rust: pwm: Add complete abstraction layer

Introduce a comprehensive abstraction layer for the PWM subsystem to
enable writing drivers in Rust.

Because `Device`, `Chip`, and `PwmOps` all refer to each other, they
form a single, indivisible unit with circular dependencies. They are
introduced together in this single commit to create a complete,
compilable abstraction layer.

The main components are:
 - Data Wrappers: Safe, idiomatic wrappers for core C types like
   `pwm_device`, and `pwm_chip`.

 - PwmOps Trait: An interface that drivers can implement to provide
   their hardware-specific logic, mirroring the C `pwm_ops` interface.

 - FFI VTable and Adapter: A bridge to connect the high-level PwmOps trait
   to the C kernel's pwm_ops vtable.

 - Allocation and Lifetime Management: A high-level `Chip::new()`
   API to safely allocate a chip and a `Registration` guard that integrates
   with `devres` to manage the chip's registration with the PWM core.
   An `AlwaysRefCounted` implementation and a custom release handler
   prevent memory leaks by managing the chip's lifetime and freeing
   driver data correctly.

Reviewed-by: Danilo Krummrich <dakr@kernel.org>
Reviewed-by: Elle Rhumsaa <elle@weathered-steel.dev>
Signed-off-by: Michal Wilczynski <m.wilczynski@samsung.com>
Link: https://patch.msgid.link/20251016-rust-next-pwm-working-fan-for-sending-v16-3-a5df2405d2bd@samsung.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
This commit is contained in:
Michal Wilczynski 2025-10-16 15:38:03 +02:00 committed by Uwe Kleine-König
parent 7b3dce814a
commit d8046cd508
1 changed files with 662 additions and 2 deletions

