT optimizations, would make it easier to extend and improve without causing harm to others moving forward. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-2-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
882a78a9f3 |
sched/fair: Fix kernel-doc notation warning
Fix kernel-doc warning for missing 'flags' parameter description:
../kernel/sched/fair.c:3371: warning: Function parameter or member 'flags' not described in 'attach_entity_load_avg'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes:
|
|
|
|
bb3485c8ac |
sched/fair: Fix load_balance redo for !imbalance
It can happen that load_balance() finds a busiest group and then a busiest rq but the calculated imbalance is in fact 0. In such situation, detach_tasks() returns immediately and lets the flag LBF_ALL_PINNED set. The busiest CPU is then wrongly assumed to have pinned tasks and removed from the load balance mask. then, we redo a load balance without the busiest CPU. This creates wrong load balance situation and generates wrong task migration. If the calculated imbalance is 0, it's useless to try to find a busiest rq as no task will be migrated and we can return immediately. This situation can happen with heterogeneous system or smp system when RT tasks are decreasing the capacity of some CPUs. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: jhugo@codeaurora.org Link: http://lkml.kernel.org/r/1536306664-29827-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
287cdaac57 |
sched/fair: Fix scale_rt_capacity() for SMT
Since commit: |
|
|
|
d0cdb3ce88 |
sched/fair: Fix vruntime_normalized() for remote non-migration wakeup
When a task which previously ran on a given CPU is remotely queued to
wake up on that same CPU, there is a period where the task's state is
TASK_WAKING and its vruntime is not normalized. This is not accounted
for in vruntime_normalized() which will cause an error in the task's
vruntime if it is switched from the fair class during this time.
For example if it is boosted to RT priority via rt_mutex_setprio(),
rq->min_vruntime will not be subtracted from the task's vruntime but
it will be added again when the task returns to the fair class. The
task's vruntime will have been erroneously doubled and the effective
priority of the task will be reduced.
Note this will also lead to inflation of all vruntimes since the doubled
vruntime value will become the rq's min_vruntime when other tasks leave
the rq. This leads to repeated doubling of the vruntime and priority
penalty.
Fix this by recognizing a WAKING task's vruntime as normalized only if
sched_remote_wakeup is true. This indicates a migration, in which case
the vruntime would have been normalized in migrate_task_rq_fair().
Based on a similar patch from John Dias <joaodias@google.com>.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Steve Muckle <smuckle@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: John Dias <joaodias@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel de Dios <migueldedios@google.com>
Cc: Morten Rasmussen <Morten.Rasmussen@arm.com>
Cc: Patrick Bellasi <Patrick.Bellasi@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: kernel-team@android.com
Fixes:
|
|
|
|
12b04875d6 |
sched/pelt: Fix update_blocked_averages() for RT and DL classes
update_blocked_averages() is called to periodiccally decay the stalled load of idle CPUs and to sync all loads before running load balance. When cfs rq is idle, it trigs a load balance during pick_next_task_fair() in order to potentially pull tasks and to use this newly idle CPU. This load balance happens whereas prev task from another class has not been put and its utilization updated yet. This may lead to wrongly account running time as idle time for RT or DL classes. Test that no RT or DL task is running when updating their utilization in update_blocked_averages(). We still update RT and DL utilization instead of simply skipping them to make sure that all metrics are synced when used during load balance. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: |
|
|
|
958f338e96 |
Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
|
|
|
|
f2701b77bb |
Merge 4.18-rc7 into master to pick up the KVM dependcy
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
|
|
|
b6a60cf36d |
sched/numa: Move task_numa_placement() closer to numa_migrate_preferred()
numa_migrate_preferred() is called periodically or when task preferred node changes. Preferred node evaluations happen once per scan sequence. If the scan completion happens just after the periodic NUMA migration, then we try to migrate to the preferred node and the preferred node might change, needing another node migration. Avoid this by checking for scan sequence completion only when checking for periodic migration. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25862.6 26158.1 1.14258 1 74357 72725 -2.19482 Running SPECjbb2005 on a 16 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 8 117019 113992 -2.58 1 179095 174947 -2.31 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 449.46 770.77 615.22 101.70 numa01.sh Sys: 132.72 208.17 170.46 24.96 numa01.sh User: 39185.26 60290.89 50066.76 6807.84 numa02.sh Real: 60.85 61.79 61.28 0.37 numa02.sh Sys: 15.34 24.71 21.08 3.61 numa02.sh User: 5204.41 5249.85 5231.21 17.60 numa03.sh Real: 785.50 916.97 840.77 44.98 numa03.sh Sys: 108.08 133.60 119.43 8.82 numa03.sh User: 61422.86 70919.75 64720.87 3310.61 numa04.sh Real: 429.57 587.37 480.80 57.40 numa04.sh Sys: 240.61 321.97 290.84 33.58 numa04.sh User: 34597.65 40498.99 37079.48 2060.72 numa05.sh Real: 392.09 431.25 414.65 13.82 numa05.sh Sys: 229.41 372.48 297.54 53.14 numa05.sh User: 33390.86 34697.49 34222.43 556.42 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 424.63 566.18 498.12 59.26 23.50% numa01.sh Sys: 160.19 256.53 208.98 37.02 -18.4% numa01.sh User: 37320.00 46225.58 42001.57 3482.45 19.20% numa02.sh Real: 60.17 62.47 60.91 0.85 0.607% numa02.sh Sys: 15.30 22.82 17.04 2.90 23.70% numa02.sh User: 5202.13 5255.51 5219.08 20.14 0.232% numa03.sh Real: 823.91 844.89 833.86 8.46 0.828% numa03.sh Sys: 130.69 148.29 140.47 6.21 -14.9% numa03.sh User: 62519.15 64262.20 63613.38 620.05 1.740% numa04.sh Real: 515.30 603.74 548.56 30.93 -12.3% numa04.sh Sys: 459.73 525.48 489.18 21.63 -40.5% numa04.sh User: 40561.96 44919.18 42047.87 1526.85 -11.8% numa05.sh Real: 396.58 454.37 421.13 19.71 -1.53% numa05.sh Sys: 208.72 422.02 348.90 73.60 -14.7% numa05.sh User: 33124.08 36109.35 34846.47 1089.74 -1.79% Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-20-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f35678b6a1 |
sched/numa: Use group_weights to identify if migration degrades locality
On NUMA_BACKPLANE and NUMA_GLUELESS_MESH systems, tasks/memory should be consolidated to the closest group of nodes. In such a case, relying on group_fault metric may not always help to consolidate. There can always be a case where a node closer to the preferred node may have lesser faults than a node further away from the preferred node. In such a case, moving to node with more faults might avoid numa consolidation. Using group_weight would help to consolidate task/memory around the preferred_node. While here, to be on the conservative side, don't override migrate thread degrades locality logic for CPU_NEWLY_IDLE load balancing. Note: Similar problems exist with should_numa_migrate_memory and will be dealt separately. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25645.4 25960 1.22 1 72142 73550 1.95 Running SPECjbb2005 on a 16 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 8 110199 120071 8.958 1 176303 176249 -0.03 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 490.04 774.86 596.26 96.46 numa01.sh Sys: 151.52 242.88 184.82 31.71 numa01.sh User: 41418.41 60844.59 48776.09 6564.27 numa02.sh Real: 60.14 62.94 60.98 1.00 numa02.sh Sys: 16.11 30.77 21.20 5.28 numa02.sh User: 5184.33 5311.09 5228.50 44.24 numa03.sh Real: 790.95 856.35 826.41 24.11 numa03.sh Sys: 114.93 118.85 117.05 1.63 numa03.sh User: 60990.99 64959.28 63470.43 1415.44 numa04.sh Real: 434.37 597.92 504.87 59.70 numa04.sh Sys: 237.63 397.40 289.74 55.98 numa04.sh User: 34854.87 41121.83 38572.52 2615.84 numa05.sh Real: 386.77 448.90 417.22 22.79 numa05.sh Sys: 149.23 379.95 303.04 79.55 numa05.sh User: 32951.76 35959.58 34562.18 1034.05 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 493.19 672.88 597.51 59.38 -0.20% numa01.sh Sys: 150.09 245.48 207.76 34.26 -11.0% numa01.sh User: 41928.51 53779.17 48747.06 3901.39 0.059% numa02.sh Real: 60.63 62.87 61.22 0.83 -0.39% numa02.sh Sys: 16.64 27.97 20.25 4.06 4.691% numa02.sh User: 5222.92 5309.60 5254.03 29.98 -0.48% numa03.sh Real: 821.52 902.15 863.60 32.41 -4.30% numa03.sh Sys: 112.04 130.66 118.35 7.08 -1.09% numa03.sh User: 62245.16 69165.14 66443.04 2450.32 -4.47% numa04.sh Real: 414.53 519.57 476.25 37.00 6.009% numa04.sh Sys: 181.84 335.67 280.41 54.07 3.327% numa04.sh User: 33924.50 39115.39 37343.78 1934.26 3.290% numa05.sh Real: 408.30 441.45 417.90 12.05 -0.16% numa05.sh Sys: 233.41 381.60 295.58 57.37 2.523% numa05.sh User: 33301.31 35972.50 34335.19 938.94 0.661% Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-16-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
