mirror of https://github.com/torvalds/linux.git
drm/i915/gvt: fix typos in i915/gvt files
Fix all typos in files under drm/i915/gvt reported by codespell tool. v2: Correct comment styling. <Krzysztof Niemiec> Signed-off-by: Nitin Gote <nitin.r.gote@intel.com> Reviewed-by: Krzysztof Niemiec <krzysztof.niemiec@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20250120081517.3237326-3-nitin.r.gote@intel.com Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
This commit is contained in:
parent
c156ef573e
commit
61d9f02893
|
|
@ -1906,7 +1906,7 @@ static int perform_bb_shadow(struct parser_exec_state *s)
|
|||
s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
|
||||
unsigned long start_offset = 0;
|
||||
|
||||
/* get the start gm address of the batch buffer */
|
||||
/* Get the start gm address of the batch buffer */
|
||||
gma = get_gma_bb_from_cmd(s, 1);
|
||||
if (gma == INTEL_GVT_INVALID_ADDR)
|
||||
return -EFAULT;
|
||||
|
|
@ -1921,15 +1921,16 @@ static int perform_bb_shadow(struct parser_exec_state *s)
|
|||
|
||||
bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
|
||||
|
||||
/* the start_offset stores the batch buffer's start gma's
|
||||
* offset relative to page boundary. so for non-privileged batch
|
||||
/*
|
||||
* The start_offset stores the batch buffer's start gma's
|
||||
* offset relative to page boundary. So for non-privileged batch
|
||||
* buffer, the shadowed gem object holds exactly the same page
|
||||
* layout as original gem object. This is for the convience of
|
||||
* layout as original gem object. This is for the convenience of
|
||||
* replacing the whole non-privilged batch buffer page to this
|
||||
* shadowed one in PPGTT at the same gma address. (this replacing
|
||||
* shadowed one in PPGTT at the same gma address. (This replacing
|
||||
* action is not implemented yet now, but may be necessary in
|
||||
* future).
|
||||
* for prileged batch buffer, we just change start gma address to
|
||||
* For prileged batch buffer, we just change start gma address to
|
||||
* that of shadowed page.
|
||||
*/
|
||||
if (bb->ppgtt)
|
||||
|
|
@ -1976,7 +1977,7 @@ static int perform_bb_shadow(struct parser_exec_state *s)
|
|||
/*
|
||||
* ip_va saves the virtual address of the shadow batch buffer, while
|
||||
* ip_gma saves the graphics address of the original batch buffer.
|
||||
* As the shadow batch buffer is just a copy from the originial one,
|
||||
* As the shadow batch buffer is just a copy from the original one,
|
||||
* it should be right to use shadow batch buffer'va and original batch
|
||||
* buffer's gma in pair. After all, we don't want to pin the shadow
|
||||
* buffer here (too early).
|
||||
|
|
|
|||
|
|
@ -436,7 +436,7 @@ int intel_vgpu_query_plane(struct intel_vgpu *vgpu, void *args)
|
|||
dmabuf_obj_get(dmabuf_obj);
|
||||
}
|
||||
ret = 0;
|
||||
gvt_dbg_dpy("vgpu%d: re-use dmabuf_obj ref %d, id %d\n",
|
||||
gvt_dbg_dpy("vgpu%d: reuse dmabuf_obj ref %d, id %d\n",
|
||||
vgpu->id, kref_read(&dmabuf_obj->kref),
|
||||
gfx_plane_info->dmabuf_id);
|
||||
mutex_unlock(&vgpu->dmabuf_lock);
|
||||
|
|
|
|||
|
|
@ -298,7 +298,7 @@ static int gmbus3_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|||
int byte_count = byte_left;
|
||||
u32 reg_data = 0;
|
||||
|
||||
/* Data can only be recevied if previous settings correct */
|
||||
/* Data can only be received if previous settings correct */
|
||||
if (vgpu_vreg_t(vgpu, PCH_GMBUS1) & GMBUS_SLAVE_READ) {
|
||||
if (byte_left <= 0) {
|
||||
memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
|
||||
|
|
|
|||
|
|
@ -1193,7 +1193,7 @@ static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
|
|||
gvt_vdbg_mm("shadow 64K gtt entry\n");
|
||||
/*
|
||||
* The layout of 64K page is special, the page size is
|
||||
* controlled by uper PDE. To be simple, we always split
|
||||
* controlled by upper PDE. To be simple, we always split
|
||||
* 64K page to smaller 4K pages in shadow PT.