View File

@ -8,10 +8,14 @@
use crate::{ use crate::{
bindings, bindings,
container_of,
device::{self, Bound},
devres,
error::{self, to_result},
prelude::*, prelude::*,
types::Opaque, types::{ARef, AlwaysRefCounted, Opaque},
}; };
use core::convert::TryFrom; use core::{convert::TryFrom, marker::PhantomData, ptr::NonNull};
/// PWM polarity. Mirrors [`enum pwm_polarity`](srctree/include/linux/pwm.h). /// PWM polarity. Mirrors [`enum pwm_polarity`](srctree/include/linux/pwm.h).
#[derive(Copy, Clone, Debug, PartialEq, Eq)] #[derive(Copy, Clone, Debug, PartialEq, Eq)]
@ -100,3 +104,659 @@ pub fn enabled(&self) -> bool {
self.0.enabled self.0.enabled
} }
} }
/// Describes the outcome of a `round_waveform` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RoundingOutcome {
/// The requested waveform was achievable exactly or by rounding values down.
ExactOrRoundedDown,
/// The requested waveform could only be achieved by rounding up.
RoundedUp,
}
/// Wrapper for a PWM device [`struct pwm_device`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct Device(Opaque<bindings::pwm_device>);
impl Device {
/// Creates a reference to a [`Device`] from a valid C pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Device`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_device) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Device` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_device`.
fn as_raw(&self) -> *mut bindings::pwm_device {
self.0.get()
}
/// Gets the hardware PWM index for this device within its chip.
pub fn hwpwm(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).hwpwm }
}
/// Gets a reference to the parent `Chip` that this device belongs to.
pub fn chip<T: PwmOps>(&self) -> &Chip<T> {
// SAFETY: `self.as_raw()` provides a valid pointer. (*self.as_raw()).chip
// is assumed to be a valid pointer to `pwm_chip` managed by the kernel.
// Chip::from_raw's safety conditions must be met.
unsafe { Chip::<T>::from_raw((*self.as_raw()).chip) }
}
/// Gets the label for this PWM device, if any.
pub fn label(&self) -> Option<&CStr> {
// SAFETY: self.as_raw() provides a valid pointer.
let label_ptr = unsafe { (*self.as_raw()).label };
if label_ptr.is_null() {
return None
}
// SAFETY: label_ptr is non-null and points to a C string
// managed by the kernel, valid for the lifetime of the PWM device.
Some(unsafe { CStr::from_char_ptr(label_ptr) })
}
/// Gets a copy of the current state of this PWM device.
pub fn state(&self) -> State {
// SAFETY: `self.as_raw()` gives a valid pointer. `(*self.as_raw()).state`
// is a valid `pwm_state` struct. `State::from_c` copies this data.
State::from_c(unsafe { (*self.as_raw()).state })
}
/// Sets the PWM waveform configuration and enables the PWM signal.
pub fn set_waveform(&self, wf: &Waveform, exact: bool) -> Result {
let c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&c_wf` is a valid pointer to a `pwm_waveform` struct. The C function
// handles all necessary internal locking.
let ret = unsafe { bindings::pwm_set_waveform_might_sleep(self.as_raw(), &c_wf, exact) };
to_result(ret)
}
/// Queries the hardware for the configuration it would apply for a given
/// request.
pub fn round_waveform(&self, wf: &mut Waveform) -> Result<RoundingOutcome> {
let mut c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&mut c_wf` is a valid pointer to a mutable `pwm_waveform` struct that
// the C function will update.
let ret = unsafe { bindings::pwm_round_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
*wf = Waveform::from(c_wf);
if ret == 1 {
Ok(RoundingOutcome::RoundedUp)
} else {
Ok(RoundingOutcome::ExactOrRoundedDown)
}
}
/// Reads the current waveform configuration directly from the hardware.
pub fn get_waveform(&self) -> Result<Waveform> {
let mut c_wf = bindings::pwm_waveform::default();
// SAFETY: `self.as_raw()` is a valid pointer. We provide a valid pointer
// to a stack-allocated `pwm_waveform` struct for the kernel to fill.
let ret = unsafe { bindings::pwm_get_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
Ok(Waveform::from(c_wf))
}
}
/// The result of a `round_waveform_tohw` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct RoundedWaveform<WfHw> {
/// A status code, 0 for success or 1 if values were rounded up.
pub status: c_int,
/// The driver-specific hardware representation of the waveform.
pub hardware_waveform: WfHw,
}
/// Trait defining the operations for a PWM driver.
pub trait PwmOps: 'static + Sized {
/// The driver-specific hardware representation of a waveform.
///
/// This type must be [`Copy`], [`Default`], and fit within `PWM_WFHWSIZE`.
type WfHw: Copy + Default;
/// Optional hook for when a PWM device is requested.
fn request(
_chip: &Chip<Self>,
_pwm: &Device,
_parent_dev: &device::Device<Bound>,
) -> Result {