30619c89b1 |
sched/numa: Update the scan period without holding the numa_group lock
The metrics for updating scan periods are local or task specific. Currently this update happens under the numa_group lock, which seems unnecessary. Hence move this update outside the lock. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25355.9 25645.4 1.141 1 72812 72142 -0.92 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-15-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
2d4056fafa |
sched/numa: Remove numa_has_capacity()
task_numa_find_cpu() helps to find the CPU to swap/move the task to. It's guarded by numa_has_capacity(). However node not having capacity shouldn't deter a task swapping if it helps NUMA placement. Further load_too_imbalanced(), which evaluates possibilities of move/swap, provides similar checks as numa_has_capacity. Hence remove numa_has_capacity() to enhance possibilities of task swapping even if load is imbalanced. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25657.9 25804.1 0.569 1 74435 73413 -1.37 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-13-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
0ad4e3dfe6 |
sched/numa: Modify migrate_swap() to accept additional parameters
There are checks in migrate_swap_stop() that check if the task/CPU combination is as per migrate_swap_arg before migrating. However atleast one of the two tasks to be swapped by migrate_swap() could have migrated to a completely different CPU before updating the migrate_swap_arg. The new CPU where the task is currently running could be a different node too. If the task has migrated, numa balancer might end up placing a task in a wrong node. Instead of achieving node consolidation, it may end up spreading the load across nodes. To avoid that pass the CPUs as additional parameters. While here, place migrate_swap under CONFIG_NUMA_BALANCING. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25377.3 25226.6 -0.59 1 72287 73326 1.437 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-10-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
10864a9e22 |
sched/numa: Remove unused task_capacity from 'struct numa_stats'
The task_capacity field in 'struct numa_stats' is redundant. Also move nr_running for better packing within the struct. No functional changes. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25308.6 25377.3 0.271 1 72964 72287 -0.92 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@surriel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-9-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
0ee7e74dc0 |
sched/numa: Skip nodes that are at 'hoplimit'
When comparing two nodes at a distance of 'hoplimit', we should consider nodes only up to 'hoplimit'. Currently we also consider nodes at 'oplimit' distance too. Hence two nodes at a distance of 'hoplimit' will have same groupweight. Fix this by skipping nodes at hoplimit. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25375.3 25308.6 -0.26 1 72617 72964 0.477 Running SPECjbb2005 on a 16 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 8 113372 108750 -4.07684 1 177403 183115 3.21979 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 478.45 565.90 515.11 30.87 numa01.sh Sys: 207.79 271.04 232.94 21.33 numa01.sh User: 39763.93 47303.12 43210.73 2644.86 numa02.sh Real: 60.00 61.46 60.78 0.49 numa02.sh Sys: 15.71 25.31 20.69 3.42 numa02.sh User: 5175.92 5265.86 5235.97 32.82 numa03.sh Real: 776.42 834.85 806.01 23.22 numa03.sh Sys: 114.43 128.75 121.65 5.49 numa03.sh User: 60773.93 64855.25 62616.91 1576.39 numa04.sh Real: 456.93 511.95 482.91 20.88 numa04.sh Sys: 178.09 460.89 356.86 94.58 numa04.sh User: 36312.09 42553.24 39623.21 2247.96 numa05.sh Real: 393.98 493.48 436.61 35.59 numa05.sh Sys: 164.49 329.15 265.87 61.78 numa05.sh User: 33182.65 36654.53 35074.51 1187.71 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 414.64 819.20 556.08 147.70 -7.36% numa01.sh Sys: 77.52 205.04 139.40 52.05 67.10% numa01.sh User: 37043.24 61757.88 45517.48 9290.38 -5.06% numa02.sh Real: 60.80 63.32 61.63 0.88 -1.37% numa02.sh Sys: 17.35 39.37 25.71 7.33 -19.5% numa02.sh User: 5213.79 5374.73 5268.90 55.09 -0.62% numa03.sh Real: 780.09 948.64 831.43 63.02 -3.05% numa03.sh Sys: 104.96 136.92 116.31 11.34 4.591% numa03.sh User: 60465.42 73339.78 64368.03 4700.14 -2.72% numa04.sh Real: 412.60 681.92 521.29 96.64 -7.36% numa04.sh Sys: 210.32 314.10 251.77 37.71 41.74% numa04.sh User: 34026.38 45581.20 38534.49 4198.53 2.825% numa05.sh Real: 394.79 439.63 411.35 16.87 6.140% numa05.sh Sys: 238.32 330.09 292.31 38.32 -9.04% numa05.sh User: 33456.45 34876.07 34138.62 609.45 2.741% While there is a regression with this change, this change is needed from a correctness perspective. Also it helps consolidation as seen from perf bench output. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-8-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f03bb6760b |
sched/numa: Use task faults only if numa_group is not yet set up
When numa_group faults are available, task_numa_placement only uses numa_group faults to evaluate preferred node. However it still accounts task faults and even evaluates the preferred node just based on task faults just to discard it in favour of preferred node chosen on the basis of numa_group. Instead use task faults only if numa_group is not set. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25549.6 25215.7 -1.30 1 73190 72107 -1.47 Running SPECjbb2005 on a 16 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 8 113437 113372 -0.05 1 196130 177403 -9.54 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 506.35 794.46 599.06 104.26 numa01.sh Sys: 150.37 223.56 195.99 24.94 numa01.sh User: 43450.69 61752.04 49281.50 6635.33 numa02.sh Real: 60.33 62.40 61.31 0.90 numa02.sh Sys: 18.12 31.66 24.28 5.89 numa02.sh User: 5203.91 5325.32 5260.29 49.98 numa03.sh Real: 696.47 853.62 745.80 57.28 numa03.sh Sys: 85.68 123.71 97.89 13.48 numa03.sh User: 55978.45 66418.63 59254.94 3737.97 numa04.sh Real: 444.05 514.83 497.06 26.85 numa04.sh Sys: 230.39 375.79 316.23 48.58 numa04.sh User: 35403.12 41004.10 39720.80 2163.08 numa05.sh Real: 423.09 460.41 439.57 13.92 numa05.sh Sys: 287.38 480.15 369.37 68.52 numa05.sh User: 34732.12 38016.80 36255.85 1070.51 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 478.45 565.90 515.11 30.87 16.29% numa01.sh Sys: 207.79 271.04 232.94 21.33 -15.8% numa01.sh User: 39763.93 47303.12 43210.73 2644.86 14.04% numa02.sh Real: 60.00 61.46 60.78 0.49 0.871% numa02.sh Sys: 15.71 25.31 20.69 3.42 17.35% numa02.sh User: 5175.92 5265.86 5235.97 32.82 0.464% numa03.sh Real: 776.42 834.85 806.01 23.22 -7.47% numa03.sh Sys: 114.43 128.75 121.65 5.49 -19.5% numa03.sh User: 60773.93 64855.25 62616.91 1576.39 -5.36% numa04.sh Real: 456.93 511.95 482.91 20.88 2.930% numa04.sh Sys: 178.09 460.89 356.86 94.58 -11.3% numa04.sh User: 36312.09 42553.24 39623.21 2247.96 0.246% numa05.sh Real: 393.98 493.48 436.61 35.59 0.677% numa05.sh Sys: 164.49 329.15 265.87 61.78 38.92% numa05.sh User: 33182.65 36654.53 35074.51 1187.71 3.368% Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-6-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
8cd45eee43 |
sched/numa: Set preferred_node based on best_cpu
