Everywhere we have a log root we name it as 'log' or 'log_root' except in
walk_down_log_tree() and walk_up_log_tree() where we name it as 'root',
which not only it's inconsistent, it's also confusing since we typically
use 'root' when naming variables that refer to a subvolume tree. So for
clairty and consistency rename the 'root' argument to 'log'.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Everywhere else we refer to a subvolume root we are replaying to simply
as 'root', so rename from 'replay_dest' to 'root' for consistency and
having a more meaningful and shorter name. While at it also update the
comment to be more detailed and comply to preferred style (first word in
a sentence is capitalized and sentence ends with punctuation).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'free' and 'pin' member of struct walk_control, used during log replay
and when freeing a log tree, are defined as integers but in practice are
used as booleans. Change their type to bool and while at it update their
comments to be more detailed and comply with the preferred comment style
(first word in a sentence is capitalized, sentences end with punctuation
and the comment opening (/*) is on a line of its own).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Annual typo fixing pass. Strangely codespell found only about 30% of
what is in this patch, the rest was done manually using text
spellchecker with a custom dictionary of acceptable terms.
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: David Sterba <dsterba@suse.com>
We're almost done cleaning misused int/bool parameters. Convert a bunch
of them, found by manual grepping. Note that btrfs_sync_fs() needs an
int as it's mandated by the struct super_operations prototype.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
There's one only one caller of unaccount_log_buffer() and both this
function and the caller are short, so move its code into the caller.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of extracting again the disk_bytenr and disk_num_bytes values from
the file extent item to pass to btrfs_qgroup_trace_extent(), use the key
local variable 'ins' which already has those values, reducing the size of
the source code.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of having an if statement to check for regular and prealloc
extents first, process them in a block, and then following with an else
statement to check for an inline extent, check for an inline extent first,
process it and jump to the 'update_inode' label, allowing us to avoid
having the code for processing regular and prealloc extents inside a
block, reducing the high indentation level by one and making the code
easier to read and avoid line splittings too.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At replay_one_extent(), we can jump to the code that updates the file
extent range and updates the inode when processing a file extent item that
represents a hole and we don't have the NO_HOLES feature enabled. This
helps reduce the high indentation level by one in replay_one_extent() and
avoid splitting some lines to make the code easier to read.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the replay_one_buffer() log tree walk callback we return errors to the
log tree walk caller and then the caller aborts the transaction, if we
have one, or turns the fs into error state if we don't have one. While
this reduces code it makes it harder to figure out where exactly an error
came from. So add the transaction aborts after every failure inside the
replay_one_buffer() callback and the functions it calls, making it as
fine grained as possible, so that it helps figuring out why failures
happen.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If read_alloc_one_name() we explicitly return -ENOMEM and currently that
is fine since it's the only error read_alloc_one_name() can return for
now. However this is fragile and not future proof, so return instead what
read_alloc_one_name() returned.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of keep dereferencing the walk_control structure to extract the
transaction handle whenever is needed, do it once by storing it in a local
variable and then use the variable everywhere. This reduces code verbosity
and eliminates the need for some split lines.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the process_one_buffer() log tree walk callback we return errors to the
log tree walk caller and then the caller aborts the transaction, if we
have one, or turns the fs into error state if we don't have one. While
this reduces code it makes it harder to figure out where exactly an error
came from. So add the transaction aborts after every failure inside the
process_one_buffer() callback, so that it helps figuring out why failures
happen.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do several things while walking a log tree (for replaying and for
freeing a log tree) like reading extent buffers and cleaning them up,
but we don't immediately abort the transaction, or turn the fs into an
error state, when one of these things fails. Instead we the transaction
abort or turn the fs into error state in the caller of the entry point
function that walks a log tree - walk_log_tree() - which means we don't
get to know exactly where an error came from.
Improve on this by doing a transaction abort / turn fs into error state
after each such failure so that when it happens we have a better
understanding where the failure comes from. This deliberately leaves
the transaction abort / turn fs into error state in the callers of
walk_log_tree() as to ensure we don't get into an inconsistent state in
case we forget to do it deeper in call chain. It also deliberately does
not do it after errors from the calls to the callback defined in
struct walk_control::process_func(), as we will do it later on another
patch.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The offset for an extref item's key is not the object ID of the parent
dir, otherwise we would not need the extref item and would use plain ref
items. Instead the offset is the result of a hash computation that uses
the object ID of the parent dir and the name associated to the entry.
So fix this by setting the key offset at replay_one_name() to be the
result of calling btrfs_extref_hash().
Fixes: 725af92a62 ("btrfs: Open-code name_in_log_ref in replay_one_name")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At inode_logged() we do a couple lockless checks for ->logged_trans, and
these are generally safe except the second one in case we get a load or
store tearing due to a concurrent call updating ->logged_trans (either at
btrfs_log_inode() or later at inode_logged()).
In the first case it's safe to compare to the current transaction ID since
once ->logged_trans is set the current transaction, we never set it to a
lower value.
In the second case, where we check if it's greater than zero, we are prone
to load/store tearing races, since we can have a concurrent task updating
to the current transaction ID with store tearing for example, instead of
updating with a single 64 bits write, to update with two 32 bits writes or
four 16 bits writes. In that case the reading side at inode_logged() could
see a positive value that does not match the current transaction and then
return a false negative.
Fix this by doing the second check while holding the inode's spinlock, add
some comments about it too. Also add the data_race() annotation to the
first check to avoid any reports from KCSAN (or similar tools) and comment
about it.
Fixes: 0f8ce49821 ("btrfs: avoid inode logging during rename and link when possible")
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At inode_logged() if we find that the inode was not logged before we
update its ->last_dir_index_offset to (u64)-1 with the goal that the
next directory log operation will see the (u64)-1 and then figure out
it must check what was the index of the last logged dir index key and
update ->last_dir_index_offset to that key's offset (this is done in
update_last_dir_index_offset()).
This however has a possibility for a time window where a race can happen
and lead to directory logging skipping dir index keys that should be
logged. The race happens like this:
1) Task A calls inode_logged(), sees ->logged_trans as 0 and then checks
that the inode item was logged before, but before it sets the inode's
->last_dir_index_offset to (u64)-1...
2) Task B is at btrfs_log_inode() which calls inode_logged() early, and
that has set ->last_dir_index_offset to (u64)-1;
3) Task B then enters log_directory_changes() which calls
update_last_dir_index_offset(). There it sees ->last_dir_index_offset
is (u64)-1 and that the inode was logged before (ctx->logged_before is
true), and so it searches for the last logged dir index key in the log
tree and it finds that it has an offset (index) value of N, so it sets
->last_dir_index_offset to N, so that we can skip index keys that are
less than or equal to N (later at process_dir_items_leaf());
4) Task A now sets ->last_dir_index_offset to (u64)-1, undoing the update
that task B just did;
5) Task B will now skip every index key when it enters
process_dir_items_leaf(), since ->last_dir_index_offset is (u64)-1.
Fix this by making inode_logged() not touch ->last_dir_index_offset and
initializing it to 0 when an inode is loaded (at btrfs_alloc_inode()) and
then having update_last_dir_index_offset() treat a value of 0 as meaning
we must check the log tree and update with the index of the last logged
index key. This is fine since the minimum possible value for
->last_dir_index_offset is 1 (BTRFS_DIR_START_INDEX - 1 = 2 - 1 = 1).
This also simplifies the management of ->last_dir_index_offset and now
all accesses to it are done under the inode's log_mutex.