Ok(())
}
/// Optional hook for capturing a PWM signal.
fn capture(
_chip: &Chip<Self>,
_pwm: &Device,
_result: &mut bindings::pwm_capture,
_timeout: usize,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
/// Convert a generic waveform to the hardware-specific representation.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_tohw(
_chip: &Chip<Self>,
_pwm: &Device,
_wf: &Waveform,
) -> Result<RoundedWaveform<Self::WfHw>> {
Err(ENOTSUPP)
}
/// Convert a hardware-specific representation back to a generic waveform.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_fromhw(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_wf: &mut Waveform,
) -> Result {
Err(ENOTSUPP)
}
/// Read the current hardware configuration into the hardware-specific representation.
fn read_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_parent_dev: &device::Device<Bound>,
) -> Result<Self::WfHw> {
Err(ENOTSUPP)
}
/// Write a hardware-specific waveform configuration to the hardware.
fn write_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
}
/// Bridges Rust `PwmOps` to the C `pwm_ops` vtable.
struct Adapter<T: PwmOps> {
_p: PhantomData<T>,
}
impl<T: PwmOps> Adapter<T> {
const VTABLE: PwmOpsVTable = create_pwm_ops::<T>();
/// # Safety
///
/// `wfhw_ptr` must be valid for writes of `size_of::<T::WfHw>()` bytes.
unsafe fn serialize_wfhw(wfhw: &T::WfHw, wfhw_ptr: *mut c_void) -> Result {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
core::ptr::from_ref::<T::WfHw>(wfhw).cast::<u8>(),
wfhw_ptr.cast::<u8>(),
size,
);
}
Ok(())
}
/// # Safety
///
/// `wfhw_ptr` must be valid for reads of `size_of::<T::WfHw>()` bytes.
unsafe fn deserialize_wfhw(wfhw_ptr: *const c_void) -> Result<T::WfHw> {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
let mut wfhw = T::WfHw::default();
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
wfhw_ptr.cast::<u8>(),
core::ptr::from_mut::<T::WfHw>(&mut wfhw).cast::<u8>(),
size,
);
}
Ok(wfhw)
}
/// # Safety
///
/// `dev` must be a valid pointer to a `bindings::device` embedded within a
/// `bindings::pwm_chip`. This function is called by the device core when the
/// last reference to the device is dropped.
unsafe extern "C" fn release_callback(dev: *mut bindings::device) {
// SAFETY: The function's contract guarantees that `dev` points to a `device`
// field embedded within a valid `pwm_chip`. `container_of!` can therefore
// safely calculate the address of the containing struct.
let c_chip_ptr = unsafe { container_of!(dev, bindings::pwm_chip, dev) };
// SAFETY: `c_chip_ptr` is a valid pointer to a `pwm_chip` as established
// above. Calling this FFI function is safe.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: The driver data was initialized in `new`. We run its destructor here.
unsafe { core::ptr::drop_in_place(drvdata_ptr.cast::<T>()) };
// Now, call the original release function to free the `pwm_chip` itself.
// SAFETY: `dev` is the valid pointer passed into this callback, which is
// the expected argument for `pwmchip_release`.
unsafe { bindings::pwmchip_release(dev); }
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn request_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
) -> c_int {
// SAFETY: PWM core guarentees `chip_ptr` and `pwm_ptr` are valid pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::request(chip, pwm, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn capture_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
res: *mut bindings::pwm_capture,
timeout: usize,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, result) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
&mut *res,
)
};
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::capture(chip, pwm, result, timeout, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_tohw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wf_ptr: *const bindings::pwm_waveform,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, wf) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
Waveform::from(*wf_ptr),
)
};
match T::round_waveform_tohw(chip, pwm, &wf) {
Ok(rounded) => {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
if unsafe { Self::serialize_wfhw(&rounded.hardware_waveform, wfhw_ptr) }.is_err() {
return EINVAL.to_errno();
}
rounded.status
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_fromhw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
wf_ptr: *mut bindings::pwm_waveform,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: `deserialize_wfhw`'s safety contract is met by this function's contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
let mut rust_wf = Waveform::default();
match T::round_waveform_fromhw(chip, pwm, &wfhw, &mut rust_wf) {
Ok(()) => {
// SAFETY: `wf_ptr` is guaranteed valid by the C caller.
unsafe {
*wf_ptr = rust_wf.into();