Currently preferred node is set to dst_nid which is the last node in the iteration whose group weight or task weight is greater than the current node. However it doesn't guarantee that dst_nid has the numa capacity to move. It also doesn't guarantee that dst_nid has the best_cpu which is the CPU/node ideal for node migration. Lets consider faults on a 4 node system with group weight numbers in different nodes being in 0 < 1 < 2 < 3 proportion. Consider the task is running on 3 and 0 is its preferred node but its capacity is full. Consider nodes 1, 2 and 3 have capacity. Then the task should be migrated to node 1. Currently the task gets moved to node 2. env.dst_nid points to the last node whose faults were greater than current node. Modify to set the preferred node based of best_cpu. Earlier setting preferred node was skipped if nr_active_nodes is 1. This could result in the task being moved out of the preferred node to a random node during regular load balancing. Also while modifying task_numa_migrate(), use sched_setnuma to set preferred node. This ensures out numa accounting is correct. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25122.9 25549.6 1.698 1 73850 73190 -0.89 Running SPECjbb2005 on a 16 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 8 105930 113437 7.08676 1 178624 196130 9.80047 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 435.78 653.81 534.58 83.20 numa01.sh Sys: 121.93 187.18 145.90 23.47 numa01.sh User: 37082.81 51402.80 43647.60 5409.75 numa02.sh Real: 60.64 61.63 61.19 0.40 numa02.sh Sys: 14.72 25.68 19.06 4.03 numa02.sh User: 5210.95 5266.69 5233.30 20.82 numa03.sh Real: 746.51 808.24 780.36 23.88 numa03.sh Sys: 97.26 108.48 105.07 4.28 numa03.sh User: 58956.30 61397.05 60162.95 1050.82 numa04.sh Real: 465.97 519.27 484.81 19.62 numa04.sh Sys: 304.43 359.08 334.68 20.64 numa04.sh User: 37544.16 41186.15 39262.44 1314.91 numa05.sh Real: 411.57 457.20 433.29 16.58 numa05.sh Sys: 230.05 435.48 339.95 67.58 numa05.sh User: 33325.54 36896.31 35637.84 1222.64 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 506.35 794.46 599.06 104.26 -10.76% numa01.sh Sys: 150.37 223.56 195.99 24.94 -25.55% numa01.sh User: 43450.69 61752.04 49281.50 6635.33 -11.43% numa02.sh Real: 60.33 62.40 61.31 0.90 -0.195% numa02.sh Sys: 18.12 31.66 24.28 5.89 -21.49% numa02.sh User: 5203.91 5325.32 5260.29 49.98 -0.513% numa03.sh Real: 696.47 853.62 745.80 57.28 4.6339% numa03.sh Sys: 85.68 123.71 97.89 13.48 7.3347% numa03.sh User: 55978.45 66418.63 59254.94 3737.97 1.5323% numa04.sh Real: 444.05 514.83 497.06 26.85 -2.464% numa04.sh Sys: 230.39 375.79 316.23 48.58 5.8343% numa04.sh User: 35403.12 41004.10 39720.80 2163.08 -1.153% numa05.sh Real: 423.09 460.41 439.57 13.92 -1.428% numa05.sh Sys: 287.38 480.15 369.37 68.52 -7.964% numa05.sh User: 34732.12 38016.80 36255.85 1070.51 -1.704% Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-5-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
5f95ba7a43 |
sched/numa: Simplify load_too_imbalanced()
Currently load_too_imbalance() cares about the slope of imbalance. It doesn't care of the direction of the imbalance. However this may not work if nodes that are being compared have dissimilar capacities. Few nodes might have more cores than other nodes in the system. Also unlike traditional load balance at a NUMA sched domain, multiple requests to migrate from the same source node to same destination node may run in parallel. This can cause huge load imbalance. This is specially true on a larger machines with either large cores per node or more number of nodes in the system. Hence allow move/swap only if the imbalance is going to reduce. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25058.2 25122.9 0.25 1 72950 73850 1.23 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 516.14 892.41 739.84 151.32 numa01.sh Sys: 153.16 192.99 177.70 14.58 numa01.sh User: 39821.04 69528.92 57193.87 10989.48 numa02.sh Real: 60.91 62.35 61.58 0.63 numa02.sh Sys: 16.47 26.16 21.20 3.85 numa02.sh User: 5227.58 5309.61 5265.17 31.04 numa03.sh Real: 739.07 917.73 795.75 64.45 numa03.sh Sys: 94.46 136.08 109.48 14.58 numa03.sh User: 57478.56 72014.09 61764.48 5343.69 numa04.sh Real: 442.61 715.43 530.31 96.12 numa04.sh Sys: 224.90 348.63 285.61 48.83 numa04.sh User: 35836.84 47522.47 40235.41 3985.26 numa05.sh Real: 386.13 489.17 434.94 43.59 numa05.sh Sys: 144.29 438.56 278.80 105.78 numa05.sh User: 33255.86 36890.82 34879.31 1641.98 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 435.78 653.81 534.58 83.20 38.39% numa01.sh Sys: 121.93 187.18 145.90 23.47 21.79% numa01.sh User: 37082.81 51402.80 43647.60 5409.75 31.03% numa02.sh Real: 60.64 61.63 61.19 0.40 0.637% numa02.sh Sys: 14.72 25.68 19.06 4.03 11.22% numa02.sh User: 5210.95 5266.69 5233.30 20.82 0.608% numa03.sh Real: 746.51 808.24 780.36 23.88 1.972% numa03.sh Sys: 97.26 108.48 105.07 4.28 4.197% numa03.sh User: 58956.30 61397.05 60162.95 1050.82 2.661% numa04.sh Real: 465.97 519.27 484.81 19.62 9.385% numa04.sh Sys: 304.43 359.08 334.68 20.64 -14.6% numa04.sh User: 37544.16 41186.15 39262.44 1314.91 2.478% numa05.sh Real: 411.57 457.20 433.29 16.58 0.380% numa05.sh Sys: 230.05 435.48 339.95 67.58 -17.9% numa05.sh User: 33325.54 36896.31 35637.84 1222.64 -2.12% Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-4-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
305c1fac32 |
sched/numa: Evaluate move once per node
task_numa_compare() helps choose the best CPU to move or swap the selected task. To achieve this task_numa_compare() is called for every CPU in the node. Currently it evaluates if the task can be moved/swapped for each of the CPUs. However the move evaluation is mostly independent of the CPU. Evaluating the move logic once per node, provides scope for simplifying task_numa_compare(). Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25705.2 25058.2 -2.51 1 74433 72950 -1.99 Running SPECjbb2005 on a 16 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 8 96589.6 105930 9.670 1 181830 178624 -1.76 (numbers from v1 based on v4.17-rc5) Testcase Time: Min Max Avg StdDev numa01.sh Real: 440.65 941.32 758.98 189.17 numa01.sh Sys: 183.48 320.07 258.42 50.09 numa01.sh User: 37384.65 71818.14 60302.51 13798.96 numa02.sh Real: 61.24 65.35 62.49 1.49 numa02.sh Sys: 16.83 24.18 21.40 2.60 numa02.sh User: 5219.59 5356.34 5264.03 49.07 numa03.sh Real: 822.04 912.40 873.55 37.35 numa03.sh Sys: 118.80 140.94 132.90 7.60 numa03.sh User: 62485.19 70025.01 67208.33 2967.10 numa04.sh Real: 690.66 872.12 778.49 65.44 numa04.sh Sys: 459.26 563.03 494.03 42.39 numa04.sh User: 51116.44 70527.20 58849.44 8461.28 numa05.sh Real: 418.37 562.28 525.77 54.27 numa05.sh Sys: 299.45 481.00 392.49 64.27 numa05.sh User: 34115.09 41324.02 39105.30 2627.68 Testcase Time: Min Max Avg StdDev %Change numa01.sh Real: 516.14 892.41 739.84 151.32 2.587% numa01.sh Sys: 153.16 192.99 177.70 14.58 45.42% numa01.sh User: 39821.04 69528.92 57193.87 10989.48 5.435% numa02.sh Real: 60.91 62.35 61.58 0.63 1.477% numa02.sh Sys: 16.47 26.16 21.20 3.85 0.943% numa02.sh User: 5227.58 5309.61 5265.17 31.04 -0.02% numa03.sh Real: 739.07 917.73 795.75 64.45 9.776% numa03.sh Sys: 94.46 136.08 109.48 14.58 21.39% numa03.sh User: 57478.56 72014.09 61764.48 5343.69 8.813% numa04.sh Real: 442.61 715.43 530.31 96.12 46.79% numa04.sh Sys: 224.90 348.63 285.61 48.83 72.97% numa04.sh User: 35836.84 47522.47 40235.41 3985.26 46.26% numa05.sh Real: 386.13 489.17 434.94 43.59 20.88% numa05.sh Sys: 144.29 438.56 278.80 105.78 40.77% numa05.sh User: 33255.86 36890.82 34879.31 1641.98 12.11% Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-3-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
2e62c4743a |
sched/fair: Remove #ifdefs from scale_rt_capacity()
Reuse cpu_util_irq() that has been defined for schedutil and set irq util to 0 when !CONFIG_IRQ_TIME_ACCOUNTING. But the compiler is not able to optimize the sequence (at least with aarch64 GCC 7.2.1): free *= (max - irq); free /= max; when irq is fixed to 0 Add a new inline function scale_irq_capacity() that will scale utilization when irq is accounted. Reuse this funciton in schedutil which applies similar formula. Suggested-by: Ingo Molnar <mingo@redhat.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: rjw@rjwysocki.net Link: http://lkml.kernel.org/r/1532001606-6689-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
bbb62c0b02 |
sched/core: Remove the rt_avg code
rt_avg is not used anywhere anymore, so we can remove all related code. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-11-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
523e979d31 |
sched/core: Use PELT for scale_rt_capacity()