Fixes: 0f8ce49821 ("btrfs: avoid inode logging during rename and link when possible")
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a race between checking if an inode was logged before and logging
an inode that can cause us to mark an inode as not logged just after it
was logged by a concurrent task:
1) We have inode X which was not logged before neither in the current
transaction not in past transaction since the inode was loaded into
memory, so it's ->logged_trans value is 0;
2) We are at transaction N;
3) Task A calls inode_logged() against inode X, sees that ->logged_trans
is 0 and there is a log tree and so it proceeds to search in the log
tree for an inode item for inode X. It doesn't see any, but before
it sets ->logged_trans to N - 1...
3) Task B calls btrfs_log_inode() against inode X, logs the inode and
sets ->logged_trans to N;
4) Task A now sets ->logged_trans to N - 1;
5) At this point anyone calling inode_logged() gets 0 (inode not logged)
since ->logged_trans is greater than 0 and less than N, but our inode
was really logged. As a consequence operations like rename, unlink and
link that happen afterwards in the current transaction end up not
updating the log when they should.
Fix this by ensuring inode_logged() only updates ->logged_trans in case
the inode item is not found in the log tree if after tacking the inode's
lock (spinlock struct btrfs_inode::lock) the ->logged_trans value is still
zero, since the inode lock is what protects setting ->logged_trans at
btrfs_log_inode().
Fixes: 0f8ce49821 ("btrfs: avoid inode logging during rename and link when possible")
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reiserfs has been removed in 6.13, there are still some mentions in the
documentation about it and the tools. Remove those that don't seem
relevant anymore but keep references to reiserfs' r5 hash used by some
code.
There's one change in a script scripts/selinux/install_policy.sh but it
does not seem to be relevant either.
Signed-off-by: David Sterba <dsterba@suse.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20250813100053.1291961-1-dsterba@suse.com
Currently we only log an error message if we can't find the block group
for a log tree extent buffer when unaccounting it (while freeing a log
tree). A missing block group means something is seriously wrong and we
end up leaking space from the metadata space info. So return -ENOENT in
case we don't find the block group.
CC: stable@vger.kernel.org # 6.12+
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we log a new inode (not persisted in a past transaction) that has 0
links and extents, then log another inode with an higher inode number, we
end up with failing to replay the log tree with -EINVAL. The steps for
this are:
1) create new file A
2) write some data to file A
3) open an fd on file A
4) unlink file A
5) fsync file A using the previously open fd
6) create file B (has higher inode number than file A)
7) fsync file B
8) power fail before current transaction commits
Now when attempting to mount the fs, the log replay will fail with
-ENOENT at replay_one_extent() when attempting to replay the first
extent of file A. The failure comes when trying to open the inode for
file A in the subvolume tree, since it doesn't exist.
Before commit 5f61b96159 ("btrfs: fix inode lookup error handling
during log replay"), the returned error was -EIO instead of -ENOENT,
since we converted any errors when attempting to read an inode during
log replay to -EIO.
The reason for this is that the log replay procedure fails to ignore
the current inode when we are at the stage LOG_WALK_REPLAY_ALL, our
current inode has 0 links and last inode we processed in the previous
stage has a non 0 link count. In other words, the issue is that at
replay_one_extent() we only update wc->ignore_cur_inode if the current
replay stage is LOG_WALK_REPLAY_INODES.
Fix this by updating wc->ignore_cur_inode whenever we find an inode item
regardless of the current replay stage. This is a simple solution and easy
to backport, but later we can do other alternatives like avoid logging
extents or inode items other than the inode item for inodes with a link
count of 0.
The problem with the wc->ignore_cur_inode logic has been around since
commit f2d72f42d5 ("Btrfs: fix warning when replaying log after fsync
of a tmpfile") but it only became frequent to hit since the more recent
commit 5e85262e54 ("btrfs: fix fsync of files with no hard links not
persisting deletion"), because we stopped skipping inodes with a link
count of 0 when logging, while before the problem would only be triggered
if trying to replay a log tree created with an older kernel which has a
logged inode with 0 links.
A test case for fstests will be submitted soon.
Reported-by: Peter Jung <ptr1337@cachyos.org>
Link: https://lore.kernel.org/linux-btrfs/fce139db-4458-4788-bb97-c29acf6cb1df@cachyos.org/
Reported-by: burneddi <burneddi@protonmail.com>
Link: https://lore.kernel.org/linux-btrfs/lh4W-Lwc0Mbk-QvBhhQyZxf6VbM3E8VtIvU3fPIQgweP_Q1n7wtlUZQc33sYlCKYd-o6rryJQfhHaNAOWWRKxpAXhM8NZPojzsJPyHMf2qY=@protonmail.com/#t
Reported-by: Russell Haley <yumpusamongus@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/598ecc75-eb80-41b3-83c2-f2317fbb9864@gmail.com/
Fixes: f2d72f42d5 ("Btrfs: fix warning when replaying log after fsync of a tmpfile")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are using a variable named 'log_ref_ver' of type int to indicate if we
are processing an extref item or not, using a value of 1 if so, otherwise
0. This is an odd name and type, so rename it to 'is_extref_item' and
change its type to bool.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During log replay, at add_inode_ref(), if we have an extref item that
contains multiple extrefs and one of them points to a directory that does
not exist in the subvolume tree, we are supposed to ignore it and process
the remaining extrefs encoded in the extref item, since each extref can
point to a different parent inode. However when that happens we just
return from the function and ignore the remaining extrefs.
The problem has been around since extrefs were introduced, in commit
f186373fef ("btrfs: extended inode refs"), but it's hard to hit in
practice because getting extref items encoding multiple extref requires
getting a hash collision when computing the offset of the extref's
key. The offset if computed like this:
key.offset = btrfs_extref_hash(dir_ino, name->name, name->len);
and btrfs_extref_hash() is just a wrapper around crc32c().
Fix this by moving to next iteration of the loop when we don't find
the parent directory that an extref points to.
Fixes: f186373fef ("btrfs: extended inode refs")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During log replay, at add_inode_ref(), we return -ENOENT if our current
inode isn't found on the subvolume tree or if a parent directory isn't
found. The error comes from btrfs_iget_logging() <- btrfs_iget() <-
btrfs_read_locked_inode().
The single caller of add_inode_ref(), replay_one_buffer(), ignores an
-ENOENT error because it expects that error to mean only that a parent
directory wasn't found and that is ok.
Before commit 5f61b96159 ("btrfs: fix inode lookup error handling during
log replay") we were converting any error when getting a parent directory
to -ENOENT and any error when getting the current inode to -EIO, so our
caller would fail log replay in case we can't find the current inode.
After that commit however in case the current inode is not found we return
-ENOENT to the caller and therefore it ignores the critical fact that the
current inode was not found in the subvolume tree.
Fix this by converting -ENOENT to 0 when we don't find a parent directory,
returning -ENOENT when we don't find the current inode and making the
caller, replay_one_buffer(), not ignore -ENOENT anymore.
Fixes: 5f61b96159 ("btrfs: fix inode lookup error handling during log replay")
CC: stable@vger.kernel.org # 6.16
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[TEST FAILURE WITH EXPERIMENTAL FEATURES]
When running test case generic/508, the test case will fail with the new
btrfs shutdown support:
generic/508 - output mismatch (see /home/adam/xfstests/results//generic/508.out.bad)
--- tests/generic/508.out 2022-05-11 11:25:30.806666664 +0930
+++ /home/adam/xfstests/results//generic/508.out.bad 2025-07-02 14:53:22.401824212 +0930
@@ -1,2 +1,6 @@
QA output created by 508
Silence is golden
+Before:
+After : stat.btime = Thu Jan 1 09:30:00 1970
+Before:
+After : stat.btime = Wed Jul 2 14:53:22 2025
...