};
0
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn read_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::read_waveform(chip, pwm, bound_parent) {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
Ok(wfhw) => match unsafe { Self::serialize_wfhw(&wfhw, wfhw_ptr) } {
Ok(()) => 0,
Err(e) => e.to_errno(),
},
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn write_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
match T::write_waveform(chip, pwm, &wfhw, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
}
/// VTable structure wrapper for PWM operations.
/// Mirrors [`struct pwm_ops`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct PwmOpsVTable(bindings::pwm_ops);
// SAFETY: PwmOpsVTable is Send. The vtable contains only function pointers
// and a size, which are simple data types that can be safely moved across
// threads. The thread-safety of calling these functions is handled by the
// kernel's locking mechanisms.
unsafe impl Send for PwmOpsVTable {}
// SAFETY: PwmOpsVTable is Sync. The vtable is immutable after it is created,
// so it can be safely referenced and accessed concurrently by multiple threads
// e.g. to read the function pointers.
unsafe impl Sync for PwmOpsVTable {}
impl PwmOpsVTable {
/// Returns a raw pointer to the underlying `pwm_ops` struct.
pub(crate) fn as_raw(&self) -> *const bindings::pwm_ops {
&self.0
}
}
/// Creates a PWM operations vtable for a type `T` that implements `PwmOps`.
///
/// This is used to bridge Rust trait implementations to the C `struct pwm_ops`
/// expected by the kernel.
pub const fn create_pwm_ops<T: PwmOps>() -> PwmOpsVTable {
// SAFETY: `core::mem::zeroed()` is unsafe. For `pwm_ops`, all fields are
// `Option<extern "C" fn(...)>` or data, so a zeroed pattern (None/0) is valid initially.
let mut ops: bindings::pwm_ops = unsafe { core::mem::zeroed() };
ops.request = Some(Adapter::<T>::request_callback);
ops.capture = Some(Adapter::<T>::capture_callback);
ops.round_waveform_tohw = Some(Adapter::<T>::round_waveform_tohw_callback);
ops.round_waveform_fromhw = Some(Adapter::<T>::round_waveform_fromhw_callback);
ops.read_waveform = Some(Adapter::<T>::read_waveform_callback);
ops.write_waveform = Some(Adapter::<T>::write_waveform_callback);
ops.sizeof_wfhw = core::mem::size_of::<T::WfHw>();
PwmOpsVTable(ops)
}
/// Wrapper for a PWM chip/controller ([`struct pwm_chip`](srctree/include/linux/pwm.h)).
#[repr(transparent)]
pub struct Chip<T: PwmOps>(Opaque<bindings::pwm_chip>, PhantomData<T>);
impl<T: PwmOps> Chip<T> {
/// Creates a reference to a [`Chip`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Chip`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_chip) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Chip` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_chip`.
pub(crate) fn as_raw(&self) -> *mut bindings::pwm_chip {
self.0.get()
}
/// Gets the number of PWM channels (hardware PWMs) on this chip.
pub fn num_channels(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).npwm }
}
/// Returns `true` if the chip supports atomic operations for configuration.
pub fn is_atomic(&self) -> bool {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).atomic }
}
/// Returns a reference to the embedded `struct device` abstraction.
pub fn device(&self) -> &device::Device {
// SAFETY:
// - `self.as_raw()` provides a valid pointer to `bindings::pwm_chip`.
// - The `dev` field is an instance of `bindings::device` embedded
// within `pwm_chip`.
// - Taking a pointer to this embedded field is valid.
// - `device::Device` is `#[repr(transparent)]`.
// - The lifetime of the returned reference is tied to `self`.
unsafe { device::Device::from_raw(&raw mut (*self.as_raw()).dev) }
}
/// Gets the typed driver specific data associated with this chip's embedded device.
pub fn drvdata(&self) -> &T {
// SAFETY: `pwmchip_get_drvdata` returns the pointer to the private data area,
// which we know holds our `T`. The pointer is valid for the lifetime of `self`.
unsafe { &*bindings::pwmchip_get_drvdata(self.as_raw()).cast::<T>() }
}
/// Returns a reference to the parent device of this PWM chip's device.
///
/// # Safety
///
/// The caller must guarantee that the parent device exists and is bound.
/// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe fn bound_parent_device(&self) -> &device::Device<Bound> {
// SAFETY: Per the function's safety contract, the parent device exists.
let parent = unsafe { self.device().parent().unwrap_unchecked() };
// SAFETY: Per the function's safety contract, the parent device is bound.
// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe { parent.as_bound() }
}
/// Allocates and wraps a PWM chip using `bindings::pwmchip_alloc`.
///
/// Returns an [`ARef<Chip>`] managing the chip's lifetime via refcounting