The utilization of the CPU by RT, DL and IRQs are now tracked with PELT so we can use these metrics instead of rt_avg to evaluate the remaining capacity available for CFS class. scale_rt_capacity() behavior has been changed and now returns the remaining capacity available for CFS instead of a scaling factor because RT, DL and IRQ provide now absolute utilization value. The same formula as schedutil is used: IRQ util_avg + (1 - IRQ util_avg / max capacity ) * /Sum rq util_avg but the implementation is different because it doesn't return the same value and doesn't benefit of the same optimization. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-10-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
91c27493e7 |
sched/irq: Add IRQ utilization tracking
interrupt and steal time are the only remaining activities tracked by rt_avg. Like for sched classes, we can use PELT to track their average utilization of the CPU. But unlike sched class, we don't track when entering/leaving interrupt; Instead, we take into account the time spent under interrupt context when we update rqs' clock (rq_clock_task). This also means that we have to decay the normal context time and account for interrupt time during the update. That's also important to note that because: rq_clock == rq_clock_task + interrupt time and rq_clock_task is used by a sched class to compute its utilization, the util_avg of a sched class only reflects the utilization of the time spent in normal context and not of the whole time of the CPU. The utilization of interrupt gives an more accurate level of utilization of CPU. The CPU utilization is: avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq Most of the time, avg_irq is small and neglictible so the use of the approximation CPU utilization = /Sum avg_rq was enough. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3727e0e163 |
sched/dl: Add dl_rq utilization tracking
Similarly to what happens with RT tasks, CFS tasks can be preempted by DL tasks and the CFS's utilization might no longer describes the real utilization level. Current DL bandwidth reflects the requirements to meet deadline when tasks are enqueued but not the current utilization of the DL sched class. We track DL class utilization to estimate the system utilization. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-5-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
371bf42732 |
sched/rt: Add rt_rq utilization tracking
schedutil governor relies on cfs_rq's util_avg to choose the OPP when CFS tasks are running. When the CPU is overloaded by CFS and RT tasks, CFS tasks are preempted by RT tasks and in this case util_avg reflects the remaining capacity but not what CFS want to use. In such case, schedutil can select a lower OPP whereas the CPU is overloaded. In order to have a more accurate view of the utilization of the CPU, we track the utilization of RT tasks. Only util_avg is correctly tracked but not load_avg and runnable_load_avg which are useless for rt_rq. rt_rq uses rq_clock_task and cfs_rq uses cfs_rq_clock_task but they are the same at the root group level, so the PELT windows of the util_sum are aligned. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-3-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
c079629862 |
sched/pelt: Move PELT related code in a dedicated file
We want to track rt_rq's utilization as a part of the estimation of the whole rq's utilization. This is necessary because rt tasks can steal utilization to cfs tasks and make them lighter than they are. As we want to use the same load tracking mecanism for both and prevent useless dependency between cfs and rt code, PELT code is moved in a dedicated file. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-2-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
8fe5c5a937 |
sched/fair: Fix util_avg of new tasks for asymmetric systems
When a new task wakes-up for the first time, its initial utilization is set to half of the spare capacity of its CPU. The current implementation of post_init_entity_util_avg() uses SCHED_CAPACITY_SCALE directly as a capacity reference. As a result, on a big.LITTLE system, a new task waking up on an idle little CPU will be given ~512 of util_avg, even if the CPU's capacity is significantly less than that. Fix this by computing the spare capacity with arch_scale_cpu_capacity(). Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Link: http://lkml.kernel.org/r/20180612112215.25448-1-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4520843dfa |
Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
3482d98bbc |
sched/util_est: Fix util_est_dequeue() for throttled cfs_rq
When a cfs_rq is throttled, parent cfs_rq->nr_running is decreased and
everything happens at cfs_rq level. Currently util_est stays unchanged
in such case and it keeps accounting the utilization of throttled tasks.
This can somewhat make sense as we don't dequeue tasks but only throttled
cfs_rq.
If a task of another group is enqueued/dequeued and root cfs_rq becomes
idle during the dequeue, util_est will be cleared whereas it was
accounting util_est of throttled tasks before. So the behavior of util_est
is not always the same regarding throttled tasks and depends of side
activity. Furthermore, util_est will not be updated when the cfs_rq is
unthrottled as everything happens at cfs_rq level. Main results is that
util_est will stay null whereas we now have running tasks. We have to wait
for the next dequeue/enqueue of the previously throttled tasks to get an
up to date util_est.
Remove the assumption that cfs_rq's estimated utilization of a CPU is 0
if there is no running task so the util_est of a task remains until the
latter is dequeued even if its cfs_rq has been throttled.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes:
|
|
|
|
f1d1be8aee |
sched/fair: Advance global expiration when period timer is restarted
When period gets restarted after some idle time, start_cfs_bandwidth() doesn't update the expiration information, expire_cfs_rq_runtime() will see cfs_rq->runtime_expires smaller than rq clock and go to the clock drift logic, wasting needless CPU cycles on the scheduler hot path. Update the global expiration in start_cfs_bandwidth() to avoid frequent expire_cfs_rq_runtime() calls once a new period begins. Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180620101834.24455-2-xlpang@linux.alibaba.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
512ac999d2 |
sched/fair: Fix bandwidth timer clock drift condition
I noticed that cgroup task groups constantly get throttled even
if they have low CPU usage, this causes some jitters on the response
time to some of our business containers when enabling CPU quotas.
It's very simple to reproduce:
mkdir /sys/fs/cgroup/cpu/test
cd /sys/fs/cgroup/cpu/test
echo 100000 > cpu.cfs_quota_us
echo $$ > tasks
then repeat:
cat cpu.stat | grep nr_throttled # nr_throttled will increase steadily
After some analysis, we found that cfs_rq::runtime_remaining will
be cleared by expire_cfs_rq_runtime() due to two equal but stale
"cfs_{b|q}->runtime_expires" after period timer is re-armed.
The current condition to judge clock drift in expire_cfs_rq_runtime()
is wrong, the two runtime_expires are actually the same when clock
drift happens, so this condtion can never hit. The orginal design was
correctly done by this commit:
|
|
|
|
03585a95cd |
sched/fair: Remove stale tg_unthrottle_up() comments
After commit:
|
|
|
|
ba2591a599 |
sched/smt: Update sched_smt_present at runtime
The static key sched_smt_present is only updated at boot time when SMT siblings have been detected. Booting with maxcpus=1 and bringing the siblings online after boot rebuilds the scheduling domains correctly but does not update the static key, so the SMT code is not enabled. Let the key be updated in the scheduler CPU hotplug code to fix this. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
6396bb2215 |
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
|
|
2539fc82aa |
sched/fair: Update util_est before updating schedutil
When a task is enqueued the estimated utilization of a CPU is updated
to better support the selection of the required frequency.
However, schedutil is (implicitly) updated by update_load_avg() which
always happens before util_est_{en,de}queue(), thus potentially
introducing a latency between estimated utilization updates and
frequency selections.
Let's update util_est at the beginning of enqueue_task_fair(),
which will ensure that all schedutil updates will see the most
updated estimated utilization value for a CPU.
Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Fixes:
|
|
|
|
943d355d7f |
sched/core: Distinguish between idle_cpu() calls based on desired effect, introduce available_idle_cpu()
In the following commit:
|
|
|
|
1378447598 |
sched/numa: Stagger NUMA balancing scan periods for new threads
Threads share an address space and each can change the protections of the same address space to trap NUMA faults. This is redundant and potentially counter-productive as any thread doing the update will suffice. Potentially only one thread is required but that thread may be idle or it may not have any locality concerns and pick an unsuitable scan rate. This patch uses independent scan period but they are staggered based on the number of address space users when the thread is created. The intent is that threads will avoid scanning at the same time and have a chance to adapt their scan rate later if necessary. This reduces the total scan activity early in the lifetime of the threads. The different in headline performance across a range of machines and workloads is marginal but the system CPU usage is reduced as well as overall scan activity. The following is the time reported by NAS Parallel Benchmark using unbound openmp threads and a D size class: 4.17.0-rc1 4.17.0-rc1 vanilla stagger-v1r1 Time bt.D 442.77 ( 0.00%) 419.70 ( 5.21%) Time cg.D 171.90 ( 0.00%) 180.85 ( -5.21%) Time ep.D 33.10 ( 0.00%) 32.90 ( 0.60%) Time is.D 9.59 ( 0.00%) 9.42 ( 1.77%) Time lu.D 306.75 ( 0.00%) 304.65 ( 0.68%) Time mg.D 54.56 ( 0.00%) 52.38 ( 4.00%) Time sp.D 1020.03 ( 0.00%) 903.77 ( 11.40%) Time ua.D 400.58 ( 0.00%) 386.49 ( 3.52%) Note it's not a universal win but we have no prior knowledge of which thread matters but the number of threads created often exceeds the size of the node when the threads are not bound. However, there is a reducation of overall system CPU usage: 4.17.0-rc1 4.17.0-rc1 vanilla stagger-v1r1 sys-time-bt.D 48.78 ( 0.00%) 48.22 ( 1.15%) sys-time-cg.D 25.31 ( 0.00%) 26.63 ( -5.22%) sys-time-ep.D 1.65 ( 0.00%) 0.62 ( 62.42%) sys-time-is.D 40.05 ( 0.00%) 24.45 ( 38.95%) sys-time-lu.D 37.55 ( 0.00%) 29.02 ( 22.72%) sys-time-mg.D 47.52 ( 0.00%) 34.92 ( 26.52%) sys-time-sp.D 119.01 ( 0.00%) 109.05 ( 8.37%) sys-time-ua.D 51.52 ( 0.00%) 45.13 ( 12.40%) NUMA scan activity is also reduced: NUMA alloc local 1042828 1342670 NUMA base PTE updates 140481138 93577468 NUMA huge PMD updates 272171 180766 NUMA page range updates 279832690 186129660 NUMA hint faults 1395972 1193897 NUMA hint local faults 877925 855053 NUMA hint local percent 62 71 NUMA pages migrated 12057909 9158023 Similar observations are made for other thread-intensive workloads. System CPU usage is lower even though the headline gains in performance tend to be small. For example, specjbb 2005 shows almost no difference in performance but scan activity is reduced by a third on a 4-socket box. I didn't find a workload (thread intensive or otherwise) that suffered badly. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20180504154109.mvrha2qo5wdl65vr@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
dfd5c3ea64 |
Linux 4.17-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlr4xw8eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGNYoH/1d5zyMpVJVUKZ0K LuEctCGby1PjSvSOhmMuxFVagFAqfBJXmwWTeohLfLG48r/Yk0AsZQ5HH13/8baj k/T8UgUvKZKustndCRp+joQ3Pa1ZpcIFaWRvB8pKFCefJ/F/Lj4B4X1HYI7vLq0K /ZBXUdy3ry0lcVuypnaARYAb2O7l/nyZIjZ3FhiuyymWe7Jpo+G7VK922LOMSX/y VYFZCWa8nxN+yFhO0ao9X5k7ggIiUrEBtbfNrk19VtAn0hx+OYKW2KfJK/eHNey/ CKrOT+KAxU8VU29AEIbYzlL3yrQmULcEoIDiqJ/6m5m6JwsEbP6EqQHs0TiuQFpq A0MO9rw= =yjUP -----END PGP SIGNATURE----- Merge tag 'v4.17-rc5' into sched/core, to pick up fixes and dependencies Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
66e1c94db3 |
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/pti updates from Thomas Gleixner:
"A mixed bag of fixes and updates for the ghosts which are hunting us.
The scheduler fixes have been pulled into that branch to avoid
conflicts.
- A set of fixes to address a khread_parkme() race which caused lost
wakeups and loss of state.
- A deadlock fix for stop_machine() solved by moving the wakeups
outside of the stopper_lock held region.
- A set of Spectre V1 array access restrictions. The possible
problematic spots were discuvered by Dan Carpenters new checks in
smatch.
- Removal of an unused file which was forgotten when the rest of that
functionality was removed"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Remove unused file
perf/x86/cstate: Fix possible Spectre-v1 indexing for pkg_msr
perf/x86/msr: Fix possible Spectre-v1 indexing in the MSR driver
perf/x86: Fix possible Spectre-v1 indexing for x86_pmu::event_map()
perf/x86: Fix possible Spectre-v1 indexing for hw_perf_event cache_*
perf/core: Fix possible Spectre-v1 indexing for ->aux_pages[]
sched/autogroup: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
sched/core: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
sched/core: Introduce set_special_state()
kthread, sched/wait: Fix kthread_parkme() completion issue
kthread, sched/wait: Fix kthread_parkme() wait-loop
sched/fair: Fix the update of blocked load when newly idle
stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock
|
|
|
|
789ba28013 |
Revert "sched/numa: Delay retrying placement for automatic NUMA balance after wake_affine()"
This reverts commit
|
|
|
|
c976a862ba |
sched/fair: Avoid calling sync_entity_load_avg() unnecessarily
Call sync_entity_load_avg() directly from find_idlest_cpu() instead of select_task_rq_fair(), as that's where we need to use task's utilization value. And call sync_entity_load_avg() only after making sure sched domain spans over one of the allowed CPUs for the task. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/cd019d1753824c81130eae7b43e2bbcec47cc1ad.1524738578.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f1d88b4468 |
sched/fair: Rearrange select_task_rq_fair() to optimize it
Rearrange select_task_rq_fair() a bit to avoid executing some conditional statements in few specific code-paths. That gets rid of the goto as well. This shouldn't result in any functional changes. Tested-by: Rohit Jain <rohit.k.jain@oracle.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: http://lkml.kernel.org/r/20831b8d237bf3a20e4e328286f678b425ff04c9.1524738578.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
457be908c8 |
sched/fair: Fix the update of blocked load when newly idle
With commit: |
|
|
|
adcc8da885 |
sched/core: Simplify helpers for rq clock update skip requests
By renaming the functions we can get rid of the skip parameter and have better code redability. It makes zero sense to have things such as: rq_clock_skip_update(rq, false) When the skip request is in fact not going to happen. Ever. Rename things such that we end up with: rq_clock_skip_update(rq) rq_clock_cancel_skipupdate(rq) Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: matt@codeblueprint.co.uk Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805 Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
d519329f72 |
sched/fair: Update util_est only on util_avg updates
The estimated utilization of a task is currently updated every time the task is dequeued. However, to keep overheads under control, PELT signals are effectively updated at maximum once every 1ms. Thus, for really short running tasks, it can happen that their util_avg value has not been updates since their last enqueue. If such tasks are also frequently running tasks (e.g. the kind of workload generated by hackbench) it can also happen that their util_avg is updated only every few activations. This means that updating util_est at every dequeue potentially introduces not necessary overheads and it's also conceptually wrong if the util_avg signal has never been updated during a task activation. Let's introduce a throttling mechanism on task's util_est updates to sync them with util_avg updates. To make the solution memory efficient, both in terms of space and load/store operations, we encode a synchronization flag into the LSB of util_est.enqueued. This makes util_est an even values only metric, which is still considered good enough for its purpose. The synchronization bit is (re)set by __update_load_avg_se() once the PELT signal of a task has been updated during its last activation. Such a throttling mechanism allows to keep under control util_est overheads in the wakeup hot path, thus making it a suitable mechanism which can be enabled also on high-intensity workload systems. Thus, this now switches on by default the estimation utilization scheduler feature. Suggested-by: Chris Redpath <chris.redpath@arm.com> Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@android.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/20180309095245.11071-5-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f9be3e5961 |
sched/fair: Use util_est in LB and WU paths
When the scheduler looks at the CPU utilization, the current PELT value for a CPU is returned straight away. In certain scenarios this can have undesired side effects on task placement. For example, since the task utilization is decayed at wakeup time, when a long sleeping big task is enqueued it does not add immediately a significant contribution to the target CPU. As a result we generate a race condition where other tasks can be placed on the same CPU while it is still considered relatively empty. In order to reduce this kind of race conditions, this patch introduces the required support to integrate the usage of the CPU's estimated utilization in the wakeup path, via cpu_util_wake(), as well as in the load-balance path, via cpu_util() which is used by update_sg_lb_stats(). The estimated utilization of a CPU is defined to be the maximum between its PELT's utilization and the sum of the estimated utilization (at previous dequeue time) of all the tasks currently RUNNABLE on that CPU. This allows to properly represent the spare capacity of a CPU which, for example, has just got a big task running since a long sleep period. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@android.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/20180309095245.11071-3-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7f65ea42eb |
sched/fair: Add util_est on top of PELT
The util_avg signal computed by PELT is too variable for some use-cases.
For example, a big task waking up after a long sleep period will have its
utilization almost completely decayed. This introduces some latency before
schedutil will be able to pick the best frequency to run a task.
The same issue can affect task placement. Indeed, since the task
utilization is already decayed at wakeup, when the task is enqueued in a
CPU, this can result in a CPU running a big task as being temporarily
represented as being almost empty. This leads to a race condition where
other tasks can be potentially allocated on a CPU which just started to run
a big task which slept for a relatively long period.
Moreover, the PELT utilization of a task can be updated every [ms], thus
making it a continuously changing value for certain longer running
tasks. This means that the instantaneous PELT utilization of a RUNNING
task is not really meaningful to properly support scheduler decisions.
For all these reasons, a more stable signal can do a better job of
representing the expected/estimated utilization of a task/cfs_rq.
Such a signal can be easily created on top of PELT by still using it as
an estimator which produces values to be aggregated on meaningful
events.
This patch adds a simple implementation of util_est, a new signal built on
top of PELT's util_avg where:
util_est(task) = max(task::util_avg, f(task::util_avg@dequeue))
This allows to remember how big a task has been reported by PELT in its
previous activations via f(task::util_avg@dequeue), which is the new
_task_util_est(struct task_struct*) function added by this patch.
If a task should change its behavior and it runs longer in a new
activation, after a certain time its util_est will just track the
original PELT signal (i.e. task::util_avg).