(Run 'diff -u /home/adam/xfstests/tests/generic/508.out /home/adam/xfstests/results//generic/508.out.bad' to see the entire diff)
Ran: generic/508
Failures: generic/508
Failed 1 of 1 tests
Please note that the test case requires shutdown support, thus the test
case will be skipped using the current upstream kernel, as it doesn't
have shutdown ioctl support.
[CAUSE]
The direct cause the 0 time stamp in the log tree:
leaf 30507008 items 2 free space 16057 generation 9 owner TREE_LOG
leaf 30507008 flags 0x1(WRITTEN) backref revision 1
checksum stored e522548d
checksum calced e522548d
fs uuid 57d45451-481e-43e4-aa93-289ad707a3a0
chunk uuid d52bd3fd-5163-4337-98a7-7986993ad398
item 0 key (257 INODE_ITEM 0) itemoff 16123 itemsize 160
generation 9 transid 9 size 0 nbytes 0
block group 0 mode 100644 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
atime 1751432947.492000000 (2025-07-02 14:39:07)
ctime 1751432947.492000000 (2025-07-02 14:39:07)
mtime 1751432947.492000000 (2025-07-02 14:39:07)
otime 0.0 (1970-01-01 09:30:00) <<<
But the old fs tree has all the correct time stamp:
btrfs-progs v6.12
fs tree key (FS_TREE ROOT_ITEM 0)
leaf 30425088 items 2 free space 16061 generation 5 owner FS_TREE
leaf 30425088 flags 0x1(WRITTEN) backref revision 1
checksum stored 48f6c57e
checksum calced 48f6c57e
fs uuid 57d45451-481e-43e4-aa93-289ad707a3a0
chunk uuid d52bd3fd-5163-4337-98a7-7986993ad398
item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
generation 3 transid 0 size 0 nbytes 16384
block group 0 mode 40755 links 1 uid 0 gid 0 rdev 0
sequence 0 flags 0x0(none)
atime 1751432947.0 (2025-07-02 14:39:07)
ctime 1751432947.0 (2025-07-02 14:39:07)
mtime 1751432947.0 (2025-07-02 14:39:07)
otime 1751432947.0 (2025-07-02 14:39:07) <<<
The root cause is that fill_inode_item() in tree-log.c is only
populating a/c/m time, not the otime (or btime in statx output).
Part of the reason is that, the vfs inode only has a/c/m time, no native
btime support yet.
[FIX]
Thankfully btrfs has its otime stored in btrfs_inode::i_otime_sec and
btrfs_inode::i_otime_nsec.
So what we really need is just fill the otime time stamp in
fill_inode_item() of tree-log.c
There is another fill_inode_item() in inode.c, which is doing the proper
otime population.
Fixes: 94edf4ae43 ("Btrfs: don't bother committing delayed inode updates when fsyncing")
CC: stable@vger.kernel.org
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The token versions of set/get accessors will be removed, use the normal
helpers.
There's additional overhead of the token helpers that update the cached
address in case it moves to another page/folio. The normal versions
don't need to do that.
Note this is similar to fill_inode_item() in inode.c but with slight
differences. The two functions could be deduplicated eventually.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is an exported function and therefore it should have a 'btrfs_'
prefix, to make it clear it's btrfs specific, avoid future name collisions
with code outside btrfs, and make its naming consistent with most other
btrfs exported functions.
So add a 'btrfs_' prefix to it and make it return bool instead of int,
since all we need is to return true or false.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The __add_inode_ref() function is quite big and with too much nesting, so
move the code that processes inode extrefs into a helper function, to make
the function easier to read and reduce the level of indentation too.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The __add_inode_ref() function is quite big and with too much nesting, so
move the code that processes inode refs into a helper function, to make
the function easier to read and reduce the level of indentation too.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_lookup_inode_extref(` no longer requires transaction
handle, insert length, or COW flag, as the only caller now performs a
read-only lookup using trans == NULL, ins_len == 0 and cow == 0.
This function was introduced in the early days where extref feature was
introduced by commit f186373fef ("btrfs: extended inode refs").
Then some cleanup was done in commit 33b98f2271 ("btrfs: cleanup:
removed unused 'btrfs_get_inode_ref_index'"), which removed the only
caller passing trans and other COW specific options.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Sun YangKai <sunk67188@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The dirty_log_pages tree is used for tree logging and marks extents
based on log_transid. The bits could be renamed to resemble the
LOG1/LOG2 naming used for the BTRFS_FS_LOG1_ERR bits.
The DIRTY bit is renamed to LOG1 and NEW to LOG2.
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a bare atomic, use the refcount_t type, which despite
being a structure that contains only an atomic, has an API that checks
for underflows and other hazards. This doesn't change the size of the
extent_buffer structure.
This removes the need to do things like this:
WARN_ON(atomic_read(&eb->refs) == 0);
if (atomic_dec_and_test(&eb->refs)) {
(...)
}
And do just:
if (refcount_dec_and_test(&eb->refs)) {
(...)
}
Since refcount_dec_and_test() already triggers a warning when we decrement
a ref count that has a value of 0 (or below zero).
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The argument has boolean semantics, so change its type from int to bool,
making it more clear.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two callers of btrfs_del_inode_ref() that declare a local index
variable and then pass a pointer for it to btrfs_del_inode_ref(), but then
don't use that index at all. Since btrfs_del_inode_ref() accepts a NULL
index pointer, pass NULL instead and stop declaring those useless index
variables.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of allocating the scratch eb after joining the log transaction,
allocate it before so that we're not delaying log commits for longer
than necessary, as allocating the scratch eb means allocating an
extent_buffer structure, which comes from a dedicated kmem_cache, plus
pages/folios to attach to the eb. Both of these allocations may take time
when we're under memory pressure.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of allocating the path after joining the log transaction, allocate
it before so that we're not delaying log commits for the rare cases where
the allocation takes a significant time (under memory pressure and all
slabs are full, there's the need to allocate a new page, etc).
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of allocating the path after joining the log transaction, allocate
it before so that we're not delaying log commits for the rare cases where
the allocation takes a significant time (under memory pressure and all
slabs are full, there's the need to allocate a new page, etc).
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are supposed to be able to join a log transaction at that point, since
we have determined that the inode was logged in the current transaction
with the call to inode_logged(). So ASSERT() we joined a log transaction
and also warn if we didn't in case assertions are disabled (the kernel
config doesn't have CONFIG_BTRFS_ASSERT=y), so that the issue gets noticed
and reported if it ever happens.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to use btrfs_delete_one_dir_name() at del_logged_dentry()
because we are processing a dir index key which can contain only a single
name, unlike dir item keys which can encode multiple names in case of name
hash collisions. We have explicitly looked up for a dir index key by
calling btrfs_lookup_dir_index_item() and we don't log dir item keys
anymore (since commit 339d035424 ("btrfs: only copy dir index keys when
logging a directory")). So simplify and use btrfs_del_item() directly
instead of btrfs_delete_one_dir_name().
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are supposed to be able to join a log transaction at that point, since
we have determined that the inode was logged in the current transaction
with the call to inode_logged(). So ASSERT() we joined a log transaction
and also warn if we didn't in case assertions are disabled (the kernel
config doesn't have CONFIG_BTRFS_ASSERT=y), so that the issue gets noticed
and reported if it ever happens.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this fuzzy logic at btrfs_recover_log_trees() where we don't
abort the transaction and exit immediately after each function call that
returned an error, and instead have if-then-else logic or check if the
previous function call returned success before calling the next function.