|
||||
*/
|
||||
return split_64KB_gtt_entry(vgpu, spt, index, &se);
|
||||
|
|
|
|||
|
|
@ -452,8 +452,10 @@ void intel_vgpu_free_resource(struct intel_vgpu *vgpu);
|
|||
void intel_vgpu_write_fence(struct intel_vgpu *vgpu,
|
||||
u32 fence, u64 value);
|
||||
|
||||
/* Macros for easily accessing vGPU virtual/shadow register.
|
||||
Explicitly seperate use for typed MMIO reg or real offset.*/
|
||||
/*
|
||||
* Macros for easily accessing vGPU virtual/shadow register.
|
||||
* Explicitly separate use for typed MMIO reg or real offset.
|
||||
*/
|
||||
#define vgpu_vreg_t(vgpu, reg) \
|
||||
(*(u32 *)(vgpu->mmio.vreg + i915_mmio_reg_offset(reg)))
|
||||
#define vgpu_vreg(vgpu, offset) \
|
||||
|
|
@ -696,7 +698,7 @@ static inline void intel_gvt_mmio_set_cmd_write_patch(
|
|||
* @offset: register offset
|
||||
*
|
||||
* Returns:
|
||||
* True if GPU commmand write to an MMIO should be patched
|
||||
* True if GPU command write to an MMIO should be patched.
|
||||
*/
|
||||
static inline bool intel_gvt_mmio_is_cmd_write_patch(
|
||||
struct intel_gvt *gvt, unsigned int offset)
|
||||
|
|
|
|||
|
|
@ -689,11 +689,11 @@ static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
|
|||
u32 new_rate = 0;
|
||||
u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
|
||||
|
||||
/* Calcuate pixel clock by (ls_clk * M / N) */
|
||||
/* Calculate pixel clock by (ls_clk * M / N) */
|
||||
pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
|
||||
pixel_clk *= MSEC_PER_SEC;
|
||||
|
||||
/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
|
||||
/* Calculate refresh rate by (pixel_clk / (h_total * v_total)) */
|
||||
new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
|
||||
|
||||
if (*old_rate != new_rate)
|
||||
|
|
@ -2001,7 +2001,7 @@ static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|||
* vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
|
||||
* vGPU reset if in resuming.
|
||||
* In S0ix exit, the device power state also transite from D3 to D0 as
|
||||
* S3 resume, but no vGPU reset (triggered by QEMU devic model). After
|
||||
* S3 resume, but no vGPU reset (triggered by QEMU device model). After
|
||||
* S0ix exit, all engines continue to work. However the d3_entered
|
||||
* remains set which will break next vGPU reset logic (miss the expected
|
||||
* PPGTT invalidation).
|
||||
|
|
|
|||
|
|
@ -142,7 +142,7 @@ static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
|
|||
int ret;
|
||||
|
||||
/*
|
||||
* We pin the pages one-by-one to avoid allocating a big arrary
|
||||
* We pin the pages one-by-one to avoid allocating a big array
|
||||
* on stack to hold pfns.
|
||||
*/
|
||||
for (npage = 0; npage < total_pages; npage++) {
|
||||
|
|
|
|||
|
|
@ -53,7 +53,7 @@ struct engine_mmio {
|
|||
u32 value;
|
||||
};
|
||||
|
||||
/* Raw offset is appened to each line for convenience. */
|
||||
/* Raw offset is append to each line for convenience. */
|
||||
static struct engine_mmio gen8_engine_mmio_list[] __cacheline_aligned = {
|
||||
{RCS0, RING_MODE_GEN7(RENDER_RING_BASE), 0xffff, false}, /* 0x229c */
|
||||
{RCS0, GEN9_CTX_PREEMPT_REG, 0x0, false}, /* 0x2248 */
|
||||
|
|
@ -576,8 +576,8 @@ void intel_gvt_switch_mmio(struct intel_vgpu *pre,
|
|||
|
||||
/**
|
||||
* We are using raw mmio access wrapper to improve the
|
||||
* performace for batch mmio read/write, so we need
|
||||
* handle forcewake mannually.
|
||||
* performance for batch mmio read/write, so we need
|
||||
* handle forcewake manually.