/// on its embedded `struct device`.
pub fn new(
parent_dev: &device::Device,
num_channels: u32,
data: impl pin_init::PinInit<T, Error>,
) -> Result<ARef<Self>> {
let sizeof_priv = core::mem::size_of::<T>();
// SAFETY: `pwmchip_alloc` allocates memory for the C struct and our private data.
let c_chip_ptr_raw = unsafe {
bindings::pwmchip_alloc(parent_dev.as_raw(), num_channels, sizeof_priv)
};
let c_chip_ptr: *mut bindings::pwm_chip = error::from_err_ptr(c_chip_ptr_raw)?;
// SAFETY: The `drvdata` pointer is the start of the private area, which is where
// we will construct our `T` object.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: We construct the `T` object in-place in the allocated private memory.
unsafe { data.__pinned_init(drvdata_ptr.cast())? };
// SAFETY: `c_chip_ptr` points to a valid chip.
unsafe { (*c_chip_ptr).dev.release = Some(Adapter::<T>::release_callback); }
// SAFETY: `c_chip_ptr` points to a valid chip.
// The `Adapter`'s `VTABLE` has a 'static lifetime, so the pointer
// returned by `as_raw()` is always valid.
unsafe { (*c_chip_ptr).ops = Adapter::<T>::VTABLE.as_raw(); }
// Cast the `*mut bindings::pwm_chip` to `*mut Chip`. This is valid because
// `Chip` is `repr(transparent)` over `Opaque<bindings::pwm_chip>`, and
// `Opaque<T>` is `repr(transparent)` over `T`.
let chip_ptr_as_self = c_chip_ptr.cast::<Self>();
// SAFETY: `chip_ptr_as_self` points to a valid `Chip` (layout-compatible with
// `bindings::pwm_chip`) whose embedded device has refcount 1.
// `ARef::from_raw` takes this pointer and manages it via `AlwaysRefCounted`.
Ok(unsafe { ARef::from_raw(NonNull::new_unchecked(chip_ptr_as_self)) })
}
}
// SAFETY: Implements refcounting for `Chip` using the embedded `struct device`.
unsafe impl<T: PwmOps> AlwaysRefCounted for Chip<T> {
#[inline]
fn inc_ref(&self) {
// SAFETY: `self.0.get()` points to a valid `pwm_chip` because `self` exists.
// The embedded `dev` is valid. `get_device` increments its refcount.
unsafe { bindings::get_device(&raw mut (*self.0.get()).dev); }
}
#[inline]
unsafe fn dec_ref(obj: NonNull<Chip<T>>) {
let c_chip_ptr = obj.cast::<bindings::pwm_chip>().as_ptr();
// SAFETY: `obj` is a valid pointer to a `Chip` (and thus `bindings::pwm_chip`)
// with a non-zero refcount. `put_device` handles decrement and final release.
unsafe { bindings::put_device(&raw mut (*c_chip_ptr).dev); }
}
}
// SAFETY: `Chip` is a wrapper around `*mut bindings::pwm_chip`. The underlying C
// structure's state is managed and synchronized by the kernel's device model
// and PWM core locking mechanisms. Therefore, it is safe to move the `Chip`
// wrapper (and the pointer it contains) across threads.
unsafe impl<T: PwmOps + Send> Send for Chip<T> {}
// SAFETY: It is safe for multiple threads to have shared access (`&Chip`) because
// the `Chip` data is immutable from the Rust side without holding the appropriate
// kernel locks, which the C core is responsible for. Any interior mutability is
// handled and synchronized by the C kernel code.
unsafe impl<T: PwmOps + Sync> Sync for Chip<T> {}
/// A resource guard that ensures `pwmchip_remove` is called on drop.
///
/// This struct is intended to be managed by the `devres` framework by transferring its ownership
/// via [`Devres::register`]. This ties the lifetime of the PWM chip registration
/// to the lifetime of the underlying device.
pub struct Registration<T: PwmOps> {
chip: ARef<Chip<T>>,
}
impl<T: 'static + PwmOps + Send + Sync> Registration<T> {
/// Registers a PWM chip with the PWM subsystem.
///
/// Transfers its ownership to the `devres` framework, which ties its lifetime
/// to the parent device.
/// On unbind of the parent device, the `devres` entry will be dropped, automatically
/// calling `pwmchip_remove`. This function should be called from the driver's `probe`.
pub fn register(
dev: &device::Device<Bound>,
chip: ARef<Chip<T>>,
) -> Result {
let chip_parent = chip.device().parent().ok_or(EINVAL)?;
if dev.as_raw() != chip_parent.as_raw() {
return Err(EINVAL);
}
let c_chip_ptr = chip.as_raw();
// SAFETY: `c_chip_ptr` points to a valid chip with its ops initialized.
// `__pwmchip_add` is the C function to register the chip with the PWM core.
unsafe {
to_result(bindings::__pwmchip_add(c_chip_ptr, core::ptr::null_mut()))?;
}
let registration = Registration { chip };
devres::register(dev, registration, GFP_KERNEL)
}
}
impl<T: PwmOps> Drop for Registration<T> {
fn drop(&mut self) {
let chip_raw = self.chip.as_raw();
// SAFETY: `chip_raw` points to a chip that was successfully registered.
// `bindings::pwmchip_remove` is the correct C function to unregister it.
// This `drop` implementation is called automatically by `devres` on driver unbind.
unsafe { bindings::pwmchip_remove(chip_raw); }
}
}