Make the flow more straightforward by immediately aborting the transaction
and exiting after each function call failure. This also allows to avoid
two consecutive if statements that test the same conditions:
if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
(...)
}
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to call btrfs_release_path() before calling
btrfs_init_root_free_objectid() as we have released the path already at
the top of the loop and the previous call to fixup_inode_link_counts()
also releases the path. So remove it to simplify the code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we failed walking a log tree during replay, we have a missing
transaction abort to prevent committing a transaction where we didn't
fully replay all the changes from a log tree and therefore can leave the
respective subvolume tree in some inconsistent state. So add the missing
transaction abort.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a single line doing a transaction abort in case either we got an
error from btrfs_get_fs_root() different from -ENOENT or we got an error
from btrfs_pin_extent_for_log_replay(), making it hard to figure out which
function call failed when looking at a transaction abort massages and
stack trace in dmesg. Change this to have an explicit transaction abort
for each one of the two cases.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of recording that a new subvolume was created in a directory after
we add the entry do the directory, record it before adding the entry. This
is to avoid races where after creating the entry and before recording the
new subvolume in the directory (the call to btrfs_record_new_subvolume()),
another task logs the directory, so we end up with a log tree where we
logged a directory that has an entry pointing to a root that was not yet
committed, resulting in an invalid entry if the log is persisted and
replayed later due to a power failure or crash.
Also state this requirement in the function comment for
btrfs_record_new_subvolume(), similar to what we do for the
btrfs_record_unlink_dir() and btrfs_record_snapshot_destroy().
Fixes: 45c4102f0d ("btrfs: avoid transaction commit on any fsync after subvolume creation")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When replaying log trees we use read_one_inode() to get an inode, which is
just a wrapper around btrfs_iget_logging(), which in turn is a wrapper for
btrfs_iget(). But read_one_inode() always returns NULL for any error
that btrfs_iget_logging() / btrfs_iget() may return and this is a problem
because:
1) In many callers of read_one_inode() we convert the NULL into -EIO,
which is not accurate since btrfs_iget() may return -ENOMEM and -ENOENT
for example, besides -EIO and other errors. So during log replay we
may end up reporting a false -EIO, which is confusing since we may
not have had any IO error at all;
2) When replaying directory deletes, at replay_dir_deletes(), we assume
the NULL returned from read_one_inode() means that the inode doesn't
exist and then proceed as if no error had happened. This is wrong
because unless btrfs_iget() returned ERR_PTR(-ENOENT), we had an
actual error and the target inode may exist in the target subvolume
root - this may later result in the log replay code failing at a
later stage (if we are "lucky") or succeed but leaving some
inconsistency in the filesystem.
So fix this by not ignoring errors from btrfs_iget_logging() and as
a consequence remove the read_one_inode() wrapper and just use
btrfs_iget_logging() directly. Also since btrfs_iget_logging() is
supposed to be called only against subvolume roots, just like
read_one_inode() which had a comment about it, add an assertion to
btrfs_iget_logging() to check that the target root corresponds to a
subvolume root.
Fixes: 5d4f98a28c ("Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At __inode_add_ref() when processing extrefs, if we jump into the next
label we have an undefined value of victim_name.len, since we haven't
initialized it before we did the goto. This results in an invalid memory
access in the next iteration of the loop since victim_name.len was not
initialized to the length of the name of the current extref.
Fix this by initializing victim_name.len with the current extref's name
length.
Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During log replay, at __add_inode_ref(), when we are searching for inode
ref keys we totally ignore if btrfs_search_slot() returns an error. This
may make a log replay succeed when there was an actual error and leave
some metadata inconsistency in a subvolume tree. Fix this by checking if
an error was returned from btrfs_search_slot() and if so, return it to
the caller.
Fixes: e02119d5a7 ("Btrfs: Add a write ahead tree log to optimize synchronous operations")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If there's an unexpected (invalid) extent type, we just silently ignore
it. This means a corruption or some bug somewhere, so instead return
-EUCLEAN to the caller, making log replay fail, and print an error message
with relevant information.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a few places where we call read_one_inode(), if we get a NULL pointer
we end up jumping into an error path, or fallthrough in case of
__add_inode_ref(), where we then do something like this:
iput(&inode->vfs_inode);
which results in an invalid inode pointer that triggers an invalid memory
access, resulting in a crash.
Fix this by making sure we don't do such dereferences.
Fixes: b4c50cbb01 ("btrfs: return a btrfs_inode from read_one_inode()")
CC: stable@vger.kernel.org # 6.15+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using the helper makes it a bit more clear that we're accessing the
first list entry.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename all the exported functions from extent_map.h that don't have a
'btrfs_' prefix in their names, so that they are consistent with all the
other functions, to make it clear they are btrfs specific functions and
to avoid potential name collisions in the future with functions defined
elsewhere in the kernel.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported and don't have a 'btrfs_' prefix in their
names, which goes against coding style conventions. Rename them to have
such prefix, making it clear they are from btrfs and avoiding potential
collisions in the future with functions defined elsewhere outside btrfs.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported and don't have a 'btrfs_' prefix in their
names, which goes against coding style conventions. Rename them to have
such prefix, making it clear they are from btrfs and avoiding potential
collisions in the future with functions defined elsewhere outside btrfs.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported and don't have a 'btrfs_' prefix in their
names, which goes against coding style conventions. Rename them to have
such prefix, making it clear they are from btrfs and avoiding potential
collisions in the future with functions defined elsewhere outside btrfs.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported so they should have a 'btrfs_' prefix by
convention, to make it clear they are btrfs specific and to avoid
collisions with functions from elsewhere in the kernel.
So add a 'btrfs_' prefix to their name to make it clear they are from
btrfs.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These functions are exported so they should have a 'btrfs_' prefix by
convention, to make it clear they are btrfs specific and to avoid
collisions with functions from elsewhere in the kernel. So add a prefix to
their name.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fsync a file (or directory) that has no more hard links, because
while a process had a file descriptor open on it, the file's last hard
link was removed and then the process did an fsync against the file
descriptor, after a power failure or crash the file still exists after
replaying the log.
This behaviour is incorrect since once an inode has no more hard links
it's not accessible anymore and we insert an orphan item into its
subvolume's tree so that the deletion of all its items is not missed in
case of a power failure or crash.
So after log replay the file shouldn't exist anymore, which is also the
behaviour on ext4, xfs, f2fs and other filesystems.
Fix this by not ignoring inodes with zero hard links at
btrfs_log_inode_parent() and by committing an inode's delayed inode when
we are not doing a fast fsync (either BTRFS_INODE_COPY_EVERYTHING or
BTRFS_INODE_NEEDS_FULL_SYNC is set in the inode's runtime flags). This
last step is necessary because when removing the last hard link we don't
delete the corresponding ref (or extref) item, instead we record the
change in the inode's delayed inode with the BTRFS_DELAYED_NODE_DEL_IREF
flag, so that when the delayed inode is committed we delete the ref/extref
item from the inode's subvolume tree - otherwise the logging code will log
the last hard link and therefore upon log replay the inode is not deleted.