The estimated utilization of cfs_rq is defined only for root ones.
That's because the only sensible consumer of this signal are the
scheduler and schedutil when looking for the overall CPU utilization
due to FAIR tasks.
For this reason, the estimated utilization of a root cfs_rq is simply
defined as:
util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued)
where:
cfs_rq::util_est::enqueued = sum(_task_util_est(task))
for each RUNNABLE task on that root cfs_rq
It's worth noting that the estimated utilization is tracked only for
objects of interests, specifically:
- Tasks: to better support tasks placement decisions
- root cfs_rqs: to better support both tasks placement decisions as
well as frequencies selection
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
31e77c93e4 |
sched/fair: Update blocked load when newly idle
When NEWLY_IDLE load balance is not triggered, we might need to update the blocked load anyway. We can kick an ilb so an idle CPU will take care of updating blocked load or we can try to update them locally before entering idle. In the latter case, we reuse part of the nohz_idle_balance. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: brendan.jackman@arm.com Cc: dietmar.eggemann@arm.com Cc: morten.rasmussen@foss.arm.com Cc: valentin.schneider@arm.com Link: http://lkml.kernel.org/r/1518622006-16089-4-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
47ea54121e |
sched/fair: Move idle_balance()
We're going to want to call nohz_idle_balance() or parts thereof from idle_balance(). Since we already have a forward declaration of idle_balance() move it down such that it's below nohz_idle_balance() avoiding the need for a forward declaration for that. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
dd707247ab |
sched/nohz: Merge CONFIG_NO_HZ_COMMON blocks
Now that we have two back-to-back NO_HZ_COMMON blocks, merge them. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
af3fe03c56 |
sched/fair: Move rebalance_domains()
This pure code movement results in two #ifdef CONFIG_NO_HZ_COMMON sections landing next to each other. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
63928384fa |
sched/nohz: Optimize nohz_idle_balance()
Avoid calling update_blocked_averages() when it does not in fact have any by re-using/extending update_nohz_stats(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
1936c53ce8 |
sched/fair: Reduce the periodic update duration
Instead of using the cfs_rq_is_decayed() which monitors all *_avg and *_sum, we create a cfs_rq_has_blocked() which only takes care of util_avg and load_avg. We are only interested by these 2 values which are decaying faster than the *_sum so we can stop the periodic update earlier. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: brendan.jackman@arm.com Cc: dietmar.eggemann@arm.com Cc: morten.rasmussen@foss.arm.com Cc: valentin.schneider@arm.com Link: http://lkml.kernel.org/r/1518517879-2280-3-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
f643ea2207 |
sched/nohz: Stop NOHZ stats when decayed
Stopped the periodic update of blocked load when all idle CPUs have fully decayed. We introduce a new nohz.has_blocked that reflect if some idle CPUs has blocked load that have to be periodiccally updated. nohz.has_blocked is set everytime that a Idle CPU can have blocked load and it is then clear when no more blocked load has been detected during an update. We don't need atomic operation but only to make cure of the right ordering when updating nohz.idle_cpus_mask and nohz.has_blocked. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: brendan.jackman@arm.com Cc: dietmar.eggemann@arm.com Cc: morten.rasmussen@foss.arm.com Cc: valentin.schneider@arm.com Link: http://lkml.kernel.org/r/1518517879-2280-2-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
ea14b57e8a |
sched/cpufreq: Provide migration hint
It was suggested that a migration hint might be usefull for the CPU-freq governors. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
00357f5ec5 |
sched/nohz: Clean up nohz enter/exit
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.
Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.
Removes an atomic op from both enter and exit paths.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
e022e0d38a |
sched/fair: Update blocked load from NEWIDLE
Since we already iterate CPUs looking for work on NEWIDLE, use this iteration to age the blocked load. If the domain for which this is done completely spand the idle set, we can push the ILB based aging forward. Suggested-by: Brendan Jackman <brendan.jackman@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a4064fb614 |
sched/fair: Add NOHZ stats balancing
Teach the idle balancer about the need to update statistics which have a different periodicity from regular balancing. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
4550487a99 |
sched/fair: Restructure nohz_balance_kick()
The current: if (nohz_kick_needed()) nohz_balancer_kick() is pointless complexity, fold them into a single call and avoid the various conditions at the call site. When we introduce multiple different needs to kick the ilb, the above construct also becomes a problem. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
b7031a02ec |
sched/fair: Add NOHZ_STATS_KICK
Split the NOHZ idle balancer into doing two separate actions: - update blocked load statistic - actually load-balance Since the latter requires the former, ensure this happens. For now always tag both bits at the same time. Prepares for a future where we can toggle only the STATS bit. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
a22e47a4e3 |
sched/core: Convert nohz_flags to atomic_t
Using atomic_t allows us to use the more flexible bitops provided there. Also its smaller. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
13a453c241 |
sched/fair: Add ';' after label attributes
Due to using GCC defines for configuration, some labels might be unused in certain configurations. While adding a __maybe_unused to the label is fine in general, the line has to be terminated with ';'. This is also reflected in the GCC documentation, but GCC parsed the previous variant without an error message. This has been spotted while compiling with goto-cc, the compiler for the CPROVER tool suite. Signed-off-by: Norbert Manthey <nmanthey@amazon.de> Signed-off-by: Michael Tautschnig <tautschn@amazon.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1519717660-16157-1-git-send-email-nmanthey@amazon.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
325ea10c08 |
sched/headers: Simplify and clean up header usage in the scheduler
Do the following cleanups and simplifications: - sched/sched.h already includes <asm/paravirt.h>, so no need to include it in sched/core.c again. - order the <linux/sched/*.h> headers alphabetically - add all <linux/sched/*.h> headers to kernel/sched/sched.h - remove all unnecessary includes from the .c files that are already included in kernel/sched/sched.h. Finally, make all scheduler .c files use a single common header: #include "sched.h" ... which now contains a union of the relied upon headers. This makes the various .c files easier to read and easier to handle. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
97fb7a0a89 |
sched: Clean up and harmonize the coding style of the scheduler code base
A good number of small style inconsistencies have accumulated
in the scheduler core, so do a pass over them to harmonize
all these details:
- fix speling in comments,
- use curly braces for multi-line statements,
- remove unnecessary parentheses from integer literals,
- capitalize consistently,
- remove stray newlines,
- add comments where necessary,
- remove invalid/unnecessary comments,
- align structure definitions and other data types vertically,
- add missing newlines for increased readability,
- fix vertical tabulation where it's misaligned,
- harmonize preprocessor conditional block labeling
and vertical alignment,
- remove line-breaks where they uglify the code,
- add newline after local variable definitions,
No change in functionality:
md5:
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm
1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
d84b31313e |
sched/isolation: Offload residual 1Hz scheduler tick
When a CPU runs in full dynticks mode, a 1Hz tick remains in order to keep the scheduler stats alive. However this residual tick is a burden for bare metal tasks that can't stand any interruption at all, or want to minimize them. The usual boot parameters "nohz_full=" or "isolcpus=nohz" will now outsource these scheduler ticks to the global workqueue so that a housekeeping CPU handles those remotely. The sched_class::task_tick() implementations have been audited and look safe to be called remotely as the target runqueue and its current task are passed in parameter and don't seem to be accessed locally. Note that in the case of using isolcpus, it's still up to the user to affine the global workqueues to the housekeeping CPUs through /sys/devices/virtual/workqueue/cpumask or domains isolation "isolcpus=nohz,domain". Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1519186649-3242-6-git-send-email-frederic@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7347fc87df |
sched/numa: Delay retrying placement for automatic NUMA balance after wake_affine()
If wake_affine() pulls a task to another node for any reason and the node is
no longer preferred then temporarily stop automatic NUMA balancing pulling
the task back. Otherwise, tasks with a strong waker/wakee relationship
may constantly fight automatic NUMA balancing over where a task should
be placed.