|
||||
*/
|
||||
intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
|
||||
switch_mmio(pre, next, engine);
|
||||
|
|
|
|||
|
|
@ -77,7 +77,7 @@ static void update_shadow_pdps(struct intel_vgpu_workload *workload)
|
|||
}
|
||||
|
||||
/*
|
||||
* when populating shadow ctx from guest, we should not overrride oa related
|
||||
* When populating shadow ctx from guest, we should not override oa related
|
||||
* registers, so that they will not be overlapped by guest oa configs. Thus
|
||||
* made it possible to capture oa data from host for both host and guests.
|
||||
*/
|
||||
|
|
@ -528,9 +528,10 @@ static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
|
|||
int ret;
|
||||
|
||||
list_for_each_entry(bb, &workload->shadow_bb, list) {
|
||||
/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
|
||||
/*
|
||||
* For privilege batch buffer and not wa_ctx, the bb_start_cmd_va
|
||||
* is only updated into ring_scan_buffer, not real ring address
|
||||
* allocated in later copy_workload_to_ring_buffer. pls be noted
|
||||
* allocated in later copy_workload_to_ring_buffer. Please be noted
|
||||
* shadow_ring_buffer_va is now pointed to real ring buffer va
|
||||
* in copy_workload_to_ring_buffer.
|
||||
*/
|
||||
|
|
@ -546,7 +547,7 @@ static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
|
|||
* here, rather than switch to shadow bb's gma
|
||||
* address, we directly use original batch buffer's
|
||||
* gma address, and send original bb to hardware
|
||||
* directly
|
||||
* directly.
|
||||
*/
|
||||
if (!bb->ppgtt) {
|
||||
i915_gem_ww_ctx_init(&ww, false);
|
||||
|
|
@ -1774,7 +1775,7 @@ intel_vgpu_create_workload(struct intel_vgpu *vgpu,
|
|||
}
|
||||
|
||||
/**
|
||||
* intel_vgpu_queue_workload - Qeue a vGPU workload
|
||||
* intel_vgpu_queue_workload - Queue a vGPU workload
|
||||
* @workload: the workload to queue in
|
||||
*/
|
||||
void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
|
||||
|
|
|
|||
|
|
@ -78,7 +78,7 @@ void populate_pvinfo_page(struct intel_vgpu *vgpu)
|
|||
* vGPU type name is defined as GVTg_Vx_y which contains the physical GPU
|
||||
* generation type (e.g V4 as BDW server, V5 as SKL server).
|
||||
*
|
||||
* Depening on the physical SKU resource, we might see vGPU types like
|
||||
* Depending on the physical SKU resource, we might see vGPU types like
|
||||
* GVTg_V4_8, GVTg_V4_4, GVTg_V4_2, etc. We can create different types of
|
||||
* vGPU on same physical GPU depending on available resource. Each vGPU
|
||||
* type will have a different number of avail_instance to indicate how
|
||||
|
|
@ -417,7 +417,7 @@ int intel_gvt_create_vgpu(struct intel_vgpu *vgpu,
|
|||
* the whole vGPU to default state as when it is created. This vGPU function
|
||||
* is required both for functionary and security concerns.The ultimate goal
|
||||
* of vGPU FLR is that reuse a vGPU instance by virtual machines. When we
|
||||
* assign a vGPU to a virtual machine we must isse such reset first.
|
||||
* assign a vGPU to a virtual machine we must issue such reset first.
|
||||
*
|
||||
* Full GT Reset and Per-Engine GT Reset are soft reset flow for GPU engines
|
||||
* (Render, Blitter, Video, Video Enhancement). It is defined by GPU Spec.
|
||||
|
|
@ -428,7 +428,7 @@ int intel_gvt_create_vgpu(struct intel_vgpu *vgpu,
|
|||
*
|
||||
* The parameter dev_level is to identify if we will do DMLR or GT reset.
|
||||
* The parameter engine_mask is to specific the engines that need to be
|
||||
* resetted. If value ALL_ENGINES is given for engine_mask, it means
|
||||
* reset. If value ALL_ENGINES is given for engine_mask, it means
|
||||
* the caller requests a full GT reset that we will reset all virtual
|
||||
* GPU engines. For FLR, engine_mask is ignored.
|
||||
*/
|
||||
|
|
|
|||
Loading…
Reference in New Issue