The base code for a fstests test case that reproduces this bug is the
following:
. ./common/dmflakey
_require_scratch
_require_dm_target flakey
_require_mknod
_scratch_mkfs >>$seqres.full 2>&1 || _fail "mkfs failed"
_require_metadata_journaling $SCRATCH_DEV
_init_flakey
_mount_flakey
touch $SCRATCH_MNT/foo
# Commit the current transaction and persist the file.
_scratch_sync
# A fifo to communicate with a background xfs_io process that will
# fsync the file after we deleted its hard link while it's open by
# xfs_io.
mkfifo $SCRATCH_MNT/fifo
tail -f $SCRATCH_MNT/fifo | \
$XFS_IO_PROG $SCRATCH_MNT/foo >>$seqres.full &
XFS_IO_PID=$!
# Give some time for the xfs_io process to open a file descriptor for
# the file.
sleep 1
# Now while the file is open by the xfs_io process, delete its only
# hard link.
rm -f $SCRATCH_MNT/foo
# Now that it has no more hard links, make the xfs_io process fsync it.
echo "fsync" > $SCRATCH_MNT/fifo
# Terminate the xfs_io process so that we can unmount.
echo "quit" > $SCRATCH_MNT/fifo
wait $XFS_IO_PID
unset XFS_IO_PID
# Simulate a power failure and then mount again the filesystem to
# replay the journal/log.
_flakey_drop_and_remount
# We don't expect the file to exist anymore, since it was fsynced when
# it had no more hard links.
[ -f $SCRATCH_MNT/foo ] && echo "file foo still exists"
_unmount_flakey
# success, all done
echo "Silence is golden"
status=0
exit
A test case for fstests will be submitted soon.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's a pointless label as we don't have to do anything under it other
than return from the function. So remove it and directly return from the
function where we used to goto.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no point in checking if the inode is a directory as
ctx->log_new_dentries is only set in case we are logging a directory down
the call chain of btrfs_log_inode(). So remove that check making the logic
more simple and while at it add a comment about why use a local variable
to track if we later need to log new dentries.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we don't need to log new directory dentries, there's no point in having
an else branch just to set 'ret' to zero, as it's already zero because
every time it gets a non-zero value we jump into one of the exit labels.
So remove it, which reduces source code size and the module text size.
Before this change:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1813855 163737 16920 1994512 1e6f10 fs/btrfs/btrfs.ko
After this change:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1813807 163737 16920 1994464 1e6ee0 fs/btrfs/btrfs.ko
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using memcmp(), which requires copying both file extent items
from each extent buffer into a local buffer, use memcmp_extent_buffer() so
that we only need to copy one of the file extent items and directly use
the extent buffer of the other file extent item for the comparison.
This reduces code size, saves one memory copy and reduces stack usage.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is exclusively used for log replay since commit
3eb4234424 ("btrfs: remove outdated logic from overwrite_item() and add
assertion"), so update the comment so that it doesn't say it can be used
for logging. Also some minor rewording for clarity and while at it
reformat the affected text so that it fits closer to the 80 characters
limit for comments.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of referring to path->nodes[0] and path->slots[0] multiple times,
which is verbose and confusing since we have an 'eb' and 'slot' variables
as well, introduce local variables 'dst_eb' to point to path->nodes[0] and
'dst_slot' to have path->slots[0], reducing verbosity and making it more
obvious about which extent buffer and slot we are referring to.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to allocate memory and copy from both the destination and
source extent buffers to compare if the items are equal, we can instead
use memcmp_extent_buffer() which allows to do only one memory allocation
and copy instead of two.
So use memcmp_extent_buffer() instead of memcmp(), allowing us to avoid
one memory allocation, which can fail or be slow while under memory heavy
pressure, avoid the memory copying and reducing code.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's an internal function and most of the time the callers are doing a lot
of BTRFS_I() calls on the returned VFS inode to get the btrfs inode, so
change the return type to struct btrfs_inode instead.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fixup_inode_link_count() mostly wants to use a btrfs_inode, plus it's an
internal function so it should take btrfs_inode instead of a VFS inode.
Change the argument type to btrfs_inode, avoiding several BTRFS_I() calls
too.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of read_one_inode() are mostly interested in the btrfs_inode
structure rather than the VFS inode, so make read_one_inode() return
the btrfs_inode instead, avoiding lots of BTRFS_I() calls.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of btrfs_iget_logging() are interested in the btrfs_inode
structure rather than the VFS inode, so make btrfs_iget_logging() return
the btrfs_inode instead, avoiding lots of BTRFS_I() calls.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_key is defined as objectid/type/offset and the keys are also
printed like that. For better readability, update all key
initializations to match this order.
Signed-off-by: David Sterba <dsterba@suse.com>
We have several places explicitly calling btrfs_mark_buffer_dirty() but
that is not necessarily since the target leaf came from a path that was
obtained for a btree search function that modifies the btree, something
like btrfs_insert_empty_item() or anything else that ends up calling
btrfs_search_slot() with a value of 1 for its 'cow' argument.
These just make the code more verbose, confusing and add a little extra
overhead and well as increase the module's text size, so remove them.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function read_alloc_one_name() does not initialize the name field of
the passed fscrypt_str struct if kmalloc fails to allocate the
corresponding buffer. Thus, it is not guaranteed that
fscrypt_str.name is initialized when freeing it.
This is a follow-up to the linked patch that fixes the remaining
instances of the bug introduced by commit e43eec81c5 ("btrfs: use
struct qstr instead of name and namelen pairs").
Link: https://lore.kernel.org/linux-btrfs/20241009080833.1355894-1-jroi.martin@gmail.com/
Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The add_inode_ref() function does not initialize the "name" struct when
it is declared. If any of the following calls to "read_one_inode()
returns NULL,
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
inode = read_one_inode(root, inode_objectid);
if (!inode) {
ret = -EIO;
goto out;
}
then "name.name" would be freed on "out" before being initialized.
out:
...
kfree(name.name);
This issue was reported by Coverity with CID 1526744.
Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few places that check if we have the inode locked by doing:
ASSERT(inode_is_locked(vfs_inode));
This actually proved to be useful several times as if assertions are
enabled (and by default they are in many distros) it immediately triggers
a crash which is impossible for users to miss.
However that doesn't check if the lock is held by the calling task, so
the check passes if some other task locked the inode.
Using one of the lockdep functions to check the lock is held, like
lockdep_assert_held() for example, does check that the calling task
holds the lock, and if that's not the case it produces a warning and
stack trace in dmesg. However, despite the misleading "assert" in the
name of the lockdep helpers, it does not trigger a crash/BUG_ON(), just
a warning and splat in dmesg, which is easy to get unnoticed by users
who may have lockdep enabled.
So add a helper that does the ASSERT() and calls lockdep_assert_held()
immediately after and use it every where we check the inode is locked.
Like this if the lock is held by some other task we get the warning
in dmesg which is caught by fstests, very helpful during development,
and may also be occassionaly noticed by users with lockdep enabled.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's pointless to pass a super block argument to btrfs_iget() because we
always pass a root and from it we can get the super block through:
root->fs_info->sb
So remove the super block argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As of commit 1b53e51a4a ("btrfs: don't commit transaction for every
subvol create") we started to make any fsync after creating a subvolume
to fallback to a transaction commit if the fsync is performed in the
same transaction that was used to create the subvolume. This happens
with the following at ioctl.c:create_subvol():
$ cat fs/btrfs/ioctl.c
(...)
/* Tree log can't currently deal with an inode which is a new root. */
btrfs_set_log_full_commit(trans);
(...)
Note that the comment is misleading as the problem is not that fsync can
not deal with the root inode of a new root, but that we can not log any
inode that belongs to a root that was not yet persisted because that would
make log replay fail since the root doesn't exist at log replay time.