Once again netperf is interesting here. The performance barely changes
but automatic NUMA balancing is interesting:
Hmean send-64 354.67 ( 0.00%) 352.15 ( -0.71%)
Hmean send-128 702.91 ( 0.00%) 693.84 ( -1.29%)
Hmean send-256 1350.07 ( 0.00%) 1344.19 ( -0.44%)
Hmean send-1024 5124.38 ( 0.00%) 4941.24 ( -3.57%)
Hmean send-2048 9687.44 ( 0.00%) 9624.45 ( -0.65%)
Hmean send-3312 14577.64 ( 0.00%) 14514.35 ( -0.43%)
Hmean send-4096 16393.62 ( 0.00%) 16488.30 ( 0.58%)
Hmean send-8192 26877.26 ( 0.00%) 26431.63 ( -1.66%)
Hmean send-16384 38683.43 ( 0.00%) 38264.91 ( -1.08%)
Hmean recv-64 354.67 ( 0.00%) 352.15 ( -0.71%)
Hmean recv-128 702.91 ( 0.00%) 693.84 ( -1.29%)
Hmean recv-256 1350.07 ( 0.00%) 1344.19 ( -0.44%)
Hmean recv-1024 5124.38 ( 0.00%) 4941.24 ( -3.57%)
Hmean recv-2048 9687.43 ( 0.00%) 9624.45 ( -0.65%)
Hmean recv-3312 14577.59 ( 0.00%) 14514.35 ( -0.43%)
Hmean recv-4096 16393.55 ( 0.00%) 16488.20 ( 0.58%)
Hmean recv-8192 26876.96 ( 0.00%) 26431.29 ( -1.66%)
Hmean recv-16384 38682.41 ( 0.00%) 38263.94 ( -1.08%)
NUMA alloc hit 1465986
|
|
|
|
2c83362734 |
sched/fair: Consider SD_NUMA when selecting the most idle group to schedule on
find_idlest_group() compares a local group with each other group to select
the one that is most idle. When comparing groups in different NUMA domains,
a very slight imbalance is enough to select a remote NUMA node even if the
runnable load on both groups is 0 or close to 0. This ignores the cost of
remote accesses entirely and is a problem when selecting the CPU for a
newly forked task to run on. This is problematic when a forking server
is almost guaranteed to run on a remote node incurring numerous remote
accesses and potentially causing automatic NUMA balancing to try migrate
the task back or migrate the data to another node. Similar weirdness is
observed if a basic shell command pipes output to another as each process
in the pipeline is likely to start on different nodes and then get adjusted
later by wake_affine().
This patch adds imbalance to remote domains when considering whether to
select CPUs from remote domains. If the local domain is selected, imbalance
will still be used to try select a CPU from a lower scheduler domain's group
instead of stacking tasks on the same CPU.
A variety of workloads and machines were tested and as expected, there is no
difference on UMA. The difference on NUMA can be dramatic. This is a comparison
of elapsed times running the git regression test suite. It's fork-intensive with
short-lived processes:
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
Elapsed min 1706.06 ( 0.00%) 1435.94 ( 15.83%)
Elapsed mean 1709.53 ( 0.00%) 1436.98 ( 15.94%)
Elapsed stddev 2.16 ( 0.00%) 1.01 ( 53.38%)
Elapsed coeffvar 0.13 ( 0.00%) 0.07 ( 44.54%)
Elapsed max 1711.59 ( 0.00%) 1438.01 ( 15.98%)
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
User 5434.12 5188.41
System 4878.77 3467.09
Elapsed 10259.06 8624.21
That shows a considerable reduction in elapsed times. It's important to
note that automatic NUMA balancing does not affect this load as processes
are too short-lived.
There is also a noticable impact on hackbench such as this example using
processes and pipes:
hackbench-process-pipes
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
Amean 1 1.0973 ( 0.00%) 0.9393 ( 14.40%)
Amean 4 1.3427 ( 0.00%) 1.3730 ( -2.26%)
Amean 7 1.4233 ( 0.00%) 1.6670 ( -17.12%)
Amean 12 3.0250 ( 0.00%) 3.3013 ( -9.13%)
Amean 21 9.0860 ( 0.00%) 9.5343 ( -4.93%)
Amean 30 14.6547 ( 0.00%) 13.2433 ( 9.63%)
Amean 48 22.5447 ( 0.00%) 20.4303 ( 9.38%)
Amean 79 29.2010 ( 0.00%) 26.7853 ( 8.27%)
Amean 110 36.7443 ( 0.00%) 35.8453 ( 2.45%)
Amean 141 45.8533 ( 0.00%) 42.6223 ( 7.05%)
Amean 172 55.1317 ( 0.00%) 50.6473 ( 8.13%)
Amean 203 64.4420 ( 0.00%) 58.3957 ( 9.38%)
Amean 234 73.2293 ( 0.00%) 67.1047 ( 8.36%)
Amean 265 80.5220 ( 0.00%) 75.7330 ( 5.95%)
Amean 296 88.7567 ( 0.00%) 82.1533 ( 7.44%)
It's not a universal win as there are occasions when spreading wide and
quickly is a benefit but it's more of a win than it is a loss. For other
workloads, there is little difference but netperf is interesting. Without
the patch, the server and client starts on different nodes but quickly get
migrated due to wake_affine. Hence, the difference is overall performance
is marginal but detectable:
4.15.0 4.15.0
noexit-v1r23 sdnuma-v1r23
Hmean send-64 349.09 ( 0.00%) 354.67 ( 1.60%)
Hmean send-128 699.16 ( 0.00%) 702.91 ( 0.54%)
Hmean send-256 1316.34 ( 0.00%) 1350.07 ( 2.56%)
Hmean send-1024 5063.99 ( 0.00%) 5124.38 ( 1.19%)
Hmean send-2048 9705.19 ( 0.00%) 9687.44 ( -0.18%)
Hmean send-3312 14359.48 ( 0.00%) 14577.64 ( 1.52%)
Hmean send-4096 16324.20 ( 0.00%) 16393.62 ( 0.43%)
Hmean send-8192 26112.61 ( 0.00%) 26877.26 ( 2.93%)
Hmean send-16384 37208.44 ( 0.00%) 38683.43 ( 3.96%)
Hmean recv-64 349.09 ( 0.00%) 354.67 ( 1.60%)
Hmean recv-128 699.16 ( 0.00%) 702.91 ( 0.54%)
Hmean recv-256 1316.34 ( 0.00%) 1350.07 ( 2.56%)
Hmean recv-1024 5063.99 ( 0.00%) 5124.38 ( 1.19%)
Hmean recv-2048 9705.16 ( 0.00%) 9687.43 ( -0.18%)
Hmean recv-3312 14359.42 ( 0.00%) 14577.59 ( 1.52%)
Hmean recv-4096 16323.98 ( 0.00%) 16393.55 ( 0.43%)
Hmean recv-8192 26111.85 ( 0.00%) 26876.96 ( 2.93%)
Hmean recv-16384 37206.99 ( 0.00%) 38682.41 ( 3.97%)
However, what is very interesting is how automatic NUMA balancing behaves.
Each netperf instance runs long enough for balancing to activate:
NUMA base PTE updates 4620 1473
NUMA huge PMD updates 0 0
NUMA page range updates 4620 1473
NUMA hint faults 4301 1383
NUMA hint local faults 1309 451
NUMA hint local percent 30 32
NUMA pages migrated 1335 491
AutoNUMA cost 21% 6%
There is an unfortunate number of remote faults although tracing indicated
that the vast majority are in shared libraries. However, the tendency to
start tasks on the same node if there is capacity means that there were
far fewer PTE updates and faults incurred overall.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-6-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
24d0c1d6e6 |
sched/fair: Do not migrate due to a sync wakeup on exit
When a task exits, it notifies the parent that it has exited. This is a sync wakeup and the exiting task may pull the parent towards the wakers CPU. For simple workloads like using a shell, it was observed that the shell is pulled across nodes by exiting processes. This is daft as the parent may be long-lived and properly placed. This patch special cases a sync wakeup on exit to avoid pulling tasks across nodes. Testing on a range of workloads and machines showed very little differences in performance although there was a small 3% boost on some machines running a shellscript intensive workload (git regression test suite). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-5-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
082f764a2f |
sched/fair: Do not migrate on wake_affine_weight() if weights are equal
wake_affine_weight() will consider migrating a task to, or near, the current
CPU if there is a load imbalance. If the CPUs share LLC then either CPU
is valid as a search-for-idle-sibling target and equally appropriate for
stacking two tasks on one CPU if an idle sibling is unavailable. If they do
not share cache then a cross-node migration potentially impacts locality
so while they are equal from a CPU capacity point of view, they are not
equal in terms of memory locality. In either case, it's more appropriate
to migrate only if there is a difference in their effective load.
This patch modifies wake_affine_weight() to only consider migrating a task
if there is a load imbalance for normal wakeups but will allow potential
stacking if the loads are equal and it's a sync wakeup.