The above simply makes any fsync fallback to a full transaction commit if
it happens in the same transaction used to create the subvolume - even if
it's an inode that belongs to any other subvolume. This is a brute force
solution and it doesn't necessarily improve performance for every workload
out there - it just moves a full transaction commit from one place, the
subvolume creation, to another - an fsync for any inode.
Just improve on this by making the fallback to a transaction commit only
for an fsync against an inode of the new subvolume, or for the directory
that contains the dentry that points to the new subvolume (in case anyone
attempts to fsync the directory in the same transaction).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member extent_map::block_start can be calculated from
extent_map::disk_bytenr + extent_map::offset for regular extents.
And otherwise just extent_map::disk_bytenr.
And this is already validated by the validate_extent_map(). Now we can
remove the member.
However there is a special case in btrfs_create_dio_extent() where we
for NOCOW/PREALLOC ordered extents cannot directly use the resulting
btrfs_file_extent, as btrfs_split_ordered_extent() cannot handle them
yet.
So for that call site, we pass file_extent->disk_bytenr +
file_extent->num_bytes as disk_bytenr for the ordered extent, and 0 for
offset.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_map::block_len is either extent_map::len (non-compressed
extent) or extent_map::disk_num_bytes (compressed extent).
Since we already have sanity checks to do the cross-checks between the
new and old members, we can drop the old extent_map::block_len now.
For most call sites, they can manually select extent_map::len or
extent_map::disk_num_bytes, since most if not all of them have checked
if the extent is compressed.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have extent_map::offset, the old extent_map::orig_start is just
extent_map::start - extent_map::offset for non-hole/inline extents.
And since the new extent_map::offset is already verified by
validate_extent_map() while the old orig_start is not, let's just remove
the old member from all call sites.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This would make it very obvious that the member just matches
btrfs_file_extent_item::disk_num_bytes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a inode pointer, use a btrfs_inode pointer in the log
context structure, as this is generally what we need and allows for some
internal APIs to take a btrfs_inode instead, making them more consistent
with most of the code base. This will later allow to help to remove a lot
of BTRFS_I() calls in btrfs_sync_file().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently struct btrfs_inode has a key member, named "location", that is
either:
1) The key of the inode's item. In this case the objectid is the number
of the inode;
2) A key stored in a dir entry with a type of BTRFS_ROOT_ITEM_KEY, for
the case where we have a root that is a snapshot of a subvolume that
points to other subvolumes. In this case the objectid is the ID of
a subvolume inside the snapshotted parent subvolume.
The key is only used to lookup the inode item for the first case, while
for the second it's never used since it corresponds to directory stubs
created with new_simple_dir() and which are marked as dummy, so there's
no actual inode item to ever update. In the second case we only check
the key type at btrfs_ino() for 32 bits platforms and its objectid is
only needed for unlink.
Instead of using a key we can do fine with just the objectid, since we
can generate the key whenever we need it having only the objectid, as
in all use cases the type is always BTRFS_INODE_ITEM_KEY and the offset
is always 0.
So use only an objectid instead of a full key. This reduces the size of
struct btrfs_inode from 1048 bytes down to 1040 bytes on a release kernel.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The index_cnt field of struct btrfs_inode is used only for two purposes:
1) To store the index for the next entry added to a directory;
2) For the data relocation inode to track the logical start address of the
block group currently being relocated.
For the relocation case we use index_cnt because it's not used for
anything else in the relocation use case - we could have used other fields
that are not used by relocation such as defrag_bytes, last_unlink_trans
or last_reflink_trans for example (among others).
Since the csum_bytes field is not used for directories, do the following
changes:
1) Put index_cnt and csum_bytes in a union, and index_cnt is only
initialized when the inode is a directory. The csum_bytes is only
accessed in IO paths for regular files, so we're fine here;
2) Use the defrag_bytes field for relocation, since the data relocation
inode is never used for defrag purposes. And to make the naming better,
alias it to reloc_block_group_start by using a union.
This reduces the size of struct btrfs_inode by 8 bytes in a release
kernel, from 1056 bytes down to 1048 bytes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():
BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2620!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]
With the following stack trace:
#0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
#1 btrfs_drop_extents (fs/btrfs/file.c:411:4)
#2 log_one_extent (fs/btrfs/tree-log.c:4732:9)
#3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
#4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
#5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
#6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
#7 btrfs_sync_file (fs/btrfs/file.c:1933:8)
#8 vfs_fsync_range (fs/sync.c:188:9)
#9 vfs_fsync (fs/sync.c:202:9)
#10 do_fsync (fs/sync.c:212:9)
#11 __do_sys_fdatasync (fs/sync.c:225:9)
#12 __se_sys_fdatasync (fs/sync.c:223:1)
#13 __x64_sys_fdatasync (fs/sync.c:223:1)
#14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
#15 do_syscall_64 (arch/x86/entry/common.c:83:7)
#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)
So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().
This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:
>>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
leaf 33439744 flags 0x100000000000000
fs uuid e5bd3946-400c-4223-8923-190ef1f18677
chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
generation 7 transid 9 size 8192 nbytes 8473563889606862198
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 204 flags 0x10(PREALLOC)
atime 1716417703.220000000 (2024-05-22 15:41:43)
ctime 1716417704.983333333 (2024-05-22 15:41:44)
mtime 1716417704.983333333 (2024-05-22 15:41:44)
otime 17592186044416.000000000 (559444-03-08 01:40:16)
item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
index 195 namelen 3 name: 193
item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
location key (0 UNKNOWN.0 0) type XATTR
transid 7 data_len 1 name_len 6
name: user.a
data a
item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 303144960 nr 12288
extent data offset 0 nr 4096 ram 12288
extent compression 0 (none)
item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 4096 nr 8192
item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 8192 nr 4096
...
So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.
Here is the state of the filesystem tree at the time of the crash:
>>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
>>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
>>> print_extent_buffer(nodes[0])
leaf 30425088 level 0 items 184 generation 9 owner 5
leaf 30425088 flags 0x100000000000000
fs uuid e5bd3946-400c-4223-8923-190ef1f18677
chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
...
item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
generation 7 transid 7 size 4096 nbytes 12288
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 6 flags 0x10(PREALLOC)
atime 1716417703.220000000 (2024-05-22 15:41:43)
ctime 1716417703.220000000 (2024-05-22 15:41:43)
mtime 1716417703.220000000 (2024-05-22 15:41:43)
otime 1716417703.220000000 (2024-05-22 15:41:43)
item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
index 195 namelen 3 name: 193
item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
location key (0 UNKNOWN.0 0) type XATTR
transid 7 data_len 1 name_len 6
name: user.a
data a
item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 303144960 nr 12288
extent data offset 0 nr 8192 ram 12288
extent compression 0 (none)
item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 8192 nr 4096
Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.
btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.
If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.
This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:
- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
to the log tree.
- An xattr is set on the file, which sets the
BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
calls copy_inode_items_to_log(), which calls
btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
filesystem tree. Since it starts before i_size, it skips it. Since it
is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
the prealloc extent to written and inserts the remaining prealloc part
from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
the log tree. Note that it overlaps with the 4k-12k prealloc extent
that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
adjusting the start of the 4k-12k prealloc extent in the log tree to
8k.
- btrfs_set_item_key_safe() sees that there is already an extent
starting at 8k in the log tree and calls BUG().
Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
clear_em_logging().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change clear_em_logging() to receive the inode instead of its extent
map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A comment from Filipe on one of my previous cleanups brought my
attention to a new helper we have for getting the root id of a root,
which makes it easier to read in the code.
The changes where made with the following Coccinelle semantic patch:
// <smpl>
@@
expression E,E1;
@@
(
E->root_key.objectid = E1
|
- E->root_key.objectid
+ btrfs_root_id(E)
)
// </smpl>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
We consistently use ->num_bytes everywhere through the delayed ref code,
except in btrfs_ref. Rename btrfs_ref to match all the other code.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this in both btrfs_tree_ref and btrfs_data_ref, which is just
wasting space and making the code more complicated. Move this into
btrfs_ref proper and update all the call sites to do the assignment in
btrfs_ref.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ref currently has ->owning_root, and ->ref_root is shared between
the tree ref and data ref, so in order to move that into btrfs_ref
proper I would need to add another root parameter to the initialization
function. This function has too many arguments, and adding another root
will make it easy to make mistakes about which root goes where.
Drop the generic ref init function and statically initialize the
btrfs_ref in every usage. This makes the code easier to read because we
can see what elements we're assigning, and will make the upcoming change
moving the ref_root into the btrfs_ref more clear and less error prone
than adding a new element to the initialization function.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before deciding if we can do a NOCOW write into a range, one of the things
we have to do is check if there are checksum items for that range. We do
that through the btrfs_lookup_csums_list() function, which searches for
checksums and adds them to a list supplied by the caller.
But all we need is to check if there is any checksum, we don't need to
look for all of them and collect them into a list, which requires more
search time in the checksums tree, allocating memory for checksums items
to add to the list, copy checksums from a leaf into those list items,
then free that memory, etc. This is all unnecessary overhead, wasting
mostly CPU time, and perhaps some occasional IO if we need to read from
disk any extent buffers.
So change btrfs_lookup_csums_list() to allow to return immediately in
case it finds any checksum, without the need to add it to a list and read
it from a leaf. This is accomplished by allowing a NULL list parameter and
making the function return 1 if it found any checksum, 0 if it didn't
found any, and a negative value in case of an error.
The following test with fio was used to measure performance:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/nullb0
cat <<EOF > /tmp/fio-job.ini
[global]
name=fio-rand-write
filename=$MNT/fio-rand-write
rw=randwrite
bssplit=4k/20:8k/20:16k/20:32k/20:64k/20
direct=1
numjobs=16
fallocate=posix
time_based
runtime=300
[file1]
size=8G
ioengine=io_uring
iodepth=16
EOF
umount $MNT &> /dev/null
mkfs.btrfs -f $DEV
mount -o ssd $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The test was run on a release kernel (Debian's default kernel config).
The results before this patch:
WRITE: bw=139MiB/s (146MB/s), 8204KiB/s-9504KiB/s (8401kB/s-9732kB/s), io=17.0GiB (18.3GB), run=125317-125344msec
The results after this patch:
WRITE: bw=153MiB/s (160MB/s), 9241KiB/s-10.0MiB/s (9463kB/s-10.5MB/s), io=17.0GiB (18.3GB), run=114054-114071msec
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All the callers of btrfs_lookup_csums_list() pass a value of 0 as the
"search_commit" parameter. So remove it and make the function behave as
to always search from the regular root.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mod_start and mod_len fields of struct extent_map were introduced by
commit 4e2f84e63d ("Btrfs: improve fsync by filtering extents that we
want") in order to avoid too low performance when fsyncing a file that
keeps getting extent maps merge, because it resulted in each fsync logging
again csum ranges that were already merged before.
We don't need this anymore as extent maps in the list of modified extents
are never merged with other extent maps and once we log an extent map we
remove it from the list of modified extent maps, so it's never logged
twice.
So remove the mod_start and mod_len fields from struct extent_map and use
instead the start and len fields when logging checksums in the fast fsync
path. This also makes EXTENT_FLAG_FILLING unused so remove it as well.
Running the reproducer from the commit mentioned before, with a larger
number of extents and against a null block device, so that IO is fast
and we can better see any impact from searching checksums items and
logging them, gave the following results from dd:
Before this change:
409600000 bytes (410 MB, 391 MiB) copied, 22.948 s, 17.8 MB/s
After this change:
409600000 bytes (410 MB, 391 MiB) copied, 22.9997 s, 17.8 MB/s
So no changes in throughput.
The test was done in a release kernel (non-debug, Debian's default kernel
config) and its steps are the following:
$ mkfs.btrfs -f /dev/nullb0
$ mount /dev/sdb /mnt
$ dd if=/dev/zero of=/mnt/foobar bs=4k count=100000 oflag=sync
$ umount /mnt
This also reduces the size of struct extent_map from 128 bytes down to 112
bytes, so now we can have 36 extents maps per 4K page instead of 32.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers are doing an initialization or release work, none of which
is performance critical that it would require a static inline, so move
them to the .c file.
Signed-off-by: David Sterba <dsterba@suse.com>
When logging an inode and we require to copy items from subvolume leaves
to the log tree, we clone each subvolume leaf and than use that clone to
copy items to the log tree. This is required to avoid possible deadlocks
as stated in commit 796787c978 ("btrfs: do not modify log tree while
holding a leaf from fs tree locked").
The cloning requires allocating an extent buffer (struct extent_buffer)
and then allocating pages (folios) to attach to the extent buffer. This
may be slow in case we are under memory pressure, and since we are doing
the cloning while holding a read lock on a subvolume leaf, it means we
can be blocking other operations on that leaf for significant periods of
time, which can increase latency on operations like creating other files,
renaming files, etc. Similarly because we're under a log transaction, we
may also cause extra delay on other tasks doing an fsync, because syncing
the log requires waiting for tasks that joined a log transaction to exit
the transaction.
So to improve this, for any inode logging operation that needs to copy
items from a subvolume leaf ("full sync" or "copy everything" bit set
in the inode), preallocate a dummy extent buffer before locking any
extent buffer from the subvolume tree, and even before joining a log
transaction, add it to the log context and then use it when we need to
copy items from a subvolume leaf to the log tree. This avoids making
other operations get extra latency when waiting to lock a subvolume
leaf that is used during inode logging and we are under heavy memory
pressure.
The following test script with bonnie++ was used to test this:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdh
MNT=/mnt/sdh
MOUNT_OPTIONS="-o ssd"
MEMTOTAL_BYTES=`free -b | grep Mem: | awk '{ print $2 }'`
NR_DIRECTORIES=20
NR_FILES=20480
DATASET_SIZE=$((MEMTOTAL_BYTES * 2 / 1048576))
DIRECTORY_SIZE=$((MEMTOTAL_BYTES * 2 / NR_FILES))
NR_FILES=$((NR_FILES / 1024))
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
bonnie++ -u root -d $MNT \
-n $NR_FILES:$DIRECTORY_SIZE:$DIRECTORY_SIZE:$NR_DIRECTORIES \
-r 0 -s $DATASET_SIZE -b
umount $MNT
The results of this test on a 8G VM running a non-debug kernel (Debian's
default kernel config), were the following.
Before this change:
Version 2.00a ------Sequential Output------ --Sequential Input- --Random-
-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Name:Size etc /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
debian0 7501M 376k 99 1.4g 96 117m 14 1510k 99 2.5g 95 +++++ +++
Latency 35068us 24976us 2944ms 30725us 71770us 26152us
Version 2.00a ------Sequential Create------ --------Random Create--------
debian0 -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
files:max:min /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
20:384100:384100/20 20480 32 20480 58 20480 48 20480 39 20480 56 20480 61
Latency 411ms 11914us 119ms 617ms 10296us 110ms
After this change:
Version 2.00a ------Sequential Output------ --Sequential Input- --Random-
-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Name:Size etc /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
debian0 7501M 375k 99 1.4g 97 117m 14 1546k 99 2.3g 98 +++++ +++
Latency 35975us 20945us 2144ms 10297us 2217us 6004us
Version 2.00a ------Sequential Create------ --------Random Create--------
debian0 -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
files:max:min /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
20:384100:384100/20 20480 35 20480 58 20480 48 20480 40 20480 57 20480 59
Latency 320ms 11237us 77779us 518ms 6470us 86389us
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, in struct extent_map, we use an unsigned int (32 bits) to
identify the compression type of an extent and an unsigned long (64 bits
on a 64 bits platform, 32 bits otherwise) for flags. We are only using
6 different flags, so an unsigned long is excessive and we can use flags
to identify the compression type instead of using a dedicated 32 bits
field.
We can easily have tens or hundreds of thousands (or more) of extent maps
on busy and large filesystems, specially with compression enabled or many
or large files with tons of small extents. So it's convenient to have the
extent_map structure as small as possible in order to use less memory.
So remove the compression type field from struct extent_map, use flags
to identify the compression type and shorten the flags field from an
unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and
reduces the size of the structure from 136 bytes down to 128 bytes, using
now only two cache lines, and increases the number of extent maps we can
have per 4K page from 30 to 32. By using a u32 for the flags instead of
an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(),
but that level of atomicity is not needed as most flags are never cleared
once set (before adding an extent map to the tree), and the ones that can
be cleared or set after an extent map is added to the tree, are always
performed while holding the write lock on the extent map tree, while the
reader holds a lock on the tree or tests for a flag that never changes
once the extent map is in the tree (such as compression flags).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're not clearing the dirty flag off of extent_buffers in zoned mode,
all that is left of btrfs_redirty_list_add() is a memzero() and some
ASSERT()ions.
As we're also memzero()ing the buffer on write-out btrfs_redirty_list_add()
has become obsolete and can be removed.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmU/xAEACgkQxWXV+ddt
WDvYKg//SjTimA5Nins9mb4jdz8n+dDeZnQhKzy3FqInU41EzDRc4WwnEODmDlTa
AyU9rGB3k0JNSUc075jZFCyLqq/ARiOqRi4x33Gk0ckIlc4X5OgBoqP2XkPh0VlP
txskLCrmhc3pwyR4ErlFDX2jebIUXfkv39bJuE40grGvUatRe+WNq0ERIrgO8RAr
Rc3hBotMH8AIqfD1L6j1ZiZIAyrOkT1BJMuqeoq27/gJZn/MRhM9TCrMTzfWGaoW
SxPrQiCDEN3KECsOY/caroMn3AekDijg/ley1Nf7Z0N6oEV+n4VWWPBFE9HhRz83
9fIdvSbGjSJF6ekzTjcVXPAbcuKZFzeqOdBRMIW3TIUo7mZQyJTVkMsc1y/NL2Z3
9DhlRLIzvWJJjt1CEK0u18n5IU+dGngdktbhWWIuIlo8r+G/iKR/7zqU92VfWLHL
Z7/eh6HgH5zr2bm+yKORbrUjkv4IVhGVarW8D4aM+MCG0lFN2GaPcJCCUrp4n7rZ
PzpQbxXa38ANBk6hsp4ndS8TJSBL9moY8tumzLcKg97nzNMV6KpBdV/G6/QfRLCN
3kM6UbwTAkMwGcQS86Mqx6s04ORLnQeD6f7N6X4Ppx0Mi/zkjI2HkRuvQGp12B0v
iZjCCZAYY2Iu+/TU0GrCXSss/grzIAUPzM9msyV3XGO/VBpwdec=
=9TVx
-----END PGP SIGNATURE-----
Merge tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"New features:
- raid-stripe-tree
New tree for logical file extent mapping where the physical mapping
may not match on multiple devices. This is now used in zoned mode
to implement RAID0/RAID1* profiles, but can be used in non-zoned
mode as well. The support for RAID56 is in development and will
eventually fix the problems with the current implementation. This
is a backward incompatible feature and has to be enabled at mkfs
time.
- simple quota accounting (squota)
A simplified mode of qgroup that accounts all space on the initial
extent owners (a subvolume), the snapshots are then cheap to create
and delete. The deletion of snapshots in fully accounting qgroups
is a known CPU/IO performance bottleneck.
The squota is not suitable for the general use case but works well
for containers where the original subvolume exists for the whole
time. This is a backward incompatible feature as it needs extending
some structures, but can be enabled on an existing filesystem.
- temporary filesystem fsid (temp_fsid)
The fsid identifies a filesystem and is hard coded in the
structures, which disallows mounting the same fsid found on
different devices.
For a single device filesystem this is not strictly necessary, a
new temporary fsid can be generated on mount e.g. after a device is
cloned. This will be used by Steam Deck for root partition A/B
testing, or can be used for VM root images.
Other user visible changes:
- filesystems with partially finished metadata_uuid conversion cannot
be mounted anymore and the uuid fixup has to be done by btrfs-progs
(btrfstune).
Performance improvements:
- reduce reservations for checksum deletions (with enabled free space
tree by factor of 4), on a sample workload on file with many
extents the deletion time decreased by 12%
- make extent state merges more efficient during insertions, reduce
rb-tree iterations (run time of critical functions reduced by 5%)
Core changes:
- the integrity check functionality has been removed, this was a
debugging feature and removal does not affect other integrity
checks like checksums or tree-checker
- space reservation changes:
- more efficient delayed ref reservations, this avoids building up
too much work or overusing or exhausting the global block
reserve in some situations
- move delayed refs reservation to the transaction start time,
this prevents some ENOSPC corner cases related to exhaustion of
global reserve
- improvements in reducing excessive reservations for block group
items
- adjust overcommit logic in near full situations, account for one
more chunk to eventually allocate metadata chunk, this is mostly
relevant for small filesystems (<10GiB)
- single device filesystems are scanned but not registered (except
seed devices), this allows temp_fsid to work
- qgroup iterations do not need GFP_ATOMIC allocations anymore
- cleanups, refactoring, reduced data structure size, function
parameter simplifications, error handling fixes"
* tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (156 commits)
btrfs: open code timespec64 in struct btrfs_inode
btrfs: remove redundant log root tree index assignment during log sync
btrfs: remove redundant initialization of variable dirty in btrfs_update_time()
btrfs: sysfs: show temp_fsid feature
btrfs: disable the device add feature for temp-fsid
btrfs: disable the seed feature for temp-fsid
btrfs: update comment for temp-fsid, fsid, and metadata_uuid
btrfs: remove pointless empty log context list check when syncing log
btrfs: update comment for struct btrfs_inode::lock
btrfs: remove pointless barrier from btrfs_sync_file()
btrfs: add and use helpers for reading and writing last_trans_committed
btrfs: add and use helpers for reading and writing fs_info->generation
btrfs: add and use helpers for reading and writing log_transid
btrfs: add and use helpers for reading and writing last_log_commit
btrfs: support cloned-device mount capability
btrfs: add helper function find_fsid_by_disk
btrfs: stop reserving excessive space for block group item insertions
btrfs: stop reserving excessive space for block group item updates
btrfs: reorder btrfs_inode to fill gaps
btrfs: open code btrfs_ordered_inode_tree in btrfs_inode
...