For the most part, the different in performance is marginal. For example,
on a 4-socket server running netperf UDP_STREAM on localhost the differences
are as follows:
4.15.0 4.15.0
16rc0 noequal-v1r23
Hmean send-64 355.47 ( 0.00%) 349.50 ( -1.68%)
Hmean send-128 697.98 ( 0.00%) 693.35 ( -0.66%)
Hmean send-256 1328.02 ( 0.00%) 1318.77 ( -0.70%)
Hmean send-1024 5051.83 ( 0.00%) 5051.11 ( -0.01%)
Hmean send-2048 9637.02 ( 0.00%) 9601.34 ( -0.37%)
Hmean send-3312 14355.37 ( 0.00%) 14414.51 ( 0.41%)
Hmean send-4096 16464.97 ( 0.00%) 16301.37 ( -0.99%)
Hmean send-8192 26722.42 ( 0.00%) 26428.95 ( -1.10%)
Hmean send-16384 38137.81 ( 0.00%) 38046.11 ( -0.24%)
Hmean recv-64 355.47 ( 0.00%) 349.50 ( -1.68%)
Hmean recv-128 697.98 ( 0.00%) 693.35 ( -0.66%)
Hmean recv-256 1328.02 ( 0.00%) 1318.77 ( -0.70%)
Hmean recv-1024 5051.83 ( 0.00%) 5051.11 ( -0.01%)
Hmean recv-2048 9636.95 ( 0.00%) 9601.30 ( -0.37%)
Hmean recv-3312 14355.32 ( 0.00%) 14414.48 ( 0.41%)
Hmean recv-4096 16464.74 ( 0.00%) 16301.16 ( -0.99%)
Hmean recv-8192 26721.63 ( 0.00%) 26428.17 ( -1.10%)
Hmean recv-16384 38136.00 ( 0.00%) 38044.88 ( -0.24%)
Stddev send-64 7.30 ( 0.00%) 4.75 ( 34.96%)
Stddev send-128 15.15 ( 0.00%) 22.38 ( -47.66%)
Stddev send-256 13.99 ( 0.00%) 19.14 ( -36.81%)
Stddev send-1024 105.73 ( 0.00%) 67.38 ( 36.27%)
Stddev send-2048 294.57 ( 0.00%) 223.88 ( 24.00%)
Stddev send-3312 302.28 ( 0.00%) 271.74 ( 10.10%)
Stddev send-4096 195.92 ( 0.00%) 121.10 ( 38.19%)
Stddev send-8192 399.71 ( 0.00%) 563.77 ( -41.04%)
Stddev send-16384 1163.47 ( 0.00%) 1103.68 ( 5.14%)
Stddev recv-64 7.30 ( 0.00%) 4.75 ( 34.96%)
Stddev recv-128 15.15 ( 0.00%) 22.38 ( -47.66%)
Stddev recv-256 13.99 ( 0.00%) 19.14 ( -36.81%)
Stddev recv-1024 105.73 ( 0.00%) 67.38 ( 36.27%)
Stddev recv-2048 294.59 ( 0.00%) 223.89 ( 24.00%)
Stddev recv-3312 302.24 ( 0.00%) 271.75 ( 10.09%)
Stddev recv-4096 196.03 ( 0.00%) 121.14 ( 38.20%)
Stddev recv-8192 399.86 ( 0.00%) 563.65 ( -40.96%)
Stddev recv-16384 1163.79 ( 0.00%) 1103.86 ( 5.15%)
The difference in overall performance is marginal but note that most
measurements are less variable. There were similar observations for other
netperf comparisons. hackbench with sockets or threads with processes or
threads showed minor difference with some reduction of migration. tbench
showed only marginal differences that were within the noise. dbench,
regardless of filesystem, showed minor differences all of which are
within noise. Multiple machines, both UMA and NUMA were tested without
any regressions showing up.
The biggest risk with a patch like this is affecting wakeup latencies.
However, the schbench load from Facebook which is very sensitive to wakeup
latency showed a mixed result with mostly improvements in wakeup latency:
4.15.0 4.15.0
16rc0 noequal-v1r23
Lat 50.00th-qrtle-1 38.00 ( 0.00%) 38.00 ( 0.00%)
Lat 75.00th-qrtle-1 49.00 ( 0.00%) 41.00 ( 16.33%)
Lat 90.00th-qrtle-1 52.00 ( 0.00%) 50.00 ( 3.85%)
Lat 95.00th-qrtle-1 54.00 ( 0.00%) 51.00 ( 5.56%)
Lat 99.00th-qrtle-1 63.00 ( 0.00%) 60.00 ( 4.76%)
Lat 99.50th-qrtle-1 66.00 ( 0.00%) 61.00 ( 7.58%)
Lat 99.90th-qrtle-1 78.00 ( 0.00%) 65.00 ( 16.67%)
Lat 50.00th-qrtle-2 38.00 ( 0.00%) 38.00 ( 0.00%)
Lat 75.00th-qrtle-2 42.00 ( 0.00%) 43.00 ( -2.38%)
Lat 90.00th-qrtle-2 46.00 ( 0.00%) 48.00 ( -4.35%)
Lat 95.00th-qrtle-2 49.00 ( 0.00%) 50.00 ( -2.04%)
Lat 99.00th-qrtle-2 55.00 ( 0.00%) 57.00 ( -3.64%)
Lat 99.50th-qrtle-2 58.00 ( 0.00%) 60.00 ( -3.45%)
Lat 99.90th-qrtle-2 65.00 ( 0.00%) 68.00 ( -4.62%)
Lat 50.00th-qrtle-4 41.00 ( 0.00%) 41.00 ( 0.00%)
Lat 75.00th-qrtle-4 45.00 ( 0.00%) 46.00 ( -2.22%)
Lat 90.00th-qrtle-4 50.00 ( 0.00%) 50.00 ( 0.00%)
Lat 95.00th-qrtle-4 54.00 ( 0.00%) 53.00 ( 1.85%)
Lat 99.00th-qrtle-4 61.00 ( 0.00%) 61.00 ( 0.00%)
Lat 99.50th-qrtle-4 65.00 ( 0.00%) 64.00 ( 1.54%)
Lat 99.90th-qrtle-4 76.00 ( 0.00%) 82.00 ( -7.89%)
Lat 50.00th-qrtle-8 48.00 ( 0.00%) 46.00 ( 4.17%)
Lat 75.00th-qrtle-8 55.00 ( 0.00%) 54.00 ( 1.82%)
Lat 90.00th-qrtle-8 60.00 ( 0.00%) 59.00 ( 1.67%)
Lat 95.00th-qrtle-8 63.00 ( 0.00%) 63.00 ( 0.00%)
Lat 99.00th-qrtle-8 71.00 ( 0.00%) 69.00 ( 2.82%)
Lat 99.50th-qrtle-8 74.00 ( 0.00%) 73.00 ( 1.35%)
Lat 99.90th-qrtle-8 98.00 ( 0.00%) 90.00 ( 8.16%)
Lat 50.00th-qrtle-16 56.00 ( 0.00%) 55.00 ( 1.79%)
Lat 75.00th-qrtle-16 68.00 ( 0.00%) 67.00 ( 1.47%)
Lat 90.00th-qrtle-16 77.00 ( 0.00%) 78.00 ( -1.30%)
Lat 95.00th-qrtle-16 82.00 ( 0.00%) 84.00 ( -2.44%)
Lat 99.00th-qrtle-16 90.00 ( 0.00%) 93.00 ( -3.33%)
Lat 99.50th-qrtle-16 93.00 ( 0.00%) 97.00 ( -4.30%)
Lat 99.90th-qrtle-16 110.00 ( 0.00%) 110.00 ( 0.00%)
Lat 50.00th-qrtle-32 68.00 ( 0.00%) 62.00 ( 8.82%)
Lat 75.00th-qrtle-32 90.00 ( 0.00%) 83.00 ( 7.78%)
Lat 90.00th-qrtle-32 110.00 ( 0.00%) 100.00 ( 9.09%)
Lat 95.00th-qrtle-32 122.00 ( 0.00%) 111.00 ( 9.02%)
Lat 99.00th-qrtle-32 145.00 ( 0.00%) 133.00 ( 8.28%)
Lat 99.50th-qrtle-32 154.00 ( 0.00%) 143.00 ( 7.14%)
Lat 99.90th-qrtle-32 2316.00 ( 0.00%) 515.00 ( 77.76%)
Lat 50.00th-qrtle-35 69.00 ( 0.00%) 72.00 ( -4.35%)
Lat 75.00th-qrtle-35 92.00 ( 0.00%) 95.00 ( -3.26%)
Lat 90.00th-qrtle-35 111.00 ( 0.00%) 114.00 ( -2.70%)
Lat 95.00th-qrtle-35 122.00 ( 0.00%) 124.00 ( -1.64%)
Lat 99.00th-qrtle-35 142.00 ( 0.00%) 144.00 ( -1.41%)
Lat 99.50th-qrtle-35 150.00 ( 0.00%) 154.00 ( -2.67%)
Lat 99.90th-qrtle-35 6104.00 ( 0.00%) 5640.00 ( 7.60%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-4-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
eeb6039863 |
sched/fair: Defer calculation of 'prev_eff_load' in wake_affine_weight() until needed
On sync wakeups, the previous CPU effective load may not be used so delay the calculation until it's needed. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-3-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
7ebb66a12f |
sched/fair: Avoid an unnecessary lookup of current CPU ID during wake_affine
The only caller of wake_affine() knows the CPU ID. Pass it in instead of rechecking it. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Giovanni Gherdovich <ggherdovich@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180213133730.24064-2-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
387f77cc82 |
sched/fair: Remove stray space in #ifdef
Remove a useless space in # ifdef and align it with others. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1518512382-29426-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
|
|
|
32e839dda3 |
sched/fair: Use a recently used CPU as an idle candidate and the basis for SIS
The select_idle_sibling() (SIS) rewrite in commit:
|